| 1 | //===-- lib/Evaluate/fold-reduction.h -------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef FORTRAN_EVALUATE_FOLD_REDUCTION_H_ |
| 10 | #define FORTRAN_EVALUATE_FOLD_REDUCTION_H_ |
| 11 | |
| 12 | #include "fold-implementation.h" |
| 13 | |
| 14 | namespace Fortran::evaluate { |
| 15 | |
| 16 | // DOT_PRODUCT |
| 17 | template <typename T> |
| 18 | static Expr<T> FoldDotProduct( |
| 19 | FoldingContext &context, FunctionRef<T> &&funcRef) { |
| 20 | using Element = typename Constant<T>::Element; |
| 21 | auto args{funcRef.arguments()}; |
| 22 | CHECK(args.size() == 2); |
| 23 | Folder<T> folder{context}; |
| 24 | Constant<T> *va{folder.Folding(args[0])}; |
| 25 | Constant<T> *vb{folder.Folding(args[1])}; |
| 26 | if (va && vb) { |
| 27 | CHECK(va->Rank() == 1 && vb->Rank() == 1); |
| 28 | if (va->size() != vb->size()) { |
| 29 | context.messages().Say( |
| 30 | "Vector arguments to DOT_PRODUCT have distinct extents %zd and %zd"_err_en_US , |
| 31 | va->size(), vb->size()); |
| 32 | return MakeInvalidIntrinsic(std::move(funcRef)); |
| 33 | } |
| 34 | Element sum{}; |
| 35 | bool overflow{false}; |
| 36 | if constexpr (T::category == TypeCategory::Complex) { |
| 37 | std::vector<Element> conjugates; |
| 38 | for (const Element &x : va->values()) { |
| 39 | conjugates.emplace_back(x.CONJG()); |
| 40 | } |
| 41 | Constant<T> conjgA{ |
| 42 | std::move(conjugates), ConstantSubscripts{va->shape()}}; |
| 43 | Expr<T> products{Fold( |
| 44 | context, Expr<T>{std::move(conjgA)} * Expr<T>{Constant<T>{*vb}})}; |
| 45 | Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))}; |
| 46 | [[maybe_unused]] Element correction{}; |
| 47 | const auto &rounding{context.targetCharacteristics().roundingMode()}; |
| 48 | for (const Element &x : cProducts.values()) { |
| 49 | if constexpr (useKahanSummation) { |
| 50 | auto next{x.Subtract(correction, rounding)}; |
| 51 | overflow |= next.flags.test(RealFlag::Overflow); |
| 52 | auto added{sum.Add(next.value, rounding)}; |
| 53 | overflow |= added.flags.test(RealFlag::Overflow); |
| 54 | correction = added.value.Subtract(sum, rounding) |
| 55 | .value.Subtract(next.value, rounding) |
| 56 | .value; |
| 57 | sum = std::move(added.value); |
| 58 | } else { |
| 59 | auto added{sum.Add(x, rounding)}; |
| 60 | overflow |= added.flags.test(RealFlag::Overflow); |
| 61 | sum = std::move(added.value); |
| 62 | } |
| 63 | } |
| 64 | } else if constexpr (T::category == TypeCategory::Logical) { |
| 65 | Expr<T> conjunctions{Fold(context, |
| 66 | Expr<T>{LogicalOperation<T::kind>{LogicalOperator::And, |
| 67 | Expr<T>{Constant<T>{*va}}, Expr<T>{Constant<T>{*vb}}}})}; |
| 68 | Constant<T> &cConjunctions{DEREF(UnwrapConstantValue<T>(conjunctions))}; |
| 69 | for (const Element &x : cConjunctions.values()) { |
| 70 | if (x.IsTrue()) { |
| 71 | sum = Element{true}; |
| 72 | break; |
| 73 | } |
| 74 | } |
| 75 | } else if constexpr (T::category == TypeCategory::Integer) { |
| 76 | Expr<T> products{ |
| 77 | Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})}; |
| 78 | Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))}; |
| 79 | for (const Element &x : cProducts.values()) { |
