1 | //===-- ConvertExpr.cpp ---------------------------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "flang/Lower/ConvertExpr.h" |
14 | #include "flang/Common/unwrap.h" |
15 | #include "flang/Evaluate/fold.h" |
16 | #include "flang/Evaluate/real.h" |
17 | #include "flang/Evaluate/traverse.h" |
18 | #include "flang/Lower/Allocatable.h" |
19 | #include "flang/Lower/Bridge.h" |
20 | #include "flang/Lower/BuiltinModules.h" |
21 | #include "flang/Lower/CallInterface.h" |
22 | #include "flang/Lower/Coarray.h" |
23 | #include "flang/Lower/ComponentPath.h" |
24 | #include "flang/Lower/ConvertCall.h" |
25 | #include "flang/Lower/ConvertConstant.h" |
26 | #include "flang/Lower/ConvertProcedureDesignator.h" |
27 | #include "flang/Lower/ConvertType.h" |
28 | #include "flang/Lower/ConvertVariable.h" |
29 | #include "flang/Lower/CustomIntrinsicCall.h" |
30 | #include "flang/Lower/Mangler.h" |
31 | #include "flang/Lower/Runtime.h" |
32 | #include "flang/Lower/Support/Utils.h" |
33 | #include "flang/Optimizer/Builder/Character.h" |
34 | #include "flang/Optimizer/Builder/Complex.h" |
35 | #include "flang/Optimizer/Builder/Factory.h" |
36 | #include "flang/Optimizer/Builder/IntrinsicCall.h" |
37 | #include "flang/Optimizer/Builder/Runtime/Assign.h" |
38 | #include "flang/Optimizer/Builder/Runtime/Character.h" |
39 | #include "flang/Optimizer/Builder/Runtime/Derived.h" |
40 | #include "flang/Optimizer/Builder/Runtime/Inquiry.h" |
41 | #include "flang/Optimizer/Builder/Runtime/RTBuilder.h" |
42 | #include "flang/Optimizer/Builder/Runtime/Ragged.h" |
43 | #include "flang/Optimizer/Builder/Todo.h" |
44 | #include "flang/Optimizer/Dialect/FIRAttr.h" |
45 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
46 | #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
47 | #include "flang/Optimizer/Support/FatalError.h" |
48 | #include "flang/Runtime/support.h" |
49 | #include "flang/Semantics/dump-expr.h" |
50 | #include "flang/Semantics/expression.h" |
51 | #include "flang/Semantics/symbol.h" |
52 | #include "flang/Semantics/tools.h" |
53 | #include "flang/Semantics/type.h" |
54 | #include "flang/Support/default-kinds.h" |
55 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
56 | #include "llvm/ADT/TypeSwitch.h" |
57 | #include "llvm/Support/CommandLine.h" |
58 | #include "llvm/Support/Debug.h" |
59 | #include "llvm/Support/ErrorHandling.h" |
60 | #include "llvm/Support/raw_ostream.h" |
61 | #include <algorithm> |
62 | #include <optional> |
63 | |
64 | #define DEBUG_TYPE "flang-lower-expr" |
65 | |
66 | using namespace Fortran::runtime; |
67 | |
68 | //===----------------------------------------------------------------------===// |
69 | // The composition and structure of Fortran::evaluate::Expr is defined in |
70 | // the various header files in include/flang/Evaluate. You are referred |
71 | // there for more information on these data structures. Generally speaking, |
72 | // these data structures are a strongly typed family of abstract data types |
73 | // that, composed as trees, describe the syntax of Fortran expressions. |
74 | // |
75 | // This part of the bridge can traverse these tree structures and lower them |
76 | // to the correct FIR representation in SSA form. |
77 | //===----------------------------------------------------------------------===// |
78 | |
79 | static llvm::cl::opt<bool> generateArrayCoordinate( |
80 | "gen-array-coor", |
81 | llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"), |
82 | llvm::cl::init(Val: false)); |
83 | |
84 | // The default attempts to balance a modest allocation size with expected user |
85 | // input to minimize bounds checks and reallocations during dynamic array |
86 | // construction. Some user codes may have very large array constructors for |
87 | // which the default can be increased. |
88 | static llvm::cl::opt<unsigned> clInitialBufferSize( |
89 | "array-constructor-initial-buffer-size", |
90 | llvm::cl::desc( |
91 | "set the incremental array construction buffer size (default=32)"), |
92 | llvm::cl::init(Val: 32u)); |
93 | |
94 | // Lower TRANSPOSE as an "elemental" function that swaps the array |
95 | // expression's iteration space, so that no runtime call is needed. |
96 | // This lowering may help get rid of unnecessary creation of temporary |
97 | // arrays. Note that the runtime TRANSPOSE implementation may be different |
98 | // from the "inline" FIR, e.g. it may diagnose out-of-memory conditions |
99 | // during the temporary allocation whereas the inline implementation |
100 | // relies on AllocMemOp that will silently return null in case |
101 | // there is not enough memory. |
102 | // |
103 | // If it is set to false, then TRANSPOSE will be lowered using |
104 | // a runtime call. If it is set to true, then the lowering is controlled |
105 | // by LoweringOptions::optimizeTranspose bit (see isTransposeOptEnabled |
106 | // function in this file). |
107 | static llvm::cl::opt<bool> optimizeTranspose( |
108 | "opt-transpose", |
109 | llvm::cl::desc("lower transpose without using a runtime call"), |
110 | llvm::cl::init(Val: true)); |
111 | |
112 | // When copy-in/copy-out is generated for a boxed object we may |
113 | // either produce loops to copy the data or call the Fortran runtime's |
114 | // Assign function. Since the data copy happens under a runtime check |
115 | // (for IsContiguous) the copy loops can hardly provide any value |
116 | // to optimizations, instead, the optimizer just wastes compilation |
117 | // time on these loops. |
118 | // |
119 | // This internal option will force the loops generation, when set |
120 | // to true. It is false by default. |
121 | // |
122 | // Note that for copy-in/copy-out of non-boxed objects (e.g. for passing |
123 | // arguments by value) we always generate loops. Since the memory for |
124 | // such objects is contiguous, it may be better to expose them |
125 | // to the optimizer. |
126 | static llvm::cl::opt<bool> inlineCopyInOutForBoxes( |
127 | "inline-copyinout-for-boxes", |
128 | llvm::cl::desc( |
129 | "generate loops for copy-in/copy-out of objects with descriptors"), |
130 | llvm::cl::init(Val: false)); |
131 | |
132 | /// The various semantics of a program constituent (or a part thereof) as it may |
133 | /// appear in an expression. |
134 | /// |
135 | /// Given the following Fortran declarations. |
136 | /// ```fortran |
137 | /// REAL :: v1, v2, v3 |
138 | /// REAL, POINTER :: vp1 |
139 | /// REAL :: a1(c), a2(c) |
140 | /// REAL ELEMENTAL FUNCTION f1(arg) ! array -> array |
141 | /// FUNCTION f2(arg) ! array -> array |
142 | /// vp1 => v3 ! 1 |
143 | /// v1 = v2 * vp1 ! 2 |
144 | /// a1 = a1 + a2 ! 3 |
145 | /// a1 = f1(a2) ! 4 |
146 | /// a1 = f2(a2) ! 5 |
147 | /// ``` |
148 | /// |
149 | /// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is |
150 | /// constructed from the DataAddr of `v3`. |
151 | /// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed |
152 | /// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double |
153 | /// dereference in the `vp1` case. |
154 | /// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs |
155 | /// is CopyInCopyOut as `a1` is replaced elementally by the additions. |
156 | /// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if |
157 | /// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/ |
158 | /// POINTER, respectively. `a1` on the lhs is CopyInCopyOut. |
159 | /// In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational. |
160 | /// `a1` on the lhs is again CopyInCopyOut. |
161 | enum class ConstituentSemantics { |
162 | // Scalar data reference semantics. |
163 | // |
164 | // For these let `v` be the location in memory of a variable with value `x` |
165 | DataValue, // refers to the value `x` |
166 | DataAddr, // refers to the address `v` |
167 | BoxValue, // refers to a box value containing `v` |
168 | BoxAddr, // refers to the address of a box value containing `v` |
169 | |
170 | // Array data reference semantics. |
171 | // |
172 | // For these let `a` be the location in memory of a sequence of value `[xs]`. |
173 | // Let `x_i` be the `i`-th value in the sequence `[xs]`. |
174 | |
175 | // Referentially transparent. Refers to the array's value, `[xs]`. |
176 | RefTransparent, |
177 | // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7 |
178 | // note 2). (Passing a copy by reference to simulate pass-by-value.) |
179 | ByValueArg, |
180 | // Refers to the merge of array value `[xs]` with another array value `[ys]`. |
181 | // This merged array value will be written into memory location `a`. |
182 | CopyInCopyOut, |
183 | // Similar to CopyInCopyOut but `a` may be a transient projection (rather than |
184 | // a whole array). |
185 | ProjectedCopyInCopyOut, |
186 | // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned |
187 | // automatically by the framework. Instead, and address for `[xs]` is made |
188 | // accessible so that custom assignments to `[xs]` can be implemented. |
189 | CustomCopyInCopyOut, |
190 | // Referentially opaque. Refers to the address of `x_i`. |
191 | RefOpaque |
192 | }; |
193 | |
194 | /// Convert parser's INTEGER relational operators to MLIR. TODO: using |
195 | /// unordered, but we may want to cons ordered in certain situation. |
196 | static mlir::arith::CmpIPredicate |
197 | translateSignedRelational(Fortran::common::RelationalOperator rop) { |
198 | switch (rop) { |
199 | case Fortran::common::RelationalOperator::LT: |
200 | return mlir::arith::CmpIPredicate::slt; |
201 | case Fortran::common::RelationalOperator::LE: |
202 | return mlir::arith::CmpIPredicate::sle; |
203 | case Fortran::common::RelationalOperator::EQ: |
204 | return mlir::arith::CmpIPredicate::eq; |
205 | case Fortran::common::RelationalOperator::NE: |
206 | return mlir::arith::CmpIPredicate::ne; |
207 | case Fortran::common::RelationalOperator::GT: |
208 | return mlir::arith::CmpIPredicate::sgt; |
209 | case Fortran::common::RelationalOperator::GE: |
210 | return mlir::arith::CmpIPredicate::sge; |
211 | } |
212 | llvm_unreachable("unhandled INTEGER relational operator"); |
213 | } |
214 | |
215 | static mlir::arith::CmpIPredicate |
216 | translateUnsignedRelational(Fortran::common::RelationalOperator rop) { |
217 | switch (rop) { |
218 | case Fortran::common::RelationalOperator::LT: |
219 | return mlir::arith::CmpIPredicate::ult; |
220 | case Fortran::common::RelationalOperator::LE: |
221 | return mlir::arith::CmpIPredicate::ule; |
222 | case Fortran::common::RelationalOperator::EQ: |
223 | return mlir::arith::CmpIPredicate::eq; |
224 | case Fortran::common::RelationalOperator::NE: |
225 | return mlir::arith::CmpIPredicate::ne; |
226 | case Fortran::common::RelationalOperator::GT: |
227 | return mlir::arith::CmpIPredicate::ugt; |
228 | case Fortran::common::RelationalOperator::GE: |
229 | return mlir::arith::CmpIPredicate::uge; |
230 | } |
231 | llvm_unreachable("unhandled UNSIGNED relational operator"); |
232 | } |
233 | |
234 | /// Convert parser's REAL relational operators to MLIR. |
235 | /// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018 |
236 | /// requirements in the IEEE context (table 17.1 of F2018). This choice is |
237 | /// also applied in other contexts because it is easier and in line with |
238 | /// other Fortran compilers. |
239 | /// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not |
240 | /// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee |
241 | /// whether the comparison will signal or not in case of quiet NaN argument. |
242 | static mlir::arith::CmpFPredicate |
243 | translateFloatRelational(Fortran::common::RelationalOperator rop) { |
244 | switch (rop) { |
245 | case Fortran::common::RelationalOperator::LT: |
246 | return mlir::arith::CmpFPredicate::OLT; |
247 | case Fortran::common::RelationalOperator::LE: |
248 | return mlir::arith::CmpFPredicate::OLE; |
249 | case Fortran::common::RelationalOperator::EQ: |
250 | return mlir::arith::CmpFPredicate::OEQ; |
251 | case Fortran::common::RelationalOperator::NE: |
252 | return mlir::arith::CmpFPredicate::UNE; |
253 | case Fortran::common::RelationalOperator::GT: |
254 | return mlir::arith::CmpFPredicate::OGT; |
255 | case Fortran::common::RelationalOperator::GE: |
256 | return mlir::arith::CmpFPredicate::OGE; |
257 | } |
258 | llvm_unreachable("unhandled REAL relational operator"); |
259 | } |
260 | |
261 | static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder, |
262 | mlir::Location loc, |
263 | fir::ExtendedValue actual) { |
264 | if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>()) |
265 | return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, |
266 | *ptrOrAlloc); |
267 | // Optional case (not that optional allocatable/pointer cannot be absent |
268 | // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is |
269 | // therefore possible to catch them in the `then` case above. |
270 | return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), |
271 | fir::getBase(actual)); |
272 | } |
273 | |
274 | /// Convert the array_load, `load`, to an extended value. If `path` is not |
275 | /// empty, then traverse through the components designated. The base value is |
276 | /// `newBase`. This does not accept an array_load with a slice operand. |
277 | static fir::ExtendedValue |
278 | arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc, |
279 | fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path, |
280 | mlir::Value newBase, mlir::Value newLen = {}) { |
281 | // Recover the extended value from the load. |
282 | if (load.getSlice()) |
283 | fir::emitFatalError(loc, "array_load with slice is not allowed"); |
284 | mlir::Type arrTy = load.getType(); |
285 | if (!path.empty()) { |
286 | mlir::Type ty = fir::applyPathToType(arrTy, path); |
287 | if (!ty) |
288 | fir::emitFatalError(loc, "path does not apply to type"); |
289 | if (!mlir::isa<fir::SequenceType>(ty)) { |
290 | if (fir::isa_char(ty)) { |
291 | mlir::Value len = newLen; |
292 | if (!len) |
293 | len = fir::factory::CharacterExprHelper{builder, loc}.getLength( |
294 | load.getMemref()); |
295 | if (!len) { |
296 | assert(load.getTypeparams().size() == 1 && |
297 | "length must be in array_load"); |
298 | len = load.getTypeparams()[0]; |
299 | } |
300 | return fir::CharBoxValue{newBase, len}; |
301 | } |
302 | return newBase; |
303 | } |
304 | arrTy = mlir::cast<fir::SequenceType>(ty); |
305 | } |
306 | |
307 | auto arrayToExtendedValue = |
308 | [&](const llvm::SmallVector<mlir::Value> &extents, |
309 | const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue { |
310 | mlir::Type eleTy = fir::unwrapSequenceType(arrTy); |
311 | if (fir::isa_char(eleTy)) { |
312 | mlir::Value len = newLen; |
313 | if (!len) |
314 | len = fir::factory::CharacterExprHelper{builder, loc}.getLength( |
315 | load.getMemref()); |
316 | if (!len) { |
317 | assert(load.getTypeparams().size() == 1 && |
318 | "length must be in array_load"); |
319 | len = load.getTypeparams()[0]; |
320 | } |
321 | return fir::CharArrayBoxValue(newBase, len, extents, origins); |
322 | } |
323 | return fir::ArrayBoxValue(newBase, extents, origins); |
324 | }; |
325 | // Use the shape op, if there is one. |
326 | mlir::Value shapeVal = load.getShape(); |
327 | if (shapeVal) { |
328 | if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) { |
329 | auto extents = fir::factory::getExtents(shapeVal); |
330 | auto origins = fir::factory::getOrigins(shapeVal); |
331 | return arrayToExtendedValue(extents, origins); |
332 | } |
333 | if (!fir::isa_box_type(load.getMemref().getType())) |
334 | fir::emitFatalError(loc, "shift op is invalid in this context"); |
335 | } |
336 | |
337 | // If we're dealing with the array_load op (not a subobject) and the load does |
338 | // not have any type parameters, then read the extents from the original box. |
339 | // The origin may be either from the box or a shift operation. Create and |
340 | // return the array extended value. |
341 | if (path.empty() && load.getTypeparams().empty()) { |
342 | auto oldBox = load.getMemref(); |
343 | fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox); |
344 | auto extents = fir::factory::getExtents(loc, builder, exv); |
345 | auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv); |
346 | if (shapeVal) { |
347 | // shapeVal is a ShiftOp and load.memref() is a boxed value. |
348 | newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox, |
349 | shapeVal, /*slice=*/mlir::Value{}); |
350 | origins = fir::factory::getOrigins(shapeVal); |
351 | } |
352 | return fir::substBase(arrayToExtendedValue(extents, origins), newBase); |
353 | } |
354 | TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires " |
355 | "dereferencing; generating the type parameters is a hard " |
356 | "requirement for correctness."); |
357 | } |
358 | |
359 | /// Place \p exv in memory if it is not already a memory reference. If |
360 | /// \p forceValueType is provided, the value is first casted to the provided |
361 | /// type before being stored (this is mainly intended for logicals whose value |
362 | /// may be `i1` but needed to be stored as Fortran logicals). |
363 | static fir::ExtendedValue |
364 | placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc, |
365 | const fir::ExtendedValue &exv, |
366 | mlir::Type storageType) { |
367 | mlir::Value valBase = fir::getBase(exv); |
368 | if (fir::conformsWithPassByRef(valBase.getType())) |
369 | return exv; |
370 | |
371 | assert(!fir::hasDynamicSize(storageType) && |
372 | "only expect statically sized scalars to be by value"); |
373 | |
374 | // Since `a` is not itself a valid referent, determine its value and |
375 | // create a temporary location at the beginning of the function for |
376 | // referencing. |
377 | mlir::Value val = builder.createConvert(loc, storageType, valBase); |
378 | mlir::Value temp = builder.createTemporary( |
379 | loc, storageType, |
380 | llvm::ArrayRef<mlir::NamedAttribute>{fir::getAdaptToByRefAttr(builder)}); |
381 | builder.create<fir::StoreOp>(loc, val, temp); |
382 | return fir::substBase(exv, temp); |
383 | } |
384 | |
385 | // Copy a copy of scalar \p exv in a new temporary. |
386 | static fir::ExtendedValue |
387 | createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc, |
388 | const fir::ExtendedValue &exv) { |
389 | assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar"); |
390 | if (exv.getCharBox() != nullptr) |
391 | return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv); |
392 | if (fir::isDerivedWithLenParameters(exv)) |
393 | TODO(loc, "copy derived type with length parameters"); |
394 | mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType()); |
395 | fir::ExtendedValue temp = builder.createTemporary(loc, type); |
396 | fir::factory::genScalarAssignment(builder, loc, temp, exv); |
397 | return temp; |
398 | } |
399 | |
400 | // An expression with non-zero rank is an array expression. |
401 | template <typename A> |
402 | static bool isArray(const A &x) { |
403 | return x.Rank() != 0; |
404 | } |
405 | |
406 | /// Is this a variable wrapped in parentheses? |
407 | template <typename A> |
408 | static bool isParenthesizedVariable(const A &) { |
409 | return false; |
410 | } |
411 | template <typename T> |
412 | static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) { |
413 | using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u); |
414 | using Parentheses = Fortran::evaluate::Parentheses<T>; |
415 | if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) { |
416 | if (const auto *parentheses = std::get_if<Parentheses>(&expr.u)) |
417 | return Fortran::evaluate::IsVariable(parentheses->left()); |
418 | return false; |
419 | } else { |
420 | return Fortran::common::visit( |
421 | [&](const auto &x) { return isParenthesizedVariable(x); }, expr.u); |
422 | } |
423 | } |
424 | |
425 | /// Generate a load of a value from an address. Beware that this will lose |
426 | /// any dynamic type information for polymorphic entities (note that unlimited |
427 | /// polymorphic cannot be loaded and must not be provided here). |
428 | static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder, |
429 | mlir::Location loc, |
430 | const fir::ExtendedValue &addr) { |
431 | return addr.match( |
432 | [](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; }, |
433 | [&](const fir::PolymorphicValue &p) -> fir::ExtendedValue { |
434 | if (mlir::isa<fir::RecordType>( |
435 | fir::unwrapRefType(fir::getBase(p).getType()))) |
436 | return p; |
437 | mlir::Value load = builder.create<fir::LoadOp>(loc, fir::getBase(p)); |
438 | return fir::PolymorphicValue(load, p.getSourceBox()); |
439 | }, |
440 | [&](const fir::UnboxedValue &v) -> fir::ExtendedValue { |
441 | if (mlir::isa<fir::RecordType>( |
442 | fir::unwrapRefType(fir::getBase(v).getType()))) |
443 | return v; |
444 | return builder.create<fir::LoadOp>(loc, fir::getBase(v)); |
445 | }, |
446 | [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue { |
447 | return genLoad(builder, loc, |
448 | fir::factory::genMutableBoxRead(builder, loc, box)); |
449 | }, |
450 | [&](const fir::BoxValue &box) -> fir::ExtendedValue { |
451 | return genLoad(builder, loc, |
452 | fir::factory::readBoxValue(builder, loc, box)); |
453 | }, |
454 | [&](const auto &) -> fir::ExtendedValue { |
455 | fir::emitFatalError( |
456 | loc, "attempting to load whole array or procedure address"); |
457 | }); |
458 | } |
459 | |
460 | /// Create an optional dummy argument value from entity \p exv that may be |
461 | /// absent. This can only be called with numerical or logical scalar \p exv. |
462 | /// If \p exv is considered absent according to 15.5.2.12 point 1., the returned |
463 | /// value is zero (or false), otherwise it is the value of \p exv. |
464 | static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder, |
465 | mlir::Location loc, |
466 | const fir::ExtendedValue &exv, |
467 | mlir::Value isPresent) { |
468 | mlir::Type eleType = fir::getBaseTypeOf(exv); |
469 | assert(exv.rank() == 0 && fir::isa_trivial(eleType) && |
470 | "must be a numerical or logical scalar"); |
471 | return builder |
472 | .genIfOp(loc, {eleType}, isPresent, |
473 | /*withElseRegion=*/true) |
474 | .genThen([&]() { |
475 | mlir::Value val = fir::getBase(genLoad(builder, loc, exv)); |
476 | builder.create<fir::ResultOp>(loc, val); |
477 | }) |
478 | .genElse([&]() { |
479 | mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType); |
480 | builder.create<fir::ResultOp>(loc, zero); |
481 | }) |
482 | .getResults()[0]; |
483 | } |
484 | |
485 | /// Create an optional dummy argument address from entity \p exv that may be |
486 | /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the |
487 | /// returned value is a null pointer, otherwise it is the address of \p exv. |
488 | static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder, |
489 | mlir::Location loc, |
490 | const fir::ExtendedValue &exv, |
491 | mlir::Value isPresent) { |
492 | // If it is an exv pointer/allocatable, then it cannot be absent |
493 | // because it is passed to a non-pointer/non-allocatable. |
494 | if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) |
495 | return fir::factory::genMutableBoxRead(builder, loc, *box); |
496 | // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL |
497 | // address and can be passed directly. |
498 | return exv; |
499 | } |
500 | |
501 | /// Create an optional dummy argument address from entity \p exv that may be |
502 | /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the |
503 | /// returned value is an absent fir.box, otherwise it is a fir.box describing \p |
504 | /// exv. |
505 | static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder, |
506 | mlir::Location loc, |
507 | const fir::ExtendedValue &exv, |
508 | mlir::Value isPresent) { |
509 | // Non allocatable/pointer optional box -> simply forward |
510 | if (exv.getBoxOf<fir::BoxValue>()) |
511 | return exv; |
512 | |
513 | fir::ExtendedValue newExv = exv; |
514 | // Optional allocatable/pointer -> Cannot be absent, but need to translate |
515 | // unallocated/diassociated into absent fir.box. |
516 | if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) |
517 | newExv = fir::factory::genMutableBoxRead(builder, loc, *box); |
518 | |
519 | // createBox will not do create any invalid memory dereferences if exv is |
520 | // absent. The created fir.box will not be usable, but the SelectOp below |
521 | // ensures it won't be. |
522 | mlir::Value box = builder.createBox(loc, newExv); |
523 | mlir::Type boxType = box.getType(); |
524 | auto absent = builder.create<fir::AbsentOp>(loc, boxType); |
525 | auto boxOrAbsent = builder.create<mlir::arith::SelectOp>( |
526 | loc, boxType, isPresent, box, absent); |
527 | return fir::BoxValue(boxOrAbsent); |
528 | } |
529 | |
530 | /// Is this a call to an elemental procedure with at least one array argument? |
531 | static bool |
532 | isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) { |
533 | if (procRef.IsElemental()) |
534 | for (const std::optional<Fortran::evaluate::ActualArgument> &arg : |
535 | procRef.arguments()) |
536 | if (arg && arg->Rank() != 0) |
537 | return true; |
538 | return false; |
539 | } |
540 | template <typename T> |
541 | static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) { |
542 | return false; |
543 | } |
544 | template <> |
545 | bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) { |
546 | if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u)) |
547 | return isElementalProcWithArrayArgs(*procRef); |
548 | return false; |
549 | } |
550 | |
551 | /// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the |
552 | /// \p funcAddr argument to a boxproc value, with the host-association as |
553 | /// required. Call the factory function to finish creating the tuple value. |
554 | static mlir::Value |
555 | createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter, |
556 | mlir::Type argTy, mlir::Value funcAddr, |
557 | mlir::Value charLen) { |
558 | auto boxTy = mlir::cast<fir::BoxProcType>( |
559 | mlir::cast<mlir::TupleType>(argTy).getType(0)); |
560 | mlir::Location loc = converter.getCurrentLocation(); |
561 | auto &builder = converter.getFirOpBuilder(); |
562 | |
563 | // While character procedure arguments are expected here, Fortran allows |
564 | // actual arguments of other types to be passed instead. |
565 | // To support this, we cast any reference to the expected type or extract |
566 | // procedures from their boxes if needed. |
567 | mlir::Type fromTy = funcAddr.getType(); |
568 | mlir::Type toTy = boxTy.getEleTy(); |
569 | if (fir::isa_ref_type(fromTy)) |
570 | funcAddr = builder.createConvert(loc, toTy, funcAddr); |
571 | else if (mlir::isa<fir::BoxProcType>(fromTy)) |
572 | funcAddr = builder.create<fir::BoxAddrOp>(loc, toTy, funcAddr); |
573 | |
574 | auto boxProc = [&]() -> mlir::Value { |
575 | if (auto host = Fortran::lower::argumentHostAssocs(converter, funcAddr)) |
576 | return builder.create<fir::EmboxProcOp>( |
577 | loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host}); |
578 | return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr); |
579 | }(); |
580 | return fir::factory::createCharacterProcedureTuple(builder, loc, argTy, |
581 | boxProc, charLen); |
582 | } |
583 | |
584 | /// Given an optional fir.box, returns an fir.box that is the original one if |
585 | /// it is present and it otherwise an unallocated box. |
586 | /// Absent fir.box are implemented as a null pointer descriptor. Generated |
587 | /// code may need to unconditionally read a fir.box that can be absent. |
588 | /// This helper allows creating a fir.box that can be read in all cases |
589 | /// outside of a fir.if (isPresent) region. However, the usages of the value |
590 | /// read from such box should still only be done in a fir.if(isPresent). |
591 | static fir::ExtendedValue |
592 | absentBoxToUnallocatedBox(fir::FirOpBuilder &builder, mlir::Location loc, |
593 | const fir::ExtendedValue &exv, |
594 | mlir::Value isPresent) { |
595 | mlir::Value box = fir::getBase(exv); |
596 | mlir::Type boxType = box.getType(); |
597 | assert(mlir::isa<fir::BoxType>(boxType) && "argument must be a fir.box"); |
598 | mlir::Value emptyBox = |
599 | fir::factory::createUnallocatedBox(builder, loc, boxType, std::nullopt); |
600 | auto safeToReadBox = |
601 | builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox); |
602 | return fir::substBase(exv, safeToReadBox); |
603 | } |
604 | |
605 | // Helper to get the ultimate first symbol. This works around the fact that |
606 | // symbol resolution in the front end doesn't always resolve a symbol to its |
607 | // ultimate symbol but may leave placeholder indirections for use and host |
608 | // associations. |
609 | template <typename A> |
610 | const Fortran::semantics::Symbol &getFirstSym(const A &obj) { |
611 | const Fortran::semantics::Symbol &sym = obj.GetFirstSymbol(); |
612 | return sym.HasLocalLocality() ? sym : sym.GetUltimate(); |
613 | } |
614 | |
615 | // Helper to get the ultimate last symbol. |
616 | template <typename A> |
617 | const Fortran::semantics::Symbol &getLastSym(const A &obj) { |
618 | const Fortran::semantics::Symbol &sym = obj.GetLastSymbol(); |
619 | return sym.HasLocalLocality() ? sym : sym.GetUltimate(); |
620 | } |
621 | |
622 | // Return true if TRANSPOSE should be lowered without a runtime call. |
623 | static bool |
624 | isTransposeOptEnabled(const Fortran::lower::AbstractConverter &converter) { |
625 | return optimizeTranspose && |
626 | converter.getLoweringOptions().getOptimizeTranspose(); |
627 | } |
628 | |
629 | // A set of visitors to detect if the given expression |
630 | // is a TRANSPOSE call that should be lowered without using |
631 | // runtime TRANSPOSE implementation. |
632 | template <typename T> |
633 | static bool isOptimizableTranspose(const T &, |
634 | const Fortran::lower::AbstractConverter &) { |
635 | return false; |
636 | } |
637 | |
638 | static bool |
639 | isOptimizableTranspose(const Fortran::evaluate::ProcedureRef &procRef, |
640 | const Fortran::lower::AbstractConverter &converter) { |
641 | const Fortran::evaluate::SpecificIntrinsic *intrin = |
642 | procRef.proc().GetSpecificIntrinsic(); |
643 | if (isTransposeOptEnabled(converter) && intrin && |
644 | intrin->name == "transpose") { |
645 | const std::optional<Fortran::evaluate::ActualArgument> matrix = |
646 | procRef.arguments().at(0); |
647 | return !(matrix && matrix->GetType() && matrix->GetType()->IsPolymorphic()); |
648 | } |
649 | return false; |
650 | } |
651 | |
652 | template <typename T> |
653 | static bool |
654 | isOptimizableTranspose(const Fortran::evaluate::FunctionRef<T> &funcRef, |
655 | const Fortran::lower::AbstractConverter &converter) { |
656 | return isOptimizableTranspose( |
657 | static_cast<const Fortran::evaluate::ProcedureRef &>(funcRef), converter); |
658 | } |
659 | |
660 | template <typename T> |
661 | static bool |
662 | isOptimizableTranspose(Fortran::evaluate::Expr<T> expr, |
663 | const Fortran::lower::AbstractConverter &converter) { |
664 | // If optimizeTranspose is not enabled, return false right away. |
665 | if (!isTransposeOptEnabled(converter)) |
666 | return false; |
667 | |
668 | return Fortran::common::visit( |
669 | [&](const auto &e) { return isOptimizableTranspose(e, converter); }, |
670 | expr.u); |
671 | } |
672 | |
673 | namespace { |
674 | |
675 | /// Lowering of Fortran::evaluate::Expr<T> expressions |
676 | class ScalarExprLowering { |
677 | public: |
678 | using ExtValue = fir::ExtendedValue; |
679 | |
680 | explicit ScalarExprLowering(mlir::Location loc, |
681 | Fortran::lower::AbstractConverter &converter, |
682 | Fortran::lower::SymMap &symMap, |
683 | Fortran::lower::StatementContext &stmtCtx, |
684 | bool inInitializer = false) |
685 | : location{loc}, converter{converter}, |
686 | builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap}, |
687 | inInitializer{inInitializer} {} |
688 | |
689 | ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) { |
690 | return gen(expr); |
691 | } |
692 | |
693 | /// Lower `expr` to be passed as a fir.box argument. Do not create a temp |
694 | /// for the expr if it is a variable that can be described as a fir.box. |
695 | ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) { |
696 | bool saveUseBoxArg = useBoxArg; |
697 | useBoxArg = true; |
698 | ExtValue result = gen(expr); |
699 | useBoxArg = saveUseBoxArg; |
700 | return result; |
701 | } |
702 | |
703 | ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) { |
704 | return genval(expr); |
705 | } |
706 | |
707 | /// Lower an expression that is a pointer or an allocatable to a |
708 | /// MutableBoxValue. |
709 | fir::MutableBoxValue |
710 | genMutableBoxValue(const Fortran::lower::SomeExpr &expr) { |
711 | // Pointers and allocatables can only be: |
712 | // - a simple designator "x" |
713 | // - a component designator "a%b(i,j)%x" |
714 | // - a function reference "foo()" |
715 | // - result of NULL() or NULL(MOLD) intrinsic. |
716 | // NULL() requires some context to be lowered, so it is not handled |
717 | // here and must be lowered according to the context where it appears. |
718 | ExtValue exv = Fortran::common::visit( |
719 | [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u); |
720 | const fir::MutableBoxValue *mutableBox = |
721 | exv.getBoxOf<fir::MutableBoxValue>(); |
722 | if (!mutableBox) |
723 | fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue"); |
724 | return *mutableBox; |
725 | } |
726 | |
727 | template <typename T> |
728 | ExtValue genMutableBoxValueImpl(const T &) { |
729 | // NULL() case should not be handled here. |
730 | fir::emitFatalError(getLoc(), "NULL() must be lowered in its context"); |
731 | } |
732 | |
733 | /// A `NULL()` in a position where a mutable box is expected has the same |
734 | /// semantics as an absent optional box value. Note: this code should |
735 | /// be depreciated because the rank information is not known here. A |
736 | /// scalar fir.box is created: it should not be cast to an array box type |
737 | /// later, but there is no way to enforce that here. |
738 | ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) { |
739 | mlir::Location loc = getLoc(); |
740 | mlir::Type noneTy = mlir::NoneType::get(builder.getContext()); |
741 | mlir::Type polyRefTy = fir::PointerType::get(noneTy); |
742 | mlir::Type boxType = fir::BoxType::get(polyRefTy); |
743 | mlir::Value tempBox = |
744 | fir::factory::genNullBoxStorage(builder, loc, boxType); |
745 | return fir::MutableBoxValue(tempBox, |
746 | /*lenParameters=*/mlir::ValueRange{}, |
747 | /*mutableProperties=*/{}); |
748 | } |
749 | |
750 | template <typename T> |
751 | ExtValue |
752 | genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) { |
753 | return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef))); |
754 | } |
755 | |
756 | template <typename T> |
757 | ExtValue |
758 | genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) { |
759 | return Fortran::common::visit( |
760 | Fortran::common::visitors{ |
761 | [&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue { |
762 | return converter.getSymbolExtendedValue(*sym, &symMap); |
763 | }, |
764 | [&](const Fortran::evaluate::Component &comp) -> ExtValue { |
765 | return genComponent(comp); |
766 | }, |
767 | [&](const auto &) -> ExtValue { |
768 | fir::emitFatalError(getLoc(), |
769 | "not an allocatable or pointer designator"); |
770 | }}, |
771 | designator.u); |
772 | } |
773 | |
774 | template <typename T> |
775 | ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) { |
776 | return Fortran::common::visit( |
777 | [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u); |
778 | } |
779 | |
780 | mlir::Location getLoc() { return location; } |
781 | |
782 | template <typename A> |
783 | mlir::Value genunbox(const A &expr) { |
784 | ExtValue e = genval(expr); |
785 | if (const fir::UnboxedValue *r = e.getUnboxed()) |
786 | return *r; |
787 | fir::emitFatalError(getLoc(), "unboxed expression expected"); |
788 | } |
789 | |
790 | /// Generate an integral constant of `value` |
791 | template <int KIND> |
792 | mlir::Value genIntegerConstant(mlir::MLIRContext *context, |
793 | std::int64_t value) { |
794 | mlir::Type type = |
795 | converter.genType(Fortran::common::TypeCategory::Integer, KIND); |
796 | return builder.createIntegerConstant(getLoc(), type, value); |
797 | } |
798 | |
799 | /// Generate a logical/boolean constant of `value` |
800 | mlir::Value genBoolConstant(bool value) { |
801 | return builder.createBool(getLoc(), value); |
802 | } |
803 | |
804 | mlir::Type getSomeKindInteger() { return builder.getIndexType(); } |
805 | |
806 | mlir::func::FuncOp getFunction(llvm::StringRef name, |
807 | mlir::FunctionType funTy) { |
808 | if (mlir::func::FuncOp func = builder.getNamedFunction(name)) |
809 | return func; |
810 | return builder.createFunction(getLoc(), name, funTy); |
811 | } |
812 | |
813 | template <typename OpTy> |
814 | mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred, |
815 | const ExtValue &left, const ExtValue &right, |
816 | std::optional<int> unsignedKind = std::nullopt) { |
817 | if (const fir::UnboxedValue *lhs = left.getUnboxed()) { |
818 | if (const fir::UnboxedValue *rhs = right.getUnboxed()) { |
819 | auto loc = getLoc(); |
820 | if (unsignedKind) { |
821 | mlir::Type signlessType = converter.genType( |
822 | Fortran::common::TypeCategory::Integer, *unsignedKind); |
823 | mlir::Value lhsSL = builder.createConvert(loc, signlessType, *lhs); |
824 | mlir::Value rhsSL = builder.createConvert(loc, signlessType, *rhs); |
825 | return builder.create<OpTy>(loc, pred, lhsSL, rhsSL); |
826 | } |
827 | return builder.create<OpTy>(loc, pred, *lhs, *rhs); |
828 | } |
829 | } |
830 | fir::emitFatalError(getLoc(), "array compare should be handled in genarr"); |
831 | } |
832 | template <typename OpTy, typename A> |
833 | mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred, |
834 | std::optional<int> unsignedKind = std::nullopt) { |
835 | ExtValue left = genval(ex.left()); |
836 | return createCompareOp<OpTy>(pred, left, genval(ex.right()), unsignedKind); |
837 | } |
838 | |
839 | template <typename OpTy> |
840 | mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred, |
841 | const ExtValue &left, const ExtValue &right) { |
842 | if (const fir::UnboxedValue *lhs = left.getUnboxed()) |
843 | if (const fir::UnboxedValue *rhs = right.getUnboxed()) |
844 | return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs); |
845 | fir::emitFatalError(getLoc(), "array compare should be handled in genarr"); |
846 | } |
847 | template <typename OpTy, typename A> |
848 | mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) { |
849 | ExtValue left = genval(ex.left()); |
850 | return createFltCmpOp<OpTy>(pred, left, genval(ex.right())); |
851 | } |
852 | |
853 | /// Create a call to the runtime to compare two CHARACTER values. |
854 | /// Precondition: This assumes that the two values have `fir.boxchar` type. |
855 | mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred, |
856 | const ExtValue &left, const ExtValue &right) { |
857 | return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right); |
858 | } |
859 | |
860 | template <typename A> |
861 | mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) { |
862 | ExtValue left = genval(ex.left()); |
863 | return createCharCompare(pred, left, genval(ex.right())); |
864 | } |
865 | |
866 | /// Returns a reference to a symbol or its box/boxChar descriptor if it has |
867 | /// one. |
868 | ExtValue gen(Fortran::semantics::SymbolRef sym) { |
869 | fir::ExtendedValue exv = converter.getSymbolExtendedValue(sym, &symMap); |
870 | if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) |
871 | return fir::factory::genMutableBoxRead(builder, getLoc(), *box); |
872 | return exv; |
873 | } |
874 | |
875 | ExtValue genLoad(const ExtValue &exv) { |
876 | return ::genLoad(builder, getLoc(), exv); |
877 | } |
878 | |
879 | ExtValue genval(Fortran::semantics::SymbolRef sym) { |
880 | mlir::Location loc = getLoc(); |
881 | ExtValue var = gen(sym); |
882 | if (const fir::UnboxedValue *s = var.getUnboxed()) { |
883 | if (fir::isa_ref_type(s->getType())) { |
884 | // A function with multiple entry points returning different types |
885 | // tags all result variables with one of the largest types to allow |
886 | // them to share the same storage. A reference to a result variable |
887 | // of one of the other types requires conversion to the actual type. |
888 | fir::UnboxedValue addr = *s; |
889 | if (Fortran::semantics::IsFunctionResult(sym)) { |
890 | mlir::Type resultType = converter.genType(*sym); |
891 | if (addr.getType() != resultType) |
892 | addr = builder.createConvert(loc, builder.getRefType(resultType), |
893 | addr); |
894 | } else if (sym->test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
895 | // get the corresponding Cray pointer |
896 | Fortran::semantics::SymbolRef ptrSym{ |
897 | Fortran::semantics::GetCrayPointer(sym)}; |
898 | ExtValue ptr = gen(ptrSym); |
899 | mlir::Value ptrVal = fir::getBase(ptr); |
900 | mlir::Type ptrTy = converter.genType(*ptrSym); |
901 | |
902 | ExtValue pte = gen(sym); |
903 | mlir::Value pteVal = fir::getBase(pte); |
904 | |
905 | mlir::Value cnvrt = Fortran::lower::addCrayPointerInst( |
906 | loc, builder, ptrVal, ptrTy, pteVal.getType()); |
907 | addr = builder.create<fir::LoadOp>(loc, cnvrt); |
908 | } |
909 | return genLoad(addr); |
910 | } |
911 | } |
912 | return var; |
913 | } |
914 | |
915 | ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) { |
916 | TODO(getLoc(), "BOZ"); |
917 | } |
918 | |
919 | /// Return indirection to function designated in ProcedureDesignator. |
920 | /// The type of the function indirection is not guaranteed to match the one |
921 | /// of the ProcedureDesignator due to Fortran implicit typing rules. |
922 | ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) { |
923 | return Fortran::lower::convertProcedureDesignator(getLoc(), converter, proc, |
924 | symMap, stmtCtx); |
925 | } |
926 | ExtValue genval(const Fortran::evaluate::NullPointer &) { |
927 | return builder.createNullConstant(getLoc()); |
928 | } |
929 | |
930 | static bool |
931 | isDerivedTypeWithLenParameters(const Fortran::semantics::Symbol &sym) { |
932 | if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) |
933 | if (const Fortran::semantics::DerivedTypeSpec *derived = |
934 | declTy->AsDerived()) |
935 | return Fortran::semantics::CountLenParameters(*derived) > 0; |
936 | return false; |
937 | } |
938 | |
939 | /// A structure constructor is lowered two ways. In an initializer context, |
940 | /// the entire structure must be constant, so the aggregate value is |
941 | /// constructed inline. This allows it to be the body of a GlobalOp. |
942 | /// Otherwise, the structure constructor is in an expression. In that case, a |
943 | /// temporary object is constructed in the stack frame of the procedure. |
944 | ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) { |
945 | mlir::Location loc = getLoc(); |
946 | if (inInitializer) |
947 | return Fortran::lower::genInlinedStructureCtorLit(converter, loc, ctor); |
948 | mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor)); |
949 | auto recTy = mlir::cast<fir::RecordType>(ty); |
950 | auto fieldTy = fir::FieldType::get(ty.getContext()); |
951 | mlir::Value res = builder.createTemporary(loc, recTy); |
952 | mlir::Value box = builder.createBox(loc, fir::ExtendedValue{res}); |
953 | fir::runtime::genDerivedTypeInitialize(builder, loc, box); |
954 | |
955 | for (const auto &value : ctor.values()) { |
956 | const Fortran::semantics::Symbol &sym = *value.first; |
957 | const Fortran::lower::SomeExpr &expr = value.second.value(); |
958 | if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp)) { |
959 | ExtValue from = gen(expr); |
960 | mlir::Type fromTy = fir::unwrapPassByRefType( |
961 | fir::unwrapRefType(fir::getBase(from).getType())); |
962 | mlir::Value resCast = |
963 | builder.createConvert(loc, builder.getRefType(fromTy), res); |
964 | fir::factory::genRecordAssignment(builder, loc, resCast, from); |
965 | continue; |
966 | } |
967 | |
968 | if (isDerivedTypeWithLenParameters(sym)) |
969 | TODO(loc, "component with length parameters in structure constructor"); |
970 | |
971 | std::string name = converter.getRecordTypeFieldName(sym); |
972 | // FIXME: type parameters must come from the derived-type-spec |
973 | mlir::Value field = builder.create<fir::FieldIndexOp>( |
974 | loc, fieldTy, name, ty, |
975 | /*typeParams=*/mlir::ValueRange{} /*TODO*/); |
976 | mlir::Type coorTy = builder.getRefType(recTy.getType(name)); |
977 | auto coor = builder.create<fir::CoordinateOp>(loc, coorTy, |
978 | fir::getBase(res), field); |
979 | ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor); |
980 | to.match( |
981 | [&](const fir::UnboxedValue &toPtr) { |
982 | ExtValue value = genval(expr); |
983 | fir::factory::genScalarAssignment(builder, loc, to, value); |
984 | }, |
