| 1 | //===-- ConvertExpr.cpp ---------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "flang/Lower/ConvertExpr.h" |
| 14 | #include "flang/Common/unwrap.h" |
| 15 | #include "flang/Evaluate/fold.h" |
| 16 | #include "flang/Evaluate/real.h" |
| 17 | #include "flang/Evaluate/traverse.h" |
| 18 | #include "flang/Lower/Allocatable.h" |
| 19 | #include "flang/Lower/Bridge.h" |
| 20 | #include "flang/Lower/BuiltinModules.h" |
| 21 | #include "flang/Lower/CallInterface.h" |
| 22 | #include "flang/Lower/Coarray.h" |
| 23 | #include "flang/Lower/ComponentPath.h" |
| 24 | #include "flang/Lower/ConvertCall.h" |
| 25 | #include "flang/Lower/ConvertConstant.h" |
| 26 | #include "flang/Lower/ConvertProcedureDesignator.h" |
| 27 | #include "flang/Lower/ConvertType.h" |
| 28 | #include "flang/Lower/ConvertVariable.h" |
| 29 | #include "flang/Lower/CustomIntrinsicCall.h" |
| 30 | #include "flang/Lower/Mangler.h" |
| 31 | #include "flang/Lower/Runtime.h" |
| 32 | #include "flang/Lower/Support/Utils.h" |
| 33 | #include "flang/Optimizer/Builder/Character.h" |
| 34 | #include "flang/Optimizer/Builder/Complex.h" |
| 35 | #include "flang/Optimizer/Builder/Factory.h" |
| 36 | #include "flang/Optimizer/Builder/IntrinsicCall.h" |
| 37 | #include "flang/Optimizer/Builder/Runtime/Assign.h" |
| 38 | #include "flang/Optimizer/Builder/Runtime/Character.h" |
| 39 | #include "flang/Optimizer/Builder/Runtime/Derived.h" |
| 40 | #include "flang/Optimizer/Builder/Runtime/Inquiry.h" |
| 41 | #include "flang/Optimizer/Builder/Runtime/RTBuilder.h" |
| 42 | #include "flang/Optimizer/Builder/Runtime/Ragged.h" |
| 43 | #include "flang/Optimizer/Builder/Todo.h" |
| 44 | #include "flang/Optimizer/Dialect/FIRAttr.h" |
| 45 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
| 46 | #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
| 47 | #include "flang/Optimizer/Support/FatalError.h" |
| 48 | #include "flang/Runtime/support.h" |
| 49 | #include "flang/Semantics/dump-expr.h" |
| 50 | #include "flang/Semantics/expression.h" |
| 51 | #include "flang/Semantics/symbol.h" |
| 52 | #include "flang/Semantics/tools.h" |
| 53 | #include "flang/Semantics/type.h" |
| 54 | #include "flang/Support/default-kinds.h" |
| 55 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
| 56 | #include "llvm/ADT/TypeSwitch.h" |
| 57 | #include "llvm/Support/CommandLine.h" |
| 58 | #include "llvm/Support/Debug.h" |
| 59 | #include "llvm/Support/ErrorHandling.h" |
| 60 | #include "llvm/Support/raw_ostream.h" |
| 61 | #include <algorithm> |
| 62 | #include <optional> |
| 63 | |
| 64 | #define DEBUG_TYPE "flang-lower-expr" |
| 65 | |
| 66 | using namespace Fortran::runtime; |
| 67 | |
| 68 | //===----------------------------------------------------------------------===// |
| 69 | // The composition and structure of Fortran::evaluate::Expr is defined in |
| 70 | // the various header files in include/flang/Evaluate. You are referred |
| 71 | // there for more information on these data structures. Generally speaking, |
| 72 | // these data structures are a strongly typed family of abstract data types |
| 73 | // that, composed as trees, describe the syntax of Fortran expressions. |
| 74 | // |
| 75 | // This part of the bridge can traverse these tree structures and lower them |
| 76 | // to the correct FIR representation in SSA form. |
| 77 | //===----------------------------------------------------------------------===// |
| 78 | |
| 79 | static llvm::cl::opt<bool> generateArrayCoordinate( |
| 80 | "gen-array-coor" , |
| 81 | llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp" ), |
| 82 | llvm::cl::init(Val: false)); |
| 83 | |
| 84 | // The default attempts to balance a modest allocation size with expected user |
| 85 | // input to minimize bounds checks and reallocations during dynamic array |
| 86 | // construction. Some user codes may have very large array constructors for |