| 80 | auto next{sum.AddSigned(x)}; |
| 81 | overflow |= next.overflow; |
| 82 | sum = std::move(next.value); |
| 83 | } |
| 84 | } else if constexpr (T::category == TypeCategory::Unsigned) { |
| 85 | Expr<T> products{ |
| 86 | Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})}; |
| 87 | Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))}; |
| 88 | for (const Element &x : cProducts.values()) { |
| 89 | sum = sum.AddUnsigned(x).value; |
| 90 | } |
| 91 | } else { |
| 92 | static_assert(T::category == TypeCategory::Real); |
| 93 | Expr<T> products{ |
| 94 | Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})}; |
| 95 | Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))}; |
| 96 | [[maybe_unused]] Element correction{}; |
| 97 | const auto &rounding{context.targetCharacteristics().roundingMode()}; |
| 98 | for (const Element &x : cProducts.values()) { |
| 99 | if constexpr (useKahanSummation) { |
| 100 | auto next{x.Subtract(correction, rounding)}; |
| 101 | overflow |= next.flags.test(RealFlag::Overflow); |
| 102 | auto added{sum.Add(next.value, rounding)}; |
| 103 | overflow |= added.flags.test(RealFlag::Overflow); |
| 104 | correction = added.value.Subtract(sum, rounding) |
| 105 | .value.Subtract(next.value, rounding) |
| 106 | .value; |
| 107 | sum = std::move(added.value); |
| 108 | } else { |
| 109 | auto added{sum.Add(x, rounding)}; |
| 110 | overflow |= added.flags.test(RealFlag::Overflow); |
| 111 | sum = std::move(added.value); |
| 112 | } |
| 113 | } |
| 114 | } |
| 115 | if (overflow && |
| 116 | context.languageFeatures().ShouldWarn( |
| 117 | common::UsageWarning::FoldingException)) { |
| 118 | context.messages().Say(common::UsageWarning::FoldingException, |
| 119 | "DOT_PRODUCT of %s data overflowed during computation"_warn_en_US , |
| 120 | T::AsFortran()); |
| 121 | } |
| 122 | return Expr<T>{Constant<T>{std::move(sum)}}; |
| 123 | } |
| 124 | return Expr<T>{std::move(funcRef)}; |
| 125 | } |
| 126 | |
| 127 | // Fold and validate a DIM= argument. Returns false on error. |
| 128 | bool CheckReductionDIM(std::optional<int> &dim, FoldingContext &, |
| 129 | ActualArguments &, std::optional<int> dimIndex, int rank); |
| 130 | |
| 131 | // Fold and validate a MASK= argument. Return null on error, absent MASK=, or |
| 132 | // non-constant MASK=. |
| 133 | Constant<LogicalResult> *GetReductionMASK( |
| 134 | std::optional<ActualArgument> &maskArg, const ConstantSubscripts &shape, |
| 135 | FoldingContext &); |
| 136 | |
| 137 | // Common preprocessing for reduction transformational intrinsic function |
| 138 | // folding. If the intrinsic can have DIM= &/or MASK= arguments, extract |
| 139 | // and check them. If a MASK= is present, apply it to the array data and |
| 140 | // substitute replacement values for elements corresponding to .FALSE. in |
| 141 | // the mask. If the result is present, the intrinsic call can be folded. |
| 142 | template <typename T> struct ArrayAndMask { |
| 143 | Constant<T> array; |
| 144 | Constant<LogicalResult> mask; |
| 145 | }; |
| 146 | template <typename T> |
| 147 | static std::optional<ArrayAndMask<T>> ProcessReductionArgs( |
| 148 | FoldingContext &context, ActualArguments &arg, std::optional<int> &dim, |