985 | [&](const fir::CharBoxValue &) { |
986 | ExtValue value = genval(expr); |
987 | fir::factory::genScalarAssignment(builder, loc, to, value); |
988 | }, |
989 | [&](const fir::ArrayBoxValue &) { |
990 | Fortran::lower::createSomeArrayAssignment(converter, to, expr, |
991 | symMap, stmtCtx); |
992 | }, |
993 | [&](const fir::CharArrayBoxValue &) { |
994 | Fortran::lower::createSomeArrayAssignment(converter, to, expr, |
995 | symMap, stmtCtx); |
996 | }, |
997 | [&](const fir::BoxValue &toBox) { |
998 | fir::emitFatalError(loc, "derived type components must not be " |
999 | "represented by fir::BoxValue"); |
1000 | }, |
1001 | [&](const fir::PolymorphicValue &) { |
1002 | TODO(loc, "polymorphic component in derived type assignment"); |
1003 | }, |
1004 | [&](const fir::MutableBoxValue &toBox) { |
1005 | if (toBox.isPointer()) { |
1006 | Fortran::lower::associateMutableBox(converter, loc, toBox, expr, |
1007 | /*lbounds=*/std::nullopt, |
1008 | stmtCtx); |
1009 | return; |
1010 | } |
1011 | // For allocatable components, a deep copy is needed. |
1012 | TODO(loc, "allocatable components in derived type assignment"); |
1013 | }, |
1014 | [&](const fir::ProcBoxValue &toBox) { |
1015 | TODO(loc, "procedure pointer component in derived type assignment"); |
1016 | }); |
1017 | } |
1018 | return res; |
1019 | } |
1020 | |
1021 | /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol. |
1022 | ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) { |
1023 | mlir::Value value = converter.impliedDoBinding(toStringRef(var.name)); |
1024 | // The index value generated by the implied-do has Index type, |
1025 | // while computations based on it inside the loop body are using |
1026 | // the original data type. So we need to cast it appropriately. |
1027 | mlir::Type varTy = converter.genType(toEvExpr(var)); |
1028 | return builder.createConvert(getLoc(), varTy, value); |
1029 | } |
1030 | |
1031 | ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) { |
1032 | ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base())) |
1033 | : gen(desc.base().GetComponent()); |
1034 | mlir::IndexType idxTy = builder.getIndexType(); |
1035 | mlir::Location loc = getLoc(); |
1036 | auto castResult = [&](mlir::Value v) { |
1037 | using ResTy = Fortran::evaluate::DescriptorInquiry::Result; |
1038 | return builder.createConvert( |
1039 | loc, converter.genType(ResTy::category, ResTy::kind), v); |
1040 | }; |
1041 | switch (desc.field()) { |
1042 | case Fortran::evaluate::DescriptorInquiry::Field::Len: |
1043 | return castResult(fir::factory::readCharLen(builder, loc, exv)); |
1044 | case Fortran::evaluate::DescriptorInquiry::Field::LowerBound: |
1045 | return castResult(fir::factory::readLowerBound( |
1046 | builder, loc, exv, desc.dimension(), |
1047 | builder.createIntegerConstant(loc, idxTy, 1))); |
1048 | case Fortran::evaluate::DescriptorInquiry::Field::Extent: |
1049 | return castResult( |
1050 | fir::factory::readExtent(builder, loc, exv, desc.dimension())); |
1051 | case Fortran::evaluate::DescriptorInquiry::Field::Rank: |
1052 | TODO(loc, "rank inquiry on assumed rank"); |
1053 | case Fortran::evaluate::DescriptorInquiry::Field::Stride: |
1054 | // So far the front end does not generate this inquiry. |
1055 | TODO(loc, "stride inquiry"); |
1056 | } |
1057 | llvm_unreachable("unknown descriptor inquiry"); |
1058 | } |
1059 | |
1060 | ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) { |
1061 | TODO(getLoc(), "type parameter inquiry"); |
1062 | } |
1063 | |
1064 | mlir::Value extractComplexPart(mlir::Value cplx, bool isImagPart) { |
1065 | return fir::factory::Complex{builder, getLoc()}.extractComplexPart( |
1066 | cplx, isImagPart); |
1067 | } |
1068 | |
1069 | template <int KIND> |
1070 | ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) { |
1071 | return extractComplexPart(genunbox(part.left()), part.isImaginaryPart); |
1072 | } |
1073 | |
1074 | template <int KIND> |
1075 | ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
1076 | Fortran::common::TypeCategory::Integer, KIND>> &op) { |
1077 | mlir::Value input = genunbox(op.left()); |
1078 | // Like LLVM, integer negation is the binary op "0 - value" |
1079 | mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0); |
1080 | return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input); |
1081 | } |
1082 | template <int KIND> |
1083 | ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
1084 | Fortran::common::TypeCategory::Unsigned, KIND>> &op) { |
1085 | auto loc = getLoc(); |
1086 | mlir::Type signlessType = |
1087 | converter.genType(Fortran::common::TypeCategory::Integer, KIND); |
1088 | mlir::Value input = genunbox(op.left()); |
1089 | mlir::Value signless = builder.createConvert(loc, signlessType, input); |
1090 | mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0); |
1091 | mlir::Value neg = builder.create<mlir::arith::SubIOp>(loc, zero, signless); |
1092 | return builder.createConvert(loc, input.getType(), neg); |
1093 | } |
1094 | template <int KIND> |
1095 | ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
1096 | Fortran::common::TypeCategory::Real, KIND>> &op) { |
1097 | return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left())); |
1098 | } |
1099 | template <int KIND> |
1100 | ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
1101 | Fortran::common::TypeCategory::Complex, KIND>> &op) { |
1102 | return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left())); |
1103 | } |
1104 | |
1105 | template <typename OpTy> |
1106 | mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) { |
1107 | assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right)); |
1108 | mlir::Value lhs = fir::getBase(left); |
1109 | mlir::Value rhs = fir::getBase(right); |
1110 | assert(lhs.getType() == rhs.getType() && "types must be the same"); |
1111 | return builder.createUnsigned<OpTy>(getLoc(), lhs.getType(), lhs, rhs); |
1112 | } |
1113 | |
1114 | template <typename OpTy, typename A> |
1115 | mlir::Value createBinaryOp(const A &ex) { |
1116 | ExtValue left = genval(ex.left()); |
1117 | return createBinaryOp<OpTy>(left, genval(ex.right())); |
1118 | } |
1119 | |
1120 | #undef GENBIN |
1121 | #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ |
1122 | template <int KIND> \ |
1123 | ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ |
1124 | Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ |
1125 | return createBinaryOp<GenBinFirOp>(x); \ |
1126 | } |
1127 | |
1128 | GENBIN(Add, Integer, mlir::arith::AddIOp) |
1129 | GENBIN(Add, Unsigned, mlir::arith::AddIOp) |
1130 | GENBIN(Add, Real, mlir::arith::AddFOp) |
1131 | GENBIN(Add, Complex, fir::AddcOp) |
1132 | GENBIN(Subtract, Integer, mlir::arith::SubIOp) |
1133 | GENBIN(Subtract, Unsigned, mlir::arith::SubIOp) |
1134 | GENBIN(Subtract, Real, mlir::arith::SubFOp) |
1135 | GENBIN(Subtract, Complex, fir::SubcOp) |
1136 | GENBIN(Multiply, Integer, mlir::arith::MulIOp) |
1137 | GENBIN(Multiply, Unsigned, mlir::arith::MulIOp) |
1138 | GENBIN(Multiply, Real, mlir::arith::MulFOp) |
1139 | GENBIN(Multiply, Complex, fir::MulcOp) |
1140 | GENBIN(Divide, Integer, mlir::arith::DivSIOp) |
1141 | GENBIN(Divide, Unsigned, mlir::arith::DivUIOp) |
1142 | GENBIN(Divide, Real, mlir::arith::DivFOp) |
1143 | |
1144 | template <int KIND> |
1145 | ExtValue genval(const Fortran::evaluate::Divide<Fortran::evaluate::Type< |
1146 | Fortran::common::TypeCategory::Complex, KIND>> &op) { |
1147 | mlir::Type ty = |
1148 | converter.genType(Fortran::common::TypeCategory::Complex, KIND); |
1149 | mlir::Value lhs = genunbox(op.left()); |
1150 | mlir::Value rhs = genunbox(op.right()); |
1151 | return fir::genDivC(builder, getLoc(), ty, lhs, rhs); |
1152 | } |
1153 | |
1154 | template <Fortran::common::TypeCategory TC, int KIND> |
1155 | ExtValue genval( |
1156 | const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) { |
1157 | mlir::Type ty = converter.genType(TC, KIND); |
1158 | mlir::Value lhs = genunbox(op.left()); |
1159 | mlir::Value rhs = genunbox(op.right()); |
1160 | return fir::genPow(builder, getLoc(), ty, lhs, rhs); |
1161 | } |
1162 | |
1163 | template <Fortran::common::TypeCategory TC, int KIND> |
1164 | ExtValue genval( |
1165 | const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> |
1166 | &op) { |
1167 | mlir::Type ty = converter.genType(TC, KIND); |
1168 | mlir::Value lhs = genunbox(op.left()); |
1169 | mlir::Value rhs = genunbox(op.right()); |
1170 | return fir::genPow(builder, getLoc(), ty, lhs, rhs); |
1171 | } |
1172 | |
1173 | template <int KIND> |
1174 | ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) { |
1175 | mlir::Value realPartValue = genunbox(op.left()); |
1176 | return fir::factory::Complex{builder, getLoc()}.createComplex( |
1177 | realPartValue, genunbox(op.right())); |
1178 | } |
1179 | |
1180 | template <int KIND> |
1181 | ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) { |
1182 | ExtValue lhs = genval(op.left()); |
1183 | ExtValue rhs = genval(op.right()); |
1184 | const fir::CharBoxValue *lhsChar = lhs.getCharBox(); |
1185 | const fir::CharBoxValue *rhsChar = rhs.getCharBox(); |
1186 | if (lhsChar && rhsChar) |
1187 | return fir::factory::CharacterExprHelper{builder, getLoc()} |
1188 | .createConcatenate(*lhsChar, *rhsChar); |
1189 | TODO(getLoc(), "character array concatenate"); |
1190 | } |
1191 | |
1192 | /// MIN and MAX operations |
1193 | template <Fortran::common::TypeCategory TC, int KIND> |
1194 | ExtValue |
1195 | genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> |
1196 | &op) { |
1197 | mlir::Value lhs = genunbox(op.left()); |
1198 | mlir::Value rhs = genunbox(op.right()); |
1199 | switch (op.ordering) { |
1200 | case Fortran::evaluate::Ordering::Greater: |
1201 | return fir::genMax(builder, getLoc(), |
1202 | llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
1203 | case Fortran::evaluate::Ordering::Less: |
1204 | return fir::genMin(builder, getLoc(), |
1205 | llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
1206 | case Fortran::evaluate::Ordering::Equal: |
1207 | llvm_unreachable("Equal is not a valid ordering in this context"); |
1208 | } |
1209 | llvm_unreachable("unknown ordering"); |
1210 | } |
1211 | |
1212 | // Change the dynamic length information without actually changing the |
1213 | // underlying character storage. |
1214 | fir::ExtendedValue |
1215 | replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar, |
1216 | mlir::Value newLenValue) { |
1217 | mlir::Location loc = getLoc(); |
1218 | const fir::CharBoxValue *charBox = scalarChar.getCharBox(); |
1219 | if (!charBox) |
1220 | fir::emitFatalError(loc, "expected scalar character"); |
1221 | mlir::Value charAddr = charBox->getAddr(); |
1222 | auto charType = mlir::cast<fir::CharacterType>( |
1223 | fir::unwrapPassByRefType(charAddr.getType())); |
1224 | if (charType.hasConstantLen()) { |
1225 | // Erase previous constant length from the base type. |
1226 | fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen(); |
1227 | mlir::Type newCharTy = fir::CharacterType::get( |
1228 | builder.getContext(), charType.getFKind(), newLen); |
1229 | mlir::Type newType = fir::ReferenceType::get(newCharTy); |
1230 | charAddr = builder.createConvert(loc, newType, charAddr); |
1231 | return fir::CharBoxValue{charAddr, newLenValue}; |
1232 | } |
1233 | return fir::CharBoxValue{charAddr, newLenValue}; |
1234 | } |
1235 | |
1236 | template <int KIND> |
1237 | ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) { |
1238 | mlir::Value newLenValue = genunbox(x.right()); |
1239 | fir::ExtendedValue lhs = gen(x.left()); |
1240 | fir::factory::CharacterExprHelper charHelper(builder, getLoc()); |
1241 | fir::CharBoxValue temp = charHelper.createCharacterTemp( |
1242 | charHelper.getCharacterType(fir::getBase(lhs).getType()), newLenValue); |
1243 | charHelper.createAssign(temp, lhs); |
1244 | return fir::ExtendedValue{temp}; |
1245 | } |
1246 | |
1247 | template <int KIND> |
1248 | ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
1249 | Fortran::common::TypeCategory::Integer, KIND>> &op) { |
1250 | return createCompareOp<mlir::arith::CmpIOp>( |
1251 | op, translateSignedRelational(op.opr)); |
1252 | } |
1253 | template <int KIND> |
1254 | ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
1255 | Fortran::common::TypeCategory::Unsigned, KIND>> &op) { |
1256 | return createCompareOp<mlir::arith::CmpIOp>( |
1257 | op, translateUnsignedRelational(op.opr), KIND); |
1258 | } |
1259 | template <int KIND> |
1260 | ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
1261 | Fortran::common::TypeCategory::Real, KIND>> &op) { |
1262 | return createFltCmpOp<mlir::arith::CmpFOp>( |
1263 | op, translateFloatRelational(op.opr)); |
1264 | } |
1265 | template <int KIND> |
1266 | ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
1267 | Fortran::common::TypeCategory::Complex, KIND>> &op) { |
1268 | return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr)); |
1269 | } |
1270 | template <int KIND> |
1271 | ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
1272 | Fortran::common::TypeCategory::Character, KIND>> &op) { |
1273 | return createCharCompare(op, translateSignedRelational(op.opr)); |
1274 | } |
1275 | |
1276 | ExtValue |
1277 | genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) { |
1278 | return Fortran::common::visit([&](const auto &x) { return genval(x); }, |
1279 | op.u); |
1280 | } |
1281 | |
1282 | template <Fortran::common::TypeCategory TC1, int KIND, |
1283 | Fortran::common::TypeCategory TC2> |
1284 | ExtValue |
1285 | genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, |
1286 | TC2> &convert) { |
1287 | mlir::Type ty = converter.genType(TC1, KIND); |
1288 | auto fromExpr = genval(convert.left()); |
1289 | auto loc = getLoc(); |
1290 | return fromExpr.match( |
1291 | [&](const fir::CharBoxValue &boxchar) -> ExtValue { |
1292 | if constexpr (TC1 == Fortran::common::TypeCategory::Character && |
1293 | TC2 == TC1) { |
1294 | return fir::factory::convertCharacterKind(builder, loc, boxchar, |
1295 | KIND); |
1296 | } else { |
1297 | fir::emitFatalError( |
1298 | loc, "unsupported evaluate::Convert between CHARACTER type " |
1299 | "category and non-CHARACTER category"); |
1300 | } |
1301 | }, |
1302 | [&](const fir::UnboxedValue &value) -> ExtValue { |
1303 | return builder.convertWithSemantics(loc, ty, value); |
1304 | }, |
1305 | [&](auto &) -> ExtValue { |
1306 | fir::emitFatalError(loc, "unsupported evaluate::Convert"); |
1307 | }); |
1308 | } |
1309 | |
1310 | template <typename A> |
1311 | ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) { |
1312 | ExtValue input = genval(op.left()); |
1313 | mlir::Value base = fir::getBase(input); |
1314 | mlir::Value newBase = |
1315 | builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base); |
1316 | return fir::substBase(input, newBase); |
1317 | } |
1318 | |
1319 | template <int KIND> |
1320 | ExtValue genval(const Fortran::evaluate::Not<KIND> &op) { |
1321 | mlir::Value logical = genunbox(op.left()); |
1322 | mlir::Value one = genBoolConstant(true); |
1323 | mlir::Value val = |
1324 | builder.createConvert(getLoc(), builder.getI1Type(), logical); |
1325 | return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one); |
1326 | } |
1327 | |
1328 | template <int KIND> |
1329 | ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) { |
1330 | mlir::IntegerType i1Type = builder.getI1Type(); |
1331 | mlir::Value slhs = genunbox(op.left()); |
1332 | mlir::Value srhs = genunbox(op.right()); |
1333 | mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs); |
1334 | mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs); |
1335 | switch (op.logicalOperator) { |
1336 | case Fortran::evaluate::LogicalOperator::And: |
1337 | return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs); |
1338 | case Fortran::evaluate::LogicalOperator::Or: |
1339 | return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs); |
1340 | case Fortran::evaluate::LogicalOperator::Eqv: |
1341 | return createCompareOp<mlir::arith::CmpIOp>( |
1342 | mlir::arith::CmpIPredicate::eq, lhs, rhs); |
1343 | case Fortran::evaluate::LogicalOperator::Neqv: |
1344 | return createCompareOp<mlir::arith::CmpIOp>( |
1345 | mlir::arith::CmpIPredicate::ne, lhs, rhs); |
1346 | case Fortran::evaluate::LogicalOperator::Not: |
1347 | // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>. |
1348 | llvm_unreachable(".NOT. is not a binary operator"); |
1349 | } |
1350 | llvm_unreachable("unhandled logical operation"); |
1351 | } |
1352 | |
1353 | template <Fortran::common::TypeCategory TC, int KIND> |
1354 | ExtValue |
1355 | genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> |
1356 | &con) { |
1357 | return Fortran::lower::convertConstant( |
1358 | converter, getLoc(), con, |
1359 | /*outlineBigConstantsInReadOnlyMemory=*/!inInitializer); |
1360 | } |
1361 | |
1362 | fir::ExtendedValue genval( |
1363 | const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) { |
1364 | if (auto ctor = con.GetScalarValue()) |
1365 | return genval(*ctor); |
1366 | return Fortran::lower::convertConstant( |
1367 | converter, getLoc(), con, |
1368 | /*outlineBigConstantsInReadOnlyMemory=*/false); |
1369 | } |
1370 | |
1371 | template <typename A> |
1372 | ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) { |
1373 | fir::emitFatalError(getLoc(), "array constructor: should not reach here"); |
1374 | } |
1375 | |
1376 | ExtValue gen(const Fortran::evaluate::ComplexPart &x) { |
1377 | mlir::Location loc = getLoc(); |
1378 | auto idxTy = builder.getI32Type(); |
1379 | ExtValue exv = gen(x.complex()); |
1380 | mlir::Value base = fir::getBase(exv); |
1381 | fir::factory::Complex helper{builder, loc}; |
1382 | mlir::Type eleTy = |
1383 | helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType())); |
1384 | mlir::Value offset = builder.createIntegerConstant( |
1385 | loc, idxTy, |
1386 | x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1); |
1387 | mlir::Value result = builder.create<fir::CoordinateOp>( |
1388 | loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset}); |
1389 | return {result}; |
1390 | } |
1391 | ExtValue genval(const Fortran::evaluate::ComplexPart &x) { |
1392 | return genLoad(gen(x)); |
1393 | } |
1394 | |
1395 | /// Reference to a substring. |
1396 | ExtValue gen(const Fortran::evaluate::Substring &s) { |
1397 | // Get base string |
1398 | auto baseString = Fortran::common::visit( |
1399 | Fortran::common::visitors{ |
1400 | [&](const Fortran::evaluate::DataRef &x) { return gen(x); }, |
1401 | [&](const Fortran::evaluate::StaticDataObject::Pointer &p) |
1402 | -> ExtValue { |
1403 | if (std::optional<std::string> str = p->AsString()) |
1404 | return fir::factory::createStringLiteral(builder, getLoc(), |
1405 | *str); |
1406 | // TODO: convert StaticDataObject to Constant<T> and use normal |
1407 | // constant path. Beware that StaticDataObject data() takes into |
1408 | // account build machine endianness. |
1409 | TODO(getLoc(), |
1410 | "StaticDataObject::Pointer substring with kind > 1"); |
1411 | }, |
1412 | }, |
1413 | s.parent()); |
1414 | llvm::SmallVector<mlir::Value> bounds; |
1415 | mlir::Value lower = genunbox(s.lower()); |
1416 | bounds.push_back(lower); |
1417 | if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) { |
1418 | mlir::Value upper = genunbox(*upperBound); |
1419 | bounds.push_back(upper); |
1420 | } |
1421 | fir::factory::CharacterExprHelper charHelper{builder, getLoc()}; |
1422 | return baseString.match( |
1423 | [&](const fir::CharBoxValue &x) -> ExtValue { |
1424 | return charHelper.createSubstring(x, bounds); |
1425 | }, |
1426 | [&](const fir::CharArrayBoxValue &) -> ExtValue { |
1427 | fir::emitFatalError( |
1428 | getLoc(), |
1429 | "array substring should be handled in array expression"); |
1430 | }, |
1431 | [&](const auto &) -> ExtValue { |
1432 | fir::emitFatalError(getLoc(), "substring base is not a CharBox"); |
1433 | }); |
1434 | } |
1435 | |
1436 | /// The value of a substring. |
1437 | ExtValue genval(const Fortran::evaluate::Substring &ss) { |
1438 | // FIXME: why is the value of a substring being lowered the same as the |
1439 | // address of a substring? |
1440 | return gen(ss); |
1441 | } |
1442 | |
1443 | ExtValue genval(const Fortran::evaluate::Subscript &subs) { |
1444 | if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>( |
1445 | &subs.u)) { |
1446 | if (s->value().Rank() > 0) |
1447 | fir::emitFatalError(getLoc(), "vector subscript is not scalar"); |
1448 | return {genval(s->value())}; |
1449 | } |
1450 | fir::emitFatalError(getLoc(), "subscript triple notation is not scalar"); |
1451 | } |
1452 | ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) { |
1453 | return genval(subs); |
1454 | } |
1455 | |
1456 | ExtValue gen(const Fortran::evaluate::DataRef &dref) { |
1457 | return Fortran::common::visit([&](const auto &x) { return gen(x); }, |
1458 | dref.u); |
1459 | } |
1460 | ExtValue genval(const Fortran::evaluate::DataRef &dref) { |
1461 | return Fortran::common::visit([&](const auto &x) { return genval(x); }, |
1462 | dref.u); |
1463 | } |
1464 | |
1465 | // Helper function to turn the Component structure into a list of nested |
1466 | // components, ordered from largest/leftmost to smallest/rightmost: |
1467 | // - where only the smallest/rightmost item may be allocatable or a pointer |
1468 | // (nested allocatable/pointer components require nested coordinate_of ops) |
1469 | // - that does not contain any parent components |
1470 | // (the front end places parent components directly in the object) |
1471 | // Return the object used as the base coordinate for the component chain. |
1472 | static Fortran::evaluate::DataRef const * |
1473 | reverseComponents(const Fortran::evaluate::Component &cmpt, |
1474 | std::list<const Fortran::evaluate::Component *> &list) { |
1475 | if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp)) |
1476 | list.push_front(&cmpt); |
1477 | return Fortran::common::visit( |
1478 | Fortran::common::visitors{ |
1479 | [&](const Fortran::evaluate::Component &x) { |
1480 | if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x))) |
1481 | return &cmpt.base(); |
1482 | return reverseComponents(x, list); |
1483 | }, |
1484 | [&](auto &) { return &cmpt.base(); }, |
1485 | }, |
1486 | cmpt.base().u); |
1487 | } |
1488 | |
1489 | // Return the coordinate of the component reference |
1490 | ExtValue genComponent(const Fortran::evaluate::Component &cmpt) { |
1491 | std::list<const Fortran::evaluate::Component *> list; |
1492 | const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list); |
1493 | llvm::SmallVector<mlir::Value> coorArgs; |
1494 | ExtValue obj = gen(*base); |
1495 | mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType()); |
1496 | mlir::Location loc = getLoc(); |
1497 | auto fldTy = fir::FieldType::get(&converter.getMLIRContext()); |
1498 | // FIXME: need to thread the LEN type parameters here. |
1499 | for (const Fortran::evaluate::Component *field : list) { |
1500 | auto recTy = mlir::cast<fir::RecordType>(ty); |
1501 | const Fortran::semantics::Symbol &sym = getLastSym(*field); |
1502 | std::string name = converter.getRecordTypeFieldName(sym); |
1503 | coorArgs.push_back(builder.create<fir::FieldIndexOp>( |
1504 | loc, fldTy, name, recTy, fir::getTypeParams(obj))); |
1505 | ty = recTy.getType(name); |
1506 | } |
1507 | // If parent component is referred then it has no coordinate argument. |
1508 | if (coorArgs.size() == 0) |
1509 | return obj; |
1510 | ty = builder.getRefType(ty); |
1511 | return fir::factory::componentToExtendedValue( |
1512 | builder, loc, |
1513 | builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj), |
1514 | coorArgs)); |
1515 | } |
1516 | |
1517 | ExtValue gen(const Fortran::evaluate::Component &cmpt) { |
1518 | // Components may be pointer or allocatable. In the gen() path, the mutable |
1519 | // aspect is lost to simplify handling on the client side. To retain the |
1520 | // mutable aspect, genMutableBoxValue should be used. |
1521 | return genComponent(cmpt).match( |
1522 | [&](const fir::MutableBoxValue &mutableBox) { |
1523 | return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox); |
1524 | }, |
1525 | [](auto &box) -> ExtValue { return box; }); |
1526 | } |
1527 | |
1528 | ExtValue genval(const Fortran::evaluate::Component &cmpt) { |
1529 | return genLoad(gen(cmpt)); |
1530 | } |
1531 | |
1532 | // Determine the result type after removing `dims` dimensions from the array |
1533 | // type `arrTy` |
1534 | mlir::Type genSubType(mlir::Type arrTy, unsigned dims) { |
1535 | mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy); |
1536 | assert(unwrapTy && "must be a pointer or box type"); |
1537 | auto seqTy = mlir::cast<fir::SequenceType>(unwrapTy); |
1538 | llvm::ArrayRef<int64_t> shape = seqTy.getShape(); |
1539 | assert(shape.size() > 0 && "removing columns for sequence sans shape"); |
1540 | assert(dims <= shape.size() && "removing more columns than exist"); |
1541 | fir::SequenceType::Shape newBnds; |
1542 | // follow Fortran semantics and remove columns (from right) |
1543 | std::size_t e = shape.size() - dims; |
1544 | for (decltype(e) i = 0; i < e; ++i) |
1545 | newBnds.push_back(shape[i]); |
1546 | if (!newBnds.empty()) |
1547 | return fir::SequenceType::get(newBnds, seqTy.getEleTy()); |
1548 | return seqTy.getEleTy(); |
1549 | } |
1550 | |
1551 | // Generate the code for a Bound value. |
1552 | ExtValue genval(const Fortran::semantics::Bound &bound) { |
1553 | if (bound.isExplicit()) { |
1554 | Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit(); |
1555 | if (sub.has_value()) |
1556 | return genval(*sub); |
1557 | return genIntegerConstant<8>(builder.getContext(), 1); |
1558 | } |
1559 | TODO(getLoc(), "non explicit semantics::Bound implementation"); |
1560 | } |
1561 | |
1562 | static bool isSlice(const Fortran::evaluate::ArrayRef &aref) { |
1563 | for (const Fortran::evaluate::Subscript &sub : aref.subscript()) |
1564 | if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u)) |
1565 | return true; |
1566 | return false; |
1567 | } |
1568 | |
1569 | /// Lower an ArrayRef to a fir.coordinate_of given its lowered base. |
1570 | ExtValue genCoordinateOp(const ExtValue &array, |
1571 | const Fortran::evaluate::ArrayRef &aref) { |
1572 | mlir::Location loc = getLoc(); |
1573 | // References to array of rank > 1 with non constant shape that are not |
1574 | // fir.box must be collapsed into an offset computation in lowering already. |
1575 | // The same is needed with dynamic length character arrays of all ranks. |
1576 | mlir::Type baseType = |
1577 | fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType()); |
1578 | if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) || |
1579 | fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType))) |
1580 | if (!array.getBoxOf<fir::BoxValue>()) |
1581 | return genOffsetAndCoordinateOp(array, aref); |
1582 | // Generate a fir.coordinate_of with zero based array indexes. |
1583 | llvm::SmallVector<mlir::Value> args; |
1584 | for (const auto &subsc : llvm::enumerate(aref.subscript())) { |
1585 | ExtValue subVal = genSubscript(subsc.value()); |
1586 | assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar"); |
1587 | mlir::Value val = fir::getBase(subVal); |
1588 | mlir::Type ty = val.getType(); |
1589 | mlir::Value lb = getLBound(array, subsc.index(), ty); |
1590 | args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb)); |
1591 | } |
1592 | mlir::Value base = fir::getBase(array); |
1593 | |
1594 | auto baseSym = getFirstSym(aref); |
1595 | if (baseSym.test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
1596 | // get the corresponding Cray pointer |
1597 | Fortran::semantics::SymbolRef ptrSym{ |
1598 | Fortran::semantics::GetCrayPointer(baseSym)}; |
1599 | fir::ExtendedValue ptr = gen(ptrSym); |
1600 | mlir::Value ptrVal = fir::getBase(ptr); |
1601 | mlir::Type ptrTy = ptrVal.getType(); |
1602 | |
1603 | mlir::Value cnvrt = Fortran::lower::addCrayPointerInst( |
1604 | loc, builder, ptrVal, ptrTy, base.getType()); |
1605 | base = builder.create<fir::LoadOp>(loc, cnvrt); |
1606 | } |
1607 | |
1608 | mlir::Type eleTy = fir::dyn_cast_ptrOrBoxEleTy(base.getType()); |
1609 | if (auto classTy = mlir::dyn_cast<fir::ClassType>(eleTy)) |
1610 | eleTy = classTy.getEleTy(); |
1611 | auto seqTy = mlir::cast<fir::SequenceType>(eleTy); |
1612 | assert(args.size() == seqTy.getDimension()); |
1613 | mlir::Type ty = builder.getRefType(seqTy.getEleTy()); |
1614 | auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args); |
1615 | return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr); |
1616 | } |
1617 | |
1618 | /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead |
1619 | /// of array indexes. |
1620 | /// This generates offset computation from the indexes and length parameters, |
1621 | /// and use the offset to access the element with a fir.coordinate_of. This |
1622 | /// must only be used if it is not possible to generate a normal |
1623 | /// fir.coordinate_of using array indexes (i.e. when the shape information is |
1624 | /// unavailable in the IR). |
1625 | ExtValue genOffsetAndCoordinateOp(const ExtValue &array, |
1626 | const Fortran::evaluate::ArrayRef &aref) { |
1627 | mlir::Location loc = getLoc(); |
1628 | mlir::Value addr = fir::getBase(array); |
1629 | mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType()); |
1630 | auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
1631 | mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy)); |
1632 | mlir::Type refTy = builder.getRefType(eleTy); |
1633 | mlir::Value base = builder.createConvert(loc, seqTy, addr); |
1634 | mlir::IndexType idxTy = builder.getIndexType(); |
1635 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
1636 | mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); |
1637 | auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value { |
1638 | return arr.getLBounds().empty() ? one : arr.getLBounds()[dim]; |
1639 | }; |
1640 | auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value { |
1641 | mlir::Value total = zero; |
1642 | assert(arr.getExtents().size() == aref.subscript().size()); |
1643 | delta = builder.createConvert(loc, idxTy, delta); |
1644 | unsigned dim = 0; |
1645 | for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) { |
1646 | ExtValue subVal = genSubscript(sub); |
1647 | assert(fir::isUnboxedValue(subVal)); |
1648 | mlir::Value val = |
1649 | builder.createConvert(loc, idxTy, fir::getBase(subVal)); |
1650 | mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim)); |
1651 | mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb); |
1652 | mlir::Value prod = |
1653 | builder.create<mlir::arith::MulIOp>(loc, delta, diff); |
1654 | total = builder.create<mlir::arith::AddIOp>(loc, prod, total); |
1655 | if (ext) |
1656 | delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext); |
1657 | ++dim; |
1658 | } |
1659 | mlir::Type origRefTy = refTy; |
1660 | if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) { |
1661 | fir::CharacterType chTy = |
1662 | fir::factory::CharacterExprHelper::getCharacterType(refTy); |
1663 | if (fir::characterWithDynamicLen(chTy)) { |
1664 | mlir::MLIRContext *ctx = builder.getContext(); |
1665 | fir::KindTy kind = |
1666 | fir::factory::CharacterExprHelper::getCharacterKind(chTy); |
1667 | fir::CharacterType singleTy = |
1668 | fir::CharacterType::getSingleton(ctx, kind); |
1669 | refTy = builder.getRefType(singleTy); |
1670 | mlir::Type seqRefTy = |
1671 | builder.getRefType(builder.getVarLenSeqTy(singleTy)); |
1672 | base = builder.createConvert(loc, seqRefTy, base); |
1673 | } |
1674 | } |
1675 | auto coor = builder.create<fir::CoordinateOp>( |
1676 | loc, refTy, base, llvm::ArrayRef<mlir::Value>{total}); |
1677 | // Convert to expected, original type after address arithmetic. |
1678 | return builder.createConvert(loc, origRefTy, coor); |
1679 | }; |
1680 | return array.match( |
1681 | [&](const fir::ArrayBoxValue &arr) -> ExtValue { |
1682 | // FIXME: this check can be removed when slicing is implemented |
1683 | if (isSlice(aref)) |
1684 | fir::emitFatalError( |
1685 | getLoc(), |
1686 | "slice should be handled in array expression context"); |
1687 | return genFullDim(arr, one); |
1688 | }, |
1689 | [&](const fir::CharArrayBoxValue &arr) -> ExtValue { |
1690 | mlir::Value delta = arr.getLen(); |
1691 | // If the length is known in the type, fir.coordinate_of will |
1692 | // already take the length into account. |
1693 | if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr)) |
1694 | delta = one; |
1695 | return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen()); |
1696 | }, |
1697 | [&](const fir::BoxValue &arr) -> ExtValue { |
1698 | // CoordinateOp for BoxValue is not generated here. The dimensions |
1699 | // must be kept in the fir.coordinate_op so that potential fir.box |
1700 | // strides can be applied by codegen. |
1701 | fir::emitFatalError( |
1702 | loc, "internal: BoxValue in dim-collapsed fir.coordinate_of"); |
1703 | }, |
1704 | [&](const auto &) -> ExtValue { |
1705 | fir::emitFatalError(loc, "internal: array processing failed"); |
1706 | }); |
1707 | } |
1708 | |
1709 | /// Lower an ArrayRef to a fir.array_coor. |
1710 | ExtValue genArrayCoorOp(const ExtValue &exv, |
1711 | const Fortran::evaluate::ArrayRef &aref) { |
1712 | mlir::Location loc = getLoc(); |
1713 | mlir::Value addr = fir::getBase(exv); |
1714 | mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); |
1715 | mlir::Type eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
1716 | mlir::Type refTy = builder.getRefType(eleTy); |
1717 | mlir::IndexType idxTy = builder.getIndexType(); |
1718 | llvm::SmallVector<mlir::Value> arrayCoorArgs; |
1719 | // The ArrayRef is expected to be scalar here, arrays are handled in array |
1720 | // expression lowering. So no vector subscript or triplet is expected here. |
1721 | for (const auto &sub : aref.subscript()) { |
1722 | ExtValue subVal = genSubscript(sub); |
1723 | assert(fir::isUnboxedValue(subVal)); |
1724 | arrayCoorArgs.push_back( |
1725 | builder.createConvert(loc, idxTy, fir::getBase(subVal))); |
1726 | } |
1727 | mlir::Value shape = builder.createShape(loc, exv); |
1728 | mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>( |
1729 | loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs, |
1730 | fir::getTypeParams(exv)); |
1731 | return fir::factory::arrayElementToExtendedValue(builder, loc, exv, |
1732 | elementAddr); |
1733 | } |
1734 | |
1735 | /// Return the coordinate of the array reference. |
1736 | ExtValue gen(const Fortran::evaluate::ArrayRef &aref) { |
1737 | ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base())) |
1738 | : gen(aref.base().GetComponent()); |
1739 | // Check for command-line override to use array_coor op. |
1740 | if (generateArrayCoordinate) |
1741 | return genArrayCoorOp(base, aref); |
1742 | // Otherwise, use coordinate_of op. |
1743 | return genCoordinateOp(base, aref); |
1744 | } |
1745 | |
1746 | /// Return lower bounds of \p box in dimension \p dim. The returned value |
1747 | /// has type \ty. |
1748 | mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) { |
1749 | assert(box.rank() > 0 && "must be an array"); |
1750 | mlir::Location loc = getLoc(); |
1751 | mlir::Value one = builder.createIntegerConstant(loc, ty, 1); |
1752 | mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one); |
1753 | return builder.createConvert(loc, ty, lb); |
1754 | } |
1755 | |
1756 | ExtValue genval(const Fortran::evaluate::ArrayRef &aref) { |
1757 | return genLoad(gen(aref)); |
1758 | } |
1759 | |
1760 | ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) { |
1761 | return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} |
1762 | .genAddr(coref); |
1763 | } |
1764 | |
1765 | ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) { |
1766 | return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} |
1767 | .genValue(coref); |
1768 | } |
1769 | |
1770 | template <typename A> |
1771 | ExtValue gen(const Fortran::evaluate::Designator<A> &des) { |
1772 | return Fortran::common::visit([&](const auto &x) { return gen(x); }, des.u); |
1773 | } |
1774 | template <typename A> |
1775 | ExtValue genval(const Fortran::evaluate::Designator<A> &des) { |
1776 | return Fortran::common::visit([&](const auto &x) { return genval(x); }, |
1777 | des.u); |
1778 | } |
1779 | |
1780 | mlir::Type genType(const Fortran::evaluate::DynamicType &dt) { |
1781 | if (dt.category() != Fortran::common::TypeCategory::Derived) |
1782 | return converter.genType(dt.category(), dt.kind()); |
1783 | if (dt.IsUnlimitedPolymorphic()) |
1784 | return mlir::NoneType::get(&converter.getMLIRContext()); |
1785 | return converter.genType(dt.GetDerivedTypeSpec()); |
1786 | } |
1787 | |
1788 | /// Lower a function reference |
1789 | template <typename A> |
1790 | ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) { |
1791 | if (!funcRef.GetType().has_value()) |
1792 | fir::emitFatalError(getLoc(), "a function must have a type"); |
1793 | mlir::Type resTy = genType(*funcRef.GetType()); |
1794 | return genProcedureRef(funcRef, {resTy}); |
1795 | } |
1796 | |
1797 | /// Lower function call `funcRef` and return a reference to the resultant |
1798 | /// value. This is required for lowering expressions such as `f1(f2(v))`. |
1799 | template <typename A> |
1800 | ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) { |
1801 | ExtValue retVal = genFunctionRef(funcRef); |
1802 | mlir::Type resultType = converter.genType(toEvExpr(funcRef)); |
1803 | return placeScalarValueInMemory(builder, getLoc(), retVal, resultType); |
1804 | } |
1805 | |
1806 | /// Helper to lower intrinsic arguments for inquiry intrinsic. |
1807 | ExtValue |
1808 | lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) { |
1809 | if (Fortran::evaluate::IsAllocatableOrPointerObject(expr)) |
1810 | return genMutableBoxValue(expr); |
1811 | /// Do not create temps for array sections whose properties only need to be |
1812 | /// inquired: create a descriptor that will be inquired. |
1813 | if (Fortran::evaluate::IsVariable(expr) && isArray(expr) && |
1814 | !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)) |
1815 | return lowerIntrinsicArgumentAsBox(expr); |
1816 | return gen(expr); |
1817 | } |
1818 | |
1819 | /// Helper to lower intrinsic arguments to a fir::BoxValue. |
1820 | /// It preserves all the non default lower bounds/non deferred length |
1821 | /// parameter information. |
1822 | ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) { |
1823 | mlir::Location loc = getLoc(); |
1824 | ExtValue exv = genBoxArg(expr); |
1825 | auto exvTy = fir::getBase(exv).getType(); |
1826 | if (mlir::isa<mlir::FunctionType>(exvTy)) { |
1827 | auto boxProcTy = |
1828 | builder.getBoxProcType(mlir::cast<mlir::FunctionType>(exvTy)); |
1829 | return builder.create<fir::EmboxProcOp>(loc, boxProcTy, |
1830 | fir::getBase(exv)); |
1831 | } |
1832 | mlir::Value box = builder.createBox(loc, exv, exv.isPolymorphic()); |
1833 | if (Fortran::lower::isParentComponent(expr)) { |
1834 | fir::ExtendedValue newExv = |
1835 | Fortran::lower::updateBoxForParentComponent(converter, box, expr); |
1836 | box = fir::getBase(newExv); |
1837 | } |
1838 | return fir::BoxValue( |
1839 | box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv), |
1840 | fir::factory::getNonDeferredLenParams(exv)); |
1841 | } |
1842 | |
1843 | /// Generate a call to a Fortran intrinsic or intrinsic module procedure. |
1844 | ExtValue genIntrinsicRef( |
1845 | const Fortran::evaluate::ProcedureRef &procRef, |
1846 | std::optional<mlir::Type> resultType, |
1847 | std::optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic = |
1848 | std::nullopt) { |
1849 | llvm::SmallVector<ExtValue> operands; |
1850 | |
1851 | std::string name = |
1852 | intrinsic ? intrinsic->name |
1853 | : procRef.proc().GetSymbol()->GetUltimate().name().ToString(); |
1854 | mlir::Location loc = getLoc(); |
1855 | if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling( |
1856 | procRef, *intrinsic, converter)) { |
1857 | using ExvAndPresence = std::pair<ExtValue, std::optional<mlir::Value>>; |
1858 | llvm::SmallVector<ExvAndPresence, 4> operands; |
1859 | auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { |
1860 | ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr); |
1861 | mlir::Value isPresent = |
1862 | genActualIsPresentTest(builder, loc, optionalArg); |
1863 | operands.emplace_back(optionalArg, isPresent); |
1864 | }; |
1865 | auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr, |
1866 | fir::LowerIntrinsicArgAs lowerAs) { |
1867 | switch (lowerAs) { |
1868 | case fir::LowerIntrinsicArgAs::Value: |
1869 | operands.emplace_back(genval(expr), std::nullopt); |
1870 | return; |
1871 | case fir::LowerIntrinsicArgAs::Addr: |
1872 | operands.emplace_back(gen(expr), std::nullopt); |
1873 | return; |
1874 | case fir::LowerIntrinsicArgAs::Box: |
1875 | operands.emplace_back(lowerIntrinsicArgumentAsBox(expr), |
1876 | std::nullopt); |
1877 | return; |
1878 | case fir::LowerIntrinsicArgAs::Inquired: |
1879 | operands.emplace_back(lowerIntrinsicArgumentAsInquired(expr), |
1880 | std::nullopt); |
1881 | return; |
1882 | } |
1883 | }; |
1884 | Fortran::lower::prepareCustomIntrinsicArgument( |
1885 | procRef, *intrinsic, resultType, prepareOptionalArg, prepareOtherArg, |
1886 | converter); |
1887 | |
1888 | auto getArgument = [&](std::size_t i, bool loadArg) -> ExtValue { |
1889 | if (loadArg && fir::conformsWithPassByRef( |
1890 | fir::getBase(operands[i].first).getType())) |
1891 | return genLoad(operands[i].first); |
1892 | return operands[i].first; |
1893 | }; |
1894 | auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> { |
1895 | return operands[i].second; |
1896 | }; |
1897 | return Fortran::lower::lowerCustomIntrinsic( |
1898 | builder, loc, name, resultType, isPresent, getArgument, |
1899 | operands.size(), stmtCtx); |
1900 | } |
1901 | |
1902 | const fir::IntrinsicArgumentLoweringRules *argLowering = |
1903 | fir::getIntrinsicArgumentLowering(name); |
1904 | for (const auto &arg : llvm::enumerate(procRef.arguments())) { |
1905 | auto *expr = |
1906 | Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value()); |
1907 | |
1908 | if (!expr && arg.value() && arg.value()->GetAssumedTypeDummy()) { |
1909 | // Assumed type optional. |
1910 | const Fortran::evaluate::Symbol *assumedTypeSym = |
1911 | arg.value()->GetAssumedTypeDummy(); |
1912 | auto symBox = symMap.lookupSymbol(*assumedTypeSym); |
1913 | ExtValue exv = |
1914 | converter.getSymbolExtendedValue(*assumedTypeSym, &symMap); |
1915 | if (argLowering) { |
1916 | fir::ArgLoweringRule argRules = |
1917 | fir::lowerIntrinsicArgumentAs(*argLowering, arg.index()); |
1918 | // Note: usages of TYPE(*) is limited by C710 but C_LOC and |
1919 | // IS_CONTIGUOUS may require an assumed size TYPE(*) to be passed to |
1920 | // the intrinsic library utility as a fir.box. |
1921 | if (argRules.lowerAs == fir::LowerIntrinsicArgAs::Box && |
1922 | !mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType())) { |
1923 | operands.emplace_back( |
1924 | fir::factory::createBoxValue(builder, loc, exv)); |
1925 | continue; |
1926 | } |
1927 | } |
1928 | operands.emplace_back(std::move(exv)); |
1929 | continue; |
1930 | } |
1931 | if (!expr) { |
1932 | // Absent optional. |
1933 | operands.emplace_back(fir::getAbsentIntrinsicArgument()); |
1934 | continue; |
1935 | } |
1936 | if (!argLowering) { |
1937 | // No argument lowering instruction, lower by value. |
1938 | operands.emplace_back(genval(*expr)); |
1939 | continue; |
1940 | } |
1941 | // Ad-hoc argument lowering handling. |
1942 | fir::ArgLoweringRule argRules = |
1943 | fir::lowerIntrinsicArgumentAs(*argLowering, arg.index()); |
1944 | if (argRules.handleDynamicOptional && |
1945 | Fortran::evaluate::MayBePassedAsAbsentOptional(*expr)) { |
1946 | ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr); |
1947 | mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional); |
1948 | switch (argRules.lowerAs) { |
1949 | case fir::LowerIntrinsicArgAs::Value: |
1950 | operands.emplace_back( |
1951 | genOptionalValue(builder, loc, optional, isPresent)); |
1952 | continue; |
1953 | case fir::LowerIntrinsicArgAs::Addr: |
1954 | operands.emplace_back( |
1955 | genOptionalAddr(builder, loc, optional, isPresent)); |
1956 | continue; |
1957 | case fir::LowerIntrinsicArgAs::Box: |
1958 | operands.emplace_back( |
1959 | genOptionalBox(builder, loc, optional, isPresent)); |
1960 | continue; |
1961 | case fir::LowerIntrinsicArgAs::Inquired: |
1962 | operands.emplace_back(optional); |
1963 | continue; |
1964 | } |
1965 | llvm_unreachable("bad switch"); |
1966 | } |
1967 | switch (argRules.lowerAs) { |
1968 | case fir::LowerIntrinsicArgAs::Value: |
1969 | operands.emplace_back(genval(*expr)); |
1970 | continue; |
1971 | case fir::LowerIntrinsicArgAs::Addr: |
1972 | operands.emplace_back(gen(*expr)); |
1973 | continue; |
1974 | case fir::LowerIntrinsicArgAs::Box: |