| 87 | // which the default can be increased. |
| 88 | static llvm::cl::opt<unsigned> clInitialBufferSize( |
| 89 | "array-constructor-initial-buffer-size" , |
| 90 | llvm::cl::desc( |
| 91 | "set the incremental array construction buffer size (default=32)" ), |
| 92 | llvm::cl::init(Val: 32u)); |
| 93 | |
| 94 | // Lower TRANSPOSE as an "elemental" function that swaps the array |
| 95 | // expression's iteration space, so that no runtime call is needed. |
| 96 | // This lowering may help get rid of unnecessary creation of temporary |
| 97 | // arrays. Note that the runtime TRANSPOSE implementation may be different |
| 98 | // from the "inline" FIR, e.g. it may diagnose out-of-memory conditions |
| 99 | // during the temporary allocation whereas the inline implementation |
| 100 | // relies on AllocMemOp that will silently return null in case |
| 101 | // there is not enough memory. |
| 102 | // |
| 103 | // If it is set to false, then TRANSPOSE will be lowered using |
| 104 | // a runtime call. If it is set to true, then the lowering is controlled |
| 105 | // by LoweringOptions::optimizeTranspose bit (see isTransposeOptEnabled |
| 106 | // function in this file). |
| 107 | static llvm::cl::opt<bool> optimizeTranspose( |
| 108 | "opt-transpose" , |
| 109 | llvm::cl::desc("lower transpose without using a runtime call" ), |
| 110 | llvm::cl::init(Val: true)); |
| 111 | |
| 112 | // When copy-in/copy-out is generated for a boxed object we may |
| 113 | // either produce loops to copy the data or call the Fortran runtime's |
| 114 | // Assign function. Since the data copy happens under a runtime check |
| 115 | // (for IsContiguous) the copy loops can hardly provide any value |
| 116 | // to optimizations, instead, the optimizer just wastes compilation |
| 117 | // time on these loops. |
| 118 | // |
| 119 | // This internal option will force the loops generation, when set |
| 120 | // to true. It is false by default. |
| 121 | // |
| 122 | // Note that for copy-in/copy-out of non-boxed objects (e.g. for passing |
| 123 | // arguments by value) we always generate loops. Since the memory for |
| 124 | // such objects is contiguous, it may be better to expose them |
| 125 | // to the optimizer. |
| 126 | static llvm::cl::opt<bool> inlineCopyInOutForBoxes( |
| 127 | "inline-copyinout-for-boxes" , |
| 128 | llvm::cl::desc( |
| 129 | "generate loops for copy-in/copy-out of objects with descriptors" ), |
| 130 | llvm::cl::init(Val: false)); |
| 131 | |
| 132 | /// The various semantics of a program constituent (or a part thereof) as it may |
| 133 | /// appear in an expression. |
| 134 | /// |
| 135 | /// Given the following Fortran declarations. |
| 136 | /// ```fortran |
| 137 | /// REAL :: v1, v2, v3 |
| 138 | /// REAL, POINTER :: vp1 |
| 139 | /// REAL :: a1(c), a2(c) |
| 140 | /// REAL ELEMENTAL FUNCTION f1(arg) ! array -> array |
| 141 | /// FUNCTION f2(arg) ! array -> array |
| 142 | /// vp1 => v3 ! 1 |
| 143 | /// v1 = v2 * vp1 ! 2 |
| 144 | /// a1 = a1 + a2 ! 3 |
| 145 | /// a1 = f1(a2) ! 4 |
| 146 | /// a1 = f2(a2) ! 5 |
| 147 | /// ``` |
| 148 | /// |
| 149 | /// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is |
| 150 | /// constructed from the DataAddr of `v3`. |
| 151 | /// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed |
| 152 | /// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double |
| 153 | /// dereference in the `vp1` case. |
| 154 | /// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs |
| 155 | /// is CopyInCopyOut as `a1` is replaced elementally by the additions. |
| 156 | /// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if |
| 157 | /// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/ |
| 158 | /// POINTER, respectively. `a1` on the lhs is CopyInCopyOut. |
| 159 | /// In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational. |
| 160 | /// `a1` on the lhs is again CopyInCopyOut. |