| 149 | int arrayIndex, std::optional<int> dimIndex = std::nullopt, |
| 150 | std::optional<int> maskIndex = std::nullopt) { |
| 151 | if (arg.empty()) { |
| 152 | return std::nullopt; |
| 153 | } |
| 154 | Constant<T> *folded{Folder<T>{context}.Folding(arg[arrayIndex])}; |
| 155 | if (!folded || folded->Rank() < 1) { |
| 156 | return std::nullopt; |
| 157 | } |
| 158 | if (!CheckReductionDIM(dim, context, arg, dimIndex, folded->Rank())) { |
| 159 | return std::nullopt; |
| 160 | } |
| 161 | std::size_t n{folded->size()}; |
| 162 | std::vector<Scalar<LogicalResult>> maskElement; |
| 163 | if (maskIndex && static_cast<std::size_t>(*maskIndex) < arg.size() && |
| 164 | arg[*maskIndex]) { |
| 165 | if (const Constant<LogicalResult> *origMask{ |
| 166 | GetReductionMASK(arg[*maskIndex], folded->shape(), context)}) { |
| 167 | if (auto scalarMask{origMask->GetScalarValue()}) { |
| 168 | maskElement = |
| 169 | std::vector<Scalar<LogicalResult>>(n, scalarMask->IsTrue()); |
| 170 | } else { |
| 171 | maskElement = origMask->values(); |
| 172 | } |
| 173 | } else { |
| 174 | return std::nullopt; |
| 175 | } |
| 176 | } else { |
| 177 | maskElement = std::vector<Scalar<LogicalResult>>(n, true); |
| 178 | } |
| 179 | return ArrayAndMask<T>{Constant<T>(*folded), |
| 180 | Constant<LogicalResult>{ |
| 181 | std::move(maskElement), ConstantSubscripts{folded->shape()}}}; |
| 182 | } |
| 183 | |
| 184 | // Generalized reduction to an array of one dimension fewer (w/ DIM=) |
| 185 | // or to a scalar (w/o DIM=). The ACCUMULATOR type must define |
| 186 | // operator()(Scalar<T> &, const ConstantSubscripts &, bool first) |
| 187 | // and Done(Scalar<T> &). |
| 188 | template <typename T, typename ACCUMULATOR, typename ARRAY> |
| 189 | static Constant<T> DoReduction(const Constant<ARRAY> &array, |
| 190 | const Constant<LogicalResult> &mask, std::optional<int> &dim, |
| 191 | const Scalar<T> &identity, ACCUMULATOR &accumulator) { |
| 192 | ConstantSubscripts at{array.lbounds()}; |
| 193 | ConstantSubscripts maskAt{mask.lbounds()}; |
| 194 | std::vector<typename Constant<T>::Element> elements; |
| 195 | ConstantSubscripts resultShape; // empty -> scalar |
| 196 | if (dim) { // DIM= is present, so result is an array |
| 197 | resultShape = array.shape(); |
| 198 | resultShape.erase(resultShape.begin() + (*dim - 1)); |
| 199 | ConstantSubscript dimExtent{array.shape().at(*dim - 1)}; |
| 200 | CHECK(dimExtent == mask.shape().at(*dim - 1)); |
| 201 | ConstantSubscript &dimAt{at[*dim - 1]}; |
| 202 | ConstantSubscript dimLbound{dimAt}; |
| 203 | ConstantSubscript &maskDimAt{maskAt[*dim - 1]}; |
| 204 | ConstantSubscript maskDimLbound{maskDimAt}; |
| 205 | for (auto n{GetSize(resultShape)}; n-- > 0; |
| 206 | array.IncrementSubscripts(at), mask.IncrementSubscripts(maskAt)) { |
| 207 | elements.push_back(identity); |
| 208 | if (dimExtent > 0) { |
| 209 | dimAt = dimLbound; |
| 210 | maskDimAt = maskDimLbound; |
| 211 | bool firstUnmasked{true}; |
| 212 | for (ConstantSubscript j{0}; j < dimExtent; ++j, ++dimAt, ++maskDimAt) { |
| 213 | if (mask.At(maskAt).IsTrue()) { |
| 214 | accumulator(elements.back(), at, firstUnmasked); |