1975 | operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr)); |
1976 | continue; |
1977 | case fir::LowerIntrinsicArgAs::Inquired: |
1978 | operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr)); |
1979 | continue; |
1980 | } |
1981 | llvm_unreachable("bad switch"); |
1982 | } |
1983 | // Let the intrinsic library lower the intrinsic procedure call |
1984 | return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType, |
1985 | operands, stmtCtx, &converter); |
1986 | } |
1987 | |
1988 | /// helper to detect statement functions |
1989 | static bool |
1990 | isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) { |
1991 | if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol()) |
1992 | if (const auto *details = |
1993 | symbol->detailsIf<Fortran::semantics::SubprogramDetails>()) |
1994 | return details->stmtFunction().has_value(); |
1995 | return false; |
1996 | } |
1997 | |
1998 | /// Generate Statement function calls |
1999 | ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) { |
2000 | const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol(); |
2001 | assert(symbol && "expected symbol in ProcedureRef of statement functions"); |
2002 | const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>(); |
2003 | |
2004 | // Statement functions have their own scope, we just need to associate |
2005 | // the dummy symbols to argument expressions. They are no |
2006 | // optional/alternate return arguments. Statement functions cannot be |
2007 | // recursive (directly or indirectly) so it is safe to add dummy symbols to |
2008 | // the local map here. |
2009 | symMap.pushScope(); |
2010 | for (auto [arg, bind] : |
2011 | llvm::zip(details.dummyArgs(), procRef.arguments())) { |
2012 | assert(arg && "alternate return in statement function"); |
2013 | assert(bind && "optional argument in statement function"); |
2014 | const auto *expr = bind->UnwrapExpr(); |
2015 | // TODO: assumed type in statement function, that surprisingly seems |
2016 | // allowed, probably because nobody thought of restricting this usage. |
2017 | // gfortran/ifort compiles this. |
2018 | assert(expr && "assumed type used as statement function argument"); |
2019 | // As per Fortran 2018 C1580, statement function arguments can only be |
2020 | // scalars, so just pass the box with the address. The only care is to |
2021 | // to use the dummy character explicit length if any instead of the |
2022 | // actual argument length (that can be bigger). |
2023 | if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType()) |
2024 | if (type->category() == Fortran::semantics::DeclTypeSpec::Character) |
2025 | if (const Fortran::semantics::MaybeIntExpr &lenExpr = |
2026 | type->characterTypeSpec().length().GetExplicit()) { |
2027 | mlir::Value len = fir::getBase(genval(*lenExpr)); |
2028 | // F2018 7.4.4.2 point 5. |
2029 | len = fir::factory::genMaxWithZero(builder, getLoc(), len); |
2030 | symMap.addSymbol(*arg, |
2031 | replaceScalarCharacterLength(gen(*expr), len)); |
2032 | continue; |
2033 | } |
2034 | symMap.addSymbol(*arg, gen(*expr)); |
2035 | } |
2036 | |
2037 | // Explicitly map statement function host associated symbols to their |
2038 | // parent scope lowered symbol box. |
2039 | for (const Fortran::semantics::SymbolRef &sym : |
2040 | Fortran::evaluate::CollectSymbols(*details.stmtFunction())) |
2041 | if (const auto *details = |
2042 | sym->detailsIf<Fortran::semantics::HostAssocDetails>()) |
2043 | if (!symMap.lookupSymbol(*sym)) |
2044 | symMap.addSymbol(*sym, gen(details->symbol())); |
2045 | |
2046 | ExtValue result = genval(details.stmtFunction().value()); |
2047 | LLVM_DEBUG(llvm::dbgs() << "stmt-function: "<< result << '\n'); |
2048 | symMap.popScope(); |
2049 | return result; |
2050 | } |
2051 | |
2052 | /// Create a contiguous temporary array with the same shape, |
2053 | /// length parameters and type as mold. It is up to the caller to deallocate |
2054 | /// the temporary. |
2055 | ExtValue genArrayTempFromMold(const ExtValue &mold, |
2056 | llvm::StringRef tempName) { |
2057 | mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType()); |
2058 | assert(type && "expected descriptor or memory type"); |
2059 | mlir::Location loc = getLoc(); |
2060 | llvm::SmallVector<mlir::Value> extents = |
2061 | fir::factory::getExtents(loc, builder, mold); |
2062 | llvm::SmallVector<mlir::Value> allocMemTypeParams = |
2063 | fir::getTypeParams(mold); |
2064 | mlir::Value charLen; |
2065 | mlir::Type elementType = fir::unwrapSequenceType(type); |
2066 | if (auto charType = mlir::dyn_cast<fir::CharacterType>(elementType)) { |
2067 | charLen = allocMemTypeParams.empty() |
2068 | ? fir::factory::readCharLen(builder, loc, mold) |
2069 | : allocMemTypeParams[0]; |
2070 | if (charType.hasDynamicLen() && allocMemTypeParams.empty()) |
2071 | allocMemTypeParams.push_back(charLen); |
2072 | } else if (fir::hasDynamicSize(elementType)) { |
2073 | TODO(loc, "creating temporary for derived type with length parameters"); |
2074 | } |
2075 | |
2076 | mlir::Value temp = builder.create<fir::AllocMemOp>( |
2077 | loc, type, tempName, allocMemTypeParams, extents); |
2078 | if (mlir::isa<fir::CharacterType>(fir::unwrapSequenceType(type))) |
2079 | return fir::CharArrayBoxValue{temp, charLen, extents}; |
2080 | return fir::ArrayBoxValue{temp, extents}; |
2081 | } |
2082 | |
2083 | /// Copy \p source array into \p dest array. Both arrays must be |
2084 | /// conforming, but neither array must be contiguous. |
2085 | void genArrayCopy(ExtValue dest, ExtValue source) { |
2086 | return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx); |
2087 | } |
2088 | |
2089 | /// Lower a non-elemental procedure reference and read allocatable and pointer |
2090 | /// results into normal values. |
2091 | ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, |
2092 | std::optional<mlir::Type> resultType) { |
2093 | ExtValue res = genRawProcedureRef(procRef, resultType); |
2094 | // In most contexts, pointers and allocatable do not appear as allocatable |
2095 | // or pointer variable on the caller side (see 8.5.3 note 1 for |
2096 | // allocatables). The few context where this can happen must call |
2097 | // genRawProcedureRef directly. |
2098 | if (const auto *box = res.getBoxOf<fir::MutableBoxValue>()) |
2099 | return fir::factory::genMutableBoxRead(builder, getLoc(), *box); |
2100 | return res; |
2101 | } |
2102 | |
2103 | /// Like genExtAddr, but ensure the address returned is a temporary even if \p |
2104 | /// expr is variable inside parentheses. |
2105 | ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) { |
2106 | // In general, genExtAddr might not create a temp for variable inside |
2107 | // parentheses to avoid creating array temporary in sub-expressions. It only |
2108 | // ensures the sub-expression is not re-associated with other parts of the |
2109 | // expression. In the call semantics, there is a difference between expr and |
2110 | // variable (see R1524). For expressions, a variable storage must not be |
2111 | // argument associated since it could be modified inside the call, or the |
2112 | // variable could also be modified by other means during the call. |
2113 | if (!isParenthesizedVariable(expr)) |
2114 | return genExtAddr(expr); |
2115 | if (expr.Rank() > 0) |
2116 | return asArray(expr); |
2117 | mlir::Location loc = getLoc(); |
2118 | return genExtValue(expr).match( |
2119 | [&](const fir::CharBoxValue &boxChar) -> ExtValue { |
2120 | return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom( |
2121 | boxChar); |
2122 | }, |
2123 | [&](const fir::UnboxedValue &v) -> ExtValue { |
2124 | mlir::Type type = v.getType(); |
2125 | mlir::Value value = v; |
2126 | if (fir::isa_ref_type(type)) |
2127 | value = builder.create<fir::LoadOp>(loc, value); |
2128 | mlir::Value temp = builder.createTemporary(loc, value.getType()); |
2129 | builder.create<fir::StoreOp>(loc, value, temp); |
2130 | return temp; |
2131 | }, |
2132 | [&](const fir::BoxValue &x) -> ExtValue { |
2133 | // Derived type scalar that may be polymorphic. |
2134 | if (fir::isPolymorphicType(fir::getBase(x).getType())) |
2135 | TODO(loc, "polymorphic array temporary"); |
2136 | assert(!x.hasRank() && x.isDerived()); |
2137 | if (x.isDerivedWithLenParameters()) |
2138 | fir::emitFatalError( |
2139 | loc, "making temps for derived type with length parameters"); |
2140 | // TODO: polymorphic aspects should be kept but for now the temp |
2141 | // created always has the declared type. |
2142 | mlir::Value var = |
2143 | fir::getBase(fir::factory::readBoxValue(builder, loc, x)); |
2144 | auto value = builder.create<fir::LoadOp>(loc, var); |
2145 | mlir::Value temp = builder.createTemporary(loc, value.getType()); |
2146 | builder.create<fir::StoreOp>(loc, value, temp); |
2147 | return temp; |
2148 | }, |
2149 | [&](const fir::PolymorphicValue &p) -> ExtValue { |
2150 | TODO(loc, "creating polymorphic temporary"); |
2151 | }, |
2152 | [&](const auto &) -> ExtValue { |
2153 | fir::emitFatalError(loc, "expr is not a scalar value"); |
2154 | }); |
2155 | } |
2156 | |
2157 | /// Helper structure to track potential copy-in of non contiguous variable |
2158 | /// argument into a contiguous temp. It is used to deallocate the temp that |
2159 | /// may have been created as well as to the copy-out from the temp to the |
2160 | /// variable after the call. |
2161 | struct CopyOutPair { |
2162 | ExtValue var; |
2163 | ExtValue temp; |
2164 | // Flag to indicate if the argument may have been modified by the |
2165 | // callee, in which case it must be copied-out to the variable. |
2166 | bool argMayBeModifiedByCall; |
2167 | // Optional boolean value that, if present and false, prevents |
2168 | // the copy-out and temp deallocation. |
2169 | std::optional<mlir::Value> restrictCopyAndFreeAtRuntime; |
2170 | }; |
2171 | using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>; |
2172 | |
2173 | /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories |
2174 | /// not based on fir.box. |
2175 | /// This will lose any non contiguous stride information and dynamic type and |
2176 | /// should only be called if \p exv is known to be contiguous or if its base |
2177 | /// address will be replaced by a contiguous one. If \p exv is not a |
2178 | /// fir::BoxValue, this is a no-op. |
2179 | ExtValue readIfBoxValue(const ExtValue &exv) { |
2180 | if (const auto *box = exv.getBoxOf<fir::BoxValue>()) |
2181 | return fir::factory::readBoxValue(builder, getLoc(), *box); |
2182 | return exv; |
2183 | } |
2184 | |
2185 | /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The |
2186 | /// creation of the temp and copy-in can be made conditional at runtime by |
2187 | /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case |
2188 | /// the temp and copy will only be made if the value is true at runtime). |
2189 | ExtValue genCopyIn(const ExtValue &actualArg, |
2190 | const Fortran::lower::CallerInterface::PassedEntity &arg, |
2191 | CopyOutPairs ©OutPairs, |
2192 | std::optional<mlir::Value> restrictCopyAtRuntime, |
2193 | bool byValue) { |
2194 | const bool doCopyOut = !byValue && arg.mayBeModifiedByCall(); |
2195 | llvm::StringRef tempName = byValue ? ".copy": ".copyinout"; |
2196 | mlir::Location loc = getLoc(); |
2197 | bool isActualArgBox = fir::isa_box_type(fir::getBase(actualArg).getType()); |
2198 | mlir::Value isContiguousResult; |
2199 | mlir::Type addrType = fir::HeapType::get( |
2200 | fir::unwrapPassByRefType(fir::getBase(actualArg).getType())); |
2201 | |
2202 | if (isActualArgBox) { |
2203 | // Check at runtime if the argument is contiguous so no copy is needed. |
2204 | isContiguousResult = |
2205 | fir::runtime::genIsContiguous(builder, loc, fir::getBase(actualArg)); |
2206 | } |
2207 | |
2208 | auto doCopyIn = [&]() -> ExtValue { |
2209 | ExtValue temp = genArrayTempFromMold(actualArg, tempName); |
2210 | if (!arg.mayBeReadByCall() && |
2211 | // INTENT(OUT) dummy argument finalization, automatically |
2212 | // done when the procedure is invoked, may imply reading |
2213 | // the argument value in the finalization routine. |
2214 | // So we need to make a copy, if finalization may occur. |
2215 | // TODO: do we have to avoid the copying for an actual |
2216 | // argument of type that does not require finalization? |
2217 | !arg.mayRequireIntentoutFinalization() && |
2218 | // ALLOCATABLE dummy argument may require finalization. |
2219 | // If it has to be automatically deallocated at the end |
2220 | // of the procedure invocation (9.7.3.2 p. 2), |
2221 | // then the finalization may happen if the actual argument |
2222 | // is allocated (7.5.6.3 p. 2). |
2223 | !arg.hasAllocatableAttribute()) { |
2224 | // We have to initialize the temp if it may have components |
2225 | // that need initialization. If there are no components |
2226 | // requiring initialization, then the call is a no-op. |
2227 | if (mlir::isa<fir::RecordType>(getElementTypeOf(temp))) { |
2228 | mlir::Value tempBox = fir::getBase(builder.createBox(loc, temp)); |
2229 | fir::runtime::genDerivedTypeInitialize(builder, loc, tempBox); |
2230 | } |
2231 | return temp; |
2232 | } |
2233 | if (!isActualArgBox || inlineCopyInOutForBoxes) { |
2234 | genArrayCopy(temp, actualArg); |
2235 | return temp; |
2236 | } |
2237 | |
2238 | // Generate AssignTemporary() call to copy data from the actualArg |
2239 | // to a temporary. AssignTemporary() will initialize the temporary, |
2240 | // if needed, before doing the assignment, which is required |
2241 | // since the temporary's components (if any) are uninitialized |
2242 | // at this point. |
2243 | mlir::Value destBox = fir::getBase(builder.createBox(loc, temp)); |
2244 | mlir::Value boxRef = builder.createTemporary(loc, destBox.getType()); |
2245 | builder.create<fir::StoreOp>(loc, destBox, boxRef); |
2246 | fir::runtime::genAssignTemporary(builder, loc, boxRef, |
2247 | fir::getBase(actualArg)); |
2248 | return temp; |
2249 | }; |
2250 | |
2251 | auto noCopy = [&]() { |
2252 | mlir::Value box = fir::getBase(actualArg); |
2253 | mlir::Value boxAddr = builder.create<fir::BoxAddrOp>(loc, addrType, box); |
2254 | builder.create<fir::ResultOp>(loc, boxAddr); |
2255 | }; |
2256 | |
2257 | auto combinedCondition = [&]() { |
2258 | if (isActualArgBox) { |
2259 | mlir::Value zero = |
2260 | builder.createIntegerConstant(loc, builder.getI1Type(), 0); |
2261 | mlir::Value notContiguous = builder.create<mlir::arith::CmpIOp>( |
2262 | loc, mlir::arith::CmpIPredicate::eq, isContiguousResult, zero); |
2263 | if (!restrictCopyAtRuntime) { |
2264 | restrictCopyAtRuntime = notContiguous; |
2265 | } else { |
2266 | mlir::Value cond = builder.create<mlir::arith::AndIOp>( |
2267 | loc, *restrictCopyAtRuntime, notContiguous); |
2268 | restrictCopyAtRuntime = cond; |
2269 | } |
2270 | } |
2271 | }; |
2272 | |
2273 | if (!restrictCopyAtRuntime) { |
2274 | if (isActualArgBox) { |
2275 | // isContiguousResult = genIsContiguousCall(); |
2276 | mlir::Value addr = |
2277 | builder |
2278 | .genIfOp(loc, {addrType}, isContiguousResult, |
2279 | /*withElseRegion=*/true) |
2280 | .genThen([&]() { noCopy(); }) |
2281 | .genElse([&] { |
2282 | ExtValue temp = doCopyIn(); |
2283 | builder.create<fir::ResultOp>(loc, fir::getBase(temp)); |
2284 | }) |
2285 | .getResults()[0]; |
2286 | fir::ExtendedValue temp = |
2287 | fir::substBase(readIfBoxValue(actualArg), addr); |
2288 | combinedCondition(); |
2289 | copyOutPairs.emplace_back( |
2290 | Args: CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime}); |
2291 | return temp; |
2292 | } |
2293 | |
2294 | ExtValue temp = doCopyIn(); |
2295 | copyOutPairs.emplace_back(Args: CopyOutPair{actualArg, temp, doCopyOut, {}}); |
2296 | return temp; |
2297 | } |
2298 | |
2299 | // Otherwise, need to be careful to only copy-in if allowed at runtime. |
2300 | mlir::Value addr = |
2301 | builder |
2302 | .genIfOp(loc, {addrType}, *restrictCopyAtRuntime, |
2303 | /*withElseRegion=*/true) |
2304 | .genThen([&]() { |
2305 | if (isActualArgBox) { |
2306 | // isContiguousResult = genIsContiguousCall(); |
2307 | // Avoid copyin if the argument is contiguous at runtime. |
2308 | mlir::Value addr1 = |
2309 | builder |
2310 | .genIfOp(loc, {addrType}, isContiguousResult, |
2311 | /*withElseRegion=*/true) |
2312 | .genThen([&]() { noCopy(); }) |
2313 | .genElse([&]() { |
2314 | ExtValue temp = doCopyIn(); |
2315 | builder.create<fir::ResultOp>(loc, |
2316 | fir::getBase(temp)); |
2317 | }) |
2318 | .getResults()[0]; |
2319 | builder.create<fir::ResultOp>(loc, addr1); |
2320 | } else { |
2321 | ExtValue temp = doCopyIn(); |
2322 | builder.create<fir::ResultOp>(loc, fir::getBase(temp)); |
2323 | } |
2324 | }) |
2325 | .genElse([&]() { |
2326 | mlir::Value nullPtr = builder.createNullConstant(loc, addrType); |
2327 | builder.create<fir::ResultOp>(loc, nullPtr); |
2328 | }) |
2329 | .getResults()[0]; |
2330 | // Associate the temp address with actualArg lengths and extents if a |
2331 | // temporary is generated. Otherwise the same address is associated. |
2332 | fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr); |
2333 | combinedCondition(); |
2334 | copyOutPairs.emplace_back( |
2335 | Args: CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime}); |
2336 | return temp; |
2337 | } |
2338 | |
2339 | /// Generate copy-out if needed and free the temporary for an argument that |
2340 | /// has been copied-in into a contiguous temp. |
2341 | void genCopyOut(const CopyOutPair ©OutPair) { |
2342 | mlir::Location loc = getLoc(); |
2343 | bool isActualArgBox = |
2344 | fir::isa_box_type(fir::getBase(copyOutPair.var).getType()); |
2345 | auto doCopyOut = [&]() { |
2346 | if (!isActualArgBox || inlineCopyInOutForBoxes) { |
2347 | if (copyOutPair.argMayBeModifiedByCall) |
2348 | genArrayCopy(copyOutPair.var, copyOutPair.temp); |
2349 | if (mlir::isa<fir::RecordType>( |
2350 | fir::getElementTypeOf(copyOutPair.temp))) { |
2351 | // Destroy components of the temporary (if any). |
2352 | // If there are no components requiring destruction, then the call |
2353 | // is a no-op. |
2354 | mlir::Value tempBox = |
2355 | fir::getBase(builder.createBox(loc, copyOutPair.temp)); |
2356 | fir::runtime::genDerivedTypeDestroyWithoutFinalization(builder, loc, |
2357 | tempBox); |
2358 | } |
2359 | // Deallocate the top-level entity of the temporary. |
2360 | builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp)); |
2361 | return; |
2362 | } |
2363 | // Generate CopyOutAssign() call to copy data from the temporary |
2364 | // to the actualArg. Note that in case the actual argument |
2365 | // is ALLOCATABLE/POINTER the CopyOutAssign() implementation |
2366 | // should not engage its reallocation, because the temporary |
2367 | // is rank, shape and type compatible with it. |
2368 | // Moreover, CopyOutAssign() guarantees that there will be no |
2369 | // finalization for the LHS even if it is of a derived type |
2370 | // with finalization. |
2371 | |
2372 | // Create allocatable descriptor for the temp so that the runtime may |
2373 | // deallocate it. |
2374 | mlir::Value srcBox = |
2375 | fir::getBase(builder.createBox(loc, copyOutPair.temp)); |
2376 | mlir::Type allocBoxTy = |
2377 | mlir::cast<fir::BaseBoxType>(srcBox.getType()) |
2378 | .getBoxTypeWithNewAttr(fir::BaseBoxType::Attribute::Allocatable); |
2379 | srcBox = builder.create<fir::ReboxOp>(loc, allocBoxTy, srcBox, |
2380 | /*shift=*/mlir::Value{}, |
2381 | /*slice=*/mlir::Value{}); |
2382 | mlir::Value srcBoxRef = builder.createTemporary(loc, srcBox.getType()); |
2383 | builder.create<fir::StoreOp>(loc, srcBox, srcBoxRef); |
2384 | // Create descriptor pointer to variable descriptor if copy out is needed, |
2385 | // and nullptr otherwise. |
2386 | mlir::Value destBoxRef; |
2387 | if (copyOutPair.argMayBeModifiedByCall) { |
2388 | mlir::Value destBox = |
2389 | fir::getBase(builder.createBox(loc, copyOutPair.var)); |
2390 | destBoxRef = builder.createTemporary(loc, destBox.getType()); |
2391 | builder.create<fir::StoreOp>(loc, destBox, destBoxRef); |
2392 | } else { |
2393 | destBoxRef = builder.create<fir::ZeroOp>(loc, srcBoxRef.getType()); |
2394 | } |
2395 | fir::runtime::genCopyOutAssign(builder, loc, destBoxRef, srcBoxRef); |
2396 | }; |
2397 | |
2398 | if (!copyOutPair.restrictCopyAndFreeAtRuntime) |
2399 | doCopyOut(); |
2400 | else |
2401 | builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime) |
2402 | .genThen([&]() { doCopyOut(); }) |
2403 | .end(); |
2404 | } |
2405 | |
2406 | /// Lower a designator to a variable that may be absent at runtime into an |
2407 | /// ExtendedValue where all the properties (base address, shape and length |
2408 | /// parameters) can be safely read (set to zero if not present). It also |
2409 | /// returns a boolean mlir::Value telling if the variable is present at |
2410 | /// runtime. |
2411 | /// This is useful to later be able to do conditional copy-in/copy-out |
2412 | /// or to retrieve the base address without having to deal with the case |
2413 | /// where the actual may be an absent fir.box. |
2414 | std::pair<ExtValue, mlir::Value> |
2415 | prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) { |
2416 | mlir::Location loc = getLoc(); |
2417 | if (Fortran::evaluate::IsAllocatableOrPointerObject(expr)) { |
2418 | // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, |
2419 | // it is as if the argument was absent. The main care here is to |
2420 | // not do a copy-in/copy-out because the temp address, even though |
2421 | // pointing to a null size storage, would not be a nullptr and |
2422 | // therefore the argument would not be considered absent on the |
2423 | // callee side. Note: if wholeSymbol is optional, it cannot be |
2424 | // absent as per 15.5.2.12 point 7. and 8. We rely on this to |
2425 | // un-conditionally read the allocatable/pointer descriptor here. |
2426 | fir::MutableBoxValue mutableBox = genMutableBoxValue(expr); |
2427 | mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest( |
2428 | builder, loc, mutableBox); |
2429 | fir::ExtendedValue actualArg = |
2430 | fir::factory::genMutableBoxRead(builder, loc, mutableBox); |
2431 | return {actualArg, isPresent}; |
2432 | } |
2433 | // Absent descriptor cannot be read. To avoid any issue in |
2434 | // copy-in/copy-out, and when retrieving the address/length |
2435 | // create an descriptor pointing to a null address here if the |
2436 | // fir.box is absent. |
2437 | ExtValue actualArg = gen(expr); |
2438 | mlir::Value actualArgBase = fir::getBase(actualArg); |
2439 | mlir::Value isPresent = builder.create<fir::IsPresentOp>( |
2440 | loc, builder.getI1Type(), actualArgBase); |
2441 | if (!mlir::isa<fir::BoxType>(actualArgBase.getType())) |
2442 | return {actualArg, isPresent}; |
2443 | ExtValue safeToReadBox = |
2444 | absentBoxToUnallocatedBox(builder, loc, actualArg, isPresent); |
2445 | return {safeToReadBox, isPresent}; |
2446 | } |
2447 | |
2448 | /// Create a temp on the stack for scalar actual arguments that may be absent |
2449 | /// at runtime, but must be passed via a temp if they are presents. |
2450 | fir::ExtendedValue |
2451 | createScalarTempForArgThatMayBeAbsent(ExtValue actualArg, |
2452 | mlir::Value isPresent) { |
2453 | mlir::Location loc = getLoc(); |
2454 | mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType()); |
2455 | if (fir::isDerivedWithLenParameters(actualArg)) |
2456 | TODO(loc, "parametrized derived type optional scalar argument copy-in"); |
2457 | if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) { |
2458 | mlir::Value len = charBox->getLen(); |
2459 | mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0); |
2460 | len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero); |
2461 | mlir::Value temp = |
2462 | builder.createTemporary(loc, type, /*name=*/{}, |
2463 | /*shape=*/{}, mlir::ValueRange{len}, |
2464 | llvm::ArrayRef<mlir::NamedAttribute>{ |
2465 | fir::getAdaptToByRefAttr(builder)}); |
2466 | return fir::CharBoxValue{temp, len}; |
2467 | } |
2468 | assert((fir::isa_trivial(type) || mlir::isa<fir::RecordType>(type)) && |
2469 | "must be simple scalar"); |
2470 | return builder.createTemporary(loc, type, |
2471 | llvm::ArrayRef<mlir::NamedAttribute>{ |
2472 | fir::getAdaptToByRefAttr(builder)}); |
2473 | } |
2474 | |
2475 | template <typename A> |
2476 | bool isCharacterType(const A &exp) { |
2477 | if (auto type = exp.GetType()) |
2478 | return type->category() == Fortran::common::TypeCategory::Character; |
2479 | return false; |
2480 | } |
2481 | |
2482 | /// Lower an actual argument that must be passed via an address. |
2483 | /// This generates of the copy-in/copy-out if the actual is not contiguous, or |
2484 | /// the creation of the temp if the actual is a variable and \p byValue is |
2485 | /// true. It handles the cases where the actual may be absent, and all of the |
2486 | /// copying has to be conditional at runtime. |
2487 | /// If the actual argument may be dynamically absent, return an additional |
2488 | /// boolean mlir::Value that if true means that the actual argument is |
2489 | /// present. |
2490 | std::pair<ExtValue, std::optional<mlir::Value>> |
2491 | prepareActualToBaseAddressLike( |
2492 | const Fortran::lower::SomeExpr &expr, |
2493 | const Fortran::lower::CallerInterface::PassedEntity &arg, |
2494 | CopyOutPairs ©OutPairs, bool byValue) { |
2495 | mlir::Location loc = getLoc(); |
2496 | const bool isArray = expr.Rank() > 0; |
2497 | const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr); |
2498 | // It must be possible to modify VALUE arguments on the callee side, even |
2499 | // if the actual argument is a literal or named constant. Hence, the |
2500 | // address of static storage must not be passed in that case, and a copy |
2501 | // must be made even if this is not a variable. |
2502 | // Note: isArray should be used here, but genBoxArg already creates copies |
2503 | // for it, so do not duplicate the copy until genBoxArg behavior is changed. |
2504 | const bool isStaticConstantByValue = |
2505 | byValue && Fortran::evaluate::IsActuallyConstant(expr) && |
2506 | (isCharacterType(expr)); |
2507 | const bool variableNeedsCopy = |
2508 | actualArgIsVariable && |
2509 | (byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous( |
2510 | expr, converter.getFoldingContext()))); |
2511 | const bool needsCopy = isStaticConstantByValue || variableNeedsCopy; |
2512 | auto [argAddr, isPresent] = |
2513 | [&]() -> std::pair<ExtValue, std::optional<mlir::Value>> { |
2514 | if (!actualArgIsVariable && !needsCopy) |
2515 | // Actual argument is not a variable. Make sure a variable address is |
2516 | // not passed. |
2517 | return {genTempExtAddr(expr), std::nullopt}; |
2518 | ExtValue baseAddr; |
2519 | if (arg.isOptional() && |
2520 | Fortran::evaluate::MayBePassedAsAbsentOptional(expr)) { |
2521 | auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr); |
2522 | const ExtValue &actualArg = actualArgBind; |
2523 | if (!needsCopy) |
2524 | return {actualArg, isPresent}; |
2525 | |
2526 | if (isArray) |
2527 | return {genCopyIn(actualArg, arg, copyOutPairs, isPresent, byValue), |
2528 | isPresent}; |
2529 | // Scalars, create a temp, and use it conditionally at runtime if |
2530 | // the argument is present. |
2531 | ExtValue temp = |
2532 | createScalarTempForArgThatMayBeAbsent(actualArg, isPresent); |
2533 | mlir::Type tempAddrTy = fir::getBase(temp).getType(); |
2534 | mlir::Value selectAddr = |
2535 | builder |
2536 | .genIfOp(loc, {tempAddrTy}, isPresent, |
2537 | /*withElseRegion=*/true) |
2538 | .genThen([&]() { |
2539 | fir::factory::genScalarAssignment(builder, loc, temp, |
2540 | actualArg); |
2541 | builder.create<fir::ResultOp>(loc, fir::getBase(temp)); |
2542 | }) |
2543 | .genElse([&]() { |
2544 | mlir::Value absent = |
2545 | builder.create<fir::AbsentOp>(loc, tempAddrTy); |
2546 | builder.create<fir::ResultOp>(loc, absent); |
2547 | }) |
2548 | .getResults()[0]; |
2549 | return {fir::substBase(temp, selectAddr), isPresent}; |
2550 | } |
2551 | // Actual cannot be absent, the actual argument can safely be |
2552 | // copied-in/copied-out without any care if needed. |
2553 | if (isArray) { |
2554 | ExtValue box = genBoxArg(expr); |
2555 | if (needsCopy) |
2556 | return {genCopyIn(box, arg, copyOutPairs, |
2557 | /*restrictCopyAtRuntime=*/std::nullopt, byValue), |
2558 | std::nullopt}; |
2559 | // Contiguous: just use the box we created above! |
2560 | // This gets "unboxed" below, if needed. |
2561 | return {box, std::nullopt}; |
2562 | } |
2563 | // Actual argument is a non-optional, non-pointer, non-allocatable |
2564 | // scalar. |
2565 | ExtValue actualArg = genExtAddr(expr); |
2566 | if (needsCopy) |
2567 | return {createInMemoryScalarCopy(builder, loc, actualArg), |
2568 | std::nullopt}; |
2569 | return {actualArg, std::nullopt}; |
2570 | }(); |
2571 | // Scalar and contiguous expressions may be lowered to a fir.box, |
2572 | // either to account for potential polymorphism, or because lowering |
2573 | // did not account for some contiguity hints. |
2574 | // Here, polymorphism does not matter (an entity of the declared type |
2575 | // is passed, not one of the dynamic type), and the expr is known to |
2576 | // be simply contiguous, so it is safe to unbox it and pass the |
2577 | // address without making a copy. |
2578 | return {readIfBoxValue(argAddr), isPresent}; |
2579 | } |
2580 | |
2581 | /// Lower a non-elemental procedure reference. |
2582 | ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, |
2583 | std::optional<mlir::Type> resultType) { |
2584 | mlir::Location loc = getLoc(); |
2585 | if (isElementalProcWithArrayArgs(procRef)) |
2586 | fir::emitFatalError(loc, "trying to lower elemental procedure with array " |
2587 | "arguments as normal procedure"); |
2588 | |
2589 | if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = |
2590 | procRef.proc().GetSpecificIntrinsic()) |
2591 | return genIntrinsicRef(procRef, resultType, *intrinsic); |
2592 | |
2593 | if (Fortran::lower::isIntrinsicModuleProcRef(procRef) && |
2594 | !Fortran::semantics::IsBindCProcedure(*procRef.proc().GetSymbol())) |
2595 | return genIntrinsicRef(procRef, resultType); |
2596 | |
2597 | if (isStatementFunctionCall(procRef)) |
2598 | return genStmtFunctionRef(procRef); |
2599 | |
2600 | Fortran::lower::CallerInterface caller(procRef, converter); |
2601 | using PassBy = Fortran::lower::CallerInterface::PassEntityBy; |
2602 | |
2603 | llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall; |
2604 | // List of <var, temp> where temp must be copied into var after the call. |
2605 | CopyOutPairs copyOutPairs; |
2606 | |
2607 | mlir::FunctionType callSiteType = caller.genFunctionType(); |
2608 | |
2609 | // Lower the actual arguments and map the lowered values to the dummy |
2610 | // arguments. |
2611 | for (const Fortran::lower::CallInterface< |
2612 | Fortran::lower::CallerInterface>::PassedEntity &arg : |
2613 | caller.getPassedArguments()) { |
2614 | const auto *actual = arg.entity; |
2615 | mlir::Type argTy = callSiteType.getInput(arg.firArgument); |
2616 | if (!actual) { |
2617 | // Optional dummy argument for which there is no actual argument. |
2618 | caller.placeInput(arg, builder.genAbsentOp(loc, argTy)); |
2619 | continue; |
2620 | } |
2621 | const auto *expr = actual->UnwrapExpr(); |
2622 | if (!expr) |
2623 | TODO(loc, "assumed type actual argument"); |
2624 | |
2625 | if (arg.passBy == PassBy::Value) { |
2626 | ExtValue argVal = genval(*expr); |
2627 | if (!fir::isUnboxedValue(argVal)) |
2628 | fir::emitFatalError( |
2629 | loc, "internal error: passing non trivial value by value"); |
2630 | caller.placeInput(arg, fir::getBase(argVal)); |
2631 | continue; |
2632 | } |
2633 | |
2634 | if (arg.passBy == PassBy::MutableBox) { |
2635 | if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>( |
2636 | *expr)) { |
2637 | // If expr is NULL(), the mutableBox created must be a deallocated |
2638 | // pointer with the dummy argument characteristics (see table 16.5 |
2639 | // in Fortran 2018 standard). |
2640 | // No length parameters are set for the created box because any non |
2641 | // deferred type parameters of the dummy will be evaluated on the |
2642 | // callee side, and it is illegal to use NULL without a MOLD if any |
2643 | // dummy length parameters are assumed. |
2644 | mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy); |
2645 | assert(boxTy && mlir::isa<fir::BaseBoxType>(boxTy) && |
2646 | "must be a fir.box type"); |
2647 | mlir::Value boxStorage = builder.createTemporary(loc, boxTy); |
2648 | mlir::Value nullBox = fir::factory::createUnallocatedBox( |
2649 | builder, loc, boxTy, /*nonDeferredParams=*/{}); |
2650 | builder.create<fir::StoreOp>(loc, nullBox, boxStorage); |
2651 | caller.placeInput(arg, boxStorage); |
2652 | continue; |
2653 | } |
2654 | if (fir::isPointerType(argTy) && |
2655 | !Fortran::evaluate::IsObjectPointer(*expr)) { |
2656 | // Passing a non POINTER actual argument to a POINTER dummy argument. |
2657 | // Create a pointer of the dummy argument type and assign the actual |
2658 | // argument to it. |
2659 | mlir::Value irBox = |
2660 | builder.createTemporary(loc, fir::unwrapRefType(argTy)); |
2661 | // Non deferred parameters will be evaluated on the callee side. |
2662 | fir::MutableBoxValue pointer(irBox, |
2663 | /*nonDeferredParams=*/mlir::ValueRange{}, |
2664 | /*mutableProperties=*/{}); |
2665 | Fortran::lower::associateMutableBox(converter, loc, pointer, *expr, |
2666 | /*lbounds=*/std::nullopt, |
2667 | stmtCtx); |
2668 | caller.placeInput(arg, irBox); |
2669 | continue; |
2670 | } |
2671 | // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE. |
2672 | fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); |
2673 | if (fir::isAllocatableType(argTy) && arg.isIntentOut() && |
2674 | Fortran::semantics::IsBindCProcedure(*procRef.proc().GetSymbol())) |
2675 | Fortran::lower::genDeallocateIfAllocated(converter, mutableBox, loc); |
2676 | mlir::Value irBox = |
2677 | fir::factory::getMutableIRBox(builder, loc, mutableBox); |
2678 | caller.placeInput(arg, irBox); |
2679 | if (arg.mayBeModifiedByCall()) |
2680 | mutableModifiedByCall.emplace_back(std::move(mutableBox)); |
2681 | continue; |
2682 | } |
2683 | if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar || |
2684 | arg.passBy == PassBy::BaseAddressValueAttribute || |
2685 | arg.passBy == PassBy::CharBoxValueAttribute) { |
2686 | const bool byValue = arg.passBy == PassBy::BaseAddressValueAttribute || |
2687 | arg.passBy == PassBy::CharBoxValueAttribute; |
2688 | ExtValue argAddr = |
2689 | prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue) |
2690 | .first; |
2691 | if (arg.passBy == PassBy::BaseAddress || |
2692 | arg.passBy == PassBy::BaseAddressValueAttribute) { |
2693 | caller.placeInput(arg, fir::getBase(argAddr)); |
2694 | } else { |
2695 | assert(arg.passBy == PassBy::BoxChar || |
2696 | arg.passBy == PassBy::CharBoxValueAttribute); |
2697 | auto helper = fir::factory::CharacterExprHelper{builder, loc}; |
2698 | auto boxChar = argAddr.match( |
2699 | [&](const fir::CharBoxValue &x) -> mlir::Value { |
2700 | // If a character procedure was passed instead, handle the |
2701 | // mismatch. |
2702 | auto funcTy = |
2703 | mlir::dyn_cast<mlir::FunctionType>(x.getAddr().getType()); |
2704 | if (funcTy && funcTy.getNumResults() == 1 && |
2705 | mlir::isa<fir::BoxCharType>(funcTy.getResult(0))) { |
2706 | auto boxTy = |
2707 | mlir::cast<fir::BoxCharType>(funcTy.getResult(0)); |
2708 | mlir::Value ref = builder.createConvertWithVolatileCast( |
2709 | loc, builder.getRefType(boxTy.getEleTy()), x.getAddr()); |
2710 | auto len = builder.create<fir::UndefOp>( |
2711 | loc, builder.getCharacterLengthType()); |
2712 | return builder.create<fir::EmboxCharOp>(loc, boxTy, ref, len); |
2713 | } |
2714 | return helper.createEmbox(x); |
2715 | }, |
2716 | [&](const fir::CharArrayBoxValue &x) { |
2717 | return helper.createEmbox(x); |
2718 | }, |
2719 | [&](const auto &x) -> mlir::Value { |
2720 | // Fortran allows an actual argument of a completely different |
2721 | // type to be passed to a procedure expecting a CHARACTER in the |
2722 | // dummy argument position. When this happens, the data pointer |
2723 | // argument is simply assumed to point to CHARACTER data and the |
2724 | // LEN argument used is garbage. Simulate this behavior by |
2725 | // free-casting the base address to be a !fir.char reference and |
2726 | // setting the LEN argument to undefined. What could go wrong? |
2727 | auto dataPtr = fir::getBase(x); |
2728 | assert(!mlir::isa<fir::BoxType>(dataPtr.getType())); |
2729 | return builder.convertWithSemantics( |
2730 | loc, argTy, dataPtr, |
2731 | /*allowCharacterConversion=*/true); |
2732 | }); |
2733 | caller.placeInput(arg, boxChar); |
2734 | } |
2735 | } else if (arg.passBy == PassBy::Box) { |
2736 | if (arg.mustBeMadeContiguous() && |
2737 | !Fortran::evaluate::IsSimplyContiguous( |
2738 | *expr, converter.getFoldingContext())) { |
2739 | // If the expression is a PDT, or a polymorphic entity, or an assumed |
2740 | // rank, it cannot currently be safely handled by |
2741 | // prepareActualToBaseAddressLike that is intended to prepare |
2742 | // arguments that can be passed as simple base address. |
2743 | if (auto dynamicType = expr->GetType()) |
2744 | if (dynamicType->IsPolymorphic()) |
2745 | TODO(loc, "passing a polymorphic entity to an OPTIONAL " |
2746 | "CONTIGUOUS argument"); |
2747 | if (fir::isRecordWithTypeParameters( |
2748 | fir::unwrapSequenceType(fir::unwrapPassByRefType(argTy)))) |
2749 | TODO(loc, "passing to an OPTIONAL CONTIGUOUS derived type argument " |
2750 | "with length parameters"); |
2751 | if (Fortran::evaluate::IsAssumedRank(*expr)) |
2752 | TODO(loc, "passing an assumed rank entity to an OPTIONAL " |
2753 | "CONTIGUOUS argument"); |
2754 | // Assumed shape VALUE are currently TODO in the call interface |
2755 | // lowering. |
2756 | const bool byValue = false; |
2757 | auto [argAddr, isPresentValue] = |
2758 | prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue); |
2759 | mlir::Value box = builder.createBox(loc, argAddr); |
2760 | if (isPresentValue) { |
2761 | mlir::Value convertedBox = builder.createConvert(loc, argTy, box); |
2762 | auto absent = builder.create<fir::AbsentOp>(loc, argTy); |
2763 | caller.placeInput(arg, |
2764 | builder.create<mlir::arith::SelectOp>( |
2765 | loc, *isPresentValue, convertedBox, absent)); |
2766 | } else { |
2767 | caller.placeInput(arg, builder.createBox(loc, argAddr)); |
2768 | } |
2769 | |
2770 | } else if (arg.isOptional() && |
2771 | Fortran::evaluate::IsAllocatableOrPointerObject(*expr)) { |
2772 | // Before lowering to an address, handle the allocatable/pointer |
2773 | // actual argument to optional fir.box dummy. It is legal to pass |
2774 | // unallocated/disassociated entity to an optional. In this case, an |
2775 | // absent fir.box must be created instead of a fir.box with a null |
2776 | // value (Fortran 2018 15.5.2.12 point 1). |
2777 | // |
2778 | // Note that passing an absent allocatable to a non-allocatable |
2779 | // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So |
2780 | // nothing has to be done to generate an absent argument in this case, |
2781 | // and it is OK to unconditionally read the mutable box here. |
2782 | fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); |
2783 | mlir::Value isAllocated = |
2784 | fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, |
2785 | mutableBox); |
2786 | auto absent = builder.create<fir::AbsentOp>(loc, argTy); |
2787 | /// For now, assume it is not OK to pass the allocatable/pointer |
2788 | /// descriptor to a non pointer/allocatable dummy. That is a strict |
2789 | /// interpretation of 18.3.6 point 4 that stipulates the descriptor |
2790 | /// has the dummy attributes in BIND(C) contexts. |
2791 | mlir::Value box = builder.createBox( |
2792 | loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox)); |
2793 | |
2794 | // NULL() passed as argument is passed as a !fir.box<none>. Since |
2795 | // select op requires the same type for its two argument, convert |
2796 | // !fir.box<none> to !fir.class<none> when the argument is |
2797 | // polymorphic. |
2798 | if (fir::isBoxNone(box.getType()) && fir::isPolymorphicType(argTy)) { |
2799 | box = builder.createConvert( |
2800 | loc, |
2801 | fir::ClassType::get(mlir::NoneType::get(builder.getContext())), |
2802 | box); |
2803 | } else if (mlir::isa<fir::BoxType>(box.getType()) && |
2804 | fir::isPolymorphicType(argTy)) { |
2805 | box = builder.create<fir::ReboxOp>(loc, argTy, box, mlir::Value{}, |
2806 | /*slice=*/mlir::Value{}); |
2807 | } |
2808 | |
2809 | // Need the box types to be exactly similar for the selectOp. |
2810 | mlir::Value convertedBox = builder.createConvert(loc, argTy, box); |
2811 | caller.placeInput(arg, builder.create<mlir::arith::SelectOp>( |
2812 | loc, isAllocated, convertedBox, absent)); |
2813 | } else { |
2814 | auto dynamicType = expr->GetType(); |
2815 | mlir::Value box; |
2816 | |
2817 | // Special case when an intrinsic scalar variable is passed to a |
2818 | // function expecting an optional unlimited polymorphic dummy |
2819 | // argument. |
2820 | // The presence test needs to be performed before emboxing otherwise |
2821 | // the program will crash. |
2822 | if (dynamicType->category() != |
2823 | Fortran::common::TypeCategory::Derived && |
2824 | expr->Rank() == 0 && fir::isUnlimitedPolymorphicType(argTy) && |
2825 | arg.isOptional()) { |
2826 | ExtValue opt = lowerIntrinsicArgumentAsInquired(*expr); |
2827 | mlir::Value isPresent = genActualIsPresentTest(builder, loc, opt); |
2828 | box = |
2829 | builder |
2830 | .genIfOp(loc, {argTy}, isPresent, /*withElseRegion=*/true) |
2831 | .genThen([&]() { |
2832 | auto boxed = builder.createBox( |
2833 | loc, genBoxArg(*expr), fir::isPolymorphicType(argTy)); |
2834 | builder.create<fir::ResultOp>(loc, boxed); |
2835 | }) |
2836 | .genElse([&]() { |
2837 | auto absent = |
2838 | builder.create<fir::AbsentOp>(loc, argTy).getResult(); |
2839 | builder.create<fir::ResultOp>(loc, absent); |
2840 | }) |
2841 | .getResults()[0]; |
2842 | } else { |
2843 | // Make sure a variable address is only passed if the expression is |
2844 | // actually a variable. |
2845 | box = Fortran::evaluate::IsVariable(*expr) |
2846 | ? builder.createBox(loc, genBoxArg(*expr), |
2847 | fir::isPolymorphicType(argTy), |
2848 | fir::isAssumedType(argTy)) |
2849 | : builder.createBox(getLoc(), genTempExtAddr(*expr), |
2850 | fir::isPolymorphicType(argTy), |
2851 | fir::isAssumedType(argTy)); |
2852 | if (mlir::isa<fir::BoxType>(box.getType()) && |
2853 | fir::isPolymorphicType(argTy) && !fir::isAssumedType(argTy)) { |
2854 | mlir::Type actualTy = argTy; |
2855 | if (Fortran::lower::isParentComponent(*expr)) |
2856 | actualTy = fir::BoxType::get(converter.genType(*expr)); |
2857 | // Rebox can only be performed on a present argument. |
2858 | if (arg.isOptional()) { |
2859 | mlir::Value isPresent = |
2860 | genActualIsPresentTest(builder, loc, box); |
2861 | box = builder |
2862 | .genIfOp(loc, {actualTy}, isPresent, |
2863 | /*withElseRegion=*/true) |
2864 | .genThen([&]() { |
2865 | auto rebox = |
2866 | builder |
2867 | .create<fir::ReboxOp>( |
2868 | loc, actualTy, box, mlir::Value{}, |
2869 | /*slice=*/mlir::Value{}) |
2870 | .getResult(); |
2871 | builder.create<fir::ResultOp>(loc, rebox); |
2872 | }) |
2873 | .genElse([&]() { |
2874 | auto absent = |
2875 | builder.create<fir::AbsentOp>(loc, actualTy) |
2876 | .getResult(); |
2877 | builder.create<fir::ResultOp>(loc, absent); |
2878 | }) |
2879 | .getResults()[0]; |
2880 | } else { |
2881 | box = builder.create<fir::ReboxOp>(loc, actualTy, box, |
2882 | mlir::Value{}, |
2883 | /*slice=*/mlir::Value{}); |
2884 | } |
2885 | } else if (Fortran::lower::isParentComponent(*expr)) { |
2886 | fir::ExtendedValue newExv = |
2887 | Fortran::lower::updateBoxForParentComponent(converter, box, |
2888 | *expr); |
2889 | box = fir::getBase(newExv); |
2890 | } |
2891 | } |
2892 | caller.placeInput(arg, box); |
2893 | } |
2894 | } else if (arg.passBy == PassBy::AddressAndLength) { |
2895 | ExtValue argRef = genExtAddr(*expr); |
2896 | caller.placeAddressAndLengthInput(arg, fir::getBase(argRef), |
2897 | fir::getLen(argRef)); |
2898 | } else if (arg.passBy == PassBy::CharProcTuple) { |
2899 | ExtValue argRef = genExtAddr(*expr); |
2900 | mlir::Value tuple = createBoxProcCharTuple( |
2901 | converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); |
2902 | caller.placeInput(arg, tuple); |
2903 | } else { |
2904 | TODO(loc, "pass by value in non elemental function call"); |
2905 | } |
2906 | } |
2907 | |
2908 | auto loweredResult = |
2909 | Fortran::lower::genCallOpAndResult(loc, converter, symMap, stmtCtx, |
2910 | caller, callSiteType, resultType) |
2911 | .first; |
2912 | auto &result = std::get<ExtValue>(loweredResult); |
2913 | |
2914 | // Sync pointers and allocatables that may have been modified during the |