| 161 | enum class ConstituentSemantics { |
| 162 | // Scalar data reference semantics. |
| 163 | // |
| 164 | // For these let `v` be the location in memory of a variable with value `x` |
| 165 | DataValue, // refers to the value `x` |
| 166 | DataAddr, // refers to the address `v` |
| 167 | BoxValue, // refers to a box value containing `v` |
| 168 | BoxAddr, // refers to the address of a box value containing `v` |
| 169 | |
| 170 | // Array data reference semantics. |
| 171 | // |
| 172 | // For these let `a` be the location in memory of a sequence of value `[xs]`. |
| 173 | // Let `x_i` be the `i`-th value in the sequence `[xs]`. |
| 174 | |
| 175 | // Referentially transparent. Refers to the array's value, `[xs]`. |
| 176 | RefTransparent, |
| 177 | // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7 |
| 178 | // note 2). (Passing a copy by reference to simulate pass-by-value.) |
| 179 | ByValueArg, |
| 180 | // Refers to the merge of array value `[xs]` with another array value `[ys]`. |
| 181 | // This merged array value will be written into memory location `a`. |
| 182 | CopyInCopyOut, |
| 183 | // Similar to CopyInCopyOut but `a` may be a transient projection (rather than |
| 184 | // a whole array). |
| 185 | ProjectedCopyInCopyOut, |
| 186 | // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned |
| 187 | // automatically by the framework. Instead, and address for `[xs]` is made |
| 188 | // accessible so that custom assignments to `[xs]` can be implemented. |
| 189 | CustomCopyInCopyOut, |
| 190 | // Referentially opaque. Refers to the address of `x_i`. |
| 191 | RefOpaque |
| 192 | }; |
| 193 | |
| 194 | /// Convert parser's INTEGER relational operators to MLIR. TODO: using |
| 195 | /// unordered, but we may want to cons ordered in certain situation. |
| 196 | static mlir::arith::CmpIPredicate |
| 197 | translateSignedRelational(Fortran::common::RelationalOperator rop) { |
| 198 | switch (rop) { |
| 199 | case Fortran::common::RelationalOperator::LT: |
| 200 | return mlir::arith::CmpIPredicate::slt; |
| 201 | case Fortran::common::RelationalOperator::LE: |
| 202 | return mlir::arith::CmpIPredicate::sle; |
| 203 | case Fortran::common::RelationalOperator::EQ: |
| 204 | return mlir::arith::CmpIPredicate::eq; |
| 205 | case Fortran::common::RelationalOperator::NE: |
| 206 | return mlir::arith::CmpIPredicate::ne; |
| 207 | case Fortran::common::RelationalOperator::GT: |
| 208 | return mlir::arith::CmpIPredicate::sgt; |
| 209 | case Fortran::common::RelationalOperator::GE: |
| 210 | return mlir::arith::CmpIPredicate::sge; |
| 211 | } |
| 212 | llvm_unreachable("unhandled INTEGER relational operator" ); |
| 213 | } |
| 214 | |
| 215 | static mlir::arith::CmpIPredicate |
| 216 | translateUnsignedRelational(Fortran::common::RelationalOperator rop) { |
| 217 | switch (rop) { |
| 218 | case Fortran::common::RelationalOperator::LT: |
| 219 | return mlir::arith::CmpIPredicate::ult; |
| 220 | case Fortran::common::RelationalOperator::LE: |
| 221 | return mlir::arith::CmpIPredicate::ule; |
| 222 | case Fortran::common::RelationalOperator::EQ: |
| 223 | return mlir::arith::CmpIPredicate::eq; |
| 224 | case Fortran::common::RelationalOperator::NE: |
| 225 | return mlir::arith::CmpIPredicate::ne; |
| 226 | case Fortran::common::RelationalOperator::GT: |
| 227 | return mlir::arith::CmpIPredicate::ugt; |
| 228 | case Fortran::common::RelationalOperator::GE: |
| 229 | return mlir::arith::CmpIPredicate::uge; |
| 230 | } |
| 231 | llvm_unreachable("unhandled UNSIGNED relational operator" ); |
| 232 | } |
| 233 | |
| 234 | /// Convert parser's REAL relational operators to MLIR. |
| 235 | /// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018 |
| 236 | /// requirements in the IEEE context (table 17.1 of F2018). This choice is |
| 237 | /// also applied in other contexts because it is easier and in line with |
| 238 | /// other Fortran compilers. |