| 215 | firstUnmasked = false; |
| 216 | } |
| 217 | } |
| 218 | --dimAt, --maskDimAt; |
| 219 | } |
| 220 | accumulator.Done(elements.back()); |
| 221 | } |
| 222 | } else { // no DIM=, result is scalar |
| 223 | elements.push_back(identity); |
| 224 | bool firstUnmasked{true}; |
| 225 | for (auto n{array.size()}; n-- > 0; |
| 226 | array.IncrementSubscripts(at), mask.IncrementSubscripts(maskAt)) { |
| 227 | if (mask.At(maskAt).IsTrue()) { |
| 228 | accumulator(elements.back(), at, firstUnmasked); |
| 229 | firstUnmasked = false; |
| 230 | } |
| 231 | } |
| 232 | accumulator.Done(elements.back()); |
| 233 | } |
| 234 | if constexpr (T::category == TypeCategory::Character) { |
| 235 | return {static_cast<ConstantSubscript>(identity.size()), |
| 236 | std::move(elements), std::move(resultShape)}; |
| 237 | } else { |
| 238 | return {std::move(elements), std::move(resultShape)}; |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | // MAXVAL & MINVAL |
| 243 | template <typename T, bool ABS = false> class MaxvalMinvalAccumulator { |
| 244 | public: |
| 245 | MaxvalMinvalAccumulator( |
| 246 | RelationalOperator opr, FoldingContext &context, const Constant<T> &array) |
| 247 | : opr_{opr}, context_{context}, array_{array} {}; |
| 248 | void operator()(Scalar<T> &element, const ConstantSubscripts &at, |
| 249 | [[maybe_unused]] bool firstUnmasked) const { |
| 250 | auto aAt{array_.At(at)}; |
| 251 | if constexpr (ABS) { |
| 252 | aAt = aAt.ABS(); |
| 253 | } |
| 254 | if constexpr (T::category == TypeCategory::Real) { |
| 255 | if (firstUnmasked || element.IsNotANumber()) { |
| 256 | // Return NaN if and only if all unmasked elements are NaNs and |
| 257 | // at least one unmasked element is visible. |
| 258 | element = aAt; |
| 259 | return; |
| 260 | } |
| 261 | } |
| 262 | Expr<LogicalResult> test{PackageRelation( |
| 263 | opr_, Expr<T>{Constant<T>{aAt}}, Expr<T>{Constant<T>{element}})}; |
| 264 | auto folded{GetScalarConstantValue<LogicalResult>( |
| 265 | test.Rewrite(context_, std::move(test)))}; |
| 266 | CHECK(folded.has_value()); |
| 267 | if (folded->IsTrue()) { |
| 268 | element = aAt; |
| 269 | } |
| 270 | } |
| 271 | void Done(Scalar<T> &) const {} |
| 272 | |
| 273 | private: |
| 274 | RelationalOperator opr_; |
| 275 | FoldingContext &context_; |
| 276 | const Constant<T> &array_; |
| 277 | }; |
| 278 | |
| 279 | template <typename T> |
| 280 | static Expr<T> FoldMaxvalMinval(FoldingContext &context, FunctionRef<T> &&ref, |
| 281 | RelationalOperator opr, const Scalar<T> &identity) { |
| 282 | static_assert(T::category == TypeCategory::Integer || |
| 283 | T::category == TypeCategory::Unsigned || |
| 284 | T::category == TypeCategory::Real || |
| 285 | T::category == TypeCategory::Character); |
| 286 | std::optional<int> dim; |
| 287 | if (std::optional<ArrayAndMask<T>> arrayAndMask{ |
| 288 | ProcessReductionArgs<T>(context, ref.arguments(), dim, |
| 289 | /*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) { |
| 290 | MaxvalMinvalAccumulator<T> accumulator{opr, context, arrayAndMask->array}; |
| 291 | return Expr<T>{DoReduction<T>( |