2915 | // call. |
2916 | for (const auto &mutableBox : mutableModifiedByCall) |
2917 | fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox); |
2918 | // Handle case where result was passed as argument |
2919 | |
2920 | // Copy-out temps that were created for non contiguous variable arguments if |
2921 | // needed. |
2922 | for (const auto ©OutPair : copyOutPairs) |
2923 | genCopyOut(copyOutPair); |
2924 | |
2925 | return result; |
2926 | } |
2927 | |
2928 | template <typename A> |
2929 | ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) { |
2930 | ExtValue result = genFunctionRef(funcRef); |
2931 | if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType())) |
2932 | return genLoad(result); |
2933 | return result; |
2934 | } |
2935 | |
2936 | ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) { |
2937 | std::optional<mlir::Type> resTy; |
2938 | if (procRef.hasAlternateReturns()) |
2939 | resTy = builder.getIndexType(); |
2940 | return genProcedureRef(procRef, resTy); |
2941 | } |
2942 | |
2943 | template <typename A> |
2944 | bool isScalar(const A &x) { |
2945 | return x.Rank() == 0; |
2946 | } |
2947 | |
2948 | /// Helper to detect Transformational function reference. |
2949 | template <typename T> |
2950 | bool isTransformationalRef(const T &) { |
2951 | return false; |
2952 | } |
2953 | template <typename T> |
2954 | bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) { |
2955 | return !funcRef.IsElemental() && funcRef.Rank(); |
2956 | } |
2957 | template <typename T> |
2958 | bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) { |
2959 | return Fortran::common::visit( |
2960 | [&](const auto &e) { return isTransformationalRef(e); }, expr.u); |
2961 | } |
2962 | |
2963 | template <typename A> |
2964 | ExtValue asArray(const A &x) { |
2965 | return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x), |
2966 | symMap, stmtCtx); |
2967 | } |
2968 | |
2969 | /// Lower an array value as an argument. This argument can be passed as a box |
2970 | /// value, so it may be possible to avoid making a temporary. |
2971 | template <typename A> |
2972 | ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) { |
2973 | return Fortran::common::visit( |
2974 | [&](const auto &e) { return asArrayArg(e, x); }, x.u); |
2975 | } |
2976 | template <typename A, typename B> |
2977 | ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) { |
2978 | return Fortran::common::visit( |
2979 | [&](const auto &e) { return asArrayArg(e, y); }, x.u); |
2980 | } |
2981 | template <typename A, typename B> |
2982 | ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) { |
2983 | // Designator is being passed as an argument to a procedure. Lower the |
2984 | // expression to a boxed value. |
2985 | auto someExpr = toEvExpr(x); |
2986 | return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap, |
2987 | stmtCtx); |
2988 | } |
2989 | template <typename A, typename B> |
2990 | ExtValue asArrayArg(const A &, const B &x) { |
2991 | // If the expression to pass as an argument is not a designator, then create |
2992 | // an array temp. |
2993 | return asArray(x); |
2994 | } |
2995 | |
2996 | template <typename A> |
2997 | mlir::Value getIfOverridenExpr(const Fortran::evaluate::Expr<A> &x) { |
2998 | if (const Fortran::lower::ExprToValueMap *map = |
2999 | converter.getExprOverrides()) { |
3000 | Fortran::lower::SomeExpr someExpr = toEvExpr(x); |
3001 | if (auto match = map->find(&someExpr); match != map->end()) |
3002 | return match->second; |
3003 | } |
3004 | return mlir::Value{}; |
3005 | } |
3006 | |
3007 | template <typename A> |
3008 | ExtValue gen(const Fortran::evaluate::Expr<A> &x) { |
3009 | if (mlir::Value val = getIfOverridenExpr(x)) |
3010 | return val; |
3011 | // Whole array symbols or components, and results of transformational |
3012 | // functions already have a storage and the scalar expression lowering path |
3013 | // is used to not create a new temporary storage. |
3014 | if (isScalar(x) || |
3015 | Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) || |
3016 | (isTransformationalRef(x) && !isOptimizableTranspose(x, converter))) |
3017 | return Fortran::common::visit([&](const auto &e) { return genref(e); }, |
3018 | x.u); |
3019 | if (useBoxArg) |
3020 | return asArrayArg(x); |
3021 | return asArray(x); |
3022 | } |
3023 | template <typename A> |
3024 | ExtValue genval(const Fortran::evaluate::Expr<A> &x) { |
3025 | if (mlir::Value val = getIfOverridenExpr(x)) |
3026 | return val; |
3027 | if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) || |
3028 | inInitializer) |
3029 | return Fortran::common::visit([&](const auto &e) { return genval(e); }, |
3030 | x.u); |
3031 | return asArray(x); |
3032 | } |
3033 | |
3034 | template <int KIND> |
3035 | ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type< |
3036 | Fortran::common::TypeCategory::Logical, KIND>> &exp) { |
3037 | if (mlir::Value val = getIfOverridenExpr(exp)) |
3038 | return val; |
3039 | return Fortran::common::visit([&](const auto &e) { return genval(e); }, |
3040 | exp.u); |
3041 | } |
3042 | |
3043 | using RefSet = |
3044 | std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring, |
3045 | Fortran::evaluate::DataRef, Fortran::evaluate::Component, |
3046 | Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef, |
3047 | Fortran::semantics::SymbolRef>; |
3048 | template <typename A> |
3049 | static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>; |
3050 | |
3051 | template <typename A, typename = std::enable_if_t<inRefSet<A>>> |
3052 | ExtValue genref(const A &a) { |
3053 | return gen(a); |
3054 | } |
3055 | template <typename A> |
3056 | ExtValue genref(const A &a) { |
3057 | if (inInitializer) { |
3058 | // Initialization expressions can never allocate memory. |
3059 | return genval(a); |
3060 | } |
3061 | mlir::Type storageType = converter.genType(toEvExpr(a)); |
3062 | return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType); |
3063 | } |
3064 | |
3065 | template <typename A, template <typename> typename T, |
3066 | typename B = std::decay_t<T<A>>, |
3067 | std::enable_if_t< |
3068 | std::is_same_v<B, Fortran::evaluate::Expr<A>> || |
3069 | std::is_same_v<B, Fortran::evaluate::Designator<A>> || |
3070 | std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>, |
3071 | bool> = true> |
3072 | ExtValue genref(const T<A> &x) { |
3073 | return gen(x); |
3074 | } |
3075 | |
3076 | private: |
3077 | mlir::Location location; |
3078 | Fortran::lower::AbstractConverter &converter; |
3079 | fir::FirOpBuilder &builder; |
3080 | Fortran::lower::StatementContext &stmtCtx; |
3081 | Fortran::lower::SymMap &symMap; |
3082 | bool inInitializer = false; |
3083 | bool useBoxArg = false; // expression lowered as argument |
3084 | }; |
3085 | } // namespace |
3086 | |
3087 | #define CONCAT(x, y) CONCAT2(x, y) |
3088 | #define CONCAT2(x, y) x##y |
3089 | |
3090 | // Helper for changing the semantics in a given context. Preserves the current |
3091 | // semantics which is resumed when the "push" goes out of scope. |
3092 | #define PushSemantics(PushVal) \ |
3093 | [[maybe_unused]] auto CONCAT(pushSemanticsLocalVariable, __LINE__) = \ |
3094 | Fortran::common::ScopedSet(semant, PushVal); |
3095 | |
3096 | static bool isAdjustedArrayElementType(mlir::Type t) { |
3097 | return fir::isa_char(t) || fir::isa_derived(t) || |
3098 | mlir::isa<fir::SequenceType>(t); |
3099 | } |
3100 | static bool elementTypeWasAdjusted(mlir::Type t) { |
3101 | if (auto ty = mlir::dyn_cast<fir::ReferenceType>(t)) |
3102 | return isAdjustedArrayElementType(ty.getEleTy()); |
3103 | return false; |
3104 | } |
3105 | static mlir::Type adjustedArrayElementType(mlir::Type t) { |
3106 | return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t; |
3107 | } |
3108 | |
3109 | /// Helper to generate calls to scalar user defined assignment procedures. |
3110 | static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder, |
3111 | mlir::Location loc, |
3112 | mlir::func::FuncOp func, |
3113 | const fir::ExtendedValue &lhs, |
3114 | const fir::ExtendedValue &rhs) { |
3115 | auto prepareUserDefinedArg = |
3116 | [](fir::FirOpBuilder &builder, mlir::Location loc, |
3117 | const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value { |
3118 | if (mlir::isa<fir::BoxCharType>(argType)) { |
3119 | const fir::CharBoxValue *charBox = value.getCharBox(); |
3120 | assert(charBox && "argument type mismatch in elemental user assignment"); |
3121 | return fir::factory::CharacterExprHelper{builder, loc}.createEmbox( |
3122 | *charBox); |
3123 | } |
3124 | if (mlir::isa<fir::BaseBoxType>(argType)) { |
3125 | mlir::Value box = |
3126 | builder.createBox(loc, value, mlir::isa<fir::ClassType>(argType)); |
3127 | return builder.createConvert(loc, argType, box); |
3128 | } |
3129 | // Simple pass by address. |
3130 | mlir::Type argBaseType = fir::unwrapRefType(argType); |
3131 | assert(!fir::hasDynamicSize(argBaseType)); |
3132 | mlir::Value from = fir::getBase(value); |
3133 | if (argBaseType != fir::unwrapRefType(from.getType())) { |
3134 | // With logicals, it is possible that from is i1 here. |
3135 | if (fir::isa_ref_type(from.getType())) |
3136 | from = builder.create<fir::LoadOp>(loc, from); |
3137 | from = builder.createConvert(loc, argBaseType, from); |
3138 | } |
3139 | if (!fir::isa_ref_type(from.getType())) { |
3140 | mlir::Value temp = builder.createTemporary(loc, argBaseType); |
3141 | builder.create<fir::StoreOp>(loc, from, temp); |
3142 | from = temp; |
3143 | } |
3144 | return builder.createConvert(loc, argType, from); |
3145 | }; |
3146 | assert(func.getNumArguments() == 2); |
3147 | mlir::Type lhsType = func.getFunctionType().getInput(0); |
3148 | mlir::Type rhsType = func.getFunctionType().getInput(1); |
3149 | mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType); |
3150 | mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType); |
3151 | builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg}); |
3152 | } |
3153 | |
3154 | /// Convert the result of a fir.array_modify to an ExtendedValue given the |
3155 | /// related fir.array_load. |
3156 | static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder, |
3157 | mlir::Location loc, |
3158 | fir::ArrayLoadOp load, |
3159 | mlir::Value elementAddr) { |
3160 | mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType()); |
3161 | if (fir::isa_char(eleTy)) { |
3162 | auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength( |
3163 | load.getMemref()); |
3164 | if (!len) { |
3165 | assert(load.getTypeparams().size() == 1 && |
3166 | "length must be in array_load"); |
3167 | len = load.getTypeparams()[0]; |
3168 | } |
3169 | return fir::CharBoxValue{elementAddr, len}; |
3170 | } |
3171 | return elementAddr; |
3172 | } |
3173 | |
3174 | //===----------------------------------------------------------------------===// |
3175 | // |
3176 | // Lowering of scalar expressions in an explicit iteration space context. |
3177 | // |
3178 | //===----------------------------------------------------------------------===// |
3179 | |
3180 | // Shared code for creating a copy of a derived type element. This function is |
3181 | // called from a continuation. |
3182 | inline static fir::ArrayAmendOp |
3183 | createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad, |
3184 | fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc, |
3185 | const fir::ExtendedValue &elementExv, mlir::Type eleTy, |
3186 | mlir::Value innerArg) { |
3187 | if (destLoad.getTypeparams().empty()) { |
3188 | fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv); |
3189 | } else { |
3190 | auto boxTy = fir::BoxType::get(eleTy); |
3191 | auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(), |
3192 | mlir::Value{}, mlir::Value{}, |
3193 | destLoad.getTypeparams()); |
3194 | auto fromBox = builder.create<fir::EmboxOp>( |
3195 | loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{}, |
3196 | destLoad.getTypeparams()); |
3197 | fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox), |
3198 | fir::BoxValue(fromBox)); |
3199 | } |
3200 | return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg, |
3201 | destAcc); |
3202 | } |
3203 | |
3204 | inline static fir::ArrayAmendOp |
3205 | createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder, |
3206 | fir::ArrayAccessOp dstOp, mlir::Value &dstLen, |
3207 | const fir::ExtendedValue &srcExv, mlir::Value innerArg, |
3208 | llvm::ArrayRef<mlir::Value> bounds) { |
3209 | fir::CharBoxValue dstChar(dstOp, dstLen); |
3210 | fir::factory::CharacterExprHelper helper{builder, loc}; |
3211 | if (!bounds.empty()) { |
3212 | dstChar = helper.createSubstring(dstChar, bounds); |
3213 | fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv), |
3214 | dstChar.getAddr(), dstChar.getLen(), builder, |
3215 | loc); |
3216 | // Update the LEN to the substring's LEN. |
3217 | dstLen = dstChar.getLen(); |
3218 | } |
3219 | // For a CHARACTER, we generate the element assignment loops inline. |
3220 | helper.createAssign(fir::ExtendedValue{dstChar}, srcExv); |
3221 | // Mark this array element as amended. |
3222 | mlir::Type ty = innerArg.getType(); |
3223 | auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp); |
3224 | return amend; |
3225 | } |
3226 | |
3227 | /// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting |
3228 | /// the actual extents and lengths. This is only to allow their propagation as |
3229 | /// ExtendedValue without triggering verifier failures when propagating |
3230 | /// character/arrays as unboxed values. Only the base of the resulting |
3231 | /// ExtendedValue should be used, it is undefined to use the length or extents |
3232 | /// of the extended value returned, |
3233 | inline static fir::ExtendedValue |
3234 | convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder, |
3235 | mlir::Value val, mlir::Value len) { |
3236 | mlir::Type ty = fir::unwrapRefType(val.getType()); |
3237 | mlir::IndexType idxTy = builder.getIndexType(); |
3238 | auto seqTy = mlir::cast<fir::SequenceType>(ty); |
3239 | auto undef = builder.create<fir::UndefOp>(loc, idxTy); |
3240 | llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef); |
3241 | if (fir::isa_char(seqTy.getEleTy())) |
3242 | return fir::CharArrayBoxValue(val, len ? len : undef, extents); |
3243 | return fir::ArrayBoxValue(val, extents); |
3244 | } |
3245 | |
3246 | //===----------------------------------------------------------------------===// |
3247 | // |
3248 | // Lowering of array expressions. |
3249 | // |
3250 | //===----------------------------------------------------------------------===// |
3251 | |
3252 | namespace { |
3253 | class ArrayExprLowering { |
3254 | using ExtValue = fir::ExtendedValue; |
3255 | |
3256 | /// Structure to keep track of lowered array operands in the |
3257 | /// array expression. Useful to later deduce the shape of the |
3258 | /// array expression. |
3259 | struct ArrayOperand { |
3260 | /// Array base (can be a fir.box). |
3261 | mlir::Value memref; |
3262 | /// ShapeOp, ShapeShiftOp or ShiftOp |
3263 | mlir::Value shape; |
3264 | /// SliceOp |
3265 | mlir::Value slice; |
3266 | /// Can this operand be absent ? |
3267 | bool mayBeAbsent = false; |
3268 | }; |
3269 | |
3270 | using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts; |
3271 | using PathComponent = Fortran::lower::PathComponent; |
3272 | |
3273 | /// Active iteration space. |
3274 | using IterationSpace = Fortran::lower::IterationSpace; |
3275 | using IterSpace = const Fortran::lower::IterationSpace &; |
3276 | |
3277 | /// Current continuation. Function that will generate IR for a single |
3278 | /// iteration of the pending iterative loop structure. |
3279 | using CC = Fortran::lower::GenerateElementalArrayFunc; |
3280 | |
3281 | /// Projection continuation. Function that will project one iteration space |
3282 | /// into another. |
3283 | using PC = std::function<IterationSpace(IterSpace)>; |
3284 | using ArrayBaseTy = |
3285 | std::variant<std::monostate, const Fortran::evaluate::ArrayRef *, |
3286 | const Fortran::evaluate::DataRef *>; |
3287 | using ComponentPath = Fortran::lower::ComponentPath; |
3288 | |
3289 | public: |
3290 | //===--------------------------------------------------------------------===// |
3291 | // Regular array assignment |
3292 | //===--------------------------------------------------------------------===// |
3293 | |
3294 | /// Entry point for array assignments. Both the left-hand and right-hand sides |
3295 | /// can either be ExtendedValue or evaluate::Expr. |
3296 | template <typename TL, typename TR> |
3297 | static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter, |
3298 | Fortran::lower::SymMap &symMap, |
3299 | Fortran::lower::StatementContext &stmtCtx, |
3300 | const TL &lhs, const TR &rhs) { |
3301 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
3302 | ConstituentSemantics::CopyInCopyOut); |
3303 | ael.lowerArrayAssignment(lhs, rhs); |
3304 | } |
3305 | |
3306 | template <typename TL, typename TR> |
3307 | void lowerArrayAssignment(const TL &lhs, const TR &rhs) { |
3308 | mlir::Location loc = getLoc(); |
3309 | /// Here the target subspace is not necessarily contiguous. The ArrayUpdate |
3310 | /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad |
3311 | /// in `destination`. |
3312 | PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); |
3313 | ccStoreToDest = genarr(lhs); |
3314 | determineShapeOfDest(lhs); |
3315 | semant = ConstituentSemantics::RefTransparent; |
3316 | ExtValue exv = lowerArrayExpression(rhs); |
3317 | if (explicitSpaceIsActive()) { |
3318 | explicitSpace->finalizeContext(); |
3319 | builder.create<fir::ResultOp>(loc, fir::getBase(exv)); |
3320 | } else { |
3321 | builder.create<fir::ArrayMergeStoreOp>( |
3322 | loc, destination, fir::getBase(exv), destination.getMemref(), |
3323 | destination.getSlice(), destination.getTypeparams()); |
3324 | } |
3325 | } |
3326 | |
3327 | //===--------------------------------------------------------------------===// |
3328 | // WHERE array assignment, FORALL assignment, and FORALL+WHERE array |
3329 | // assignment |
3330 | //===--------------------------------------------------------------------===// |
3331 | |
3332 | /// Entry point for array assignment when the iteration space is explicitly |
3333 | /// defined (Fortran's FORALL) with or without masks, and/or the implied |
3334 | /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit |
3335 | /// space and implicit space with masks) may be present. |
3336 | static void lowerAnyMaskedArrayAssignment( |
3337 | Fortran::lower::AbstractConverter &converter, |
3338 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
3339 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
3340 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
3341 | Fortran::lower::ImplicitIterSpace &implicitSpace) { |
3342 | if (explicitSpace.isActive() && lhs.Rank() == 0) { |
3343 | // Scalar assignment expression in a FORALL context. |
3344 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
3345 | ConstituentSemantics::RefTransparent, |
3346 | &explicitSpace, &implicitSpace); |
3347 | ael.lowerScalarAssignment(lhs, rhs); |
3348 | return; |
3349 | } |
3350 | // Array assignment expression in a FORALL and/or WHERE context. |
3351 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
3352 | ConstituentSemantics::CopyInCopyOut, &explicitSpace, |
3353 | &implicitSpace); |
3354 | ael.lowerArrayAssignment(lhs, rhs); |
3355 | } |
3356 | |
3357 | //===--------------------------------------------------------------------===// |
3358 | // Array assignment to array of pointer box values. |
3359 | //===--------------------------------------------------------------------===// |
3360 | |
3361 | /// Entry point for assignment to pointer in an array of pointers. |
3362 | static void lowerArrayOfPointerAssignment( |
3363 | Fortran::lower::AbstractConverter &converter, |
3364 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
3365 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
3366 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
3367 | Fortran::lower::ImplicitIterSpace &implicitSpace, |
3368 | const llvm::SmallVector<mlir::Value> &lbounds, |
3369 | std::optional<llvm::SmallVector<mlir::Value>> ubounds) { |
3370 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
3371 | ConstituentSemantics::CopyInCopyOut, &explicitSpace, |
3372 | &implicitSpace); |
3373 | ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds); |
3374 | } |
3375 | |
3376 | /// Scalar pointer assignment in an explicit iteration space. |
3377 | /// |
3378 | /// Pointers may be bound to targets in a FORALL context. This is a scalar |
3379 | /// assignment in the sense there is never an implied iteration space, even if |
3380 | /// the pointer is to a target with non-zero rank. Since the pointer |
3381 | /// assignment must appear in a FORALL construct, correctness may require that |
3382 | /// the array of pointers follow copy-in/copy-out semantics. The pointer |
3383 | /// assignment may include a bounds-spec (lower bounds), a bounds-remapping |
3384 | /// (lower and upper bounds), or neither. |
3385 | void lowerArrayOfPointerAssignment( |
3386 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
3387 | const llvm::SmallVector<mlir::Value> &lbounds, |
3388 | std::optional<llvm::SmallVector<mlir::Value>> ubounds) { |
3389 | setPointerAssignmentBounds(lbounds, ubounds); |
3390 | if (rhs.Rank() == 0 || |
3391 | (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) && |
3392 | Fortran::evaluate::IsAllocatableOrPointerObject(rhs))) { |
3393 | lowerScalarAssignment(lhs, rhs); |
3394 | return; |
3395 | } |
3396 | TODO(getLoc(), |
3397 | "auto boxing of a ranked expression on RHS for pointer assignment"); |
3398 | } |
3399 | |
3400 | //===--------------------------------------------------------------------===// |
3401 | // Array assignment to allocatable array |
3402 | //===--------------------------------------------------------------------===// |
3403 | |
3404 | /// Entry point for assignment to allocatable array. |
3405 | static void lowerAllocatableArrayAssignment( |
3406 | Fortran::lower::AbstractConverter &converter, |
3407 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
3408 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
3409 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
3410 | Fortran::lower::ImplicitIterSpace &implicitSpace) { |
3411 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
3412 | ConstituentSemantics::CopyInCopyOut, &explicitSpace, |
3413 | &implicitSpace); |
3414 | ael.lowerAllocatableArrayAssignment(lhs, rhs); |
3415 | } |
3416 | |
3417 | /// Lower an assignment to allocatable array, where the LHS array |
3418 | /// is represented with \p lhs extended value produced in different |
3419 | /// branches created in genReallocIfNeeded(). The RHS lowering |
3420 | /// is provided via \p rhsCC continuation. |
3421 | void lowerAllocatableArrayAssignment(ExtValue lhs, CC rhsCC) { |
3422 | mlir::Location loc = getLoc(); |
3423 | // Check if the initial destShape is null, which means |
3424 | // it has not been computed from rhs (e.g. rhs is scalar). |
3425 | bool destShapeIsEmpty = destShape.empty(); |
3426 | // Create ArrayLoad for the mutable box and save it into `destination`. |
3427 | PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); |
3428 | ccStoreToDest = genarr(lhs); |
3429 | // destShape is either non-null on entry to this function, |
3430 | // or has been just set by lhs lowering. |
3431 | assert(!destShape.empty() && "destShape must have been set."); |
3432 | // Finish lowering the loop nest. |
3433 | assert(destination && "destination must have been set"); |
3434 | ExtValue exv = lowerArrayExpression(rhsCC, destination.getType()); |
3435 | if (!explicitSpaceIsActive()) |
3436 | builder.create<fir::ArrayMergeStoreOp>( |
3437 | loc, destination, fir::getBase(exv), destination.getMemref(), |
3438 | destination.getSlice(), destination.getTypeparams()); |
3439 | // destShape may originally be null, if rhs did not define a shape. |
3440 | // In this case the destShape is computed from lhs, and we may have |
3441 | // multiple different lhs values for different branches created |
3442 | // in genReallocIfNeeded(). We cannot reuse destShape computed |
3443 | // in different branches, so we have to reset it, |
3444 | // so that it is recomputed for the next branch FIR generation. |
3445 | if (destShapeIsEmpty) |
3446 | destShape.clear(); |
3447 | } |
3448 | |
3449 | /// Assignment to allocatable array. |
3450 | /// |
3451 | /// The semantics are reverse that of a "regular" array assignment. The rhs |
3452 | /// defines the iteration space of the computation and the lhs is |
3453 | /// resized/reallocated to fit if necessary. |
3454 | void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs, |
3455 | const Fortran::lower::SomeExpr &rhs) { |
3456 | // With assignment to allocatable, we want to lower the rhs first and use |
3457 | // its shape to determine if we need to reallocate, etc. |
3458 | mlir::Location loc = getLoc(); |
3459 | // FIXME: If the lhs is in an explicit iteration space, the assignment may |
3460 | // be to an array of allocatable arrays rather than a single allocatable |
3461 | // array. |
3462 | if (explicitSpaceIsActive() && lhs.Rank() > 0) |
3463 | TODO(loc, "assignment to whole allocatable array inside FORALL"); |
3464 | |
3465 | fir::MutableBoxValue mutableBox = |
3466 | Fortran::lower::createMutableBox(loc, converter, lhs, symMap); |
3467 | if (rhs.Rank() > 0) |
3468 | determineShapeOfDest(rhs); |
3469 | auto rhsCC = [&]() { |
3470 | PushSemantics(ConstituentSemantics::RefTransparent); |
3471 | return genarr(rhs); |
3472 | }(); |
3473 | |
3474 | llvm::SmallVector<mlir::Value> lengthParams; |
3475 | // Currently no safe way to gather length from rhs (at least for |
3476 | // character, it cannot be taken from array_loads since it may be |
3477 | // changed by concatenations). |
3478 | if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) || |
3479 | mutableBox.isDerivedWithLenParameters()) |
3480 | TODO(loc, "gather rhs LEN parameters in assignment to allocatable"); |
3481 | |
3482 | // The allocatable must take lower bounds from the expr if it is |
3483 | // reallocated and the right hand side is not a scalar. |
3484 | const bool takeLboundsIfRealloc = rhs.Rank() > 0; |
3485 | llvm::SmallVector<mlir::Value> lbounds; |
3486 | // When the reallocated LHS takes its lower bounds from the RHS, |
3487 | // they will be non default only if the RHS is a whole array |
3488 | // variable. Otherwise, lbounds is left empty and default lower bounds |
3489 | // will be used. |
3490 | if (takeLboundsIfRealloc && |
3491 | Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) { |
3492 | assert(arrayOperands.size() == 1 && |
3493 | "lbounds can only come from one array"); |
3494 | auto lbs = fir::factory::getOrigins(arrayOperands[0].shape); |
3495 | lbounds.append(lbs.begin(), lbs.end()); |
3496 | } |
3497 | auto assignToStorage = [&](fir::ExtendedValue newLhs) { |
3498 | // The lambda will be called repeatedly by genReallocIfNeeded(). |
3499 | lowerAllocatableArrayAssignment(newLhs, rhsCC); |
3500 | }; |
3501 | fir::factory::MutableBoxReallocation realloc = |
3502 | fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape, |
3503 | lengthParams, assignToStorage); |
3504 | if (explicitSpaceIsActive()) { |
3505 | explicitSpace->finalizeContext(); |
3506 | builder.create<fir::ResultOp>(loc, fir::getBase(realloc.newValue)); |
3507 | } |
3508 | fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds, |
3509 | takeLboundsIfRealloc, realloc); |
3510 | } |
3511 | |
3512 | /// Entry point for when an array expression appears in a context where the |
3513 | /// result must be boxed. (BoxValue semantics.) |
3514 | static ExtValue |
3515 | lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter, |
3516 | Fortran::lower::SymMap &symMap, |
3517 | Fortran::lower::StatementContext &stmtCtx, |
3518 | const Fortran::lower::SomeExpr &expr) { |
3519 | ArrayExprLowering ael{converter, stmtCtx, symMap, |
3520 | ConstituentSemantics::BoxValue}; |
3521 | return ael.lowerBoxedArrayExpr(expr); |
3522 | } |
3523 | |
3524 | ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) { |
3525 | PushSemantics(ConstituentSemantics::BoxValue); |
3526 | return Fortran::common::visit( |
3527 | [&](const auto &e) { |
3528 | auto f = genarr(e); |
3529 | ExtValue exv = f(IterationSpace{}); |
3530 | if (mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType())) |
3531 | return exv; |
3532 | fir::emitFatalError(getLoc(), "array must be emboxed"); |
3533 | }, |
3534 | exp.u); |
3535 | } |
3536 | |
3537 | /// Entry point into lowering an expression with rank. This entry point is for |
3538 | /// lowering a rhs expression, for example. (RefTransparent semantics.) |
3539 | static ExtValue |
3540 | lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter, |
3541 | Fortran::lower::SymMap &symMap, |
3542 | Fortran::lower::StatementContext &stmtCtx, |
3543 | const Fortran::lower::SomeExpr &expr) { |
3544 | ArrayExprLowering ael{converter, stmtCtx, symMap}; |
3545 | ael.determineShapeOfDest(expr); |
3546 | ExtValue loopRes = ael.lowerArrayExpression(expr); |
3547 | fir::ArrayLoadOp dest = ael.destination; |
3548 | mlir::Value tempRes = dest.getMemref(); |
3549 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
3550 | mlir::Location loc = converter.getCurrentLocation(); |
3551 | builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes), |
3552 | tempRes, dest.getSlice(), |
3553 | dest.getTypeparams()); |
3554 | |
3555 | auto arrTy = mlir::cast<fir::SequenceType>( |
3556 | fir::dyn_cast_ptrEleTy(tempRes.getType())); |
3557 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(arrTy.getEleTy())) { |
3558 | if (fir::characterWithDynamicLen(charTy)) |
3559 | TODO(loc, "CHARACTER does not have constant LEN"); |
3560 | mlir::Value len = builder.createIntegerConstant( |
3561 | loc, builder.getCharacterLengthType(), charTy.getLen()); |
3562 | return fir::CharArrayBoxValue(tempRes, len, dest.getExtents()); |
3563 | } |
3564 | return fir::ArrayBoxValue(tempRes, dest.getExtents()); |
3565 | } |
3566 | |
3567 | static void lowerLazyArrayExpression( |
3568 | Fortran::lower::AbstractConverter &converter, |
3569 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
3570 | const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) { |
3571 | ArrayExprLowering ael(converter, stmtCtx, symMap); |
3572 | ael.lowerLazyArrayExpression(expr, raggedHeader); |
3573 | } |
3574 | |
3575 | /// Lower the expression \p expr into a buffer that is created on demand. The |
3576 | /// variable containing the pointer to the buffer is \p var and the variable |
3577 | /// containing the shape of the buffer is \p shapeBuffer. |
3578 | void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr, |
3579 | mlir::Value header) { |
3580 | mlir::Location loc = getLoc(); |
3581 | mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder); |
3582 | mlir::IntegerType i32Ty = builder.getIntegerType(32); |
3583 | |
3584 | // Once the loop extents have been computed, which may require being inside |
3585 | // some explicit loops, lazily allocate the expression on the heap. The |
3586 | // following continuation creates the buffer as needed. |
3587 | ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) { |
3588 | mlir::IntegerType i64Ty = builder.getIntegerType(64); |
3589 | mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1); |
3590 | fir::runtime::genRaggedArrayAllocate( |
3591 | loc, builder, header, /*asHeaders=*/false, byteSize, shape); |
3592 | }; |
3593 | |
3594 | // Create a dummy array_load before the loop. We're storing to a lazy |
3595 | // temporary, so there will be no conflict and no copy-in. TODO: skip this |
3596 | // as there isn't any necessity for it. |
3597 | ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp { |
3598 | mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); |
3599 | auto var = builder.create<fir::CoordinateOp>( |
3600 | loc, builder.getRefType(hdrTy.getType(1)), header, one); |
3601 | auto load = builder.create<fir::LoadOp>(loc, var); |
3602 | mlir::Type eleTy = |
3603 | fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); |
3604 | auto seqTy = fir::SequenceType::get(eleTy, shape.size()); |
3605 | mlir::Value castTo = |
3606 | builder.createConvert(loc, fir::HeapType::get(seqTy), load); |
3607 | mlir::Value shapeOp = builder.genShape(loc, shape); |
3608 | return builder.create<fir::ArrayLoadOp>( |
3609 | loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, std::nullopt); |
3610 | }; |
3611 | // Custom lowering of the element store to deal with the extra indirection |
3612 | // to the lazy allocated buffer. |
3613 | ccStoreToDest = [=](IterSpace iters) { |
3614 | mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); |
3615 | auto var = builder.create<fir::CoordinateOp>( |
3616 | loc, builder.getRefType(hdrTy.getType(1)), header, one); |
3617 | auto load = builder.create<fir::LoadOp>(loc, var); |
3618 | mlir::Type eleTy = |
3619 | fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); |
3620 | auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size()); |
3621 | auto toTy = fir::HeapType::get(seqTy); |
3622 | mlir::Value castTo = builder.createConvert(loc, toTy, load); |
3623 | mlir::Value shape = builder.genShape(loc, genIterationShape()); |
3624 | llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( |
3625 | loc, builder, castTo.getType(), shape, iters.iterVec()); |
3626 | auto eleAddr = builder.create<fir::ArrayCoorOp>( |
3627 | loc, builder.getRefType(eleTy), castTo, shape, |
3628 | /*slice=*/mlir::Value{}, indices, destination.getTypeparams()); |
3629 | mlir::Value eleVal = |
3630 | builder.createConvert(loc, eleTy, iters.getElement()); |
3631 | builder.create<fir::StoreOp>(loc, eleVal, eleAddr); |
3632 | return iters.innerArgument(); |
3633 | }; |
3634 | |
3635 | // Lower the array expression now. Clean-up any temps that may have |
3636 | // been generated when lowering `expr` right after the lowered value |
3637 | // was stored to the ragged array temporary. The local temps will not |
3638 | // be needed afterwards. |
3639 | stmtCtx.pushScope(); |
3640 | [[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr); |
3641 | stmtCtx.finalizeAndPop(); |
3642 | assert(fir::getBase(loopRes)); |
3643 | } |
3644 | |
3645 | static void |
3646 | lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter, |
3647 | Fortran::lower::SymMap &symMap, |
3648 | Fortran::lower::StatementContext &stmtCtx, |
3649 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
3650 | Fortran::lower::ImplicitIterSpace &implicitSpace, |
3651 | const Fortran::evaluate::ProcedureRef &procRef) { |
3652 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
3653 | ConstituentSemantics::CustomCopyInCopyOut, |
3654 | &explicitSpace, &implicitSpace); |
3655 | assert(procRef.arguments().size() == 2); |
3656 | const auto *lhs = procRef.arguments()[0].value().UnwrapExpr(); |
3657 | const auto *rhs = procRef.arguments()[1].value().UnwrapExpr(); |
3658 | assert(lhs && rhs && |
3659 | "user defined assignment arguments must be expressions"); |
3660 | mlir::func::FuncOp func = |
3661 | Fortran::lower::CallerInterface(procRef, converter).getFuncOp(); |
3662 | ael.lowerElementalUserAssignment(func, *lhs, *rhs); |
3663 | } |
3664 | |
3665 | void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment, |
3666 | const Fortran::lower::SomeExpr &lhs, |
3667 | const Fortran::lower::SomeExpr &rhs) { |
3668 | mlir::Location loc = getLoc(); |
3669 | PushSemantics(ConstituentSemantics::CustomCopyInCopyOut); |
3670 | auto genArrayModify = genarr(lhs); |
3671 | ccStoreToDest = [=](IterSpace iters) -> ExtValue { |
3672 | auto modifiedArray = genArrayModify(iters); |
3673 | auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>( |
3674 | fir::getBase(modifiedArray).getDefiningOp()); |
3675 | assert(arrayModify && "must be created by ArrayModifyOp"); |
3676 | fir::ExtendedValue lhs = |
3677 | arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0)); |
3678 | genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs, |
3679 | iters.elementExv()); |
3680 | return modifiedArray; |
3681 | }; |
3682 | determineShapeOfDest(lhs); |
3683 | semant = ConstituentSemantics::RefTransparent; |
3684 | auto exv = lowerArrayExpression(rhs); |
3685 | if (explicitSpaceIsActive()) { |
3686 | explicitSpace->finalizeContext(); |
3687 | builder.create<fir::ResultOp>(loc, fir::getBase(exv)); |
3688 | } else { |
3689 | builder.create<fir::ArrayMergeStoreOp>( |
3690 | loc, destination, fir::getBase(exv), destination.getMemref(), |
3691 | destination.getSlice(), destination.getTypeparams()); |
3692 | } |
3693 | } |
3694 | |
3695 | /// Lower an elemental subroutine call with at least one array argument. |
3696 | /// An elemental subroutine is an exception and does not have copy-in/copy-out |
3697 | /// semantics. See 15.8.3. |
3698 | /// Do NOT use this for user defined assignments. |
3699 | static void |
3700 | lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter, |
3701 | Fortran::lower::SymMap &symMap, |
3702 | Fortran::lower::StatementContext &stmtCtx, |
3703 | const Fortran::lower::SomeExpr &call) { |
3704 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
3705 | ConstituentSemantics::RefTransparent); |
3706 | ael.lowerElementalSubroutine(call); |
3707 | } |
3708 | |
3709 | static const std::optional<Fortran::evaluate::ActualArgument> |
3710 | extractPassedArgFromProcRef(const Fortran::evaluate::ProcedureRef &procRef, |
3711 | Fortran::lower::AbstractConverter &converter) { |
3712 | // First look for passed object in actual arguments. |
3713 | for (const std::optional<Fortran::evaluate::ActualArgument> &arg : |
3714 | procRef.arguments()) |
3715 | if (arg && arg->isPassedObject()) |
3716 | return arg; |
3717 | |
3718 | // If passed object is not found by here, it means the call was fully |
3719 | // resolved to the correct procedure. Look for the pass object in the |
3720 | // dummy arguments. Pick the first polymorphic one. |
3721 | Fortran::lower::CallerInterface caller(procRef, converter); |
3722 | unsigned idx = 0; |
3723 | for (const auto &arg : caller.characterize().dummyArguments) { |
3724 | if (const auto *dummy = |
3725 | std::get_if<Fortran::evaluate::characteristics::DummyDataObject>( |
3726 | &arg.u)) |
3727 | if (dummy->type.type().IsPolymorphic()) |
3728 | return procRef.arguments()[idx]; |
3729 | ++idx; |
3730 | } |
3731 | return std::nullopt; |
3732 | } |
3733 | |
3734 | // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&). |
3735 | // This is skipping generation of copy-in/copy-out code for analysis that is |
3736 | // required when arguments are in parentheses. |
3737 | void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) { |
3738 | if (const auto *procRef = |
3739 | std::get_if<Fortran::evaluate::ProcedureRef>(&call.u)) |
3740 | setLoweredProcRef(procRef); |
3741 | auto f = genarr(call); |
3742 | llvm::SmallVector<mlir::Value> shape = genIterationShape(); |
3743 | auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{}); |
3744 | f(iterSpace); |
3745 | finalizeElementCtx(); |
3746 | builder.restoreInsertionPoint(insPt); |
3747 | } |
3748 | |
3749 | ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs, |
3750 | const Fortran::lower::SomeExpr &rhs) { |
3751 | PushSemantics(ConstituentSemantics::RefTransparent); |
3752 | // 1) Lower the rhs expression with array_fetch op(s). |
3753 | IterationSpace iters; |
3754 | iters.setElement(genarr(rhs)(iters)); |
3755 | // 2) Lower the lhs expression to an array_update. |
3756 | semant = ConstituentSemantics::ProjectedCopyInCopyOut; |
3757 | auto lexv = genarr(lhs)(iters); |
3758 | // 3) Finalize the inner context. |
3759 | explicitSpace->finalizeContext(); |
3760 | // 4) Thread the array value updated forward. Note: the lhs might be |
3761 | // ill-formed (performing scalar assignment in an array context), |
3762 | // in which case there is no array to thread. |
3763 | auto loc = getLoc(); |
3764 | auto createResult = [&](auto op) { |
3765 | mlir::Value oldInnerArg = op.getSequence(); |
3766 | std::size_t offset = explicitSpace->argPosition(oldInnerArg); |
3767 | explicitSpace->setInnerArg(offset, fir::getBase(lexv)); |
3768 | finalizeElementCtx(); |
3769 | builder.create<fir::ResultOp>(loc, fir::getBase(lexv)); |
3770 | }; |
3771 | if (mlir::Operation *defOp = fir::getBase(lexv).getDefiningOp()) { |
3772 | llvm::TypeSwitch<mlir::Operation *>(defOp) |
3773 | .Case([&](fir::ArrayUpdateOp op) { createResult(op); }) |
3774 | .Case([&](fir::ArrayAmendOp op) { createResult(op); }) |
3775 | .Case([&](fir::ArrayModifyOp op) { createResult(op); }) |
3776 | .Default([&](mlir::Operation *) { finalizeElementCtx(); }); |
3777 | } else { |
3778 | // `lhs` isn't from a `fir.array_load`, so there is no array modifications |
3779 | // to thread through the iteration space. |
3780 | finalizeElementCtx(); |
3781 | } |
3782 | return lexv; |
3783 | } |
3784 | |
3785 | static ExtValue lowerScalarUserAssignment( |
3786 | Fortran::lower::AbstractConverter &converter, |
3787 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
3788 | Fortran::lower::ExplicitIterSpace &explicitIterSpace, |
3789 | mlir::func::FuncOp userAssignmentFunction, |
3790 | const Fortran::lower::SomeExpr &lhs, |
3791 | const Fortran::lower::SomeExpr &rhs) { |
3792 | Fortran::lower::ImplicitIterSpace implicit; |
3793 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
3794 | ConstituentSemantics::RefTransparent, |
3795 | &explicitIterSpace, &implicit); |
3796 | return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs); |
3797 | } |
3798 | |
3799 | ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment, |
3800 | const Fortran::lower::SomeExpr &lhs, |
3801 | const Fortran::lower::SomeExpr &rhs) { |
3802 | mlir::Location loc = getLoc(); |
3803 | if (rhs.Rank() > 0) |
3804 | TODO(loc, "user-defined elemental assigment from expression with rank"); |
3805 | // 1) Lower the rhs expression with array_fetch op(s). |
3806 | IterationSpace iters; |
3807 | iters.setElement(genarr(rhs)(iters)); |
3808 | fir::ExtendedValue elementalExv = iters.elementExv(); |
3809 | // 2) Lower the lhs expression to an array_modify. |
3810 | semant = ConstituentSemantics::CustomCopyInCopyOut; |
3811 | auto lexv = genarr(lhs)(iters); |
3812 | bool isIllFormedLHS = false; |
3813 | // 3) Insert the call |
3814 | if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>( |
3815 | fir::getBase(lexv).getDefiningOp())) { |
3816 | mlir::Value oldInnerArg = modifyOp.getSequence(); |
3817 | std::size_t offset = explicitSpace->argPosition(oldInnerArg); |
3818 | explicitSpace->setInnerArg(offset, fir::getBase(lexv)); |
3819 | auto lhsLoad = explicitSpace->getLhsLoad(0); |
3820 | assert(lhsLoad.has_value()); |
3821 | fir::ExtendedValue exv = |
3822 | arrayModifyToExv(builder, loc, *lhsLoad, modifyOp.getResult(0)); |
3823 | genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv, |
3824 | elementalExv); |
3825 | } else { |
3826 | // LHS is ill formed, it is a scalar with no references to FORALL |
3827 | // subscripts, so there is actually no array assignment here. The user |
3828 | // code is probably bad, but still insert user assignment call since it |
3829 | // was not rejected by semantics (a warning was emitted). |
3830 | isIllFormedLHS = true; |
3831 | genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment, |
3832 | lexv, elementalExv); |
3833 | } |
3834 | // 4) Finalize the inner context. |
3835 | explicitSpace->finalizeContext(); |
3836 | // 5). Thread the array value updated forward. |
3837 | if (!isIllFormedLHS) { |
3838 | finalizeElementCtx(); |
3839 | builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv)); |
3840 | } |
3841 | return lexv; |
3842 | } |
3843 | |
3844 | private: |
3845 | void determineShapeOfDest(const fir::ExtendedValue &lhs) { |
3846 | destShape = fir::factory::getExtents(getLoc(), builder, lhs); |
3847 | } |
3848 | |
3849 | void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) { |
3850 | if (!destShape.empty()) |
3851 | return; |
3852 | if (explicitSpaceIsActive() && determineShapeWithSlice(lhs)) |
3853 | return; |
3854 | mlir::Type idxTy = builder.getIndexType(); |
3855 | mlir::Location loc = getLoc(); |
3856 | if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape = |
3857 | Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(), |
3858 | lhs)) |
3859 | for (Fortran::common::ConstantSubscript extent : *constantShape) |
3860 | destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent)); |
3861 | } |
3862 | |
3863 | bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) { |
3864 | return false; |
3865 | } |
3866 | bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) { |
3867 | TODO(getLoc(), "coarray: reference to a coarray in an expression"); |
3868 | return false; |
3869 | } |
3870 | bool genShapeFromDataRef(const Fortran::evaluate::Component &x) { |