| 239 | /// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not |
| 240 | /// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee |
| 241 | /// whether the comparison will signal or not in case of quiet NaN argument. |
| 242 | static mlir::arith::CmpFPredicate |
| 243 | translateFloatRelational(Fortran::common::RelationalOperator rop) { |
| 244 | switch (rop) { |
| 245 | case Fortran::common::RelationalOperator::LT: |
| 246 | return mlir::arith::CmpFPredicate::OLT; |
| 247 | case Fortran::common::RelationalOperator::LE: |
| 248 | return mlir::arith::CmpFPredicate::OLE; |
| 249 | case Fortran::common::RelationalOperator::EQ: |
| 250 | return mlir::arith::CmpFPredicate::OEQ; |
| 251 | case Fortran::common::RelationalOperator::NE: |
| 252 | return mlir::arith::CmpFPredicate::UNE; |
| 253 | case Fortran::common::RelationalOperator::GT: |
| 254 | return mlir::arith::CmpFPredicate::OGT; |
| 255 | case Fortran::common::RelationalOperator::GE: |
| 256 | return mlir::arith::CmpFPredicate::OGE; |
| 257 | } |
| 258 | llvm_unreachable("unhandled REAL relational operator" ); |
| 259 | } |
| 260 | |
| 261 | static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder, |
| 262 | mlir::Location loc, |
| 263 | fir::ExtendedValue actual) { |
| 264 | if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>()) |
| 265 | return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, |
| 266 | *ptrOrAlloc); |
| 267 | // Optional case (not that optional allocatable/pointer cannot be absent |
| 268 | // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is |
| 269 | // therefore possible to catch them in the `then` case above. |
| 270 | return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), |
| 271 | fir::getBase(actual)); |
| 272 | } |
| 273 | |
| 274 | /// Convert the array_load, `load`, to an extended value. If `path` is not |
| 275 | /// empty, then traverse through the components designated. The base value is |
| 276 | /// `newBase`. This does not accept an array_load with a slice operand. |
| 277 | static fir::ExtendedValue |
| 278 | arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc, |
| 279 | fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path, |
| 280 | mlir::Value newBase, mlir::Value newLen = {}) { |
| 281 | // Recover the extended value from the load. |
| 282 | if (load.getSlice()) |
| 283 | fir::emitFatalError(loc, "array_load with slice is not allowed" ); |
| 284 | mlir::Type arrTy = load.getType(); |
| 285 | if (!path.empty()) { |
| 286 | mlir::Type ty = fir::applyPathToType(arrTy, path); |
| 287 | if (!ty) |
| 288 | fir::emitFatalError(loc, "path does not apply to type" ); |
| 289 | if (!mlir::isa<fir::SequenceType>(ty)) { |
| 290 | if (fir::isa_char(ty)) { |
| 291 | mlir::Value len = newLen; |
| 292 | if (!len) |
| 293 | len = fir::factory::CharacterExprHelper{builder, loc}.getLength( |
| 294 | load.getMemref()); |
| 295 | if (!len) { |
| 296 | assert(load.getTypeparams().size() == 1 && |
| 297 | "length must be in array_load" ); |
| 298 | len = load.getTypeparams()[0]; |
| 299 | } |
| 300 | return fir::CharBoxValue{newBase, len}; |
| 301 | } |
| 302 | return newBase; |
| 303 | } |
| 304 | arrTy = mlir::cast<fir::SequenceType>(ty); |
| 305 | } |
| 306 | |
| 307 | auto arrayToExtendedValue = |
| 308 | [&](const llvm::SmallVector<mlir::Value> &extents, |
| 309 | const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue { |
| 310 | mlir::Type eleTy = fir::unwrapSequenceType(arrTy); |
| 311 | if (fir::isa_char(eleTy)) { |
| 312 | mlir::Value len = newLen; |
| 313 | if (!len) |
| 314 | len = fir::factory::CharacterExprHelper{builder, loc}.getLength( |
| 315 | load.getMemref()); |
| 316 | if (!len) { |
| 317 | assert(load.getTypeparams().size() == 1 && |
| 318 | "length must be in array_load" ); |
| 319 | len = load.getTypeparams()[0]; |
| 320 | } |
| 321 | return fir::CharArrayBoxValue(newBase, len, extents, origins); |