| 292 | arrayAndMask->array, arrayAndMask->mask, dim, identity, accumulator)}; |
| 293 | } |
| 294 | return Expr<T>{std::move(ref)}; |
| 295 | } |
| 296 | |
| 297 | // PRODUCT |
| 298 | template <typename T> class ProductAccumulator { |
| 299 | public: |
| 300 | ProductAccumulator(const Constant<T> &array) : array_{array} {} |
| 301 | void operator()( |
| 302 | Scalar<T> &element, const ConstantSubscripts &at, bool /*first*/) { |
| 303 | if constexpr (T::category == TypeCategory::Integer) { |
| 304 | auto prod{element.MultiplySigned(array_.At(at))}; |
| 305 | overflow_ |= prod.SignedMultiplicationOverflowed(); |
| 306 | element = prod.lower; |
| 307 | } else if constexpr (T::category == TypeCategory::Unsigned) { |
| 308 | element = element.MultiplyUnsigned(array_.At(at)).lower; |
| 309 | } else { // Real & Complex |
| 310 | auto prod{element.Multiply(array_.At(at))}; |
| 311 | overflow_ |= prod.flags.test(RealFlag::Overflow); |
| 312 | element = prod.value; |
| 313 | } |
| 314 | } |
| 315 | bool overflow() const { return overflow_; } |
| 316 | void Done(Scalar<T> &) const {} |
| 317 | |
| 318 | private: |
| 319 | const Constant<T> &array_; |
| 320 | bool overflow_{false}; |
| 321 | }; |
| 322 | |
| 323 | template <typename T> |
| 324 | static Expr<T> FoldProduct( |
| 325 | FoldingContext &context, FunctionRef<T> &&ref, Scalar<T> identity) { |
| 326 | static_assert(T::category == TypeCategory::Integer || |
| 327 | T::category == TypeCategory::Unsigned || |
| 328 | T::category == TypeCategory::Real || |
| 329 | T::category == TypeCategory::Complex); |
| 330 | std::optional<int> dim; |
| 331 | if (std::optional<ArrayAndMask<T>> arrayAndMask{ |
| 332 | ProcessReductionArgs<T>(context, ref.arguments(), dim, |
| 333 | /*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) { |
| 334 | ProductAccumulator accumulator{arrayAndMask->array}; |
| 335 | auto result{Expr<T>{DoReduction<T>( |
| 336 | arrayAndMask->array, arrayAndMask->mask, dim, identity, accumulator)}}; |
| 337 | if (accumulator.overflow() && |
| 338 | context.languageFeatures().ShouldWarn( |
| 339 | common::UsageWarning::FoldingException)) { |
| 340 | context.messages().Say(common::UsageWarning::FoldingException, |
| 341 | "PRODUCT() of %s data overflowed"_warn_en_US , T::AsFortran()); |
| 342 | } |
| 343 | return result; |
| 344 | } |
| 345 | return Expr<T>{std::move(ref)}; |
| 346 | } |
| 347 | |
| 348 | // SUM |
| 349 | template <typename T> class SumAccumulator { |
| 350 | using Element = typename Constant<T>::Element; |
| 351 | |
| 352 | public: |
| 353 | SumAccumulator(const Constant<T> &array, Rounding rounding) |
| 354 | : array_{array}, rounding_{rounding} {} |
| 355 | void operator()( |
| 356 | Element &element, const ConstantSubscripts &at, bool /*first*/) { |
| 357 | if constexpr (T::category == TypeCategory::Integer) { |
| 358 | auto sum{element.AddSigned(array_.At(at))}; |
| 359 | overflow_ |= sum.overflow; |
| 360 | element = sum.value; |
| 361 | } else if constexpr (T::category == TypeCategory::Unsigned) { |
| 362 | element = element.AddUnsigned(array_.At(at)).value; |
| 363 | } else { // Real & Complex: use Kahan summation |
| 364 | auto next{array_.At(at).Subtract(correction_, rounding_)}; |