3871 | return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false; |
3872 | } |
3873 | bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) { |
3874 | if (x.Rank() == 0) |
3875 | return false; |
3876 | if (x.base().Rank() > 0) |
3877 | if (genShapeFromDataRef(x.base())) |
3878 | return true; |
3879 | // x has rank and x.base did not produce a shape. |
3880 | ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base())) |
3881 | : asScalarRef(x.base().GetComponent()); |
3882 | mlir::Location loc = getLoc(); |
3883 | mlir::IndexType idxTy = builder.getIndexType(); |
3884 | llvm::SmallVector<mlir::Value> definedShape = |
3885 | fir::factory::getExtents(loc, builder, exv); |
3886 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
3887 | for (auto ss : llvm::enumerate(x.subscript())) { |
3888 | Fortran::common::visit( |
3889 | Fortran::common::visitors{ |
3890 | [&](const Fortran::evaluate::Triplet &trip) { |
3891 | // For a subscript of triple notation, we compute the |
3892 | // range of this dimension of the iteration space. |
3893 | auto lo = [&]() { |
3894 | if (auto optLo = trip.lower()) |
3895 | return fir::getBase(asScalar(*optLo)); |
3896 | return getLBound(exv, ss.index(), one); |
3897 | }(); |
3898 | auto hi = [&]() { |
3899 | if (auto optHi = trip.upper()) |
3900 | return fir::getBase(asScalar(*optHi)); |
3901 | return getUBound(exv, ss.index(), one); |
3902 | }(); |
3903 | auto step = builder.createConvert( |
3904 | loc, idxTy, fir::getBase(asScalar(trip.stride()))); |
3905 | auto extent = |
3906 | builder.genExtentFromTriplet(loc, lo, hi, step, idxTy); |
3907 | destShape.push_back(extent); |
3908 | }, |
3909 | [&](auto) {}}, |
3910 | ss.value().u); |
3911 | } |
3912 | return true; |
3913 | } |
3914 | bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) { |
3915 | if (x.IsSymbol()) |
3916 | return genShapeFromDataRef(getFirstSym(x)); |
3917 | return genShapeFromDataRef(x.GetComponent()); |
3918 | } |
3919 | bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) { |
3920 | return Fortran::common::visit( |
3921 | [&](const auto &v) { return genShapeFromDataRef(v); }, x.u); |
3922 | } |
3923 | |
3924 | /// When in an explicit space, the ranked component must be evaluated to |
3925 | /// determine the actual number of iterations when slicing triples are |
3926 | /// present. Lower these expressions here. |
3927 | bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) { |
3928 | LLVM_DEBUG(Fortran::semantics::DumpEvaluateExpr::Dump( |
3929 | llvm::dbgs() << "determine shape of:\n", lhs)); |
3930 | // FIXME: We may not want to use ExtractDataRef here since it doesn't deal |
3931 | // with substrings, etc. |
3932 | std::optional<Fortran::evaluate::DataRef> dref = |
3933 | Fortran::evaluate::ExtractDataRef(lhs); |
3934 | return dref.has_value() ? genShapeFromDataRef(*dref) : false; |
3935 | } |
3936 | |
3937 | /// CHARACTER and derived type elements are treated as memory references. The |
3938 | /// numeric types are treated as values. |
3939 | static mlir::Type adjustedArraySubtype(mlir::Type ty, |
3940 | mlir::ValueRange indices) { |
3941 | mlir::Type pathTy = fir::applyPathToType(ty, indices); |
3942 | assert(pathTy && "indices failed to apply to type"); |
3943 | return adjustedArrayElementType(pathTy); |
3944 | } |
3945 | |
3946 | /// Lower rhs of an array expression. |
3947 | ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) { |
3948 | mlir::Type resTy = converter.genType(exp); |
3949 | |
3950 | if (fir::isPolymorphicType(resTy) && |
3951 | Fortran::evaluate::HasVectorSubscript(exp)) |
3952 | TODO(getLoc(), |
3953 | "polymorphic array expression lowering with vector subscript"); |
3954 | |
3955 | return Fortran::common::visit( |
3956 | [&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); }, |
3957 | exp.u); |
3958 | } |
3959 | ExtValue lowerArrayExpression(const ExtValue &exv) { |
3960 | assert(!explicitSpace); |
3961 | mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType()); |
3962 | return lowerArrayExpression(genarr(exv), resTy); |
3963 | } |
3964 | |
3965 | void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds, |
3966 | const Fortran::evaluate::Substring *substring) { |
3967 | if (!substring) |
3968 | return; |
3969 | bounds.push_back(fir::getBase(asScalar(substring->lower()))); |
3970 | if (auto upper = substring->upper()) |
3971 | bounds.push_back(fir::getBase(asScalar(*upper))); |
3972 | } |
3973 | |
3974 | /// Convert the original value, \p origVal, to type \p eleTy. When in a |
3975 | /// pointer assignment context, generate an appropriate `fir.rebox` for |
3976 | /// dealing with any bounds parameters on the pointer assignment. |
3977 | mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy, |
3978 | mlir::Value origVal) { |
3979 | if (auto origEleTy = fir::dyn_cast_ptrEleTy(origVal.getType())) |
3980 | if (mlir::isa<fir::BaseBoxType>(origEleTy)) { |
3981 | // If origVal is a box variable, load it so it is in the value domain. |
3982 | origVal = builder.create<fir::LoadOp>(loc, origVal); |
3983 | } |
3984 | if (mlir::isa<fir::BoxType>(origVal.getType()) && |
3985 | !mlir::isa<fir::BoxType>(eleTy)) { |
3986 | if (isPointerAssignment()) |
3987 | TODO(loc, "lhs of pointer assignment returned unexpected value"); |
3988 | TODO(loc, "invalid box conversion in elemental computation"); |
3989 | } |
3990 | if (isPointerAssignment() && mlir::isa<fir::BoxType>(eleTy) && |
3991 | !mlir::isa<fir::BoxType>(origVal.getType())) { |
3992 | // This is a pointer assignment and the rhs is a raw reference to a TARGET |
3993 | // in memory. Embox the reference so it can be stored to the boxed |
3994 | // POINTER variable. |
3995 | assert(fir::isa_ref_type(origVal.getType())); |
3996 | if (auto eleTy = fir::dyn_cast_ptrEleTy(origVal.getType()); |
3997 | fir::hasDynamicSize(eleTy)) |
3998 | TODO(loc, "TARGET of pointer assignment with runtime size/shape"); |
3999 | auto memrefTy = fir::boxMemRefType(mlir::cast<fir::BoxType>(eleTy)); |
4000 | auto castTo = builder.createConvert(loc, memrefTy, origVal); |
4001 | origVal = builder.create<fir::EmboxOp>(loc, eleTy, castTo); |
4002 | } |
4003 | mlir::Value val = builder.convertWithSemantics(loc, eleTy, origVal); |
4004 | if (isBoundsSpec()) { |
4005 | assert(lbounds.has_value()); |
4006 | auto lbs = *lbounds; |
4007 | if (lbs.size() > 0) { |
4008 | // Rebox the value with user-specified shift. |
4009 | auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size()); |
4010 | mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs); |
4011 | val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp, |
4012 | mlir::Value{}); |
4013 | } |
4014 | } else if (isBoundsRemap()) { |
4015 | assert(lbounds.has_value()); |
4016 | auto lbs = *lbounds; |
4017 | if (lbs.size() > 0) { |
4018 | // Rebox the value with user-specified shift and shape. |
4019 | assert(ubounds.has_value()); |
4020 | auto shapeShiftArgs = flatZip(lbs, *ubounds); |
4021 | auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size()); |
4022 | mlir::Value shapeShift = |
4023 | builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs); |
4024 | val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift, |
4025 | mlir::Value{}); |
4026 | } |
4027 | } |
4028 | return val; |
4029 | } |
4030 | |
4031 | /// Default store to destination implementation. |
4032 | /// This implements the default case, which is to assign the value in |
4033 | /// `iters.element` into the destination array, `iters.innerArgument`. Handles |
4034 | /// by value and by reference assignment. |
4035 | CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) { |
4036 | return [=](IterSpace iterSpace) -> ExtValue { |
4037 | mlir::Location loc = getLoc(); |
4038 | mlir::Value innerArg = iterSpace.innerArgument(); |
4039 | fir::ExtendedValue exv = iterSpace.elementExv(); |
4040 | mlir::Type arrTy = innerArg.getType(); |
4041 | mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec()); |
4042 | if (isAdjustedArrayElementType(eleTy)) { |
4043 | // The elemental update is in the memref domain. Under this semantics, |
4044 | // we must always copy the computed new element from its location in |
4045 | // memory into the destination array. |
4046 | mlir::Type resRefTy = builder.getRefType(eleTy); |
4047 | // Get a reference to the array element to be amended. |
4048 | auto arrayOp = builder.create<fir::ArrayAccessOp>( |
4049 | loc, resRefTy, innerArg, iterSpace.iterVec(), |
4050 | fir::factory::getTypeParams(loc, builder, destination)); |
4051 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
4052 | llvm::SmallVector<mlir::Value> substringBounds; |
4053 | populateBounds(substringBounds, substring); |
4054 | mlir::Value dstLen = fir::factory::genLenOfCharacter( |
4055 | builder, loc, destination, iterSpace.iterVec(), substringBounds); |
4056 | fir::ArrayAmendOp amend = createCharArrayAmend( |
4057 | loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds); |
4058 | return abstractArrayExtValue(amend, dstLen); |
4059 | } |
4060 | if (fir::isa_derived(eleTy)) { |
4061 | fir::ArrayAmendOp amend = createDerivedArrayAmend( |
4062 | loc, destination, builder, arrayOp, exv, eleTy, innerArg); |
4063 | return abstractArrayExtValue(amend /*FIXME: typeparams?*/); |
4064 | } |
4065 | assert(mlir::isa<fir::SequenceType>(eleTy) && "must be an array"); |
4066 | TODO(loc, "array (as element) assignment"); |
4067 | } |
4068 | // By value semantics. The element is being assigned by value. |
4069 | auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv)); |
4070 | auto update = builder.create<fir::ArrayUpdateOp>( |
4071 | loc, arrTy, innerArg, ele, iterSpace.iterVec(), |
4072 | destination.getTypeparams()); |
4073 | return abstractArrayExtValue(update); |
4074 | }; |
4075 | } |
4076 | |
4077 | /// For an elemental array expression. |
4078 | /// 1. Lower the scalars and array loads. |
4079 | /// 2. Create the iteration space. |
4080 | /// 3. Create the element-by-element computation in the loop. |
4081 | /// 4. Return the resulting array value. |
4082 | /// If no destination was set in the array context, a temporary of |
4083 | /// \p resultTy will be created to hold the evaluated expression. |
4084 | /// Otherwise, \p resultTy is ignored and the expression is evaluated |
4085 | /// in the destination. \p f is a continuation built from an |
4086 | /// evaluate::Expr or an ExtendedValue. |
4087 | ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) { |
4088 | mlir::Location loc = getLoc(); |
4089 | auto [iterSpace, insPt] = genIterSpace(resultTy); |
4090 | auto exv = f(iterSpace); |
4091 | iterSpace.setElement(std::move(exv)); |
4092 | auto lambda = ccStoreToDest |
4093 | ? *ccStoreToDest |
4094 | : defaultStoreToDestination(/*substring=*/nullptr); |
4095 | mlir::Value updVal = fir::getBase(lambda(iterSpace)); |
4096 | finalizeElementCtx(); |
4097 | builder.create<fir::ResultOp>(loc, updVal); |
4098 | builder.restoreInsertionPoint(insPt); |
4099 | return abstractArrayExtValue(iterSpace.outerResult()); |
4100 | } |
4101 | |
4102 | /// Compute the shape of a slice. |
4103 | llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) { |
4104 | llvm::SmallVector<mlir::Value> slicedShape; |
4105 | auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp()); |
4106 | mlir::Operation::operand_range triples = slOp.getTriples(); |
4107 | mlir::IndexType idxTy = builder.getIndexType(); |
4108 | mlir::Location loc = getLoc(); |
4109 | for (unsigned i = 0, end = triples.size(); i < end; i += 3) { |
4110 | if (!mlir::isa_and_nonnull<fir::UndefOp>( |
4111 | triples[i + 1].getDefiningOp())) { |
4112 | // (..., lb:ub:step, ...) case: extent = max((ub-lb+step)/step, 0) |
4113 | // See Fortran 2018 9.5.3.3.2 section for more details. |
4114 | mlir::Value res = builder.genExtentFromTriplet( |
4115 | loc, triples[i], triples[i + 1], triples[i + 2], idxTy); |
4116 | slicedShape.emplace_back(res); |
4117 | } else { |
4118 | // do nothing. `..., i, ...` case, so dimension is dropped. |
4119 | } |
4120 | } |
4121 | return slicedShape; |
4122 | } |
4123 | |
4124 | /// Get the shape from an ArrayOperand. The shape of the array is adjusted if |
4125 | /// the array was sliced. |
4126 | llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) { |
4127 | if (array.slice) |
4128 | return computeSliceShape(array.slice); |
4129 | if (mlir::isa<fir::BaseBoxType>(array.memref.getType())) |
4130 | return fir::factory::readExtents(builder, getLoc(), |
4131 | fir::BoxValue{array.memref}); |
4132 | return fir::factory::getExtents(array.shape); |
4133 | } |
4134 | |
4135 | /// Get the shape from an ArrayLoad. |
4136 | llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) { |
4137 | return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(), |
4138 | arrayLoad.getSlice()}); |
4139 | } |
4140 | |
4141 | /// Returns the first array operand that may not be absent. If all |
4142 | /// array operands may be absent, return the first one. |
4143 | const ArrayOperand &getInducingShapeArrayOperand() const { |
4144 | assert(!arrayOperands.empty()); |
4145 | for (const ArrayOperand &op : arrayOperands) |
4146 | if (!op.mayBeAbsent) |
4147 | return op; |
4148 | // If all arrays operand appears in optional position, then none of them |
4149 | // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the |
4150 | // first operands. |
4151 | // TODO: There is an opportunity to add a runtime check here that |
4152 | // this array is present as required. |
4153 | return arrayOperands[0]; |
4154 | } |
4155 | |
4156 | /// Generate the shape of the iteration space over the array expression. The |
4157 | /// iteration space may be implicit, explicit, or both. If it is implied it is |
4158 | /// based on the destination and operand array loads, or an optional |
4159 | /// Fortran::evaluate::Shape from the front end. If the shape is explicit, |
4160 | /// this returns any implicit shape component, if it exists. |
4161 | llvm::SmallVector<mlir::Value> genIterationShape() { |
4162 | // Use the precomputed destination shape. |
4163 | if (!destShape.empty()) |
4164 | return destShape; |
4165 | // Otherwise, use the destination's shape. |
4166 | if (destination) |
4167 | return getShape(destination); |
4168 | // Otherwise, use the first ArrayLoad operand shape. |
4169 | if (!arrayOperands.empty()) |
4170 | return getShape(getInducingShapeArrayOperand()); |
4171 | // Otherwise, in elemental context, try to find the passed object and |
4172 | // retrieve the iteration shape from it. |
4173 | if (loweredProcRef && loweredProcRef->IsElemental()) { |
4174 | const std::optional<Fortran::evaluate::ActualArgument> passArg = |
4175 | extractPassedArgFromProcRef(*loweredProcRef, converter); |
4176 | if (passArg) { |
4177 | ExtValue exv = asScalarRef(*passArg->UnwrapExpr()); |
4178 | fir::FirOpBuilder *builder = &converter.getFirOpBuilder(); |
4179 | auto extents = fir::factory::getExtents(getLoc(), *builder, exv); |
4180 | if (extents.size() == 0) |
4181 | TODO(getLoc(), "getting shape from polymorphic array in elemental " |
4182 | "procedure reference"); |
4183 | return extents; |
4184 | } |
4185 | } |
4186 | fir::emitFatalError(getLoc(), |
4187 | "failed to compute the array expression shape"); |
4188 | } |
4189 | |
4190 | bool explicitSpaceIsActive() const { |
4191 | return explicitSpace && explicitSpace->isActive(); |
4192 | } |
4193 | |
4194 | bool implicitSpaceHasMasks() const { |
4195 | return implicitSpace && !implicitSpace->empty(); |
4196 | } |
4197 | |
4198 | CC genMaskAccess(mlir::Value tmp, mlir::Value shape) { |
4199 | mlir::Location loc = getLoc(); |
4200 | return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) { |
4201 | mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType()); |
4202 | auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
4203 | mlir::Type eleRefTy = builder->getRefType(eleTy); |
4204 | mlir::IntegerType i1Ty = builder->getI1Type(); |
4205 | // Adjust indices for any shift of the origin of the array. |
4206 | llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( |
4207 | loc, *builder, tmp.getType(), shape, iters.iterVec()); |
4208 | auto addr = |
4209 | builder->create<fir::ArrayCoorOp>(loc, eleRefTy, tmp, shape, |
4210 | /*slice=*/mlir::Value{}, indices, |
4211 | /*typeParams=*/std::nullopt); |
4212 | auto load = builder->create<fir::LoadOp>(loc, addr); |
4213 | return builder->createConvert(loc, i1Ty, load); |
4214 | }; |
4215 | } |
4216 | |
4217 | /// Construct the incremental instantiations of the ragged array structure. |
4218 | /// Rebind the lazy buffer variable, etc. as we go. |
4219 | template <bool withAllocation = false> |
4220 | mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) { |
4221 | assert(explicitSpaceIsActive()); |
4222 | mlir::Location loc = getLoc(); |
4223 | mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder); |
4224 | llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack = |
4225 | explicitSpace->getLoopStack(); |
4226 | const std::size_t depth = loopStack.size(); |
4227 | mlir::IntegerType i64Ty = builder.getIntegerType(64); |
4228 | [[maybe_unused]] mlir::Value byteSize = |
4229 | builder.createIntegerConstant(loc, i64Ty, 1); |
4230 | mlir::Value header = implicitSpace->lookupMaskHeader(expr); |
4231 | for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) { |
4232 | auto insPt = builder.saveInsertionPoint(); |
4233 | if (i < depth - 1) |
4234 | builder.setInsertionPoint(loopStack[i + 1][0]); |
4235 | |
4236 | // Compute and gather the extents. |
4237 | llvm::SmallVector<mlir::Value> extents; |
4238 | for (auto doLoop : loopStack[i]) |
4239 | extents.push_back(builder.genExtentFromTriplet( |
4240 | loc, doLoop.getLowerBound(), doLoop.getUpperBound(), |
4241 | doLoop.getStep(), i64Ty)); |
4242 | if constexpr (withAllocation) { |
4243 | fir::runtime::genRaggedArrayAllocate( |
4244 | loc, builder, header, /*asHeader=*/true, byteSize, extents); |
4245 | } |
4246 | |
4247 | // Compute the dynamic position into the header. |
4248 | llvm::SmallVector<mlir::Value> offsets; |
4249 | for (auto doLoop : loopStack[i]) { |
4250 | auto m = builder.create<mlir::arith::SubIOp>( |
4251 | loc, doLoop.getInductionVar(), doLoop.getLowerBound()); |
4252 | auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep()); |
4253 | mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1); |
4254 | offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one)); |
4255 | } |
4256 | mlir::IntegerType i32Ty = builder.getIntegerType(32); |
4257 | mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1); |
4258 | mlir::Type coorTy = builder.getRefType(raggedTy.getType(1)); |
4259 | auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); |
4260 | auto toTy = fir::SequenceType::get(raggedTy, offsets.size()); |
4261 | mlir::Type toRefTy = builder.getRefType(toTy); |
4262 | auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff); |
4263 | mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr); |
4264 | auto shapeOp = builder.genShape(loc, extents); |
4265 | header = builder.create<fir::ArrayCoorOp>( |
4266 | loc, builder.getRefType(raggedTy), hdArr, shapeOp, |
4267 | /*slice=*/mlir::Value{}, offsets, |
4268 | /*typeparams=*/mlir::ValueRange{}); |
4269 | auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); |
4270 | auto inVar = builder.create<fir::LoadOp>(loc, hdrVar); |
4271 | mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); |
4272 | mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2)); |
4273 | auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two); |
4274 | auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh); |
4275 | // Replace the binding. |
4276 | implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr)); |
4277 | if (i < depth - 1) |
4278 | builder.restoreInsertionPoint(insPt); |
4279 | } |
4280 | return header; |
4281 | } |
4282 | |
4283 | /// Lower mask expressions with implied iteration spaces from the variants of |
4284 | /// WHERE syntax. Since it is legal for mask expressions to have side-effects |
4285 | /// and modify values that will be used for the lhs, rhs, or both of |
4286 | /// subsequent assignments, the mask must be evaluated before the assignment |
4287 | /// is processed. |
4288 | /// Mask expressions are array expressions too. |
4289 | void genMasks() { |
4290 | // Lower the mask expressions, if any. |
4291 | if (implicitSpaceHasMasks()) { |
4292 | mlir::Location loc = getLoc(); |
4293 | // Mask expressions are array expressions too. |
4294 | for (const auto *e : implicitSpace->getExprs()) |
4295 | if (e && !implicitSpace->isLowered(e)) { |
4296 | if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) { |
4297 | // Allocate the mask buffer lazily. |
4298 | assert(explicitSpaceIsActive()); |
4299 | mlir::Value header = |
4300 | prepareRaggedArrays</*withAllocations=*/true>(e); |
4301 | Fortran::lower::createLazyArrayTempValue(converter, *e, header, |
4302 | symMap, stmtCtx); |
4303 | // Close the explicit loops. |
4304 | builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs()); |
4305 | builder.setInsertionPointAfter(explicitSpace->getOuterLoop()); |
4306 | // Open a new copy of the explicit loop nest. |
4307 | explicitSpace->genLoopNest(); |
4308 | continue; |
4309 | } |
4310 | fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue( |
4311 | converter, *e, symMap, stmtCtx); |
4312 | mlir::Value shape = builder.createShape(loc, tmp); |
4313 | implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape)); |
4314 | } |
4315 | |
4316 | // Set buffer from the header. |
4317 | for (const auto *e : implicitSpace->getExprs()) { |
4318 | if (!e) |
4319 | continue; |
4320 | if (implicitSpace->lookupMaskVariable(e)) { |
4321 | // Index into the ragged buffer to retrieve cached results. |
4322 | const int rank = e->Rank(); |
4323 | assert(destShape.empty() || |
4324 | static_cast<std::size_t>(rank) == destShape.size()); |
4325 | mlir::Value header = prepareRaggedArrays(e); |
4326 | mlir::TupleType raggedTy = |
4327 | fir::factory::getRaggedArrayHeaderType(builder); |
4328 | mlir::IntegerType i32Ty = builder.getIntegerType(32); |
4329 | mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); |
4330 | auto coor1 = builder.create<fir::CoordinateOp>( |
4331 | loc, builder.getRefType(raggedTy.getType(1)), header, one); |
4332 | auto db = builder.create<fir::LoadOp>(loc, coor1); |
4333 | mlir::Type eleTy = |
4334 | fir::unwrapSequenceType(fir::unwrapRefType(db.getType())); |
4335 | mlir::Type buffTy = |
4336 | builder.getRefType(fir::SequenceType::get(eleTy, rank)); |
4337 | // Address of ragged buffer data. |
4338 | mlir::Value buff = builder.createConvert(loc, buffTy, db); |
4339 | |
4340 | mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); |
4341 | auto coor2 = builder.create<fir::CoordinateOp>( |
4342 | loc, builder.getRefType(raggedTy.getType(2)), header, two); |
4343 | auto shBuff = builder.create<fir::LoadOp>(loc, coor2); |
4344 | mlir::IntegerType i64Ty = builder.getIntegerType(64); |
4345 | mlir::IndexType idxTy = builder.getIndexType(); |
4346 | llvm::SmallVector<mlir::Value> extents; |
4347 | for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) { |
4348 | mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i); |
4349 | auto coor = builder.create<fir::CoordinateOp>( |
4350 | loc, builder.getRefType(i64Ty), shBuff, off); |
4351 | auto ldExt = builder.create<fir::LoadOp>(loc, coor); |
4352 | extents.push_back(builder.createConvert(loc, idxTy, ldExt)); |
4353 | } |
4354 | if (destShape.empty()) |
4355 | destShape = extents; |
4356 | // Construct shape of buffer. |
4357 | mlir::Value shapeOp = builder.genShape(loc, extents); |
4358 | |
4359 | // Replace binding with the local result. |
4360 | implicitSpace->rebind(e, genMaskAccess(buff, shapeOp)); |
4361 | } |
4362 | } |
4363 | } |
4364 | } |
4365 | |
4366 | // FIXME: should take multiple inner arguments. |
4367 | std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> |
4368 | genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) { |
4369 | mlir::Location loc = getLoc(); |
4370 | mlir::IndexType idxTy = builder.getIndexType(); |
4371 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
4372 | mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); |
4373 | llvm::SmallVector<mlir::Value> loopUppers; |
4374 | |
4375 | // Convert any implied shape to closed interval form. The fir.do_loop will |
4376 | // run from 0 to `extent - 1` inclusive. |
4377 | for (auto extent : shape) |
4378 | loopUppers.push_back( |
4379 | builder.create<mlir::arith::SubIOp>(loc, extent, one)); |
4380 | |
4381 | // Iteration space is created with outermost columns, innermost rows |
4382 | llvm::SmallVector<fir::DoLoopOp> loops; |
4383 | |
4384 | const std::size_t loopDepth = loopUppers.size(); |
4385 | llvm::SmallVector<mlir::Value> ivars; |
4386 | |
4387 | for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) { |
4388 | if (i.index() > 0) { |
4389 | assert(!loops.empty()); |
4390 | builder.setInsertionPointToStart(loops.back().getBody()); |
4391 | } |
4392 | fir::DoLoopOp loop; |
4393 | if (innerArg) { |
4394 | loop = builder.create<fir::DoLoopOp>( |
4395 | loc, zero, i.value(), one, isUnordered(), |
4396 | /*finalCount=*/false, mlir::ValueRange{innerArg}); |
4397 | innerArg = loop.getRegionIterArgs().front(); |
4398 | if (explicitSpaceIsActive()) |
4399 | explicitSpace->setInnerArg(0, innerArg); |
4400 | } else { |
4401 | loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one, |
4402 | isUnordered(), |
4403 | /*finalCount=*/false); |
4404 | } |
4405 | ivars.push_back(loop.getInductionVar()); |
4406 | loops.push_back(loop); |
4407 | } |
4408 | |
4409 | if (innerArg) |
4410 | for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth; |
4411 | ++i) { |
4412 | builder.setInsertionPointToEnd(loops[i].getBody()); |
4413 | builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0)); |
4414 | } |
4415 | |
4416 | // Move insertion point to the start of the innermost loop in the nest. |
4417 | builder.setInsertionPointToStart(loops.back().getBody()); |
4418 | // Set `afterLoopNest` to just after the entire loop nest. |
4419 | auto currPt = builder.saveInsertionPoint(); |
4420 | builder.setInsertionPointAfter(loops[0]); |
4421 | auto afterLoopNest = builder.saveInsertionPoint(); |
4422 | builder.restoreInsertionPoint(currPt); |
4423 | |
4424 | // Put the implicit loop variables in row to column order to match FIR's |
4425 | // Ops. (The loops were constructed from outermost column to innermost |
4426 | // row.) |
4427 | mlir::Value outerRes; |
4428 | if (loops[0].getNumResults() != 0) |
4429 | outerRes = loops[0].getResult(0); |
4430 | return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)), |
4431 | afterLoopNest}; |
4432 | } |
4433 | |
4434 | /// Build the iteration space into which the array expression will be lowered. |
4435 | /// The resultType is used to create a temporary, if needed. |
4436 | std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> |
4437 | genIterSpace(mlir::Type resultType) { |
4438 | mlir::Location loc = getLoc(); |
4439 | llvm::SmallVector<mlir::Value> shape = genIterationShape(); |
4440 | if (!destination) { |
4441 | // Allocate storage for the result if it is not already provided. |
4442 | destination = createAndLoadSomeArrayTemp(resultType, shape); |
4443 | } |
4444 | |
4445 | // Generate the lazy mask allocation, if one was given. |
4446 | if (ccPrelude) |
4447 | (*ccPrelude)(shape); |
4448 | |
4449 | // Now handle the implicit loops. |
4450 | mlir::Value inner = explicitSpaceIsActive() |
4451 | ? explicitSpace->getInnerArgs().front() |
4452 | : destination.getResult(); |
4453 | auto [iters, afterLoopNest] = genImplicitLoops(shape, inner); |
4454 | mlir::Value innerArg = iters.innerArgument(); |
4455 | |
4456 | // Generate the mask conditional structure, if there are masks. Unlike the |
4457 | // explicit masks, which are interleaved, these mask expression appear in |
4458 | // the innermost loop. |
4459 | if (implicitSpaceHasMasks()) { |
4460 | // Recover the cached condition from the mask buffer. |
4461 | auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) { |
4462 | return implicitSpace->getBoundClosure(e)(iters); |
4463 | }; |
4464 | |
4465 | // Handle the negated conditions in topological order of the WHERE |
4466 | // clauses. See 10.2.3.2p4 as to why this control structure is produced. |
4467 | for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs : |
4468 | implicitSpace->getMasks()) { |
4469 | const std::size_t size = maskExprs.size() - 1; |
4470 | auto genFalseBlock = [&](const auto *e, auto &&cond) { |
4471 | auto ifOp = builder.create<fir::IfOp>( |
4472 | loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), |
4473 | /*withElseRegion=*/true); |
4474 | builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); |
4475 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
4476 | builder.create<fir::ResultOp>(loc, innerArg); |
4477 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
4478 | }; |
4479 | auto genTrueBlock = [&](const auto *e, auto &&cond) { |
4480 | auto ifOp = builder.create<fir::IfOp>( |
4481 | loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), |
4482 | /*withElseRegion=*/true); |
4483 | builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); |
4484 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
4485 | builder.create<fir::ResultOp>(loc, innerArg); |
4486 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
4487 | }; |
4488 | for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i) |
4489 | if (const auto *e = maskExprs[i]) |
4490 | genFalseBlock(e, genCond(e, iters)); |
4491 | |
4492 | // The last condition is either non-negated or unconditionally negated. |
4493 | if (const auto *e = maskExprs[size]) |
4494 | genTrueBlock(e, genCond(e, iters)); |
4495 | } |
4496 | } |
4497 | |
4498 | // We're ready to lower the body (an assignment statement) for this context |
4499 | // of loop nests at this point. |
4500 | return {iters, afterLoopNest}; |
4501 | } |
4502 | |
4503 | fir::ArrayLoadOp |
4504 | createAndLoadSomeArrayTemp(mlir::Type type, |
4505 | llvm::ArrayRef<mlir::Value> shape) { |
4506 | mlir::Location loc = getLoc(); |
4507 | if (fir::isPolymorphicType(type)) |
4508 | TODO(loc, "polymorphic array temporary"); |
4509 | if (ccLoadDest) |
4510 | return (*ccLoadDest)(shape); |
4511 | auto seqTy = mlir::dyn_cast<fir::SequenceType>(type); |
4512 | assert(seqTy && "must be an array"); |
4513 | // TODO: Need to thread the LEN parameters here. For character, they may |
4514 | // differ from the operands length (e.g concatenation). So the array loads |
4515 | // type parameters are not enough. |
4516 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(seqTy.getEleTy())) |
4517 | if (charTy.hasDynamicLen()) |
4518 | TODO(loc, "character array expression temp with dynamic length"); |
4519 | if (auto recTy = mlir::dyn_cast<fir::RecordType>(seqTy.getEleTy())) |
4520 | if (recTy.getNumLenParams() > 0) |
4521 | TODO(loc, "derived type array expression temp with LEN parameters"); |
4522 | if (mlir::Type eleTy = fir::unwrapSequenceType(type); |
4523 | fir::isRecordWithAllocatableMember(eleTy)) |
4524 | TODO(loc, "creating an array temp where the element type has " |
4525 | "allocatable members"); |
4526 | mlir::Value temp = !seqTy.hasDynamicExtents() |
4527 | ? builder.create<fir::AllocMemOp>(loc, type) |
4528 | : builder.create<fir::AllocMemOp>( |
4529 | loc, type, ".array.expr", std::nullopt, shape); |
4530 | fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); |
4531 | stmtCtx.attachCleanup( |
4532 | [bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); }); |
4533 | mlir::Value shapeOp = genShapeOp(shape); |
4534 | return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp, |
4535 | /*slice=*/mlir::Value{}, |
4536 | std::nullopt); |
4537 | } |
4538 | |
4539 | static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder, |
4540 | llvm::ArrayRef<mlir::Value> shape) { |
4541 | mlir::IndexType idxTy = builder.getIndexType(); |
4542 | llvm::SmallVector<mlir::Value> idxShape; |
4543 | for (auto s : shape) |
4544 | idxShape.push_back(builder.createConvert(loc, idxTy, s)); |
4545 | return builder.create<fir::ShapeOp>(loc, idxShape); |
4546 | } |
4547 | |
4548 | fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) { |
4549 | return genShapeOp(getLoc(), builder, shape); |
4550 | } |
4551 | |
4552 | //===--------------------------------------------------------------------===// |
4553 | // Expression traversal and lowering. |
4554 | //===--------------------------------------------------------------------===// |
4555 | |
4556 | /// Lower the expression, \p x, in a scalar context. |
4557 | template <typename A> |
4558 | ExtValue asScalar(const A &x) { |
4559 | return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x); |
4560 | } |
4561 | |
4562 | /// Lower the expression, \p x, in a scalar context. If this is an explicit |
4563 | /// space, the expression may be scalar and refer to an array. We want to |
4564 | /// raise the array access to array operations in FIR to analyze potential |
4565 | /// conflicts even when the result is a scalar element. |
4566 | template <typename A> |
4567 | ExtValue asScalarArray(const A &x) { |
4568 | return explicitSpaceIsActive() && !isPointerAssignment() |
4569 | ? genarr(x)(IterationSpace{}) |
4570 | : asScalar(x); |
4571 | } |
4572 | |
4573 | /// Lower the expression in a scalar context to a memory reference. |
4574 | template <typename A> |
4575 | ExtValue asScalarRef(const A &x) { |
4576 | return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x); |
4577 | } |
4578 | |
4579 | /// Lower an expression without dereferencing any indirection that may be |
4580 | /// a nullptr (because this is an absent optional or unallocated/disassociated |
4581 | /// descriptor). The returned expression cannot be addressed directly, it is |
4582 | /// meant to inquire about its status before addressing the related entity. |
4583 | template <typename A> |
4584 | ExtValue asInquired(const A &x) { |
4585 | return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx} |
4586 | .lowerIntrinsicArgumentAsInquired(x); |
4587 | } |
4588 | |
4589 | /// Some temporaries are allocated on an element-by-element basis during the |
4590 | /// array expression evaluation. Collect the cleanups here so the resources |
4591 | /// can be freed before the next loop iteration, avoiding memory leaks. etc. |
4592 | Fortran::lower::StatementContext &getElementCtx() { |
4593 | if (!elementCtx) { |
4594 | stmtCtx.pushScope(); |
4595 | elementCtx = true; |
4596 | } |
4597 | return stmtCtx; |
4598 | } |
4599 | |
4600 | /// If there were temporaries created for this element evaluation, finalize |
4601 | /// and deallocate the resources now. This should be done just prior to the |
4602 | /// fir::ResultOp at the end of the innermost loop. |
4603 | void finalizeElementCtx() { |
4604 | if (elementCtx) { |
4605 | stmtCtx.finalizeAndPop(); |
4606 | elementCtx = false; |
4607 | } |
4608 | } |
4609 | |
4610 | /// Lower an elemental function array argument. This ensures array |
4611 | /// sub-expressions that are not variables and must be passed by address |
4612 | /// are lowered by value and placed in memory. |
4613 | template <typename A> |
4614 | CC genElementalArgument(const A &x) { |
4615 | // Ensure the returned element is in memory if this is what was requested. |
4616 | if ((semant == ConstituentSemantics::RefOpaque || |
4617 | semant == ConstituentSemantics::DataAddr || |
4618 | semant == ConstituentSemantics::ByValueArg)) { |
4619 | if (!Fortran::evaluate::IsVariable(x)) { |
4620 | PushSemantics(ConstituentSemantics::DataValue); |
4621 | CC cc = genarr(x); |
4622 | mlir::Location loc = getLoc(); |
4623 | if (isParenthesizedVariable(x)) { |
4624 | // Parenthesised variables are lowered to a reference to the variable |
4625 | // storage. When passing it as an argument, a copy must be passed. |
4626 | return [=](IterSpace iters) -> ExtValue { |
4627 | return createInMemoryScalarCopy(builder, loc, cc(iters)); |
4628 | }; |
4629 | } |
4630 | mlir::Type storageType = |
4631 | fir::unwrapSequenceType(converter.genType(toEvExpr(x))); |
4632 | return [=](IterSpace iters) -> ExtValue { |
4633 | return placeScalarValueInMemory(builder, loc, cc(iters), storageType); |
4634 | }; |
4635 | } else if (isArray(x)) { |
4636 | // An array reference is needed, but the indices used in its path must |
4637 | // still be retrieved by value. |
4638 | assert(!nextPathSemant && "Next path semantics already set!"); |
4639 | nextPathSemant = ConstituentSemantics::RefTransparent; |
4640 | CC cc = genarr(x); |
4641 | assert(!nextPathSemant && "Next path semantics wasn't used!"); |
4642 | return cc; |
4643 | } |
4644 | } |
4645 | return genarr(x); |
4646 | } |
4647 | |
4648 | // A reference to a Fortran elemental intrinsic or intrinsic module procedure. |
4649 | CC genElementalIntrinsicProcRef( |
4650 | const Fortran::evaluate::ProcedureRef &procRef, |
4651 | std::optional<mlir::Type> retTy, |
4652 | std::optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic = |
4653 | std::nullopt) { |
4654 | |
4655 | llvm::SmallVector<CC> operands; |
4656 | std::string name = |
4657 | intrinsic ? intrinsic->name |
4658 | : procRef.proc().GetSymbol()->GetUltimate().name().ToString(); |
4659 | const fir::IntrinsicArgumentLoweringRules *argLowering = |
4660 | fir::getIntrinsicArgumentLowering(name); |
4661 | mlir::Location loc = getLoc(); |
4662 | if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling( |
4663 | procRef, *intrinsic, converter)) { |
4664 | using CcPairT = std::pair<CC, std::optional<mlir::Value>>; |
4665 | llvm::SmallVector<CcPairT> operands; |
4666 | auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { |
4667 | if (expr.Rank() == 0) { |
4668 | ExtValue optionalArg = this->asInquired(expr); |
4669 | mlir::Value isPresent = |
4670 | genActualIsPresentTest(builder, loc, optionalArg); |
4671 | operands.emplace_back( |
4672 | [=](IterSpace iters) -> ExtValue { |
4673 | return genLoad(builder, loc, optionalArg); |
4674 | }, |
4675 | isPresent); |
4676 | } else { |
4677 | auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr); |
4678 | operands.emplace_back(cc, isPresent); |
4679 | } |
4680 | }; |
4681 | auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr, |
4682 | fir::LowerIntrinsicArgAs lowerAs) { |
4683 | assert(lowerAs == fir::LowerIntrinsicArgAs::Value && |
4684 | "expect value arguments for elemental intrinsic"); |
4685 | PushSemantics(ConstituentSemantics::RefTransparent); |
4686 | operands.emplace_back(genElementalArgument(expr), std::nullopt); |
4687 | }; |
4688 | Fortran::lower::prepareCustomIntrinsicArgument( |
4689 | procRef, *intrinsic, retTy, prepareOptionalArg, prepareOtherArg, |
4690 | converter); |
4691 | |
4692 | fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); |
4693 | return [=](IterSpace iters) -> ExtValue { |
4694 | auto getArgument = [&](std::size_t i, bool) -> ExtValue { |
4695 | return operands[i].first(iters); |
4696 | }; |
4697 | auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> { |
4698 | return operands[i].second; |
4699 | }; |
4700 | return Fortran::lower::lowerCustomIntrinsic( |
4701 | *bldr, loc, name, retTy, isPresent, getArgument, operands.size(), |
4702 | getElementCtx()); |
4703 | }; |
4704 | } |
4705 | /// Otherwise, pre-lower arguments and use intrinsic lowering utility. |
4706 | for (const auto &arg : llvm::enumerate(procRef.arguments())) { |
4707 | const auto *expr = |
4708 | Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value()); |
4709 | if (!expr) { |
4710 | // Absent optional. |
4711 | operands.emplace_back([=](IterSpace) { return mlir::Value{}; }); |
4712 | } else if (!argLowering) { |
4713 | // No argument lowering instruction, lower by value. |
4714 | PushSemantics(ConstituentSemantics::RefTransparent); |
4715 | operands.emplace_back(genElementalArgument(*expr)); |
4716 | } else { |
4717 | // Ad-hoc argument lowering handling. |
4718 | fir::ArgLoweringRule argRules = |
4719 | fir::lowerIntrinsicArgumentAs(*argLowering, arg.index()); |
4720 | if (argRules.handleDynamicOptional && |
4721 | Fortran::evaluate::MayBePassedAsAbsentOptional(*expr)) { |
4722 | // Currently, there is not elemental intrinsic that requires lowering |
4723 | // a potentially absent argument to something else than a value (apart |
4724 | // from character MAX/MIN that are handled elsewhere.) |
4725 | if (argRules.lowerAs != fir::LowerIntrinsicArgAs::Value) |
4726 | TODO(loc, "non trivial optional elemental intrinsic array " |
4727 | "argument"); |
4728 | PushSemantics(ConstituentSemantics::RefTransparent); |
4729 | operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr)); |
4730 | continue; |
4731 | } |
4732 | switch (argRules.lowerAs) { |
4733 | case fir::LowerIntrinsicArgAs::Value: { |
4734 | PushSemantics(ConstituentSemantics::RefTransparent); |
4735 | operands.emplace_back(genElementalArgument(*expr)); |
4736 | } break; |
4737 | case fir::LowerIntrinsicArgAs::Addr: { |
4738 | // Note: assume does not have Fortran VALUE attribute semantics. |
4739 | PushSemantics(ConstituentSemantics::RefOpaque); |
4740 | operands.emplace_back(genElementalArgument(*expr)); |
4741 | } break; |
4742 | case fir::LowerIntrinsicArgAs::Box: { |
4743 | PushSemantics(ConstituentSemantics::RefOpaque); |
4744 | auto lambda = genElementalArgument(*expr); |
4745 | operands.emplace_back([=](IterSpace iters) { |
4746 | return builder.createBox(loc, lambda(iters)); |
4747 | }); |
4748 | } break; |
4749 | case fir::LowerIntrinsicArgAs::Inquired: |
4750 | TODO(loc, "intrinsic function with inquired argument"); |
4751 | break; |
4752 | } |
4753 | } |
4754 | } |
4755 | |
4756 | // Let the intrinsic library lower the intrinsic procedure call |
4757 | return [=](IterSpace iters) { |
4758 | llvm::SmallVector<ExtValue> args; |
4759 | for (const auto &cc : operands) |
4760 | args.push_back(cc(iters)); |
4761 | return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args, |
4762 | getElementCtx()); |
4763 | }; |
4764 | } |
4765 | |
4766 | /// Lower a procedure reference to a user-defined elemental procedure. |
4767 | CC genElementalUserDefinedProcRef( |
4768 | const Fortran::evaluate::ProcedureRef &procRef, |
4769 | std::optional<mlir::Type> retTy) { |
4770 | using PassBy = Fortran::lower::CallerInterface::PassEntityBy; |
4771 | |
4772 | // 10.1.4 p5. Impure elemental procedures must be called in element order. |
4773 | if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol()) |
4774 | if (!Fortran::semantics::IsPureProcedure(*procSym)) |
4775 | setUnordered(false); |
4776 | |
4777 | Fortran::lower::CallerInterface caller(procRef, converter); |
4778 | llvm::SmallVector<CC> operands; |
4779 | operands.reserve(caller.getPassedArguments().size()); |
4780 | mlir::Location loc = getLoc(); |
4781 | mlir::FunctionType callSiteType = caller.genFunctionType(); |
4782 | for (const Fortran::lower::CallInterface< |
4783 | Fortran::lower::CallerInterface>::PassedEntity &arg : |
4784 | caller.getPassedArguments()) { |
4785 | // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout) |
4786 | // arguments must be called in element order. |
4787 | if (arg.mayBeModifiedByCall()) |
4788 | setUnordered(false); |
4789 | const auto *actual = arg.entity; |
4790 | mlir::Type argTy = callSiteType.getInput(arg.firArgument); |
4791 | if (!actual) { |
4792 | // Optional dummy argument for which there is no actual argument. |
4793 | auto absent = builder.create<fir::AbsentOp>(loc, argTy); |
4794 | operands.emplace_back([=](IterSpace) { return absent; }); |
4795 | continue; |
4796 | } |
4797 | const auto *expr = actual->UnwrapExpr(); |
4798 | if (!expr) |
4799 | TODO(loc, "assumed type actual argument"); |
4800 | |
4801 | LLVM_DEBUG(expr->AsFortran(llvm::dbgs() |
4802 | << "argument: "<< arg.firArgument << " = [") |
4803 | << "]\n"); |
4804 | if (arg.isOptional() && |
4805 | Fortran::evaluate::MayBePassedAsAbsentOptional(*expr)) |
4806 | TODO(loc, |
4807 | "passing dynamically optional argument to elemental procedures"); |
4808 | switch (arg.passBy) { |
4809 | case PassBy::Value: { |
4810 | // True pass-by-value semantics. |
4811 | PushSemantics(ConstituentSemantics::RefTransparent); |
4812 | operands.emplace_back(genElementalArgument(*expr)); |
4813 | } break; |
4814 | case PassBy::BaseAddressValueAttribute: { |
4815 | // VALUE attribute or pass-by-reference to a copy semantics. (byval*) |
4816 | if (isArray(*expr)) { |
4817 | PushSemantics(ConstituentSemantics::ByValueArg); |
4818 | operands.emplace_back(genElementalArgument(*expr)); |
4819 | } else { |
4820 | // Store scalar value in a temp to fulfill VALUE attribute. |
4821 | mlir::Value val = fir::getBase(asScalar(*expr)); |
4822 | mlir::Value temp = |
4823 | builder.createTemporary(loc, val.getType(), |
4824 | llvm::ArrayRef<mlir::NamedAttribute>{ |
4825 | fir::getAdaptToByRefAttr(builder)}); |
4826 | builder.create<fir::StoreOp>(loc, val, temp); |