| 365 | overflow_ |= next.flags.test(RealFlag::Overflow); |
| 366 | auto sum{element.Add(next.value, rounding_)}; |
| 367 | overflow_ |= sum.flags.test(RealFlag::Overflow); |
| 368 | // correction = (sum - element) - next; algebraically zero |
| 369 | correction_ = sum.value.Subtract(element, rounding_) |
| 370 | .value.Subtract(next.value, rounding_) |
| 371 | .value; |
| 372 | element = sum.value; |
| 373 | } |
| 374 | } |
| 375 | bool overflow() const { return overflow_; } |
| 376 | void Done([[maybe_unused]] Element &element) { |
| 377 | if constexpr (T::category != TypeCategory::Integer && |
| 378 | T::category != TypeCategory::Unsigned) { |
| 379 | auto corrected{element.Add(correction_, rounding_)}; |
| 380 | overflow_ |= corrected.flags.test(RealFlag::Overflow); |
| 381 | correction_ = Scalar<T>{}; |
| 382 | element = corrected.value; |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | private: |
| 387 | const Constant<T> &array_; |
| 388 | Rounding rounding_; |
| 389 | bool overflow_{false}; |
| 390 | Element correction_{}; |
| 391 | }; |
| 392 | |
| 393 | template <typename T> |
| 394 | static Expr<T> FoldSum(FoldingContext &context, FunctionRef<T> &&ref) { |
| 395 | static_assert(T::category == TypeCategory::Integer || |
| 396 | T::category == TypeCategory::Unsigned || |
| 397 | T::category == TypeCategory::Real || |
| 398 | T::category == TypeCategory::Complex); |
| 399 | using Element = typename Constant<T>::Element; |
| 400 | std::optional<int> dim; |
| 401 | Element identity{}; |
| 402 | if (std::optional<ArrayAndMask<T>> arrayAndMask{ |
| 403 | ProcessReductionArgs<T>(context, ref.arguments(), dim, |
| 404 | /*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) { |
| 405 | SumAccumulator accumulator{ |
| 406 | arrayAndMask->array, context.targetCharacteristics().roundingMode()}; |
| 407 | auto result{Expr<T>{DoReduction<T>( |
| 408 | arrayAndMask->array, arrayAndMask->mask, dim, identity, accumulator)}}; |
| 409 | if (accumulator.overflow() && |
| 410 | context.languageFeatures().ShouldWarn( |
| 411 | common::UsageWarning::FoldingException)) { |
| 412 | context.messages().Say(common::UsageWarning::FoldingException, |
| 413 | "SUM() of %s data overflowed"_warn_en_US , T::AsFortran()); |
| 414 | } |
| 415 | return result; |
| 416 | } |
| 417 | return Expr<T>{std::move(ref)}; |
| 418 | } |
| 419 | |
| 420 | // Utility for IALL, IANY, IPARITY, ALL, ANY, & PARITY |
| 421 | template <typename T> class OperationAccumulator { |
| 422 | public: |
| 423 | OperationAccumulator(const Constant<T> &array, |
| 424 | Scalar<T> (Scalar<T>::*operation)(const Scalar<T> &) const) |
| 425 | : array_{array}, operation_{operation} {} |
| 426 | void operator()( |
| 427 | Scalar<T> &element, const ConstantSubscripts &at, bool /*first*/) { |
| 428 | element = (element.*operation_)(array_.At(at)); |
| 429 | } |
| 430 | void Done(Scalar<T> &) const {} |
| 431 | |
| 432 | private: |
| 433 | const Constant<T> &array_; |
| 434 | Scalar<T> (Scalar<T>::*operation_)(const Scalar<T> &) const; |
| 435 | }; |
| 436 | |
| 437 | } // namespace Fortran::evaluate |
| 438 | #endif // FORTRAN_EVALUATE_FOLD_REDUCTION_H_ |
| 439 | |