4827 | operands.emplace_back( |
4828 | [=](IterSpace iters) -> ExtValue { return temp; }); |
4829 | } |
4830 | } break; |
4831 | case PassBy::BaseAddress: { |
4832 | if (isArray(*expr)) { |
4833 | PushSemantics(ConstituentSemantics::RefOpaque); |
4834 | operands.emplace_back(genElementalArgument(*expr)); |
4835 | } else { |
4836 | ExtValue exv = asScalarRef(*expr); |
4837 | operands.emplace_back([=](IterSpace iters) { return exv; }); |
4838 | } |
4839 | } break; |
4840 | case PassBy::CharBoxValueAttribute: { |
4841 | if (isArray(*expr)) { |
4842 | PushSemantics(ConstituentSemantics::DataValue); |
4843 | auto lambda = genElementalArgument(*expr); |
4844 | operands.emplace_back([=](IterSpace iters) { |
4845 | return fir::factory::CharacterExprHelper{builder, loc} |
4846 | .createTempFrom(lambda(iters)); |
4847 | }); |
4848 | } else { |
4849 | fir::factory::CharacterExprHelper helper(builder, loc); |
4850 | fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr)); |
4851 | operands.emplace_back( |
4852 | [=](IterSpace iters) -> ExtValue { return argVal; }); |
4853 | } |
4854 | } break; |
4855 | case PassBy::BoxChar: { |
4856 | PushSemantics(ConstituentSemantics::RefOpaque); |
4857 | operands.emplace_back(genElementalArgument(*expr)); |
4858 | } break; |
4859 | case PassBy::AddressAndLength: |
4860 | // PassBy::AddressAndLength is only used for character results. Results |
4861 | // are not handled here. |
4862 | fir::emitFatalError( |
4863 | loc, "unexpected PassBy::AddressAndLength in elemental call"); |
4864 | break; |
4865 | case PassBy::CharProcTuple: { |
4866 | ExtValue argRef = asScalarRef(*expr); |
4867 | mlir::Value tuple = createBoxProcCharTuple( |
4868 | converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); |
4869 | operands.emplace_back( |
4870 | [=](IterSpace iters) -> ExtValue { return tuple; }); |
4871 | } break; |
4872 | case PassBy::Box: |
4873 | case PassBy::MutableBox: |
4874 | // Handle polymorphic passed object. |
4875 | if (fir::isPolymorphicType(argTy)) { |
4876 | if (isArray(*expr)) { |
4877 | ExtValue exv = asScalarRef(*expr); |
4878 | mlir::Value sourceBox; |
4879 | if (fir::isPolymorphicType(fir::getBase(exv).getType())) |
4880 | sourceBox = fir::getBase(exv); |
4881 | mlir::Type baseTy = |
4882 | fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(exv).getType()); |
4883 | mlir::Type innerTy = fir::unwrapSequenceType(baseTy); |
4884 | operands.emplace_back([=](IterSpace iters) -> ExtValue { |
4885 | mlir::Value coord = builder.create<fir::CoordinateOp>( |
4886 | loc, fir::ReferenceType::get(innerTy), fir::getBase(exv), |
4887 | iters.iterVec()); |
4888 | mlir::Value empty; |
4889 | mlir::ValueRange emptyRange; |
4890 | return builder.create<fir::EmboxOp>( |
4891 | loc, fir::ClassType::get(innerTy), coord, empty, empty, |
4892 | emptyRange, sourceBox); |
4893 | }); |
4894 | } else { |
4895 | ExtValue exv = asScalarRef(*expr); |
4896 | if (mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType())) { |
4897 | operands.emplace_back( |
4898 | [=](IterSpace iters) -> ExtValue { return exv; }); |
4899 | } else { |
4900 | mlir::Type baseTy = |
4901 | fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(exv).getType()); |
4902 | operands.emplace_back([=](IterSpace iters) -> ExtValue { |
4903 | mlir::Value empty; |
4904 | mlir::ValueRange emptyRange; |
4905 | return builder.create<fir::EmboxOp>( |
4906 | loc, fir::ClassType::get(baseTy), fir::getBase(exv), empty, |
4907 | empty, emptyRange); |
4908 | }); |
4909 | } |
4910 | } |
4911 | break; |
4912 | } |
4913 | // See C15100 and C15101 |
4914 | fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE"); |
4915 | case PassBy::BoxProcRef: |
4916 | // Procedure pointer: no action here. |
4917 | break; |
4918 | } |
4919 | } |
4920 | |
4921 | if (caller.getIfIndirectCall()) |
4922 | fir::emitFatalError(loc, "cannot be indirect call"); |
4923 | |
4924 | // The lambda is mutable so that `caller` copy can be modified inside it. |
4925 | return [=, |
4926 | caller = std::move(caller)](IterSpace iters) mutable -> ExtValue { |
4927 | for (const auto &[cc, argIface] : |
4928 | llvm::zip(operands, caller.getPassedArguments())) { |
4929 | auto exv = cc(iters); |
4930 | auto arg = exv.match( |
4931 | [&](const fir::CharBoxValue &cb) -> mlir::Value { |
4932 | return fir::factory::CharacterExprHelper{builder, loc} |
4933 | .createEmbox(cb); |
4934 | }, |
4935 | [&](const auto &) { return fir::getBase(exv); }); |
4936 | caller.placeInput(argIface, arg); |
4937 | } |
4938 | Fortran::lower::LoweredResult res = |
4939 | Fortran::lower::genCallOpAndResult(loc, converter, symMap, |
4940 | getElementCtx(), caller, |
4941 | callSiteType, retTy) |
4942 | .first; |
4943 | return std::get<ExtValue>(res); |
4944 | }; |
4945 | } |
4946 | |
4947 | /// Lower TRANSPOSE call without using runtime TRANSPOSE. |
4948 | /// Return continuation for generating the TRANSPOSE result. |
4949 | /// The continuation just swaps the iteration space before |
4950 | /// invoking continuation for the argument. |
4951 | CC genTransposeProcRef(const Fortran::evaluate::ProcedureRef &procRef) { |
4952 | assert(procRef.arguments().size() == 1 && |
4953 | "TRANSPOSE must have one argument."); |
4954 | const auto *argExpr = procRef.arguments()[0].value().UnwrapExpr(); |
4955 | assert(argExpr); |
4956 | |
4957 | llvm::SmallVector<mlir::Value> savedDestShape = destShape; |
4958 | assert((destShape.empty() || destShape.size() == 2) && |
4959 | "TRANSPOSE destination must have rank 2."); |
4960 | |
4961 | if (!savedDestShape.empty()) |
4962 | std::swap(destShape[0], destShape[1]); |
4963 | |
4964 | PushSemantics(ConstituentSemantics::RefTransparent); |
4965 | llvm::SmallVector<CC> operands{genElementalArgument(*argExpr)}; |
4966 | |
4967 | if (!savedDestShape.empty()) { |
4968 | // If destShape was set before transpose lowering, then |
4969 | // restore it. Otherwise, ... |
4970 | destShape = savedDestShape; |
4971 | } else if (!destShape.empty()) { |
4972 | // ... if destShape has been set from the argument lowering, |
4973 | // then reverse it. |
4974 | assert(destShape.size() == 2 && |
4975 | "TRANSPOSE destination must have rank 2."); |
4976 | std::swap(destShape[0], destShape[1]); |
4977 | } |
4978 | |
4979 | return [=](IterSpace iters) { |
4980 | assert(iters.iterVec().size() == 2 && |
4981 | "TRANSPOSE expects 2D iterations space."); |
4982 | IterationSpace newIters(iters, {iters.iterValue(1), iters.iterValue(0)}); |
4983 | return operands.front()(newIters); |
4984 | }; |
4985 | } |
4986 | |
4987 | /// Generate a procedure reference. This code is shared for both functions and |
4988 | /// subroutines, the difference being reflected by `retTy`. |
4989 | CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef, |
4990 | std::optional<mlir::Type> retTy) { |
4991 | mlir::Location loc = getLoc(); |
4992 | setLoweredProcRef(&procRef); |
4993 | |
4994 | if (isOptimizableTranspose(procRef, converter)) |
4995 | return genTransposeProcRef(procRef); |
4996 | |
4997 | if (procRef.IsElemental()) { |
4998 | if (const Fortran::evaluate::SpecificIntrinsic *intrin = |
4999 | procRef.proc().GetSpecificIntrinsic()) { |
5000 | // All elemental intrinsic functions are pure and cannot modify their |
5001 | // arguments. The only elemental subroutine, MVBITS has an Intent(inout) |
5002 | // argument. So for this last one, loops must be in element order |
5003 | // according to 15.8.3 p1. |
5004 | if (!retTy) |
5005 | setUnordered(false); |
5006 | |
5007 | // Elemental intrinsic call. |
5008 | // The intrinsic procedure is called once per element of the array. |
5009 | return genElementalIntrinsicProcRef(procRef, retTy, *intrin); |
5010 | } |
5011 | if (Fortran::lower::isIntrinsicModuleProcRef(procRef)) |
5012 | return genElementalIntrinsicProcRef(procRef, retTy); |
5013 | if (ScalarExprLowering::isStatementFunctionCall(procRef)) |
5014 | fir::emitFatalError(loc, "statement function cannot be elemental"); |
5015 | |
5016 | // Elemental call. |
5017 | // The procedure is called once per element of the array argument(s). |
5018 | return genElementalUserDefinedProcRef(procRef, retTy); |
5019 | } |
5020 | |
5021 | // Transformational call. |
5022 | // The procedure is called once and produces a value of rank > 0. |
5023 | if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = |
5024 | procRef.proc().GetSpecificIntrinsic()) { |
5025 | if (explicitSpaceIsActive() && procRef.Rank() == 0) { |
5026 | // Elide any implicit loop iters. |
5027 | return [=, &procRef](IterSpace) { |
5028 | return ScalarExprLowering{loc, converter, symMap, stmtCtx} |
5029 | .genIntrinsicRef(procRef, retTy, *intrinsic); |
5030 | }; |
5031 | } |
5032 | return genarr( |
5033 | ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef( |
5034 | procRef, retTy, *intrinsic)); |
5035 | } |
5036 | |
5037 | const bool isPtrAssn = isPointerAssignment(); |
5038 | if (explicitSpaceIsActive() && procRef.Rank() == 0) { |
5039 | // Elide any implicit loop iters. |
5040 | return [=, &procRef](IterSpace) { |
5041 | ScalarExprLowering sel(loc, converter, symMap, stmtCtx); |
5042 | return isPtrAssn ? sel.genRawProcedureRef(procRef, retTy) |
5043 | : sel.genProcedureRef(procRef, retTy); |
5044 | }; |
5045 | } |
5046 | // In the default case, the call can be hoisted out of the loop nest. Apply |
5047 | // the iterations to the result, which may be an array value. |
5048 | ScalarExprLowering sel(loc, converter, symMap, stmtCtx); |
5049 | auto exv = isPtrAssn ? sel.genRawProcedureRef(procRef, retTy) |
5050 | : sel.genProcedureRef(procRef, retTy); |
5051 | return genarr(exv); |
5052 | } |
5053 | |
5054 | CC genarr(const Fortran::evaluate::ProcedureDesignator &) { |
5055 | TODO(getLoc(), "procedure designator"); |
5056 | } |
5057 | CC genarr(const Fortran::evaluate::ProcedureRef &x) { |
5058 | if (x.hasAlternateReturns()) |
5059 | fir::emitFatalError(getLoc(), |
5060 | "array procedure reference with alt-return"); |
5061 | return genProcRef(x, std::nullopt); |
5062 | } |
5063 | template <typename A> |
5064 | CC genScalarAndForwardValue(const A &x) { |
5065 | ExtValue result = asScalar(x); |
5066 | return [=](IterSpace) { return result; }; |
5067 | } |
5068 | template <typename A, typename = std::enable_if_t<Fortran::common::HasMember< |
5069 | A, Fortran::evaluate::TypelessExpression>>> |
5070 | CC genarr(const A &x) { |
5071 | return genScalarAndForwardValue(x); |
5072 | } |
5073 | |
5074 | template <typename A> |
5075 | CC genarr(const Fortran::evaluate::Expr<A> &x) { |
5076 | LLVM_DEBUG(Fortran::semantics::DumpEvaluateExpr::Dump(llvm::dbgs(), x)); |
5077 | if (isArray(x) || (explicitSpaceIsActive() && isLeftHandSide()) || |
5078 | isElementalProcWithArrayArgs(x)) |
5079 | return Fortran::common::visit([&](const auto &e) { return genarr(e); }, |
5080 | x.u); |
5081 | if (explicitSpaceIsActive()) { |
5082 | assert(!isArray(x) && !isLeftHandSide()); |
5083 | auto cc = |
5084 | Fortran::common::visit([&](const auto &e) { return genarr(e); }, x.u); |
5085 | auto result = cc(IterationSpace{}); |
5086 | return [=](IterSpace) { return result; }; |
5087 | } |
5088 | return genScalarAndForwardValue(x); |
5089 | } |
5090 | |
5091 | // Converting a value of memory bound type requires creating a temp and |
5092 | // copying the value. |
5093 | static ExtValue convertAdjustedType(fir::FirOpBuilder &builder, |
5094 | mlir::Location loc, mlir::Type toType, |
5095 | const ExtValue &exv) { |
5096 | return exv.match( |
5097 | [&](const fir::CharBoxValue &cb) -> ExtValue { |
5098 | mlir::Value len = cb.getLen(); |
5099 | auto mem = |
5100 | builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len}); |
5101 | fir::CharBoxValue result(mem, len); |
5102 | fir::factory::CharacterExprHelper{builder, loc}.createAssign( |
5103 | ExtValue{result}, exv); |
5104 | return result; |
5105 | }, |
5106 | [&](const auto &) -> ExtValue { |
5107 | fir::emitFatalError(loc, "convert on adjusted extended value"); |
5108 | }); |
5109 | } |
5110 | template <Fortran::common::TypeCategory TC1, int KIND, |
5111 | Fortran::common::TypeCategory TC2> |
5112 | CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, |
5113 | TC2> &x) { |
5114 | mlir::Location loc = getLoc(); |
5115 | auto lambda = genarr(x.left()); |
5116 | mlir::Type ty = converter.genType(TC1, KIND); |
5117 | return [=](IterSpace iters) -> ExtValue { |
5118 | auto exv = lambda(iters); |
5119 | mlir::Value val = fir::getBase(exv); |
5120 | auto valTy = val.getType(); |
5121 | if (elementTypeWasAdjusted(valTy) && |
5122 | !(fir::isa_ref_type(valTy) && fir::isa_integer(ty))) |
5123 | return convertAdjustedType(builder, loc, ty, exv); |
5124 | return builder.createConvert(loc, ty, val); |
5125 | }; |
5126 | } |
5127 | |
5128 | template <int KIND> |
5129 | CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) { |
5130 | mlir::Location loc = getLoc(); |
5131 | auto lambda = genarr(x.left()); |
5132 | bool isImagPart = x.isImaginaryPart; |
5133 | return [=](IterSpace iters) -> ExtValue { |
5134 | mlir::Value lhs = fir::getBase(lambda(iters)); |
5135 | return fir::factory::Complex{builder, loc}.extractComplexPart(lhs, |
5136 | isImagPart); |
5137 | }; |
5138 | } |
5139 | |
5140 | template <typename T> |
5141 | CC genarr(const Fortran::evaluate::Parentheses<T> &x) { |
5142 | mlir::Location loc = getLoc(); |
5143 | if (isReferentiallyOpaque()) { |
5144 | // Context is a call argument in, for example, an elemental procedure |
5145 | // call. TODO: all array arguments should use array_load, array_access, |
5146 | // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have |
5147 | // array_merge_store ops. |
5148 | TODO(loc, "parentheses on argument in elemental call"); |
5149 | } |
5150 | auto f = genarr(x.left()); |
5151 | return [=](IterSpace iters) -> ExtValue { |
5152 | auto val = f(iters); |
5153 | mlir::Value base = fir::getBase(val); |
5154 | auto newBase = |
5155 | builder.create<fir::NoReassocOp>(loc, base.getType(), base); |
5156 | return fir::substBase(val, newBase); |
5157 | }; |
5158 | } |
5159 | template <Fortran::common::TypeCategory CAT, int KIND> |
5160 | CC genarrIntNeg( |
5161 | const Fortran::evaluate::Expr<Fortran::evaluate::Type<CAT, KIND>> &left) { |
5162 | mlir::Location loc = getLoc(); |
5163 | auto f = genarr(left); |
5164 | return [=](IterSpace iters) -> ExtValue { |
5165 | mlir::Value val = fir::getBase(f(iters)); |
5166 | mlir::Type ty = |
5167 | converter.genType(Fortran::common::TypeCategory::Integer, KIND); |
5168 | mlir::Value zero = builder.createIntegerConstant(loc, ty, 0); |
5169 | if constexpr (CAT == Fortran::common::TypeCategory::Unsigned) { |
5170 | mlir::Value signless = builder.createConvert(loc, ty, val); |
5171 | mlir::Value neg = |
5172 | builder.create<mlir::arith::SubIOp>(loc, zero, signless); |
5173 | return builder.createConvert(loc, val.getType(), neg); |
5174 | } |
5175 | return builder.create<mlir::arith::SubIOp>(loc, zero, val); |
5176 | }; |
5177 | } |
5178 | template <int KIND> |
5179 | CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
5180 | Fortran::common::TypeCategory::Integer, KIND>> &x) { |
5181 | return genarrIntNeg(x.left()); |
5182 | } |
5183 | template <int KIND> |
5184 | CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
5185 | Fortran::common::TypeCategory::Unsigned, KIND>> &x) { |
5186 | return genarrIntNeg(x.left()); |
5187 | } |
5188 | template <int KIND> |
5189 | CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
5190 | Fortran::common::TypeCategory::Real, KIND>> &x) { |
5191 | mlir::Location loc = getLoc(); |
5192 | auto f = genarr(x.left()); |
5193 | return [=](IterSpace iters) -> ExtValue { |
5194 | return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters))); |
5195 | }; |
5196 | } |
5197 | template <int KIND> |
5198 | CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
5199 | Fortran::common::TypeCategory::Complex, KIND>> &x) { |
5200 | mlir::Location loc = getLoc(); |
5201 | auto f = genarr(x.left()); |
5202 | return [=](IterSpace iters) -> ExtValue { |
5203 | return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters))); |
5204 | }; |
5205 | } |
5206 | |
5207 | //===--------------------------------------------------------------------===// |
5208 | // Binary elemental ops |
5209 | //===--------------------------------------------------------------------===// |
5210 | |
5211 | template <typename OP, typename A> |
5212 | CC createBinaryOp(const A &evEx) { |
5213 | mlir::Location loc = getLoc(); |
5214 | auto lambda = genarr(evEx.left()); |
5215 | auto rf = genarr(evEx.right()); |
5216 | return [=](IterSpace iters) -> ExtValue { |
5217 | mlir::Value left = fir::getBase(lambda(iters)); |
5218 | mlir::Value right = fir::getBase(rf(iters)); |
5219 | assert(left.getType() == right.getType() && "types must be the same"); |
5220 | return builder.createUnsigned<OP>(loc, left.getType(), left, right); |
5221 | }; |
5222 | } |
5223 | |
5224 | #undef GENBIN |
5225 | #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ |
5226 | template <int KIND> \ |
5227 | CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ |
5228 | Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ |
5229 | return createBinaryOp<GenBinFirOp>(x); \ |
5230 | } |
5231 | |
5232 | GENBIN(Add, Integer, mlir::arith::AddIOp) |
5233 | GENBIN(Add, Unsigned, mlir::arith::AddIOp) |
5234 | GENBIN(Add, Real, mlir::arith::AddFOp) |
5235 | GENBIN(Add, Complex, fir::AddcOp) |
5236 | GENBIN(Subtract, Integer, mlir::arith::SubIOp) |
5237 | GENBIN(Subtract, Unsigned, mlir::arith::SubIOp) |
5238 | GENBIN(Subtract, Real, mlir::arith::SubFOp) |
5239 | GENBIN(Subtract, Complex, fir::SubcOp) |
5240 | GENBIN(Multiply, Integer, mlir::arith::MulIOp) |
5241 | GENBIN(Multiply, Unsigned, mlir::arith::MulIOp) |
5242 | GENBIN(Multiply, Real, mlir::arith::MulFOp) |
5243 | GENBIN(Multiply, Complex, fir::MulcOp) |
5244 | GENBIN(Divide, Integer, mlir::arith::DivSIOp) |
5245 | GENBIN(Divide, Unsigned, mlir::arith::DivUIOp) |
5246 | GENBIN(Divide, Real, mlir::arith::DivFOp) |
5247 | |
5248 | template <int KIND> |
5249 | CC genarr(const Fortran::evaluate::Divide<Fortran::evaluate::Type< |
5250 | Fortran::common::TypeCategory::Complex, KIND>> &x) { |
5251 | mlir::Location loc = getLoc(); |
5252 | mlir::Type ty = |
5253 | converter.genType(Fortran::common::TypeCategory::Complex, KIND); |
5254 | auto lf = genarr(x.left()); |
5255 | auto rf = genarr(x.right()); |
5256 | return [=](IterSpace iters) -> ExtValue { |
5257 | mlir::Value lhs = fir::getBase(lf(iters)); |
5258 | mlir::Value rhs = fir::getBase(rf(iters)); |
5259 | return fir::genDivC(builder, loc, ty, lhs, rhs); |
5260 | }; |
5261 | } |
5262 | |
5263 | template <Fortran::common::TypeCategory TC, int KIND> |
5264 | CC genarr( |
5265 | const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) { |
5266 | mlir::Location loc = getLoc(); |
5267 | mlir::Type ty = converter.genType(TC, KIND); |
5268 | auto lf = genarr(x.left()); |
5269 | auto rf = genarr(x.right()); |
5270 | return [=](IterSpace iters) -> ExtValue { |
5271 | mlir::Value lhs = fir::getBase(lf(iters)); |
5272 | mlir::Value rhs = fir::getBase(rf(iters)); |
5273 | return fir::genPow(builder, loc, ty, lhs, rhs); |
5274 | }; |
5275 | } |
5276 | template <Fortran::common::TypeCategory TC, int KIND> |
5277 | CC genarr( |
5278 | const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) { |
5279 | mlir::Location loc = getLoc(); |
5280 | auto lf = genarr(x.left()); |
5281 | auto rf = genarr(x.right()); |
5282 | switch (x.ordering) { |
5283 | case Fortran::evaluate::Ordering::Greater: |
5284 | return [=](IterSpace iters) -> ExtValue { |
5285 | mlir::Value lhs = fir::getBase(lf(iters)); |
5286 | mlir::Value rhs = fir::getBase(rf(iters)); |
5287 | return fir::genMax(builder, loc, llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
5288 | }; |
5289 | case Fortran::evaluate::Ordering::Less: |
5290 | return [=](IterSpace iters) -> ExtValue { |
5291 | mlir::Value lhs = fir::getBase(lf(iters)); |
5292 | mlir::Value rhs = fir::getBase(rf(iters)); |
5293 | return fir::genMin(builder, loc, llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
5294 | }; |
5295 | case Fortran::evaluate::Ordering::Equal: |
5296 | llvm_unreachable("Equal is not a valid ordering in this context"); |
5297 | } |
5298 | llvm_unreachable("unknown ordering"); |
5299 | } |
5300 | template <Fortran::common::TypeCategory TC, int KIND> |
5301 | CC genarr( |
5302 | const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> |
5303 | &x) { |
5304 | mlir::Location loc = getLoc(); |
5305 | auto ty = converter.genType(TC, KIND); |
5306 | auto lf = genarr(x.left()); |
5307 | auto rf = genarr(x.right()); |
5308 | return [=](IterSpace iters) { |
5309 | mlir::Value lhs = fir::getBase(lf(iters)); |
5310 | mlir::Value rhs = fir::getBase(rf(iters)); |
5311 | return fir::genPow(builder, loc, ty, lhs, rhs); |
5312 | }; |
5313 | } |
5314 | template <int KIND> |
5315 | CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) { |
5316 | mlir::Location loc = getLoc(); |
5317 | auto lf = genarr(x.left()); |
5318 | auto rf = genarr(x.right()); |
5319 | return [=](IterSpace iters) -> ExtValue { |
5320 | mlir::Value lhs = fir::getBase(lf(iters)); |
5321 | mlir::Value rhs = fir::getBase(rf(iters)); |
5322 | return fir::factory::Complex{builder, loc}.createComplex(lhs, rhs); |
5323 | }; |
5324 | } |
5325 | |
5326 | /// Fortran's concatenation operator `//`. |
5327 | template <int KIND> |
5328 | CC genarr(const Fortran::evaluate::Concat<KIND> &x) { |
5329 | mlir::Location loc = getLoc(); |
5330 | auto lf = genarr(x.left()); |
5331 | auto rf = genarr(x.right()); |
5332 | return [=](IterSpace iters) -> ExtValue { |
5333 | auto lhs = lf(iters); |
5334 | auto rhs = rf(iters); |
5335 | const fir::CharBoxValue *lchr = lhs.getCharBox(); |
5336 | const fir::CharBoxValue *rchr = rhs.getCharBox(); |
5337 | if (lchr && rchr) { |
5338 | return fir::factory::CharacterExprHelper{builder, loc} |
5339 | .createConcatenate(*lchr, *rchr); |
5340 | } |
5341 | TODO(loc, "concat on unexpected extended values"); |
5342 | return mlir::Value{}; |
5343 | }; |
5344 | } |
5345 | |
5346 | template <int KIND> |
5347 | CC genarr(const Fortran::evaluate::SetLength<KIND> &x) { |
5348 | auto lf = genarr(x.left()); |
5349 | mlir::Value rhs = fir::getBase(asScalar(x.right())); |
5350 | fir::CharBoxValue temp = |
5351 | fir::factory::CharacterExprHelper(builder, getLoc()) |
5352 | .createCharacterTemp( |
5353 | fir::CharacterType::getUnknownLen(builder.getContext(), KIND), |
5354 | rhs); |
5355 | return [=](IterSpace iters) -> ExtValue { |
5356 | fir::factory::CharacterExprHelper(builder, getLoc()) |
5357 | .createAssign(temp, lf(iters)); |
5358 | return temp; |
5359 | }; |
5360 | } |
5361 | |
5362 | template <typename T> |
5363 | CC genarr(const Fortran::evaluate::Constant<T> &x) { |
5364 | if (x.Rank() == 0) |
5365 | return genScalarAndForwardValue(x); |
5366 | return genarr(Fortran::lower::convertConstant( |
5367 | converter, getLoc(), x, |
5368 | /*outlineBigConstantsInReadOnlyMemory=*/true)); |
5369 | } |
5370 | |
5371 | //===--------------------------------------------------------------------===// |
5372 | // A vector subscript expression may be wrapped with a cast to INTEGER*8. |
5373 | // Get rid of it here so the vector can be loaded. Add it back when |
5374 | // generating the elemental evaluation (inside the loop nest). |
5375 | |
5376 | static Fortran::lower::SomeExpr |
5377 | ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type< |
5378 | Fortran::common::TypeCategory::Integer, 8>> &x) { |
5379 | return Fortran::common::visit( |
5380 | [&](const auto &v) { return ignoreEvConvert(v); }, x.u); |
5381 | } |
5382 | template <Fortran::common::TypeCategory FROM> |
5383 | static Fortran::lower::SomeExpr ignoreEvConvert( |
5384 | const Fortran::evaluate::Convert< |
5385 | Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>, |
5386 | FROM> &x) { |
5387 | return toEvExpr(x.left()); |
5388 | } |
5389 | template <typename A> |
5390 | static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) { |
5391 | return toEvExpr(x); |
5392 | } |
5393 | |
5394 | //===--------------------------------------------------------------------===// |
5395 | // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can |
5396 | // be used to determine the lbound, ubound of the vector. |
5397 | |
5398 | template <typename A> |
5399 | static const Fortran::semantics::Symbol * |
5400 | extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) { |
5401 | return Fortran::common::visit( |
5402 | [&](const auto &v) { return extractSubscriptSymbol(v); }, x.u); |
5403 | } |
5404 | template <typename A> |
5405 | static const Fortran::semantics::Symbol * |
5406 | extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) { |
5407 | return Fortran::evaluate::UnwrapWholeSymbolDataRef(x); |
5408 | } |
5409 | template <typename A> |
5410 | static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) { |
5411 | return nullptr; |
5412 | } |
5413 | |
5414 | //===--------------------------------------------------------------------===// |
5415 | |
5416 | /// Get the declared lower bound value of the array `x` in dimension `dim`. |
5417 | /// The argument `one` must be an ssa-value for the constant 1. |
5418 | mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) { |
5419 | return fir::factory::readLowerBound(builder, getLoc(), x, dim, one); |
5420 | } |
5421 | |
5422 | /// Get the declared upper bound value of the array `x` in dimension `dim`. |
5423 | /// The argument `one` must be an ssa-value for the constant 1. |
5424 | mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) { |
5425 | mlir::Location loc = getLoc(); |
5426 | mlir::Value lb = getLBound(x, dim, one); |
5427 | mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim); |
5428 | auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent); |
5429 | return builder.create<mlir::arith::SubIOp>(loc, add, one); |
5430 | } |
5431 | |
5432 | /// Return the extent of the boxed array `x` in dimesion `dim`. |
5433 | mlir::Value getExtent(const ExtValue &x, unsigned dim) { |
5434 | return fir::factory::readExtent(builder, getLoc(), x, dim); |
5435 | } |
5436 | |
5437 | template <typename A> |
5438 | ExtValue genArrayBase(const A &base) { |
5439 | ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx}; |
5440 | return base.IsSymbol() ? sel.gen(getFirstSym(base)) |
5441 | : sel.gen(base.GetComponent()); |
5442 | } |
5443 | |
5444 | template <typename A> |
5445 | bool hasEvArrayRef(const A &x) { |
5446 | struct HasEvArrayRefHelper |
5447 | : public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> { |
5448 | HasEvArrayRefHelper() |
5449 | : Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {} |
5450 | using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator(); |
5451 | bool operator()(const Fortran::evaluate::ArrayRef &) const { |
5452 | return true; |
5453 | } |
5454 | } helper; |
5455 | return helper(x); |
5456 | } |
5457 | |
5458 | CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr, |
5459 | std::size_t dim) { |
5460 | PushSemantics(ConstituentSemantics::RefTransparent); |
5461 | auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr); |
5462 | llvm::SmallVector<mlir::Value> savedDestShape = destShape; |
5463 | destShape.clear(); |
5464 | auto result = genarr(expr); |
5465 | if (destShape.empty()) |
5466 | TODO(getLoc(), "expected vector to have an extent"); |
5467 | assert(destShape.size() == 1 && "vector has rank > 1"); |
5468 | if (destShape[0] != savedDestShape[dim]) { |
5469 | // Not the same, so choose the smaller value. |
5470 | mlir::Location loc = getLoc(); |
5471 | auto cmp = builder.create<mlir::arith::CmpIOp>( |
5472 | loc, mlir::arith::CmpIPredicate::sgt, destShape[0], |
5473 | savedDestShape[dim]); |
5474 | auto sel = builder.create<mlir::arith::SelectOp>( |
5475 | loc, cmp, savedDestShape[dim], destShape[0]); |
5476 | savedDestShape[dim] = sel; |
5477 | destShape = savedDestShape; |
5478 | } |
5479 | return result; |
5480 | } |
5481 | |
5482 | /// Generate an access by vector subscript using the index in the iteration |
5483 | /// vector at `dim`. |
5484 | mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch, |
5485 | IterSpace iters, std::size_t dim) { |
5486 | IterationSpace vecIters(iters, |
5487 | llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)}); |
5488 | fir::ExtendedValue fetch = genArrFetch(vecIters); |
5489 | mlir::IndexType idxTy = builder.getIndexType(); |
5490 | return builder.createConvert(loc, idxTy, fir::getBase(fetch)); |
5491 | } |
5492 | |
5493 | /// When we have an array reference, the expressions specified in each |
5494 | /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple |
5495 | /// (loop-invarianet) scalar expressions. This returns the base entity, the |
5496 | /// resulting type, and a continuation to adjust the default iteration space. |
5497 | void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv, |
5498 | const Fortran::evaluate::ArrayRef &x, bool atBase) { |
5499 | mlir::Location loc = getLoc(); |
5500 | mlir::IndexType idxTy = builder.getIndexType(); |
5501 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
5502 | llvm::SmallVector<mlir::Value> &trips = cmptData.trips; |
5503 | LLVM_DEBUG(llvm::dbgs() << "array: "<< arrayExv << '\n'); |
5504 | auto &pc = cmptData.pc; |
5505 | const bool useTripsForSlice = !explicitSpaceIsActive(); |
5506 | const bool createDestShape = destShape.empty(); |
5507 | bool useSlice = false; |
5508 | std::size_t shapeIndex = 0; |
5509 | for (auto sub : llvm::enumerate(x.subscript())) { |
5510 | const std::size_t subsIndex = sub.index(); |
5511 | Fortran::common::visit( |
5512 | Fortran::common::visitors{ |
5513 | [&](const Fortran::evaluate::Triplet &t) { |
5514 | mlir::Value lowerBound; |
5515 | if (auto optLo = t.lower()) |
5516 | lowerBound = fir::getBase(asScalarArray(*optLo)); |
5517 | else |
5518 | lowerBound = getLBound(arrayExv, subsIndex, one); |
5519 | lowerBound = builder.createConvert(loc, idxTy, lowerBound); |
5520 | mlir::Value stride = fir::getBase(asScalarArray(t.stride())); |
5521 | stride = builder.createConvert(loc, idxTy, stride); |
5522 | if (useTripsForSlice || createDestShape) { |
5523 | // Generate a slice operation for the triplet. The first and |
5524 | // second position of the triplet may be omitted, and the |
5525 | // declared lbound and/or ubound expression values, |
5526 | // respectively, should be used instead. |
5527 | trips.push_back(lowerBound); |
5528 | mlir::Value upperBound; |
5529 | if (auto optUp = t.upper()) |
5530 | upperBound = fir::getBase(asScalarArray(*optUp)); |
5531 | else |
5532 | upperBound = getUBound(arrayExv, subsIndex, one); |
5533 | upperBound = builder.createConvert(loc, idxTy, upperBound); |
5534 | trips.push_back(upperBound); |
5535 | trips.push_back(stride); |
5536 | if (createDestShape) { |
5537 | auto extent = builder.genExtentFromTriplet( |
5538 | loc, lowerBound, upperBound, stride, idxTy); |
5539 | destShape.push_back(extent); |
5540 | } |
5541 | useSlice = true; |
5542 | } |
5543 | if (!useTripsForSlice) { |
5544 | auto currentPC = pc; |
5545 | pc = [=](IterSpace iters) { |
5546 | IterationSpace newIters = currentPC(iters); |
5547 | mlir::Value impliedIter = newIters.iterValue(subsIndex); |
5548 | // FIXME: must use the lower bound of this component. |
5549 | auto arrLowerBound = |
5550 | atBase ? getLBound(arrayExv, subsIndex, one) : one; |
5551 | auto initial = builder.create<mlir::arith::SubIOp>( |
5552 | loc, lowerBound, arrLowerBound); |
5553 | auto prod = builder.create<mlir::arith::MulIOp>( |
5554 | loc, impliedIter, stride); |
5555 | auto result = |
5556 | builder.create<mlir::arith::AddIOp>(loc, initial, prod); |
5557 | newIters.setIndexValue(subsIndex, result); |
5558 | return newIters; |
5559 | }; |
5560 | } |
5561 | shapeIndex++; |
5562 | }, |
5563 | [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) { |
5564 | const auto &e = ie.value(); // dereference |
5565 | if (isArray(e)) { |
5566 | // This is a vector subscript. Use the index values as read |
5567 | // from a vector to determine the temporary array value. |
5568 | // Note: 9.5.3.3.3(3) specifies undefined behavior for |
5569 | // multiple updates to any specific array element through a |
5570 | // vector subscript with replicated values. |
5571 | assert(!isBoxValue() && |
5572 | "fir.box cannot be created with vector subscripts"); |
5573 | // TODO: Avoid creating a new evaluate::Expr here |
5574 | auto arrExpr = ignoreEvConvert(e); |
5575 | if (createDestShape) { |
5576 | destShape.push_back(fir::factory::getExtentAtDimension( |
5577 | loc, builder, arrayExv, subsIndex)); |
5578 | } |
5579 | auto genArrFetch = |
5580 | genVectorSubscriptArrayFetch(arrExpr, shapeIndex); |
5581 | auto currentPC = pc; |
5582 | pc = [=](IterSpace iters) { |
5583 | IterationSpace newIters = currentPC(iters); |
5584 | auto val = genAccessByVector(loc, genArrFetch, newIters, |
5585 | subsIndex); |
5586 | // Value read from vector subscript array and normalized |
5587 | // using the base array's lower bound value. |
5588 | mlir::Value lb = fir::factory::readLowerBound( |
5589 | builder, loc, arrayExv, subsIndex, one); |
5590 | auto origin = builder.create<mlir::arith::SubIOp>( |
5591 | loc, idxTy, val, lb); |
5592 | newIters.setIndexValue(subsIndex, origin); |
5593 | return newIters; |
5594 | }; |
5595 | if (useTripsForSlice) { |
5596 | LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape = |
5597 | getShape(arrayOperands.back()); |
5598 | auto undef = builder.create<fir::UndefOp>(loc, idxTy); |
5599 | trips.push_back(undef); |
5600 | trips.push_back(undef); |
5601 | trips.push_back(undef); |
5602 | } |
5603 | shapeIndex++; |
5604 | } else { |
5605 | // This is a regular scalar subscript. |
5606 | if (useTripsForSlice) { |
5607 | // A regular scalar index, which does not yield an array |
5608 | // section. Use a degenerate slice operation |
5609 | // `(e:undef:undef)` in this dimension as a placeholder. |
5610 | // This does not necessarily change the rank of the original |
5611 | // array, so the iteration space must also be extended to |
5612 | // include this expression in this dimension to adjust to |
5613 | // the array's declared rank. |
5614 | mlir::Value v = fir::getBase(asScalarArray(e)); |
5615 | trips.push_back(v); |
5616 | auto undef = builder.create<fir::UndefOp>(loc, idxTy); |
5617 | trips.push_back(undef); |
5618 | trips.push_back(undef); |
5619 | auto currentPC = pc; |
5620 | // Cast `e` to index type. |
5621 | mlir::Value iv = builder.createConvert(loc, idxTy, v); |
5622 | // Normalize `e` by subtracting the declared lbound. |
5623 | mlir::Value lb = fir::factory::readLowerBound( |
5624 | builder, loc, arrayExv, subsIndex, one); |
5625 | mlir::Value ivAdj = |
5626 | builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb); |
5627 | // Add lbound adjusted value of `e` to the iteration vector |
5628 | // (except when creating a box because the iteration vector |
5629 | // is empty). |
5630 | if (!isBoxValue()) |
5631 | pc = [=](IterSpace iters) { |
5632 | IterationSpace newIters = currentPC(iters); |
5633 | newIters.insertIndexValue(subsIndex, ivAdj); |
5634 | return newIters; |
5635 | }; |
5636 | } else { |
5637 | auto currentPC = pc; |
5638 | mlir::Value newValue = fir::getBase(asScalarArray(e)); |
5639 | mlir::Value result = |
5640 | builder.createConvert(loc, idxTy, newValue); |
5641 | mlir::Value lb = fir::factory::readLowerBound( |
5642 | builder, loc, arrayExv, subsIndex, one); |
5643 | result = builder.create<mlir::arith::SubIOp>(loc, idxTy, |
5644 | result, lb); |
5645 | pc = [=](IterSpace iters) { |
5646 | IterationSpace newIters = currentPC(iters); |
5647 | newIters.insertIndexValue(subsIndex, result); |
5648 | return newIters; |
5649 | }; |
5650 | } |
5651 | } |
5652 | }}, |
5653 | sub.value().u); |
5654 | } |
5655 | if (!useSlice) |
5656 | trips.clear(); |
5657 | } |
5658 | |
5659 | static mlir::Type unwrapBoxEleTy(mlir::Type ty) { |
5660 | if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) |
5661 | return fir::unwrapRefType(boxTy.getEleTy()); |
5662 | return ty; |
5663 | } |
5664 | |
5665 | llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) { |
5666 | llvm::SmallVector<mlir::Value> result; |
5667 | ty = unwrapBoxEleTy(ty); |
5668 | mlir::Location loc = getLoc(); |
5669 | mlir::IndexType idxTy = builder.getIndexType(); |
5670 | auto seqType = mlir::cast<fir::SequenceType>(ty); |
5671 | for (auto extent : seqType.getShape()) { |
5672 | auto v = extent == fir::SequenceType::getUnknownExtent() |
5673 | ? builder.create<fir::UndefOp>(loc, idxTy).getResult() |
5674 | : builder.createIntegerConstant(loc, idxTy, extent); |
5675 | result.push_back(v); |
5676 | } |
5677 | return result; |
5678 | } |
5679 | |
5680 | CC genarr(const Fortran::semantics::SymbolRef &sym, |
5681 | ComponentPath &components) { |
5682 | return genarr(sym.get(), components); |
5683 | } |
5684 | |
5685 | ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) { |
5686 | return convertToArrayBoxValue(getLoc(), builder, val, len); |
5687 | } |
5688 | |
5689 | CC genarr(const ExtValue &extMemref) { |
5690 | ComponentPath dummy(/*isImplicit=*/true); |
5691 | return genarr(extMemref, dummy); |
5692 | } |
5693 | |
5694 | // If the slice values are given then use them. Otherwise, generate triples |
5695 | // that cover the entire shape specified by \p shapeVal. |
5696 | inline llvm::SmallVector<mlir::Value> |
5697 | padSlice(llvm::ArrayRef<mlir::Value> triples, mlir::Value shapeVal) { |
5698 | llvm::SmallVector<mlir::Value> result; |
5699 | mlir::Location loc = getLoc(); |
5700 | if (triples.size()) { |
5701 | result.assign(triples.begin(), triples.end()); |
5702 | } else { |
5703 | auto one = builder.createIntegerConstant(loc, builder.getIndexType(), 1); |
5704 | if (!shapeVal) { |
5705 | TODO(loc, "shape must be recovered from box"); |
5706 | } else if (auto shapeOp = mlir::dyn_cast_or_null<fir::ShapeOp>( |
5707 | shapeVal.getDefiningOp())) { |
5708 | for (auto ext : shapeOp.getExtents()) { |
5709 | result.push_back(one); |
5710 | result.push_back(ext); |
5711 | result.push_back(one); |
5712 | } |
5713 | } else if (auto shapeShift = mlir::dyn_cast_or_null<fir::ShapeShiftOp>( |
5714 | shapeVal.getDefiningOp())) { |
5715 | for (auto [lb, ext] : |
5716 | llvm::zip(shapeShift.getOrigins(), shapeShift.getExtents())) { |
5717 | result.push_back(lb); |
5718 | result.push_back(ext); |
5719 | result.push_back(one); |
5720 | } |
5721 | } else { |
5722 | TODO(loc, "shape must be recovered from box"); |
5723 | } |
5724 | } |
5725 | return result; |
5726 | } |
5727 | |
5728 | /// Base case of generating an array reference, |
5729 | CC genarr(const ExtValue &extMemref, ComponentPath &components, |
5730 | mlir::Value CrayPtr = nullptr) { |
5731 | mlir::Location loc = getLoc(); |
5732 | mlir::Value memref = fir::getBase(extMemref); |
5733 | mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType()); |
5734 | assert(mlir::isa<fir::SequenceType>(arrTy) && |
5735 | "memory ref must be an array"); |
5736 | mlir::Value shape = builder.createShape(loc, extMemref); |
5737 | mlir::Value slice; |
5738 | if (components.isSlice()) { |
5739 | if (isBoxValue() && components.substring) { |
5740 | // Append the substring operator to emboxing Op as it will become an |
5741 | // interior adjustment (add offset, adjust LEN) to the CHARACTER value |
5742 | // being referenced in the descriptor. |
5743 | llvm::SmallVector<mlir::Value> substringBounds; |
5744 | populateBounds(substringBounds, components.substring); |
5745 | // Convert to (offset, size) |
5746 | mlir::Type iTy = substringBounds[0].getType(); |
5747 | if (substringBounds.size() != 2) { |
5748 | fir::CharacterType charTy = |
5749 | fir::factory::CharacterExprHelper::getCharType(arrTy); |
5750 | if (charTy.hasConstantLen()) { |
5751 | mlir::IndexType idxTy = builder.getIndexType(); |
5752 | fir::CharacterType::LenType charLen = charTy.getLen(); |
5753 | mlir::Value lenValue = |
5754 | builder.createIntegerConstant(loc, idxTy, charLen); |
5755 | substringBounds.push_back(lenValue); |
5756 | } else { |
5757 | llvm::SmallVector<mlir::Value> typeparams = |
5758 | fir::getTypeParams(extMemref); |
5759 | substringBounds.push_back(typeparams.back()); |
5760 | } |
5761 | } |
5762 | // Convert the lower bound to 0-based substring. |
5763 | mlir::Value one = |
5764 | builder.createIntegerConstant(loc, substringBounds[0].getType(), 1); |
5765 | substringBounds[0] = |
5766 | builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one); |
5767 | // Convert the upper bound to a length. |
5768 | mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]); |
5769 | mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0); |
5770 | auto size = |
5771 | builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]); |
5772 | auto cmp = builder.create<mlir::arith::CmpIOp>( |
5773 | loc, mlir::arith::CmpIPredicate::sgt, size, zero); |
5774 | // size = MAX(upper - (lower - 1), 0) |
5775 | substringBounds[1] = |
5776 | builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero); |
5777 | slice = builder.create<fir::SliceOp>( |
5778 | loc, padSlice(components.trips, shape), components.suffixComponents, |
5779 | substringBounds); |
5780 | } else { |
5781 | slice = builder.createSlice(loc, extMemref, components.trips, |
5782 | components.suffixComponents); |
5783 | } |
5784 | if (components.hasComponents()) { |
5785 | auto seqTy = mlir::cast<fir::SequenceType>(arrTy); |
5786 | mlir::Type eleTy = |
5787 | fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents); |
5788 | if (!eleTy) |
5789 | fir::emitFatalError(loc, "slicing path is ill-formed"); |
5790 | // create the type of the projected array. |
5791 | arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy); |
5792 | LLVM_DEBUG(llvm::dbgs() |
5793 | << "type of array projection from component slicing: " |
5794 | << eleTy << ", "<< arrTy << '\n'); |
5795 | } |
5796 | } |
5797 | arrayOperands.push_back(ArrayOperand{memref, shape, slice}); |
5798 | if (destShape.empty()) |
5799 | destShape = getShape(arrayOperands.back()); |
5800 | if (isBoxValue()) { |
5801 | // Semantics are a reference to a boxed array. |
5802 | // This case just requires that an embox operation be created to box the |
5803 | // value. The value of the box is forwarded in the continuation. |
5804 | mlir::Type reduceTy = reduceRank(arrTy, slice); |
5805 | mlir::Type boxTy = fir::BoxType::get(reduceTy); |
5806 | if (mlir::isa<fir::ClassType>(memref.getType()) && |
5807 | !components.hasComponents()) |
5808 | boxTy = fir::ClassType::get(reduceTy); |
5809 | if (components.substring) { |
5810 | // Adjust char length to substring size. |
5811 | fir::CharacterType charTy = |
5812 | fir::factory::CharacterExprHelper::getCharType(reduceTy); |
5813 | auto seqTy = mlir::cast<fir::SequenceType>(reduceTy); |
5814 | // TODO: Use a constant for fir.char LEN if we can compute it. |
5815 | boxTy = fir::BoxType::get( |
5816 | fir::SequenceType::get(fir::CharacterType::getUnknownLen( |
5817 | builder.getContext(), charTy.getFKind()), |
5818 | seqTy.getDimension())); |
5819 | } |
5820 | llvm::SmallVector<mlir::Value> lbounds; |
5821 | llvm::SmallVector<mlir::Value> nonDeferredLenParams; |
5822 | if (!slice) { |
5823 | lbounds = |
5824 | fir::factory::getNonDefaultLowerBounds(builder, loc, extMemref); |
5825 | nonDeferredLenParams = fir::factory::getNonDeferredLenParams(extMemref); |
5826 | } |
5827 | mlir::Value embox = |
5828 | mlir::isa<fir::BaseBoxType>(memref.getType()) |
5829 | ? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice) |
5830 | .getResult() |
5831 | : builder |
5832 | .create<fir::EmboxOp>(loc, boxTy, memref, shape, slice, |
5833 | fir::getTypeParams(extMemref)) |
5834 | .getResult(); |
5835 | return [=](IterSpace) -> ExtValue { |
5836 | return fir::BoxValue(embox, lbounds, nonDeferredLenParams); |
5837 | }; |
5838 | } |
5839 | auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
5840 | if (isReferentiallyOpaque()) { |
5841 | // Semantics are an opaque reference to an array. |
5842 | // This case forwards a continuation that will generate the address |
5843 | // arithmetic to the array element. This does not have copy-in/copy-out |
5844 | // semantics. No attempt to copy the array value will be made during the |
5845 | // interpretation of the Fortran statement. |
5846 | mlir::Type refEleTy = builder.getRefType(eleTy); |
5847 | return [=](IterSpace iters) -> ExtValue { |
5848 | // ArrayCoorOp does not expect zero based indices. |
5849 | llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( |
5850 | loc, builder, memref.getType(), shape, iters.iterVec()); |
5851 | mlir::Value coor = builder.create<fir::ArrayCoorOp>( |
5852 | loc, refEleTy, memref, shape, slice, indices, |
5853 | fir::getTypeParams(extMemref)); |
5854 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
5855 | llvm::SmallVector<mlir::Value> substringBounds; |
5856 | populateBounds(substringBounds, components.substring); |
5857 | if (!substringBounds.empty()) { |
5858 | mlir::Value dstLen = fir::factory::genLenOfCharacter( |
5859 | builder, loc, mlir::cast<fir::SequenceType>(arrTy), memref, |
5860 | fir::getTypeParams(extMemref), iters.iterVec(), |
5861 | substringBounds); |
5862 | fir::CharBoxValue dstChar(coor, dstLen); |
5863 | return fir::factory::CharacterExprHelper{builder, loc} |
5864 | .createSubstring(dstChar, substringBounds); |
5865 | } |
5866 | } |
5867 | return fir::factory::arraySectionElementToExtendedValue( |
5868 | builder, loc, extMemref, coor, slice); |
5869 | }; |
5870 | } |
5871 | auto arrLoad = builder.create<fir::ArrayLoadOp>( |
5872 | loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref)); |
5873 | |
5874 | if (CrayPtr) { |
5875 | mlir::Type ptrTy = CrayPtr.getType(); |
5876 | mlir::Value cnvrt = Fortran::lower::addCrayPointerInst( |
5877 | loc, builder, CrayPtr, ptrTy, memref.getType()); |
5878 | auto addr = builder.create<fir::LoadOp>(loc, cnvrt); |
5879 | arrLoad = builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shape, slice, |
5880 | fir::getTypeParams(extMemref)); |
5881 | } |
5882 | |
5883 | mlir::Value arrLd = arrLoad.getResult(); |
5884 | if (isProjectedCopyInCopyOut()) { |
5885 | // Semantics are projected copy-in copy-out. |
5886 | // The backing store of the destination of an array expression may be |
5887 | // partially modified. These updates are recorded in FIR by forwarding a |
5888 | // continuation that generates an `array_update` Op. The destination is |
5889 | // always loaded at the beginning of the statement and merged at the |
5890 | // end. |
5891 | destination = arrLoad; |
5892 | auto lambda = ccStoreToDest |
5893 | ? *ccStoreToDest |
5894 | : defaultStoreToDestination(components.substring); |
5895 | return [=](IterSpace iters) -> ExtValue { return lambda(iters); }; |
5896 | } |
5897 | if (isCustomCopyInCopyOut()) { |
5898 | // Create an array_modify to get the LHS element address and indicate |
5899 | // the assignment, the actual assignment must be implemented in |
5900 | // ccStoreToDest. |
5901 | destination = arrLoad; |
5902 | return [=](IterSpace iters) -> ExtValue { |
5903 | mlir::Value innerArg = iters.innerArgument(); |
5904 | mlir::Type resTy = innerArg.getType(); |
5905 | mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec()); |
5906 | mlir::Type refEleTy = |
5907 | fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); |
5908 | auto arrModify = builder.create<fir::ArrayModifyOp>( |
5909 | loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(), |
5910 | destination.getTypeparams()); |
5911 | return abstractArrayExtValue(arrModify.getResult(1)); |
5912 | }; |
5913 | } |
5914 | if (isCopyInCopyOut()) { |
5915 | // Semantics are copy-in copy-out. |
5916 | // The continuation simply forwards the result of the `array_load` Op, |
5917 | // which is the value of the array as it was when loaded. All data |
5918 | // references with rank > 0 in an array expression typically have |
5919 | // copy-in copy-out semantics. |
5920 | return [=](IterSpace) -> ExtValue { return arrLd; }; |
5921 | } |
5922 | llvm::SmallVector<mlir::Value> arrLdTypeParams = |
5923 | fir::factory::getTypeParams(loc, builder, arrLoad); |
5924 | if (isValueAttribute()) { |
5925 | // Semantics are value attribute. |
5926 | // Here the continuation will `array_fetch` a value from an array and |
5927 | // then store that value in a temporary. One can thus imitate pass by |
5928 | // value even when the call is pass by reference. |
5929 | return [=](IterSpace iters) -> ExtValue { |
5930 | mlir::Value base; |
5931 | mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); |
5932 | if (isAdjustedArrayElementType(eleTy)) { |
5933 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
5934 | base = builder.create<fir::ArrayAccessOp>( |
5935 | loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); |
5936 | } else { |
5937 | base = builder.create<fir::ArrayFetchOp>( |
5938 | loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); |
5939 | } |
5940 | mlir::Value temp = |
5941 | builder.createTemporary(loc, base.getType(), |
5942 | llvm::ArrayRef<mlir::NamedAttribute>{ |
5943 | fir::getAdaptToByRefAttr(builder)}); |
5944 | builder.create<fir::StoreOp>(loc, base, temp); |
5945 | return fir::factory::arraySectionElementToExtendedValue( |
5946 | builder, loc, extMemref, temp, slice); |
5947 | }; |
5948 | } |
5949 | // In the default case, the array reference forwards an `array_fetch` or |
5950 | // `array_access` Op in the continuation. |
5951 | return [=](IterSpace iters) -> ExtValue { |
5952 | mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); |
5953 | if (isAdjustedArrayElementType(eleTy)) { |
5954 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
5955 | mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>( |
5956 | loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); |
5957 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
5958 | llvm::SmallVector<mlir::Value> substringBounds; |
5959 | populateBounds(substringBounds, components.substring); |
5960 | if (!substringBounds.empty()) { |
5961 | mlir::Value dstLen = fir::factory::genLenOfCharacter( |
5962 | builder, loc, arrLoad, iters.iterVec(), substringBounds); |
5963 | fir::CharBoxValue dstChar(arrayOp, dstLen); |
5964 | return fir::factory::CharacterExprHelper{builder, loc} |
5965 | .createSubstring(dstChar, substringBounds); |
5966 | } |
5967 | } |
5968 | return fir::factory::arraySectionElementToExtendedValue( |
5969 | builder, loc, extMemref, arrayOp, slice); |
5970 | } |
5971 | auto arrFetch = builder.create<fir::ArrayFetchOp>( |
5972 | loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); |
5973 | return fir::factory::arraySectionElementToExtendedValue( |
5974 | builder, loc, extMemref, arrFetch, slice); |
5975 | }; |
5976 | } |
5977 | |
5978 | std::tuple<CC, mlir::Value, mlir::Type> |
5979 | genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) { |
5980 | assert(expr.Rank() > 0 && "expr must be an array"); |
5981 | mlir::Location loc = getLoc(); |
5982 | ExtValue optionalArg = asInquired(expr); |
5983 | mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); |
5984 | // Generate an array load and access to an array that may be an absent |
5985 | // optional or an unallocated optional. |
5986 | mlir::Value base = getBase(optionalArg); |
5987 | const bool hasOptionalAttr = |
5988 | fir::valueHasFirAttribute(base, fir::getOptionalAttrName()); |
5989 | mlir::Type baseType = fir::unwrapRefType(base.getType()); |
5990 | const bool isBox = mlir::isa<fir::BoxType>(baseType); |
5991 | const bool isAllocOrPtr = |
5992 | Fortran::evaluate::IsAllocatableOrPointerObject(expr); |
5993 | mlir::Type arrType = fir::unwrapPassByRefType(baseType); |
5994 | mlir::Type eleType = fir::unwrapSequenceType(arrType); |
5995 | ExtValue exv = optionalArg; |
5996 | if (hasOptionalAttr && isBox && !isAllocOrPtr) { |
5997 | // Elemental argument cannot be allocatable or pointers (C15100). |
5998 | // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and |
5999 | // Pointer optional arrays cannot be absent. The only kind of entities |
6000 | // that can get here are optional assumed shape and polymorphic entities. |
6001 | exv = absentBoxToUnallocatedBox(builder, loc, exv, isPresent); |
6002 | } |
6003 | // All the properties can be read from any fir.box but the read values may |
6004 | // be undefined and should only be used inside a fir.if (canBeRead) region. |
6005 | if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>()) |
6006 | exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox); |
6007 | |
6008 | mlir::Value memref = fir::getBase(exv); |
6009 | mlir::Value shape = builder.createShape(loc, exv); |
6010 | mlir::Value noSlice; |
6011 | auto arrLoad = builder.create<fir::ArrayLoadOp>( |
6012 | loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv)); |
6013 | mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams(); |
6014 | mlir::Value arrLd = arrLoad.getResult(); |
6015 | // Mark the load to tell later passes it is unsafe to use this array_load |
6016 | // shape unconditionally. |
6017 | arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr()); |
6018 | |
6019 | // Place the array as optional on the arrayOperands stack so that its |
6020 | // shape will only be used as a fallback to induce the implicit loop nest |
6021 | // (that is if there is no non optional array arguments). |
6022 | arrayOperands.push_back( |
6023 | ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true}); |
6024 | |
6025 | // By value semantics. |
6026 | auto cc = [=](IterSpace iters) -> ExtValue { |
6027 | auto arrFetch = builder.create<fir::ArrayFetchOp>( |
6028 | loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams); |
6029 | return fir::factory::arraySectionElementToExtendedValue( |
6030 | builder, loc, exv, arrFetch, noSlice); |
6031 | }; |
6032 | return {cc, isPresent, eleType}; |
6033 | } |
6034 | |
6035 | /// Generate a continuation to pass \p expr to an OPTIONAL argument of an |
6036 | /// elemental procedure. This is meant to handle the cases where \p expr might |
6037 | /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an |
6038 | /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can |
6039 | /// directly be called instead. |
6040 | CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) { |
6041 | mlir::Location loc = getLoc(); |
6042 | // Only by-value numerical and logical so far. |
6043 | if (semant != ConstituentSemantics::RefTransparent) |
6044 | TODO(loc, "optional arguments in user defined elemental procedures"); |
6045 | |
6046 | // Handle scalar argument case (the if-then-else is generated outside of the |
6047 | // implicit loop nest). |
6048 | if (expr.Rank() == 0) { |
6049 | ExtValue optionalArg = asInquired(expr); |
6050 | mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); |
6051 | mlir::Value elementValue = |
6052 | fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent)); |
6053 | return [=](IterSpace iters) -> ExtValue { return elementValue; }; |
6054 | } |
6055 | |
6056 | CC cc; |
6057 | mlir::Value isPresent; |
6058 | mlir::Type eleType; |
6059 | std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr); |
6060 | return [=](IterSpace iters) -> ExtValue { |
6061 | mlir::Value elementValue = |
6062 | builder |
6063 | .genIfOp(loc, {eleType}, isPresent, |
6064 | /*withElseRegion=*/true) |
6065 | .genThen([&]() { |
6066 | builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters))); |
6067 | }) |
6068 | .genElse([&]() { |
6069 | mlir::Value zero = |
6070 | fir::factory::createZeroValue(builder, loc, eleType); |
6071 | builder.create<fir::ResultOp>(loc, zero); |
6072 | }) |
6073 | .getResults()[0]; |
6074 | return elementValue; |
6075 | }; |
6076 | } |
6077 | |
6078 | /// Reduce the rank of a array to be boxed based on the slice's operands. |
6079 | static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) { |
6080 | if (slice) { |
6081 | auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp()); |
6082 | assert(slOp && "expected slice op"); |
6083 | auto seqTy = mlir::dyn_cast<fir::SequenceType>(arrTy); |
6084 | assert(seqTy && "expected array type"); |
6085 | mlir::Operation::operand_range triples = slOp.getTriples(); |
6086 | fir::SequenceType::Shape shape; |
6087 | // reduce the rank for each invariant dimension |
6088 | for (unsigned i = 1, end = triples.size(); i < end; i += 3) { |
6089 | if (auto extent = fir::factory::getExtentFromTriplet( |
6090 | triples[i - 1], triples[i], triples[i + 1])) |
6091 | shape.push_back(*extent); |
6092 | else if (!mlir::isa_and_nonnull<fir::UndefOp>( |
6093 | triples[i].getDefiningOp())) |
6094 | shape.push_back(fir::SequenceType::getUnknownExtent()); |
6095 | } |
6096 | return fir::SequenceType::get(shape, seqTy.getEleTy()); |
6097 | } |
6098 | // not sliced, so no change in rank |
6099 | return arrTy; |
6100 | } |
6101 | |
6102 | /// Example: <code>array%RE</code> |
6103 | CC genarr(const Fortran::evaluate::ComplexPart &x, |
6104 | ComponentPath &components) { |
6105 | components.reversePath.push_back(&x); |
6106 | return genarr(x.complex(), components); |
6107 | } |
6108 | |
6109 | template <typename A> |
6110 | CC genSlicePath(const A &x, ComponentPath &components) { |
6111 | return genarr(x, components); |
6112 | } |
6113 | |
6114 | CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &, |
6115 | ComponentPath &components) { |
6116 | TODO(getLoc(), "substring of static object inside FORALL"); |
6117 | } |
6118 | |
6119 | /// Substrings (see 9.4.1) |
6120 | CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) { |
6121 | components.substring = &x; |
6122 | return Fortran::common::visit( |
6123 | [&](const auto &v) { return genarr(v, components); }, x.parent()); |
6124 | } |
6125 | |
6126 | template <typename T> |
6127 | CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) { |
6128 | // Note that it's possible that the function being called returns either an |
6129 | // array or a scalar. In the first case, use the element type of the array. |
6130 | return genProcRef( |
6131 | funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef)))); |
6132 | } |
6133 | |
6134 | //===--------------------------------------------------------------------===// |
6135 | // Array construction |
6136 | //===--------------------------------------------------------------------===// |
6137 | |
6138 | /// Target agnostic computation of the size of an element in the array. |
6139 | /// Returns the size in bytes with type `index` or a null Value if the element |
6140 | /// size is not constant. |
6141 | mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy, |
6142 | mlir::Type resTy) { |
6143 | mlir::Location loc = getLoc(); |
6144 | mlir::IndexType idxTy = builder.getIndexType(); |
6145 | mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1); |
6146 | if (fir::hasDynamicSize(eleTy)) { |
6147 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
6148 | // Array of char with dynamic LEN parameter. Downcast to an array |
6149 | // of singleton char, and scale by the len type parameter from |
6150 | // `exv`. |
6151 | exv.match( |
6152 | [&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); }, |
6153 | [&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); }, |
6154 | [&](const fir::BoxValue &box) { |
6155 | multiplier = fir::factory::CharacterExprHelper(builder, loc) |
6156 | .readLengthFromBox(box.getAddr()); |
6157 | }, |
6158 | [&](const fir::MutableBoxValue &box) { |
6159 | multiplier = fir::factory::CharacterExprHelper(builder, loc) |
6160 | .readLengthFromBox(box.getAddr()); |
6161 | }, |
6162 | [&](const auto &) { |
6163 | fir::emitFatalError(loc, |
6164 | "array constructor element has unknown size"); |
6165 | }); |
6166 | fir::CharacterType newEleTy = fir::CharacterType::getSingleton( |
6167 | eleTy.getContext(), charTy.getFKind()); |
6168 | if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(resTy)) { |
6169 | assert(eleTy == seqTy.getEleTy()); |
6170 | resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy); |
6171 | } |
6172 | eleTy = newEleTy; |
6173 | } else { |
6174 | TODO(loc, "dynamic sized type"); |
6175 | } |
6176 | } |
6177 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
6178 | mlir::Type resRefTy = builder.getRefType(resTy); |
6179 | mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy); |
6180 | auto offset = builder.create<fir::CoordinateOp>( |
6181 | loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier}); |
6182 | return builder.createConvert(loc, idxTy, offset); |
6183 | } |
6184 | |
6185 | /// Get the function signature of the LLVM memcpy intrinsic. |
6186 | mlir::FunctionType memcpyType() { |
6187 | auto ptrTy = mlir::LLVM::LLVMPointerType::get(builder.getContext()); |
6188 | llvm::SmallVector<mlir::Type> args = {ptrTy, ptrTy, builder.getI64Type()}; |
6189 | return mlir::FunctionType::get(builder.getContext(), args, std::nullopt); |
6190 | } |
6191 | |
6192 | /// Create a call to the LLVM memcpy intrinsic. |
6193 | void createCallMemcpy(llvm::ArrayRef<mlir::Value> args, bool isVolatile) { |
6194 | mlir::Location loc = getLoc(); |
6195 | builder.create<mlir::LLVM::MemcpyOp>(loc, args[0], args[1], args[2], |
6196 | isVolatile); |
6197 | } |
6198 | |
6199 | // Construct code to check for a buffer overrun and realloc the buffer when |
6200 | // space is depleted. This is done between each item in the ac-value-list. |
6201 | mlir::Value growBuffer(mlir::Value mem, mlir::Value needed, |
6202 | mlir::Value bufferSize, mlir::Value buffSize, |
6203 | mlir::Value eleSz) { |
6204 | mlir::Location loc = getLoc(); |
6205 | mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder); |
6206 | auto cond = builder.create<mlir::arith::CmpIOp>( |
6207 | loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed); |
6208 | auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond, |
6209 | /*withElseRegion=*/true); |
6210 | auto insPt = builder.saveInsertionPoint(); |
6211 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
6212 | // Not enough space, resize the buffer. |
6213 | mlir::IndexType idxTy = builder.getIndexType(); |
6214 | mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2); |
6215 | auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two); |
6216 | builder.create<fir::StoreOp>(loc, newSz, buffSize); |
6217 | mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz); |
6218 | mlir::SymbolRefAttr funcSymAttr = |
6219 | builder.getSymbolRefAttr(reallocFunc.getName()); |
6220 | mlir::FunctionType funcTy = reallocFunc.getFunctionType(); |
6221 | auto newMem = builder.create<fir::CallOp>( |
6222 | loc, funcSymAttr, funcTy.getResults(), |
6223 | llvm::ArrayRef<mlir::Value>{ |
6224 | builder.createConvert(loc, funcTy.getInputs()[0], mem), |
6225 | builder.createConvert(loc, funcTy.getInputs()[1], byteSz)}); |
6226 | mlir::Value castNewMem = |
6227 | builder.createConvert(loc, mem.getType(), newMem.getResult(0)); |
6228 | builder.create<fir::ResultOp>(loc, castNewMem); |
6229 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
6230 | // Otherwise, just forward the buffer. |
6231 | builder.create<fir::ResultOp>(loc, mem); |
6232 | builder.restoreInsertionPoint(insPt); |
6233 | return ifOp.getResult(0); |
6234 | } |
6235 | |
6236 | /// Copy the next value (or vector of values) into the array being |
6237 | /// constructed. |
6238 | mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos, |
6239 | mlir::Value buffSize, mlir::Value mem, |
6240 | mlir::Value eleSz, mlir::Type eleTy, |
6241 | mlir::Type eleRefTy, mlir::Type resTy) { |
6242 | mlir::Location loc = getLoc(); |
6243 | auto off = builder.create<fir::LoadOp>(loc, buffPos); |
6244 | auto limit = builder.create<fir::LoadOp>(loc, buffSize); |
6245 | mlir::IndexType idxTy = builder.getIndexType(); |
6246 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
6247 | |
6248 | if (fir::isRecordWithAllocatableMember(eleTy)) |
6249 | TODO(loc, "deep copy on allocatable members"); |
6250 | |
6251 | if (!eleSz) { |
6252 | // Compute the element size at runtime. |
6253 | assert(fir::hasDynamicSize(eleTy)); |
6254 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
6255 | auto charBytes = |
6256 | builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8; |
6257 | mlir::Value bytes = |
6258 | builder.createIntegerConstant(loc, idxTy, charBytes); |
6259 | mlir::Value length = fir::getLen(exv); |
6260 | if (!length) |
6261 | fir::emitFatalError(loc, "result is not boxed character"); |
6262 | eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length); |
6263 | } else { |
6264 | TODO(loc, "PDT size"); |
6265 | // Will call the PDT's size function with the type parameters. |
6266 | } |
6267 | } |
6268 | |
6269 | // Compute the coordinate using `fir.coordinate_of`, or, if the type has |
6270 | // dynamic size, generating the pointer arithmetic. |
6271 | auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) { |
6272 | mlir::Type refTy = eleRefTy; |
6273 | if (fir::hasDynamicSize(eleTy)) { |
6274 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
6275 | // Scale a simple pointer using dynamic length and offset values. |
6276 | auto chTy = fir::CharacterType::getSingleton(charTy.getContext(), |
6277 | charTy.getFKind()); |
6278 | refTy = builder.getRefType(chTy); |
6279 | mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy)); |
6280 | buff = builder.createConvert(loc, toTy, buff); |
6281 | off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz); |
6282 | } else { |
6283 | TODO(loc, "PDT offset"); |
6284 | } |
6285 | } |
6286 | auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff, |
6287 | mlir::ValueRange{off}); |
6288 | return builder.createConvert(loc, eleRefTy, coor); |
6289 | }; |
6290 | |
6291 | // Lambda to lower an abstract array box value. |
6292 | auto doAbstractArray = [&](const auto &v) { |
6293 | // Compute the array size. |
6294 | mlir::Value arrSz = one; |
6295 | for (auto ext : v.getExtents()) |
6296 | arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext); |
6297 | |
6298 | // Grow the buffer as needed. |
6299 | auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz); |
6300 | mem = growBuffer(mem, endOff, limit, buffSize, eleSz); |
6301 | |
6302 | // Copy the elements to the buffer. |
6303 | mlir::Value byteSz = |
6304 | builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz); |
6305 | auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
6306 | mlir::Value buffi = computeCoordinate(buff, off); |
6307 | llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( |
6308 | builder, loc, memcpyType(), buffi, v.getAddr(), byteSz); |
6309 | const bool isVolatile = fir::isa_volatile_type(v.getAddr().getType()); |
6310 | createCallMemcpy(args, isVolatile); |
6311 | |
6312 | // Save the incremented buffer position. |
6313 | builder.create<fir::StoreOp>(loc, endOff, buffPos); |
6314 | }; |
6315 | |
6316 | // Copy a trivial scalar value into the buffer. |
6317 | auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) { |
6318 | // Increment the buffer position. |
6319 | auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); |
6320 | |
6321 | // Grow the buffer as needed. |
6322 | mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); |
6323 | |
6324 | // Store the element in the buffer. |
6325 | mlir::Value buff = |
6326 | builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
6327 | auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff, |
6328 | mlir::ValueRange{off}); |
6329 | fir::factory::genScalarAssignment( |
6330 | builder, loc, |
6331 | [&]() -> ExtValue { |
6332 | if (len) |
6333 | return fir::CharBoxValue(buffi, len); |
6334 | return buffi; |
6335 | }(), |
6336 | v); |
6337 | builder.create<fir::StoreOp>(loc, plusOne, buffPos); |
6338 | }; |
6339 | |
6340 | // Copy the value. |
6341 | exv.match( |
6342 | [&](mlir::Value) { doTrivialScalar(exv); }, |
6343 | [&](const fir::CharBoxValue &v) { |
6344 | auto buffer = v.getBuffer(); |
6345 | if (fir::isa_char(buffer.getType())) { |
6346 | doTrivialScalar(exv, eleSz); |
6347 | } else { |
6348 | // Increment the buffer position. |
6349 | auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); |
6350 | |
6351 | // Grow the buffer as needed. |
6352 | mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); |
6353 | |
6354 | // Store the element in the buffer. |
6355 | mlir::Value buff = |
6356 | builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
6357 | mlir::Value buffi = computeCoordinate(buff, off); |
6358 | llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( |
6359 | builder, loc, memcpyType(), buffi, v.getAddr(), eleSz); |
6360 | const bool isVolatile = |
6361 | fir::isa_volatile_type(v.getAddr().getType()); |
6362 | createCallMemcpy(args, isVolatile); |
6363 | |
6364 | builder.create<fir::StoreOp>(loc, plusOne, buffPos); |
6365 | } |
6366 | }, |
6367 | [&](const fir::ArrayBoxValue &v) { doAbstractArray(v); }, |
6368 | [&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); }, |
6369 | [&](const auto &) { |
6370 | TODO(loc, "unhandled array constructor expression"); |
6371 | }); |
6372 | return mem; |
6373 | } |
6374 | |
6375 | // Lower the expr cases in an ac-value-list. |
6376 | template <typename A> |
6377 | std::pair<ExtValue, bool> |
6378 | genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type, |
6379 | mlir::Value, mlir::Value, mlir::Value, |
6380 | Fortran::lower::StatementContext &stmtCtx) { |
6381 | if (isArray(x)) |
6382 | return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)), |
6383 | /*needCopy=*/true}; |
6384 | return {asScalar(x), /*needCopy=*/true}; |
6385 | } |
6386 | |
6387 | // Lower an ac-implied-do in an ac-value-list. |
6388 | template <typename A> |
6389 | std::pair<ExtValue, bool> |
6390 | genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x, |
6391 | mlir::Type resTy, mlir::Value mem, |
6392 | mlir::Value buffPos, mlir::Value buffSize, |
6393 | Fortran::lower::StatementContext &) { |
6394 | mlir::Location loc = getLoc(); |
6395 | mlir::IndexType idxTy = builder.getIndexType(); |
6396 | mlir::Value lo = |
6397 | builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower()))); |
6398 | mlir::Value up = |
6399 | builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper()))); |
6400 | mlir::Value step = |
6401 | builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride()))); |
6402 | auto seqTy = mlir::cast<fir::SequenceType>(resTy); |
6403 | mlir::Type eleTy = fir::unwrapSequenceType(seqTy); |
6404 | auto loop = |
6405 | builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false, |
6406 | /*finalCount=*/false, mem); |
6407 | // create a new binding for x.name(), to ac-do-variable, to the iteration |
6408 | // value. |
6409 | symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar()); |
6410 | auto insPt = builder.saveInsertionPoint(); |
6411 | builder.setInsertionPointToStart(loop.getBody()); |
6412 | // Thread mem inside the loop via loop argument. |
6413 | mem = loop.getRegionIterArgs()[0]; |
6414 | |
6415 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
6416 | |
6417 | // Any temps created in the loop body must be freed inside the loop body. |
6418 | stmtCtx.pushScope(); |
6419 | std::optional<mlir::Value> charLen; |
6420 | for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) { |
6421 | auto [exv, copyNeeded] = Fortran::common::visit( |
6422 | [&](const auto &v) { |
6423 | return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize, |
6424 | stmtCtx); |
6425 | }, |
6426 | acv.u); |
6427 | mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); |
6428 | mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, |
6429 | eleSz, eleTy, eleRefTy, resTy) |
6430 | : fir::getBase(exv); |
6431 | if (fir::isa_char(seqTy.getEleTy()) && !charLen) { |
6432 | charLen = builder.createTemporary(loc, builder.getI64Type()); |
6433 | mlir::Value castLen = |
6434 | builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); |
6435 | assert(charLen.has_value()); |
6436 | builder.create<fir::StoreOp>(loc, castLen, *charLen); |
6437 | } |
6438 | } |
6439 | stmtCtx.finalizeAndPop(); |
6440 | |
6441 | builder.create<fir::ResultOp>(loc, mem); |
6442 | builder.restoreInsertionPoint(insPt); |
6443 | mem = loop.getResult(0); |
6444 | symMap.popImpliedDoBinding(); |
6445 | llvm::SmallVector<mlir::Value> extents = { |
6446 | builder.create<fir::LoadOp>(loc, buffPos).getResult()}; |
6447 | |
6448 | // Convert to extended value. |
6449 | if (fir::isa_char(seqTy.getEleTy())) { |
6450 | assert(charLen.has_value()); |
6451 | auto len = builder.create<fir::LoadOp>(loc, *charLen); |
6452 | return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false}; |
6453 | } |
6454 | return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false}; |
6455 | } |
6456 | |
6457 | // To simplify the handling and interaction between the various cases, array |
6458 | // constructors are always lowered to the incremental construction code |
6459 | // pattern, even if the extent of the array value is constant. After the |
6460 | // MemToReg pass and constant folding, the optimizer should be able to |
6461 | // determine that all the buffer overrun tests are false when the |
6462 | // incremental construction wasn't actually required. |
6463 | template <typename A> |
6464 | CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) { |
6465 | mlir::Location loc = getLoc(); |
6466 | auto evExpr = toEvExpr(x); |
6467 | mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr); |
6468 | mlir::IndexType idxTy = builder.getIndexType(); |
6469 | auto seqTy = mlir::cast<fir::SequenceType>(resTy); |
6470 | mlir::Type eleTy = fir::unwrapSequenceType(resTy); |
6471 | mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size"); |
6472 | mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); |
6473 | mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos"); |
6474 | builder.create<fir::StoreOp>(loc, zero, buffPos); |
6475 | // Allocate space for the array to be constructed. |
6476 | mlir::Value mem; |
6477 | if (fir::hasDynamicSize(resTy)) { |
6478 | if (fir::hasDynamicSize(eleTy)) { |
6479 | // The size of each element may depend on a general expression. Defer |
6480 | // creating the buffer until after the expression is evaluated. |
6481 | mem = builder.createNullConstant(loc, builder.getRefType(eleTy)); |
6482 | builder.create<fir::StoreOp>(loc, zero, buffSize); |
6483 | } else { |
6484 | mlir::Value initBuffSz = |
6485 | builder.createIntegerConstant(loc, idxTy, clInitialBufferSize); |
6486 | mem = builder.create<fir::AllocMemOp>( |
6487 | loc, eleTy, /*typeparams=*/std::nullopt, initBuffSz); |
6488 | builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); |
6489 | } |
6490 | } else { |
6491 | mem = builder.create<fir::AllocMemOp>(loc, resTy); |
6492 | int64_t buffSz = 1; |
6493 | for (auto extent : seqTy.getShape()) |
6494 | buffSz *= extent; |
6495 | mlir::Value initBuffSz = |
6496 | builder.createIntegerConstant(loc, idxTy, buffSz); |
6497 | builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); |
6498 | } |
6499 | // Compute size of element |
6500 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
6501 | |
6502 | // Populate the buffer with the elements, growing as necessary. |
6503 | std::optional<mlir::Value> charLen; |
6504 | for (const auto &expr : x) { |
6505 | auto [exv, copyNeeded] = Fortran::common::visit( |
6506 | [&](const auto &e) { |
6507 | return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize, |
6508 | stmtCtx); |
6509 | }, |
6510 | expr.u); |
6511 | mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); |
6512 | mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, |
6513 | eleSz, eleTy, eleRefTy, resTy) |
6514 | : fir::getBase(exv); |
6515 | if (fir::isa_char(seqTy.getEleTy()) && !charLen) { |
6516 | charLen = builder.createTemporary(loc, builder.getI64Type()); |
6517 | mlir::Value castLen = |
6518 | builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); |
6519 | builder.create<fir::StoreOp>(loc, castLen, *charLen); |
6520 | } |
6521 | } |
6522 | mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
6523 | llvm::SmallVector<mlir::Value> extents = { |
6524 | builder.create<fir::LoadOp>(loc, buffPos)}; |
6525 | |
6526 | // Cleanup the temporary. |
6527 | fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); |
6528 | stmtCtx.attachCleanup( |
6529 | [bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); }); |
6530 | |
6531 | // Return the continuation. |
6532 | if (fir::isa_char(seqTy.getEleTy())) { |
6533 | if (charLen) { |
6534 | auto len = builder.create<fir::LoadOp>(loc, *charLen); |
6535 | return genarr(fir::CharArrayBoxValue{mem, len, extents}); |
6536 | } |
6537 | return genarr(fir::CharArrayBoxValue{mem, zero, extents}); |
6538 | } |
6539 | return genarr(fir::ArrayBoxValue{mem, extents}); |
6540 | } |
6541 | |
6542 | CC genarr(const Fortran::evaluate::ImpliedDoIndex &) { |
6543 | fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0"); |
6544 | } |
6545 | CC genarr(const Fortran::evaluate::TypeParamInquiry &x) { |
6546 | TODO(getLoc(), "array expr type parameter inquiry"); |
6547 | return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; |
6548 | } |
6549 | CC genarr(const Fortran::evaluate::DescriptorInquiry &x) { |
6550 | TODO(getLoc(), "array expr descriptor inquiry"); |
6551 | return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; |
6552 | } |
6553 | CC genarr(const Fortran::evaluate::StructureConstructor &x) { |
6554 | TODO(getLoc(), "structure constructor"); |
6555 | return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; |
6556 | } |
6557 | |
6558 | //===--------------------------------------------------------------------===// |
6559 | // LOCICAL operators (.NOT., .AND., .EQV., etc.) |
6560 | //===--------------------------------------------------------------------===// |
6561 | |
6562 | template <int KIND> |
6563 | CC genarr(const Fortran::evaluate::Not<KIND> &x) { |
6564 | mlir::Location loc = getLoc(); |
6565 | mlir::IntegerType i1Ty = builder.getI1Type(); |
6566 | auto lambda = genarr(x.left()); |
6567 | mlir::Value truth = builder.createBool(loc, true); |
6568 | return [=](IterSpace iters) -> ExtValue { |
6569 | mlir::Value logical = fir::getBase(lambda(iters)); |
6570 | mlir::Value val = builder.createConvert(loc, i1Ty, logical); |
6571 | return builder.create<mlir::arith::XOrIOp>(loc, val, truth); |
6572 | }; |
6573 | } |
6574 | template <typename OP, typename A> |
6575 | CC createBinaryBoolOp(const A &x) { |
6576 | mlir::Location loc = getLoc(); |
6577 | mlir::IntegerType i1Ty = builder.getI1Type(); |
6578 | auto lf = genarr(x.left()); |
6579 | auto rf = genarr(x.right()); |
6580 | return [=](IterSpace iters) -> ExtValue { |
6581 | mlir::Value left = fir::getBase(lf(iters)); |
6582 | mlir::Value right = fir::getBase(rf(iters)); |
6583 | mlir::Value lhs = builder.createConvert(loc, i1Ty, left); |
6584 | mlir::Value rhs = builder.createConvert(loc, i1Ty, right); |
6585 | return builder.create<OP>(loc, lhs, rhs); |
6586 | }; |
6587 | } |
6588 | template <typename OP, typename A> |
6589 | CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) { |
6590 | mlir::Location loc = getLoc(); |
6591 | mlir::IntegerType i1Ty = builder.getI1Type(); |
6592 | auto lf = genarr(x.left()); |
6593 | auto rf = genarr(x.right()); |
6594 | return [=](IterSpace iters) -> ExtValue { |
6595 | mlir::Value left = fir::getBase(lf(iters)); |
6596 | mlir::Value right = fir::getBase(rf(iters)); |
6597 | mlir::Value lhs = builder.createConvert(loc, i1Ty, left); |
6598 | mlir::Value rhs = builder.createConvert(loc, i1Ty, right); |
6599 | return builder.create<OP>(loc, pred, lhs, rhs); |
6600 | }; |
6601 | } |
6602 | template <int KIND> |
6603 | CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) { |
6604 | switch (x.logicalOperator) { |
6605 | case Fortran::evaluate::LogicalOperator::And: |
6606 | return createBinaryBoolOp<mlir::arith::AndIOp>(x); |
6607 | case Fortran::evaluate::LogicalOperator::Or: |
6608 | return createBinaryBoolOp<mlir::arith::OrIOp>(x); |
6609 | case Fortran::evaluate::LogicalOperator::Eqv: |
6610 | return createCompareBoolOp<mlir::arith::CmpIOp>( |
6611 | mlir::arith::CmpIPredicate::eq, x); |
6612 | case Fortran::evaluate::LogicalOperator::Neqv: |
6613 | return createCompareBoolOp<mlir::arith::CmpIOp>( |
6614 | mlir::arith::CmpIPredicate::ne, x); |
6615 | case Fortran::evaluate::LogicalOperator::Not: |
6616 | llvm_unreachable(".NOT. handled elsewhere"); |
6617 | } |
6618 | llvm_unreachable("unhandled case"); |
6619 | } |
6620 | |
6621 | //===--------------------------------------------------------------------===// |
6622 | // Relational operators (<, <=, ==, etc.) |
6623 | //===--------------------------------------------------------------------===// |
6624 | |
6625 | template <typename OP, typename PRED, typename A> |
6626 | CC createCompareOp(PRED pred, const A &x, |
6627 | std::optional<int> unsignedKind = std::nullopt) { |
6628 | mlir::Location loc = getLoc(); |
6629 | auto lf = genarr(x.left()); |
6630 | auto rf = genarr(x.right()); |
6631 | return [=](IterSpace iters) -> ExtValue { |
6632 | mlir::Value lhs = fir::getBase(lf(iters)); |
6633 | mlir::Value rhs = fir::getBase(rf(iters)); |
6634 | if (unsignedKind) { |
6635 | mlir::Type signlessType = converter.genType( |
6636 | Fortran::common::TypeCategory::Integer, *unsignedKind); |
6637 | mlir::Value lhsSL = builder.createConvert(loc, signlessType, lhs); |
6638 | mlir::Value rhsSL = builder.createConvert(loc, signlessType, rhs); |
6639 | return builder.create<OP>(loc, pred, lhsSL, rhsSL); |
6640 | } |
6641 | return builder.create<OP>(loc, pred, lhs, rhs); |
6642 | }; |
6643 | } |
6644 | template <typename A> |
6645 | CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) { |
6646 | mlir::Location loc = getLoc(); |
6647 | auto lf = genarr(x.left()); |
6648 | auto rf = genarr(x.right()); |
6649 | return [=](IterSpace iters) -> ExtValue { |
6650 | auto lhs = lf(iters); |
6651 | auto rhs = rf(iters); |
6652 | return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs); |
6653 | }; |
6654 | } |
6655 | template <int KIND> |
6656 | CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
6657 | Fortran::common::TypeCategory::Integer, KIND>> &x) { |
6658 | return createCompareOp<mlir::arith::CmpIOp>( |
6659 | translateSignedRelational(x.opr), x); |
6660 | } |
6661 | template <int KIND> |
6662 | CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
6663 | Fortran::common::TypeCategory::Unsigned, KIND>> &x) { |
6664 | return createCompareOp<mlir::arith::CmpIOp>( |
6665 | translateUnsignedRelational(x.opr), x, KIND); |
6666 | } |
6667 | template <int KIND> |
6668 | CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
6669 | Fortran::common::TypeCategory::Character, KIND>> &x) { |
6670 | return createCompareCharOp(translateSignedRelational(x.opr), x); |
6671 | } |
6672 | template <int KIND> |
6673 | CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
6674 | Fortran::common::TypeCategory::Real, KIND>> &x) { |
6675 | return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr), |
6676 | x); |
6677 | } |
6678 | template <int KIND> |
6679 | CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
6680 | Fortran::common::TypeCategory::Complex, KIND>> &x) { |
6681 | return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x); |
6682 | } |
6683 | CC genarr( |
6684 | const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) { |
6685 | return Fortran::common::visit([&](const auto &x) { return genarr(x); }, |
6686 | r.u); |
6687 | } |
6688 | |
6689 | template <typename A> |
6690 | CC genarr(const Fortran::evaluate::Designator<A> &des) { |
6691 | ComponentPath components(des.Rank() > 0); |
6692 | return Fortran::common::visit( |
6693 | [&](const auto &x) { return genarr(x, components); }, des.u); |
6694 | } |
6695 | |
6696 | /// Is the path component rank > 0? |
6697 | static bool ranked(const PathComponent &x) { |
6698 | return Fortran::common::visit( |
6699 | Fortran::common::visitors{ |
6700 | [](const ImplicitSubscripts &) { return false; }, |
6701 | [](const auto *v) { return v->Rank() > 0; }}, |
6702 | x); |
6703 | } |
6704 | |
6705 | void extendComponent(Fortran::lower::ComponentPath &component, |
6706 | mlir::Type coorTy, mlir::ValueRange vals) { |
6707 | auto *bldr = &converter.getFirOpBuilder(); |
6708 | llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end()); |
6709 | auto currentFunc = component.getExtendCoorRef(); |
6710 | auto loc = getLoc(); |
6711 | auto newCoorRef = [bldr, coorTy, offsets, currentFunc, |
6712 | loc](mlir::Value val) -> mlir::Value { |
6713 | return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy), |
6714 | currentFunc(val), offsets); |
6715 | }; |
6716 | component.extendCoorRef = newCoorRef; |
6717 | } |
6718 | |
6719 | //===-------------------------------------------------------------------===// |
6720 | // Array data references in an explicit iteration space. |
6721 | // |
6722 | // Use the base array that was loaded before the loop nest. |
6723 | //===-------------------------------------------------------------------===// |
6724 | |
6725 | /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or |
6726 | /// array_update op. \p ty is the initial type of the array |
6727 | /// (reference). Returns the type of the element after application of the |
6728 | /// path in \p components. |
6729 | /// |
6730 | /// TODO: This needs to deal with array's with initial bounds other than 1. |
6731 | /// TODO: Thread type parameters correctly. |
6732 | mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) { |
6733 | mlir::Location loc = getLoc(); |
6734 | mlir::Type ty = fir::getBase(arrayExv).getType(); |
6735 | auto &revPath = components.reversePath; |
6736 | ty = fir::unwrapPassByRefType(ty); |
6737 | bool prefix = true; |
6738 | bool deref = false; |
6739 | auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) { |
6740 | if (deref) { |
6741 | extendComponent(components, ty, vals); |
6742 | } else if (prefix) { |
6743 | for (auto v : vals) |
6744 | components.prefixComponents.push_back(v); |
6745 | } else { |
6746 | for (auto v : vals) |
6747 | components.suffixComponents.push_back(v); |
6748 | } |
6749 | }; |
6750 | mlir::IndexType idxTy = builder.getIndexType(); |
6751 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
6752 | bool atBase = true; |
6753 | PushSemantics(isProjectedCopyInCopyOut() |
6754 | ? ConstituentSemantics::RefTransparent |
6755 | : nextPathSemantics()); |
6756 | unsigned index = 0; |
6757 | for (const auto &v : llvm::reverse(revPath)) { |
6758 | Fortran::common::visit( |
6759 | Fortran::common::visitors{ |
6760 | [&](const ImplicitSubscripts &) { |
6761 | prefix = false; |
6762 | ty = fir::unwrapSequenceType(ty); |
6763 | }, |
6764 | [&](const Fortran::evaluate::ComplexPart *x) { |
6765 | assert(!prefix && "complex part must be at end"); |
6766 | mlir::Value offset = builder.createIntegerConstant( |
6767 | loc, builder.getI32Type(), |
6768 | x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 |
6769 | : 1); |
6770 | components.suffixComponents.push_back(offset); |
6771 | ty = fir::applyPathToType(ty, mlir::ValueRange{offset}); |
6772 | }, |
6773 | [&](const Fortran::evaluate::ArrayRef *x) { |
6774 | if (Fortran::lower::isRankedArrayAccess(*x)) { |
6775 | genSliceIndices(components, arrayExv, *x, atBase); |
6776 | ty = fir::unwrapSeqOrBoxedSeqType(ty); |
6777 | } else { |
6778 | // Array access where the expressions are scalar and cannot |
6779 | // depend upon the implied iteration space. |
6780 | unsigned ssIndex = 0u; |
6781 | llvm::SmallVector<mlir::Value> componentsToAdd; |
6782 | for (const auto &ss : x->subscript()) { |
6783 | Fortran::common::visit( |
6784 | Fortran::common::visitors{ |
6785 | [&](const Fortran::evaluate:: |
6786 | IndirectSubscriptIntegerExpr &ie) { |
6787 | const auto &e = ie.value(); |
6788 | if (isArray(e)) |
6789 | fir::emitFatalError( |
6790 | loc, |
6791 | "multiple components along single path " |
6792 | "generating array subexpressions"); |
6793 | // Lower scalar index expression, append it to |
6794 | // subs. |
6795 | mlir::Value subscriptVal = |
6796 | fir::getBase(asScalarArray(e)); |
6797 | // arrayExv is the base array. It needs to reflect |
6798 | // the current array component instead. |
6799 | // FIXME: must use lower bound of this component, |
6800 | // not just the constant 1. |
6801 | mlir::Value lb = |
6802 | atBase ? fir::factory::readLowerBound( |
6803 | builder, loc, arrayExv, ssIndex, |
6804 | one) |
6805 | : one; |
6806 | mlir::Value val = builder.createConvert( |
6807 | loc, idxTy, subscriptVal); |
6808 | mlir::Value ivAdj = |
6809 | builder.create<mlir::arith::SubIOp>( |
6810 | loc, idxTy, val, lb); |
6811 | componentsToAdd.push_back( |
6812 | builder.createConvert(loc, idxTy, ivAdj)); |
6813 | }, |
6814 | [&](const auto &) { |
6815 | fir::emitFatalError( |
6816 | loc, "multiple components along single path " |
6817 | "generating array subexpressions"); |
6818 | }}, |
6819 | ss.u); |
6820 | ssIndex++; |
6821 | } |
6822 | ty = fir::unwrapSeqOrBoxedSeqType(ty); |
6823 | addComponentList(ty, componentsToAdd); |
6824 | } |
6825 | }, |
6826 | [&](const Fortran::evaluate::Component *x) { |
6827 | auto fieldTy = fir::FieldType::get(builder.getContext()); |
6828 | std::string name = |
6829 | converter.getRecordTypeFieldName(getLastSym(*x)); |
6830 | if (auto recTy = mlir::dyn_cast<fir::RecordType>(ty)) { |
6831 | ty = recTy.getType(name); |
6832 | auto fld = builder.create<fir::FieldIndexOp>( |
6833 | loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); |
6834 | addComponentList(ty, {fld}); |
6835 | if (index != revPath.size() - 1 || !isPointerAssignment()) { |
6836 | // Need an intermediate dereference if the boxed value |
6837 | // appears in the middle of the component path or if it is |
6838 | // on the right and this is not a pointer assignment. |
6839 | if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) { |
6840 | auto currentFunc = components.getExtendCoorRef(); |
6841 | auto loc = getLoc(); |
6842 | auto *bldr = &converter.getFirOpBuilder(); |
6843 | auto newCoorRef = [=](mlir::Value val) -> mlir::Value { |
6844 | return bldr->create<fir::LoadOp>(loc, currentFunc(val)); |
6845 | }; |
6846 | components.extendCoorRef = newCoorRef; |
6847 | deref = true; |
6848 | } |
6849 | } |
6850 | } else if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) { |
6851 | ty = fir::unwrapRefType(boxTy.getEleTy()); |
6852 | auto recTy = mlir::cast<fir::RecordType>(ty); |
6853 | ty = recTy.getType(name); |
6854 | auto fld = builder.create<fir::FieldIndexOp>( |
6855 | loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); |
6856 | extendComponent(components, ty, {fld}); |
6857 | } else { |
6858 | TODO(loc, "other component type"); |
6859 | } |
6860 | }}, |
6861 | v); |
6862 | atBase = false; |
6863 | ++index; |
6864 | } |
6865 | ty = fir::unwrapSequenceType(ty); |
6866 | components.applied = true; |
6867 | return ty; |
6868 | } |
6869 | |
6870 | llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) { |
6871 | llvm::SmallVector<mlir::Value> result; |
6872 | if (components.substring) |
6873 | populateBounds(result, components.substring); |
6874 | return result; |
6875 | } |
6876 | |
6877 | CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) { |
6878 | mlir::Location loc = getLoc(); |
6879 | auto revPath = components.reversePath; |
6880 | fir::ExtendedValue arrayExv = |
6881 | arrayLoadExtValue(builder, loc, load, {}, load); |
6882 | mlir::Type eleTy = lowerPath(arrayExv, components); |
6883 | auto currentPC = components.pc; |
6884 | auto pc = [=, prefix = components.prefixComponents, |
6885 | suffix = components.suffixComponents](IterSpace iters) { |
6886 | // Add path prefix and suffix. |
6887 | return IterationSpace(currentPC(iters), prefix, suffix); |
6888 | }; |
6889 | components.resetPC(); |
6890 | llvm::SmallVector<mlir::Value> substringBounds = |
6891 | genSubstringBounds(components); |
6892 | if (isProjectedCopyInCopyOut()) { |
6893 | destination = load; |
6894 | auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable { |
6895 | mlir::Value innerArg = esp->findArgumentOfLoad(load); |
6896 | if (isAdjustedArrayElementType(eleTy)) { |
6897 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
6898 | auto arrayOp = builder.create<fir::ArrayAccessOp>( |
6899 | loc, eleRefTy, innerArg, iters.iterVec(), |
6900 | fir::factory::getTypeParams(loc, builder, load)); |
6901 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
6902 | mlir::Value dstLen = fir::factory::genLenOfCharacter( |
6903 | builder, loc, load, iters.iterVec(), substringBounds); |
6904 | fir::ArrayAmendOp amend = createCharArrayAmend( |
6905 | loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg, |
6906 | substringBounds); |
6907 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend, |
6908 | dstLen); |
6909 | } |
6910 | if (fir::isa_derived(eleTy)) { |
6911 | fir::ArrayAmendOp amend = |
6912 | createDerivedArrayAmend(loc, load, builder, arrayOp, |
6913 | iters.elementExv(), eleTy, innerArg); |
6914 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), |
6915 | amend); |
6916 | } |
6917 | assert(mlir::isa<fir::SequenceType>(eleTy)); |
6918 | TODO(loc, "array (as element) assignment"); |
6919 | } |
6920 | if (components.hasExtendCoorRef()) { |
6921 | auto eleBoxTy = |
6922 | fir::applyPathToType(innerArg.getType(), iters.iterVec()); |
6923 | if (!eleBoxTy || !mlir::isa<fir::BoxType>(eleBoxTy)) |
6924 | TODO(loc, "assignment in a FORALL involving a designator with a " |
6925 | "POINTER or ALLOCATABLE component part-ref"); |
6926 | auto arrayOp = builder.create<fir::ArrayAccessOp>( |
6927 | loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(), |
6928 | fir::factory::getTypeParams(loc, builder, load)); |
6929 | mlir::Value addr = components.getExtendCoorRef()(arrayOp); |
6930 | components.resetExtendCoorRef(); |
6931 | // When the lhs is a boxed value and the context is not a pointer |
6932 | // assignment, then insert the dereference of the box before any |
6933 | // conversion and store. |
6934 | if (!isPointerAssignment()) { |
6935 | if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(eleTy)) { |
6936 | eleTy = fir::boxMemRefType(boxTy); |
6937 | addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr); |
6938 | eleTy = fir::unwrapRefType(eleTy); |
6939 | } |
6940 | } |
6941 | auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); |
6942 | builder.create<fir::StoreOp>(loc, ele, addr); |
6943 | auto amend = builder.create<fir::ArrayAmendOp>( |
6944 | loc, innerArg.getType(), innerArg, arrayOp); |
6945 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend); |
6946 | } |
6947 | auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); |
6948 | auto update = builder.create<fir::ArrayUpdateOp>( |
6949 | loc, innerArg.getType(), innerArg, ele, iters.iterVec(), |
6950 | fir::factory::getTypeParams(loc, builder, load)); |
6951 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update); |
6952 | }; |
6953 | return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; |
6954 | } |
6955 | if (isCustomCopyInCopyOut()) { |
6956 | // Create an array_modify to get the LHS element address and indicate |
6957 | // the assignment, and create the call to the user defined assignment. |
6958 | destination = load; |
6959 | auto lambda = [=](IterSpace iters) mutable { |
6960 | mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load); |
6961 | mlir::Type refEleTy = |
6962 | fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); |
6963 | auto arrModify = builder.create<fir::ArrayModifyOp>( |
6964 | loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg, |
6965 | iters.iterVec(), load.getTypeparams()); |
6966 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), |
6967 | arrModify.getResult(1)); |
6968 | }; |
6969 | return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; |
6970 | } |
6971 | auto lambda = [=, semant = this->semant](IterSpace iters) mutable { |
6972 | if (semant == ConstituentSemantics::RefOpaque || |
6973 | isAdjustedArrayElementType(eleTy)) { |
6974 | mlir::Type resTy = builder.getRefType(eleTy); |
6975 | // Use array element reference semantics. |
6976 | auto access = builder.create<fir::ArrayAccessOp>( |
6977 | loc, resTy, load, iters.iterVec(), |
6978 | fir::factory::getTypeParams(loc, builder, load)); |
6979 | mlir::Value newBase = access; |
6980 | if (fir::isa_char(eleTy)) { |
6981 | mlir::Value dstLen = fir::factory::genLenOfCharacter( |
6982 | builder, loc, load, iters.iterVec(), substringBounds); |
6983 | if (!substringBounds.empty()) { |
6984 | fir::CharBoxValue charDst{access, dstLen}; |
6985 | fir::factory::CharacterExprHelper helper{builder, loc}; |
6986 | charDst = helper.createSubstring(charDst, substringBounds); |
6987 | newBase = charDst.getAddr(); |
6988 | } |
6989 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase, |
6990 | dstLen); |
6991 | } |
6992 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase); |
6993 | } |
6994 | if (components.hasExtendCoorRef()) { |
6995 | auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec()); |
6996 | if (!eleBoxTy || !mlir::isa<fir::BoxType>(eleBoxTy)) |
6997 | TODO(loc, "assignment in a FORALL involving a designator with a " |
6998 | "POINTER or ALLOCATABLE component part-ref"); |
6999 | auto access = builder.create<fir::ArrayAccessOp>( |
7000 | loc, builder.getRefType(eleBoxTy), load, iters.iterVec(), |
7001 | fir::factory::getTypeParams(loc, builder, load)); |
7002 | mlir::Value addr = components.getExtendCoorRef()(access); |
7003 | components.resetExtendCoorRef(); |
7004 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr); |
7005 | } |
7006 | if (isPointerAssignment()) { |
7007 | auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec()); |
7008 | if (!mlir::isa<fir::BoxType>(eleTy)) { |
7009 | // Rhs is a regular expression that will need to be boxed before |
7010 | // assigning to the boxed variable. |
7011 | auto typeParams = fir::factory::getTypeParams(loc, builder, load); |
7012 | auto access = builder.create<fir::ArrayAccessOp>( |
7013 | loc, builder.getRefType(eleTy), load, iters.iterVec(), |
7014 | typeParams); |
7015 | auto addr = components.getExtendCoorRef()(access); |
7016 | components.resetExtendCoorRef(); |
7017 | auto ptrEleTy = fir::PointerType::get(eleTy); |
7018 | auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr); |
7019 | auto boxTy = fir::BoxType::get( |
7020 | ptrEleTy, fir::isa_volatile_type(addr.getType())); |
7021 | // FIXME: The typeparams to the load may be different than those of |
7022 | // the subobject. |
7023 | if (components.hasExtendCoorRef()) |
7024 | TODO(loc, "need to adjust typeparameter(s) to reflect the final " |
7025 | "component"); |
7026 | mlir::Value embox = |
7027 | builder.create<fir::EmboxOp>(loc, boxTy, ptrAddr, |
7028 | /*shape=*/mlir::Value{}, |
7029 | /*slice=*/mlir::Value{}, typeParams); |
7030 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox); |
7031 | } |
7032 | } |
7033 | auto fetch = builder.create<fir::ArrayFetchOp>( |
7034 | loc, eleTy, load, iters.iterVec(), load.getTypeparams()); |
7035 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch); |
7036 | }; |
7037 | return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; |
7038 | } |
7039 | |
7040 | template <typename A> |
7041 | CC genImplicitArrayAccess(const A &x, ComponentPath &components) { |
7042 | components.reversePath.push_back(ImplicitSubscripts{}); |
7043 | ExtValue exv = asScalarRef(x); |
7044 | lowerPath(exv, components); |
7045 | auto lambda = genarr(exv, components); |
7046 | return [=](IterSpace iters) { return lambda(components.pc(iters)); }; |
7047 | } |
7048 | CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x, |
7049 | ComponentPath &components) { |
7050 | if (x.IsSymbol()) |
7051 | return genImplicitArrayAccess(getFirstSym(x), components); |
7052 | return genImplicitArrayAccess(x.GetComponent(), components); |
7053 | } |
7054 | |
7055 | CC genImplicitArrayAccess(const Fortran::semantics::Symbol &x, |
7056 | ComponentPath &components) { |
7057 | mlir::Value ptrVal = nullptr; |
7058 | if (x.test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
7059 | Fortran::semantics::SymbolRef ptrSym{ |
7060 | Fortran::semantics::GetCrayPointer(x)}; |
7061 | ExtValue ptr = converter.getSymbolExtendedValue(ptrSym); |
7062 | ptrVal = fir::getBase(ptr); |
7063 | } |
7064 | components.reversePath.push_back(ImplicitSubscripts{}); |
7065 | ExtValue exv = asScalarRef(x); |
7066 | lowerPath(exv, components); |
7067 | auto lambda = genarr(exv, components, ptrVal); |
7068 | return [=](IterSpace iters) { return lambda(components.pc(iters)); }; |
7069 | } |
7070 | |
7071 | template <typename A> |
7072 | CC genAsScalar(const A &x) { |
7073 | mlir::Location loc = getLoc(); |
7074 | if (isProjectedCopyInCopyOut()) { |
7075 | return [=, &x, builder = &converter.getFirOpBuilder()]( |
7076 | IterSpace iters) -> ExtValue { |
7077 | ExtValue exv = asScalarRef(x); |
7078 | mlir::Value addr = fir::getBase(exv); |
7079 | mlir::Type eleTy = fir::unwrapRefType(addr.getType()); |
7080 | if (isAdjustedArrayElementType(eleTy)) { |
7081 | if (fir::isa_char(eleTy)) { |
7082 | fir::factory::CharacterExprHelper{*builder, loc}.createAssign( |
7083 | exv, iters.elementExv()); |
7084 | } else if (fir::isa_derived(eleTy)) { |
7085 | TODO(loc, "assignment of derived type"); |
7086 | } else { |
7087 | fir::emitFatalError(loc, "array type not expected in scalar"); |
7088 | } |
7089 | } else { |
7090 | auto eleVal = convertElementForUpdate(loc, eleTy, iters.getElement()); |
7091 | builder->create<fir::StoreOp>(loc, eleVal, addr); |
7092 | } |
7093 | return exv; |
7094 | }; |
7095 | } |
7096 | return [=, &x](IterSpace) { return asScalar(x); }; |
7097 | } |
7098 | |
7099 | bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x, |
7100 | ComponentPath &components) { |
7101 | return isPointerAssignment() && Fortran::semantics::IsPointer(x) && |
7102 | !components.hasComponents(); |
7103 | } |
7104 | bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x, |
7105 | ComponentPath &components) { |
7106 | return tailIsPointerInPointerAssignment(getLastSym(x), components); |
7107 | } |
7108 | |
7109 | CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) { |
7110 | if (explicitSpaceIsActive()) { |
7111 | if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components)) |
7112 | components.reversePath.push_back(ImplicitSubscripts{}); |
7113 | if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) |
7114 | return applyPathToArrayLoad(load, components); |
7115 | } else { |
7116 | return genImplicitArrayAccess(x, components); |
7117 | } |
7118 | if (pathIsEmpty(components)) |
7119 | return components.substring ? genAsScalar(*components.substring) |
7120 | : genAsScalar(x); |
7121 | mlir::Location loc = getLoc(); |
7122 | return [=](IterSpace) -> ExtValue { |
7123 | fir::emitFatalError(loc, "reached symbol with path"); |
7124 | }; |
7125 | } |
7126 | |
7127 | /// Lower a component path with or without rank. |
7128 | /// Example: <code>array%baz%qux%waldo</code> |
7129 | CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) { |
7130 | if (explicitSpaceIsActive()) { |
7131 | if (x.base().Rank() == 0 && x.Rank() > 0 && |
7132 | !tailIsPointerInPointerAssignment(x, components)) |
7133 | components.reversePath.push_back(ImplicitSubscripts{}); |
7134 | if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) |
7135 | return applyPathToArrayLoad(load, components); |
7136 | } else { |
7137 | if (x.base().Rank() == 0) |
7138 | return genImplicitArrayAccess(x, components); |
7139 | } |
7140 | bool atEnd = pathIsEmpty(components); |
7141 | if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp)) |
7142 | // Skip parent components; their components are placed directly in the |
7143 | // object. |
7144 | components.reversePath.push_back(&x); |
7145 | auto result = genarr(x.base(), components); |
7146 | if (components.applied) |
7147 | return result; |
7148 | if (atEnd) |
7149 | return genAsScalar(x); |
7150 | mlir::Location loc = getLoc(); |
7151 | return [=](IterSpace) -> ExtValue { |
7152 | fir::emitFatalError(loc, "reached component with path"); |
7153 | }; |
7154 | } |
7155 | |
7156 | /// Array reference with subscripts. If this has rank > 0, this is a form |
7157 | /// of an array section (slice). |
7158 | /// |
7159 | /// There are two "slicing" primitives that may be applied on a dimension by |
7160 | /// dimension basis: (1) triple notation and (2) vector addressing. Since |
7161 | /// dimensions can be selectively sliced, some dimensions may contain |
7162 | /// regular scalar expressions and those dimensions do not participate in |
7163 | /// the array expression evaluation. |
7164 | CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) { |
7165 | if (explicitSpaceIsActive()) { |
7166 | if (Fortran::lower::isRankedArrayAccess(x)) |
7167 | components.reversePath.push_back(ImplicitSubscripts{}); |
7168 | if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) { |
7169 | components.reversePath.push_back(&x); |
7170 | return applyPathToArrayLoad(load, components); |
7171 | } |
7172 | } else { |
7173 | if (Fortran::lower::isRankedArrayAccess(x)) { |
7174 | components.reversePath.push_back(&x); |
7175 | return genImplicitArrayAccess(x.base(), components); |
7176 | } |
7177 | } |
7178 | bool atEnd = pathIsEmpty(components); |
7179 | components.reversePath.push_back(&x); |
7180 | auto result = genarr(x.base(), components); |
7181 | if (components.applied) |
7182 | return result; |
7183 | mlir::Location loc = getLoc(); |
7184 | if (atEnd) { |
7185 | if (x.Rank() == 0) |
7186 | return genAsScalar(x); |
7187 | fir::emitFatalError(loc, "expected scalar"); |
7188 | } |
7189 | return [=](IterSpace) -> ExtValue { |
7190 | fir::emitFatalError(loc, "reached arrayref with path"); |
7191 | }; |
7192 | } |
7193 | |
7194 | CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) { |
7195 | TODO(getLoc(), "coarray: reference to a coarray in an expression"); |
7196 | } |
7197 | |
7198 | CC genarr(const Fortran::evaluate::NamedEntity &x, |
7199 | ComponentPath &components) { |
7200 | return x.IsSymbol() ? genarr(getFirstSym(x), components) |
7201 | : genarr(x.GetComponent(), components); |
7202 | } |
7203 | |
7204 | CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) { |
7205 | return Fortran::common::visit( |
7206 | [&](const auto &v) { return genarr(v, components); }, x.u); |
7207 | } |
7208 | |
7209 | bool pathIsEmpty(const ComponentPath &components) { |
7210 | return components.reversePath.empty(); |
7211 | } |
7212 | |
7213 | explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, |
7214 | Fortran::lower::StatementContext &stmtCtx, |
7215 | Fortran::lower::SymMap &symMap) |
7216 | : converter{converter}, builder{converter.getFirOpBuilder()}, |
7217 | stmtCtx{stmtCtx}, symMap{symMap} {} |
7218 | |
7219 | explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, |
7220 | Fortran::lower::StatementContext &stmtCtx, |
7221 | Fortran::lower::SymMap &symMap, |
7222 | ConstituentSemantics sem) |
7223 | : converter{converter}, builder{converter.getFirOpBuilder()}, |
7224 | stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {} |
7225 | |
7226 | explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, |
7227 | Fortran::lower::StatementContext &stmtCtx, |
7228 | Fortran::lower::SymMap &symMap, |
7229 | ConstituentSemantics sem, |
7230 | Fortran::lower::ExplicitIterSpace *expSpace, |
7231 | Fortran::lower::ImplicitIterSpace *impSpace) |
7232 | : converter{converter}, builder{converter.getFirOpBuilder()}, |
7233 | stmtCtx{stmtCtx}, symMap{symMap}, |
7234 | explicitSpace((expSpace && expSpace->isActive()) ? expSpace : nullptr), |
7235 | implicitSpace((impSpace && !impSpace->empty()) ? impSpace : nullptr), |
7236 | semant{sem} { |
7237 | // Generate any mask expressions, as necessary. This is the compute step |
7238 | // that creates the effective masks. See 10.2.3.2 in particular. |
7239 | genMasks(); |
7240 | } |
7241 | |
7242 | mlir::Location getLoc() { return converter.getCurrentLocation(); } |
7243 | |
7244 | /// Array appears in a lhs context such that it is assigned after the rhs is |
7245 | /// fully evaluated. |
7246 | inline bool isCopyInCopyOut() { |
7247 | return semant == ConstituentSemantics::CopyInCopyOut; |
7248 | } |
7249 | |
7250 | /// Array appears in a lhs (or temp) context such that a projected, |
7251 | /// discontiguous subspace of the array is assigned after the rhs is fully |
7252 | /// evaluated. That is, the rhs array value is merged into a section of the |
7253 | /// lhs array. |
7254 | inline bool isProjectedCopyInCopyOut() { |
7255 | return semant == ConstituentSemantics::ProjectedCopyInCopyOut; |
7256 | } |
7257 | |
7258 | // ???: Do we still need this? |
7259 | inline bool isCustomCopyInCopyOut() { |
7260 | return semant == ConstituentSemantics::CustomCopyInCopyOut; |
7261 | } |
7262 | |
7263 | /// Are we lowering in a left-hand side context? |
7264 | inline bool isLeftHandSide() { |
7265 | return isCopyInCopyOut() || isProjectedCopyInCopyOut() || |
7266 | isCustomCopyInCopyOut(); |
7267 | } |
7268 | |
7269 | /// Array appears in a context where it must be boxed. |
7270 | inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; } |
7271 | |
7272 | /// Array appears in a context where differences in the memory reference can |
7273 | /// be observable in the computational results. For example, an array |
7274 | /// element is passed to an impure procedure. |
7275 | inline bool isReferentiallyOpaque() { |
7276 | return semant == ConstituentSemantics::RefOpaque; |
7277 | } |
7278 | |
7279 | /// Array appears in a context where it is passed as a VALUE argument. |
7280 | inline bool isValueAttribute() { |
7281 | return semant == ConstituentSemantics::ByValueArg; |
7282 | } |
7283 | |
7284 | /// Semantics to use when lowering the next array path. |
7285 | /// If no value was set, the path uses the same semantics as the array. |
7286 | inline ConstituentSemantics nextPathSemantics() { |
7287 | if (nextPathSemant) { |
7288 | ConstituentSemantics sema = nextPathSemant.value(); |
7289 | nextPathSemant.reset(); |
7290 | return sema; |
7291 | } |
7292 | |
7293 | return semant; |
7294 | } |
7295 | |
7296 | /// Can the loops over the expression be unordered? |
7297 | inline bool isUnordered() const { return unordered; } |
7298 | |
7299 | void setUnordered(bool b) { unordered = b; } |
7300 | |
7301 | inline bool isPointerAssignment() const { return lbounds.has_value(); } |
7302 | |
7303 | inline bool isBoundsSpec() const { |
7304 | return isPointerAssignment() && !ubounds.has_value(); |
7305 | } |
7306 | |
7307 | inline bool isBoundsRemap() const { |
7308 | return isPointerAssignment() && ubounds.has_value(); |
7309 | } |
7310 | |
7311 | void setPointerAssignmentBounds( |
7312 | const llvm::SmallVector<mlir::Value> &lbs, |
7313 | std::optional<llvm::SmallVector<mlir::Value>> ubs) { |
7314 | lbounds = lbs; |
7315 | ubounds = ubs; |
7316 | } |
7317 | |
7318 | void setLoweredProcRef(const Fortran::evaluate::ProcedureRef *procRef) { |
7319 | loweredProcRef = procRef; |
7320 | } |
7321 | |
7322 | Fortran::lower::AbstractConverter &converter; |
7323 | fir::FirOpBuilder &builder; |
7324 | Fortran::lower::StatementContext &stmtCtx; |
7325 | bool elementCtx = false; |
7326 | Fortran::lower::SymMap &symMap; |
7327 | /// The continuation to generate code to update the destination. |
7328 | std::optional<CC> ccStoreToDest; |
7329 | std::optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude; |
7330 | std::optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>> |
7331 | ccLoadDest; |
7332 | /// The destination is the loaded array into which the results will be |
7333 | /// merged. |
7334 | fir::ArrayLoadOp destination; |
7335 | /// The shape of the destination. |
7336 | llvm::SmallVector<mlir::Value> destShape; |
7337 | /// List of arrays in the expression that have been loaded. |
7338 | llvm::SmallVector<ArrayOperand> arrayOperands; |
7339 | /// If there is a user-defined iteration space, explicitShape will hold the |
7340 | /// information from the front end. |
7341 | Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr; |
7342 | Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr; |
7343 | ConstituentSemantics semant = ConstituentSemantics::RefTransparent; |
7344 | std::optional<ConstituentSemantics> nextPathSemant; |
7345 | /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only |
7346 | /// occur in an explicit iteration space. |
7347 | std::optional<llvm::SmallVector<mlir::Value>> lbounds; |
7348 | std::optional<llvm::SmallVector<mlir::Value>> ubounds; |
7349 | // Can the array expression be evaluated in any order? |
7350 | // Will be set to false if any of the expression parts prevent this. |
7351 | bool unordered = true; |
7352 | // ProcedureRef currently being lowered. Used to retrieve the iteration shape |
7353 | // in elemental context with passed object. |
7354 | const Fortran::evaluate::ProcedureRef *loweredProcRef = nullptr; |
7355 | }; |
7356 | } // namespace |
7357 | |
7358 | fir::ExtendedValue Fortran::lower::createSomeExtendedExpression( |
7359 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
7360 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
7361 | Fortran::lower::StatementContext &stmtCtx) { |
7362 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n'); |
7363 | return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr); |
7364 | } |
7365 | |
7366 | fir::ExtendedValue Fortran::lower::createSomeInitializerExpression( |
7367 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
7368 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
7369 | Fortran::lower::StatementContext &stmtCtx) { |
7370 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n'); |
7371 | return ScalarExprLowering{loc, converter, symMap, stmtCtx, |
7372 | /*inInitializer=*/true} |
7373 | .genval(expr); |
7374 | } |
7375 | |
7376 | fir::ExtendedValue Fortran::lower::createSomeExtendedAddress( |
7377 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
7378 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
7379 | Fortran::lower::StatementContext &stmtCtx) { |
7380 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n'); |
7381 | return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr); |
7382 | } |
7383 | |
7384 | fir::ExtendedValue Fortran::lower::createInitializerAddress( |
7385 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
7386 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
7387 | Fortran::lower::StatementContext &stmtCtx) { |
7388 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n'); |
7389 | return ScalarExprLowering(loc, converter, symMap, stmtCtx, |
7390 | /*inInitializer=*/true) |
7391 | .gen(expr); |
7392 | } |
7393 | |
7394 | void Fortran::lower::createSomeArrayAssignment( |
7395 | Fortran::lower::AbstractConverter &converter, |
7396 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
7397 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
7398 | LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n'; |
7399 | rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';); |
7400 | ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); |
7401 | } |
7402 | |
7403 | void Fortran::lower::createSomeArrayAssignment( |
7404 | Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, |
7405 | const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap, |
7406 | Fortran::lower::StatementContext &stmtCtx) { |
7407 | LLVM_DEBUG(llvm::dbgs() << "onto array: "<< lhs << '\n'; |
7408 | rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';); |
7409 | ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); |
7410 | } |
7411 | void Fortran::lower::createSomeArrayAssignment( |
7412 | Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, |
7413 | const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap, |
7414 | Fortran::lower::StatementContext &stmtCtx) { |
7415 | LLVM_DEBUG(llvm::dbgs() << "onto array: "<< lhs << '\n'; |
7416 | llvm::dbgs() << "assign expression: "<< rhs << '\n';); |
7417 | ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); |
7418 | } |
7419 | |
7420 | void Fortran::lower::createAnyMaskedArrayAssignment( |
7421 | Fortran::lower::AbstractConverter &converter, |
7422 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
7423 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
7424 | Fortran::lower::ImplicitIterSpace &implicitSpace, |
7425 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
7426 | LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n'; |
7427 | rhs.AsFortran(llvm::dbgs() << "assign expression: ") |
7428 | << " given the explicit iteration space:\n" |
7429 | << explicitSpace << "\n and implied mask conditions:\n" |
7430 | << implicitSpace << '\n';); |
7431 | ArrayExprLowering::lowerAnyMaskedArrayAssignment( |
7432 | converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); |
7433 | } |
7434 | |
7435 | void Fortran::lower::createAllocatableArrayAssignment( |
7436 | Fortran::lower::AbstractConverter &converter, |
7437 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
7438 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
7439 | Fortran::lower::ImplicitIterSpace &implicitSpace, |
7440 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
7441 | LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n'; |
7442 | rhs.AsFortran(llvm::dbgs() << "assign expression: ") |
7443 | << " given the explicit iteration space:\n" |
7444 | << explicitSpace << "\n and implied mask conditions:\n" |
7445 | << implicitSpace << '\n';); |
7446 | ArrayExprLowering::lowerAllocatableArrayAssignment( |
7447 | converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); |
7448 | } |
7449 | |
7450 | void Fortran::lower::createArrayOfPointerAssignment( |
7451 | Fortran::lower::AbstractConverter &converter, |
7452 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
7453 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
7454 | Fortran::lower::ImplicitIterSpace &implicitSpace, |
7455 | const llvm::SmallVector<mlir::Value> &lbounds, |
7456 | std::optional<llvm::SmallVector<mlir::Value>> ubounds, |
7457 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
7458 | LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n'; |
7459 | rhs.AsFortran(llvm::dbgs() << "assign expression: ") |
7460 | << " given the explicit iteration space:\n" |
7461 | << explicitSpace << "\n and implied mask conditions:\n" |
7462 | << implicitSpace << '\n';); |
7463 | assert(explicitSpace.isActive() && "must be in FORALL construct"); |
7464 | ArrayExprLowering::lowerArrayOfPointerAssignment( |
7465 | converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace, |
7466 | lbounds, ubounds); |
7467 | } |
7468 | |
7469 | fir::ExtendedValue Fortran::lower::createSomeArrayTempValue( |
7470 | Fortran::lower::AbstractConverter &converter, |
7471 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
7472 | Fortran::lower::StatementContext &stmtCtx) { |
7473 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n'); |
7474 | return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx, |
7475 | expr); |
7476 | } |
7477 | |
7478 | void Fortran::lower::createLazyArrayTempValue( |
7479 | Fortran::lower::AbstractConverter &converter, |
7480 | const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader, |
7481 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
7482 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n'); |
7483 | ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr, |
7484 | raggedHeader); |
7485 | } |
7486 | |
7487 | fir::ExtendedValue |
7488 | Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter, |
7489 | const Fortran::lower::SomeExpr &expr, |
7490 | Fortran::lower::SymMap &symMap, |
7491 | Fortran::lower::StatementContext &stmtCtx) { |
7492 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n'); |
7493 | return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap, |
7494 | stmtCtx, expr); |
7495 | } |
7496 | |
7497 | fir::MutableBoxValue Fortran::lower::createMutableBox( |
7498 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
7499 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) { |
7500 | // MutableBox lowering StatementContext does not need to be propagated |
7501 | // to the caller because the result value is a variable, not a temporary |
7502 | // expression. The StatementContext clean-up can occur before using the |
7503 | // resulting MutableBoxValue. Variables of all other types are handled in the |
7504 | // bridge. |
7505 | Fortran::lower::StatementContext dummyStmtCtx; |
7506 | return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx} |
7507 | .genMutableBoxValue(expr); |
7508 | } |
7509 | |
7510 | bool Fortran::lower::isParentComponent(const Fortran::lower::SomeExpr &expr) { |
7511 | if (const Fortran::semantics::Symbol * symbol{GetLastSymbol(expr)}) { |
7512 | if (symbol->test(Fortran::semantics::Symbol::Flag::ParentComp)) |
7513 | return true; |
7514 | } |
7515 | return false; |
7516 | } |
7517 | |
7518 | // Handling special case where the last component is referring to the |
7519 | // parent component. |
7520 | // |
7521 | // TYPE t |
7522 | // integer :: a |
7523 | // END TYPE |
7524 | // TYPE, EXTENDS(t) :: t2 |
7525 | // integer :: b |
7526 | // END TYPE |
7527 | // TYPE(t2) :: y(2) |
7528 | // TYPE(t2) :: a |
7529 | // y(:)%t ! just need to update the box with a slice pointing to the first |
7530 | // ! component of `t`. |
7531 | // a%t ! simple conversion to TYPE(t). |
7532 | fir::ExtendedValue Fortran::lower::updateBoxForParentComponent( |
7533 | Fortran::lower::AbstractConverter &converter, fir::ExtendedValue box, |
7534 | const Fortran::lower::SomeExpr &expr) { |
7535 | mlir::Location loc = converter.getCurrentLocation(); |
7536 | auto &builder = converter.getFirOpBuilder(); |
7537 | mlir::Value boxBase = fir::getBase(box); |
7538 | mlir::Operation *op = boxBase.getDefiningOp(); |
7539 | mlir::Type actualTy = converter.genType(expr); |
7540 | |
7541 | if (op) { |
7542 | if (auto embox = mlir::dyn_cast<fir::EmboxOp>(op)) { |
7543 | auto newBox = builder.create<fir::EmboxOp>( |
7544 | loc, fir::BoxType::get(actualTy), embox.getMemref(), embox.getShape(), |
7545 | embox.getSlice(), embox.getTypeparams()); |
7546 | return fir::substBase(box, newBox); |
7547 | } |
7548 | if (auto rebox = mlir::dyn_cast<fir::ReboxOp>(op)) { |
7549 | auto newBox = builder.create<fir::ReboxOp>( |
7550 | loc, fir::BoxType::get(actualTy), rebox.getBox(), rebox.getShape(), |
7551 | rebox.getSlice()); |
7552 | return fir::substBase(box, newBox); |
7553 | } |
7554 | } |
7555 | |
7556 | mlir::Value empty; |
7557 | mlir::ValueRange emptyRange; |
7558 | return builder.create<fir::ReboxOp>(loc, fir::BoxType::get(actualTy), boxBase, |
7559 | /*shape=*/empty, |
7560 | /*slice=*/empty); |
7561 | } |
7562 | |
7563 | fir::ExtendedValue Fortran::lower::createBoxValue( |
7564 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
7565 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
7566 | Fortran::lower::StatementContext &stmtCtx) { |
7567 | if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) && |
7568 | !Fortran::evaluate::HasVectorSubscript(expr)) { |
7569 | fir::ExtendedValue result = |
7570 | Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx); |
7571 | if (isParentComponent(expr)) |
7572 | result = updateBoxForParentComponent(converter, result, expr); |
7573 | return result; |
7574 | } |
7575 | fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress( |
7576 | loc, converter, expr, symMap, stmtCtx); |
7577 | fir::ExtendedValue result = fir::BoxValue( |
7578 | converter.getFirOpBuilder().createBox(loc, addr, addr.isPolymorphic())); |
7579 | if (isParentComponent(expr)) |
7580 | result = updateBoxForParentComponent(converter, result, expr); |
7581 | return result; |
7582 | } |
7583 | |
7584 | mlir::Value Fortran::lower::createSubroutineCall( |
7585 | AbstractConverter &converter, const evaluate::ProcedureRef &call, |
7586 | ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace, |
7587 | SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) { |
7588 | mlir::Location loc = converter.getCurrentLocation(); |
7589 | |
7590 | if (isUserDefAssignment) { |
7591 | assert(call.arguments().size() == 2); |
7592 | const auto *lhs = call.arguments()[0].value().UnwrapExpr(); |
7593 | const auto *rhs = call.arguments()[1].value().UnwrapExpr(); |
7594 | assert(lhs && rhs && |
7595 | "user defined assignment arguments must be expressions"); |
7596 | if (call.IsElemental() && lhs->Rank() > 0) { |
7597 | // Elemental user defined assignment has special requirements to deal with |
7598 | // LHS/RHS overlaps. See 10.2.1.5 p2. |
7599 | ArrayExprLowering::lowerElementalUserAssignment( |
7600 | converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace, |
7601 | call); |
7602 | } else if (explicitIterSpace.isActive() && lhs->Rank() == 0) { |
7603 | // Scalar defined assignment (elemental or not) in a FORALL context. |
7604 | mlir::func::FuncOp func = |
7605 | Fortran::lower::CallerInterface(call, converter).getFuncOp(); |
7606 | ArrayExprLowering::lowerScalarUserAssignment( |
7607 | converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs); |
7608 | } else if (explicitIterSpace.isActive()) { |
7609 | // TODO: need to array fetch/modify sub-arrays? |
7610 | TODO(loc, "non elemental user defined array assignment inside FORALL"); |
7611 | } else { |
7612 | if (!implicitIterSpace.empty()) |
7613 | fir::emitFatalError( |
7614 | loc, |
7615 | "C1032: user defined assignment inside WHERE must be elemental"); |
7616 | // Non elemental user defined assignment outside of FORALL and WHERE. |
7617 | // FIXME: The non elemental user defined assignment case with array |
7618 | // arguments must be take into account potential overlap. So far the front |
7619 | // end does not add parentheses around the RHS argument in the call as it |
7620 | // should according to 15.4.3.4.3 p2. |
7621 | Fortran::lower::createSomeExtendedExpression( |
7622 | loc, converter, toEvExpr(call), symMap, stmtCtx); |
7623 | } |
7624 | return {}; |
7625 | } |
7626 | |
7627 | assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() && |
7628 | "subroutine calls are not allowed inside WHERE and FORALL"); |
7629 | |
7630 | if (isElementalProcWithArrayArgs(call)) { |
7631 | ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx, |
7632 | toEvExpr(call)); |
7633 | return {}; |
7634 | } |
7635 | // Simple subroutine call, with potential alternate return. |
7636 | auto res = Fortran::lower::createSomeExtendedExpression( |
7637 | loc, converter, toEvExpr(call), symMap, stmtCtx); |
7638 | return fir::getBase(res); |
7639 | } |
7640 | |
7641 | template <typename A> |
7642 | fir::ArrayLoadOp genArrayLoad(mlir::Location loc, |
7643 | Fortran::lower::AbstractConverter &converter, |
7644 | fir::FirOpBuilder &builder, const A *x, |
7645 | Fortran::lower::SymMap &symMap, |
7646 | Fortran::lower::StatementContext &stmtCtx) { |
7647 | auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x); |
7648 | mlir::Value addr = fir::getBase(exv); |
7649 | mlir::Value shapeOp = builder.createShape(loc, exv); |
7650 | mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); |
7651 | return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp, |
7652 | /*slice=*/mlir::Value{}, |
7653 | fir::getTypeParams(exv)); |
7654 | } |
7655 | template <> |
7656 | fir::ArrayLoadOp |
7657 | genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
7658 | fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x, |
7659 | Fortran::lower::SymMap &symMap, |
7660 | Fortran::lower::StatementContext &stmtCtx) { |
7661 | if (x->base().IsSymbol()) |
7662 | return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap, |
7663 | stmtCtx); |
7664 | return genArrayLoad(loc, converter, builder, &x->base().GetComponent(), |
7665 | symMap, stmtCtx); |
7666 | } |
7667 | |
7668 | void Fortran::lower::createArrayLoads( |
7669 | Fortran::lower::AbstractConverter &converter, |
7670 | Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) { |
7671 | std::size_t counter = esp.getCounter(); |
7672 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
7673 | mlir::Location loc = converter.getCurrentLocation(); |
7674 | Fortran::lower::StatementContext &stmtCtx = esp.stmtContext(); |
7675 | // Gen the fir.array_load ops. |
7676 | auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp { |
7677 | return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx); |
7678 | }; |
7679 | if (esp.lhsBases[counter]) { |
7680 | auto &base = *esp.lhsBases[counter]; |
7681 | auto load = Fortran::common::visit(genLoad, base); |
7682 | esp.initialArgs.push_back(load); |
7683 | esp.resetInnerArgs(); |
7684 | esp.bindLoad(base, load); |
7685 | } |
7686 | for (const auto &base : esp.rhsBases[counter]) |
7687 | esp.bindLoad(base, Fortran::common::visit(genLoad, base)); |
7688 | } |
7689 | |
7690 | void Fortran::lower::createArrayMergeStores( |
7691 | Fortran::lower::AbstractConverter &converter, |
7692 | Fortran::lower::ExplicitIterSpace &esp) { |
7693 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
7694 | mlir::Location loc = converter.getCurrentLocation(); |
7695 | builder.setInsertionPointAfter(esp.getOuterLoop()); |
7696 | // Gen the fir.array_merge_store ops for all LHS arrays. |
7697 | for (auto i : llvm::enumerate(esp.getOuterLoop().getResults())) |
7698 | if (std::optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) { |
7699 | fir::ArrayLoadOp load = *ldOpt; |
7700 | builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(), |
7701 | load.getMemref(), load.getSlice(), |
7702 | load.getTypeparams()); |
7703 | } |
7704 | if (esp.loopCleanup) { |
7705 | (*esp.loopCleanup)(builder); |
7706 | esp.loopCleanup = std::nullopt; |
7707 | } |
7708 | esp.initialArgs.clear(); |
7709 | esp.innerArgs.clear(); |
7710 | esp.outerLoop = std::nullopt; |
7711 | esp.resetBindings(); |
7712 | esp.incrementCounter(); |
7713 | } |
7714 | |
7715 | mlir::Value Fortran::lower::addCrayPointerInst(mlir::Location loc, |
7716 | fir::FirOpBuilder &builder, |
7717 | mlir::Value ptrVal, |
7718 | mlir::Type ptrTy, |
7719 | mlir::Type pteTy) { |
7720 | |
7721 | mlir::Value empty; |
7722 | mlir::ValueRange emptyRange; |
7723 | auto boxTy = fir::BoxType::get(ptrTy); |
7724 | auto box = builder.create<fir::EmboxOp>(loc, boxTy, ptrVal, empty, empty, |
7725 | emptyRange); |
7726 | mlir::Value addrof = |
7727 | (mlir::isa<fir::ReferenceType>(ptrTy)) |
7728 | ? builder.create<fir::BoxAddrOp>(loc, ptrTy, box) |
7729 | : builder.create<fir::BoxAddrOp>(loc, builder.getRefType(ptrTy), box); |
7730 | |
7731 | auto refPtrTy = |
7732 | builder.getRefType(fir::PointerType::get(fir::dyn_cast_ptrEleTy(pteTy))); |
7733 | return builder.createConvert(loc, refPtrTy, addrof); |
7734 | } |
7735 |
Definitions
- generateArrayCoordinate
- clInitialBufferSize
- optimizeTranspose
- inlineCopyInOutForBoxes
- ConstituentSemantics
- translateSignedRelational
- translateUnsignedRelational
- translateFloatRelational
- genActualIsPresentTest
- arrayLoadExtValue
- placeScalarValueInMemory
- createInMemoryScalarCopy
- isArray
- isParenthesizedVariable
- isParenthesizedVariable
- genLoad
- genOptionalValue
- genOptionalAddr
- genOptionalBox
- isElementalProcWithArrayArgs
- isElementalProcWithArrayArgs
- isElementalProcWithArrayArgs
- createBoxProcCharTuple
- absentBoxToUnallocatedBox
- getFirstSym
- getLastSym
- isTransposeOptEnabled
- isOptimizableTranspose
- isOptimizableTranspose
- isOptimizableTranspose
- isOptimizableTranspose
- ScalarExprLowering
- ScalarExprLowering
- genExtAddr
- genBoxArg
- genExtValue
- genMutableBoxValue
- genMutableBoxValueImpl
- genMutableBoxValueImpl
- genMutableBoxValueImpl
- genMutableBoxValueImpl
- genMutableBoxValueImpl
- getLoc
- genunbox
- genIntegerConstant
- genBoolConstant
- getSomeKindInteger
- getFunction
- createCompareOp
- createCompareOp
- createFltCmpOp
- createFltCmpOp
- createCharCompare
- createCharCompare
- gen
- genLoad
- genval
- genval
- genval
- genval
- isDerivedTypeWithLenParameters
- genval
- genval
- genval
- genval
- extractComplexPart
- genval
- genval
- genval
- genval
- genval
- createBinaryOp
- createBinaryOp
- genval
- genval
- genval
- genval
- genval
- genval
- genval
- replaceScalarCharacterLength
- genval
- genval
- genval
- genval
- genval
- genval
- genval
- genval
- genval
- genval
- genval
- genval
- genval
- genval
- gen
- genval
- gen
- genval
- genval
- genSubscript
- gen
- genval
- reverseComponents
- genComponent
- gen
- genval
- genSubType
- genval
- isSlice
- genCoordinateOp
- genOffsetAndCoordinateOp
- genArrayCoorOp
- gen
- getLBound
- genval
- gen
- genval
- gen
- genval
- genType
- genFunctionRef
- gen
- lowerIntrinsicArgumentAsInquired
- lowerIntrinsicArgumentAsBox
- genIntrinsicRef
- isStatementFunctionCall
- genStmtFunctionRef
- genArrayTempFromMold
- genArrayCopy
- genProcedureRef
- genTempExtAddr
- CopyOutPair
- readIfBoxValue
- genCopyIn
- genCopyOut
- prepareActualThatMayBeAbsent
- createScalarTempForArgThatMayBeAbsent
- isCharacterType
- inRefSet
- RefSet
- genref
- genref
- isAdjustedArrayElementType
- elementTypeWasAdjusted
- adjustedArrayElementType
- genScalarUserDefinedAssignmentCall
- arrayModifyToExv
- createDerivedArrayAmend
- createCharArrayAmend
- convertToArrayBoxValue
- ArrayExprLowering
- ArrayOperand
- lowerArrayAssignment
- lowerArrayAssignment
- lowerAnyMaskedArrayAssignment
- lowerArrayOfPointerAssignment
- lowerArrayOfPointerAssignment
- lowerAllocatableArrayAssignment
- lowerAllocatableArrayAssignment
- lowerAllocatableArrayAssignment
- lowerBoxedArrayExpression
- lowerBoxedArrayExpr
- lowerNewArrayExpression
- lowerLazyArrayExpression
- lowerLazyArrayExpression
- lowerElementalUserAssignment
- lowerElementalUserAssignment
- lowerElementalSubroutine
- extractPassedArgFromProcRef
- lowerElementalSubroutine
- lowerScalarAssignment
- lowerScalarUserAssignment
- lowerScalarUserAssignment
- determineShapeOfDest
- determineShapeOfDest
- genShapeFromDataRef
- genShapeFromDataRef
- genShapeFromDataRef
- genShapeFromDataRef
- genShapeFromDataRef
- genShapeFromDataRef
- determineShapeWithSlice
- adjustedArraySubtype
- lowerArrayExpression
- lowerArrayExpression
- populateBounds
- convertElementForUpdate
- defaultStoreToDestination
- lowerArrayExpression
- computeSliceShape
- getShape
- getShape
- getInducingShapeArrayOperand
- genIterationShape
- explicitSpaceIsActive
- implicitSpaceHasMasks
- genMaskAccess
- prepareRaggedArrays
- genMasks
- genImplicitLoops
- genIterSpace
- createAndLoadSomeArrayTemp
- genShapeOp
- genShapeOp
- asScalar
- asScalarArray
- asScalarRef
- asInquired
- getElementCtx
- finalizeElementCtx
- genElementalArgument
- genElementalIntrinsicProcRef
- genElementalUserDefinedProcRef
- genTransposeProcRef
- genProcRef
- genarr
- genarr
- genScalarAndForwardValue
- genArrayLoad
Learn to use CMake with our Intro Training
Find out more