| 322 | } |
| 323 | return fir::ArrayBoxValue(newBase, extents, origins); |
| 324 | }; |
| 325 | // Use the shape op, if there is one. |
| 326 | mlir::Value shapeVal = load.getShape(); |
| 327 | if (shapeVal) { |
| 328 | if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) { |
| 329 | auto extents = fir::factory::getExtents(shapeVal); |
| 330 | auto origins = fir::factory::getOrigins(shapeVal); |
| 331 | return arrayToExtendedValue(extents, origins); |
| 332 | } |
| 333 | if (!fir::isa_box_type(load.getMemref().getType())) |
| 334 | fir::emitFatalError(loc, "shift op is invalid in this context" ); |
| 335 | } |
| 336 | |
| 337 | // If we're dealing with the array_load op (not a subobject) and the load does |
| 338 | // not have any type parameters, then read the extents from the original box. |
| 339 | // The origin may be either from the box or a shift operation. Create and |
| 340 | // return the array extended value. |
| 341 | if (path.empty() && load.getTypeparams().empty()) { |
| 342 | auto oldBox = load.getMemref(); |
| 343 | fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox); |
| 344 | auto extents = fir::factory::getExtents(loc, builder, exv); |
| 345 | auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv); |
| 346 | if (shapeVal) { |
| 347 | // shapeVal is a ShiftOp and load.memref() is a boxed value. |
| 348 | newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox, |
| 349 | shapeVal, /*slice=*/mlir::Value{}); |
| 350 | origins = fir::factory::getOrigins(shapeVal); |
| 351 | } |
| 352 | return fir::substBase(arrayToExtendedValue(extents, origins), newBase); |
| 353 | } |
| 354 | TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires " |
| 355 | "dereferencing; generating the type parameters is a hard " |
| 356 | "requirement for correctness." ); |
| 357 | } |
| 358 | |
| 359 | /// Place \p exv in memory if it is not already a memory reference. If |
| 360 | /// \p forceValueType is provided, the value is first casted to the provided |
| 361 | /// type before being stored (this is mainly intended for logicals whose value |
| 362 | /// may be `i1` but needed to be stored as Fortran logicals). |
| 363 | static fir::ExtendedValue |
| 364 | placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc, |
| 365 | const fir::ExtendedValue &exv, |
| 366 | mlir::Type storageType) { |
| 367 | mlir::Value valBase = fir::getBase(exv); |
| 368 | if (fir::conformsWithPassByRef(valBase.getType())) |
| 369 | return exv; |
| 370 | |
| 371 | assert(!fir::hasDynamicSize(storageType) && |
| 372 | "only expect statically sized scalars to be by value" ); |
| 373 | |
| 374 | // Since `a` is not itself a valid referent, determine its value and |
| 375 | // create a temporary location at the beginning of the function for |
| 376 | // referencing. |
| 377 | mlir::Value val = builder.createConvert(loc, storageType, valBase); |
| 378 | mlir::Value temp = builder.createTemporary( |
| 379 | loc, storageType, |
| 380 | llvm::ArrayRef<mlir::NamedAttribute>{fir::getAdaptToByRefAttr(builder)}); |
| 381 | builder.create<fir::StoreOp>(loc, val, temp); |
| 382 | return fir::substBase(exv, temp); |
| 383 | } |
| 384 | |
| 385 | // Copy a copy of scalar \p exv in a new temporary. |
| 386 | static fir::ExtendedValue |
| 387 | createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc, |
| 388 | const fir::ExtendedValue &exv) { |
| 389 | assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar" ); |
| 390 | if (exv.getCharBox() != nullptr) |
| 391 | return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv); |
| 392 | if (fir::isDerivedWithLenParameters(exv)) |
| 393 | TODO(loc, "copy derived type with length parameters" ); |
| 394 | mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType()); |
| 395 | fir::ExtendedValue temp = builder.createTemporary(loc, type); |
| 396 | fir::factory::genScalarAssignment(builder, loc, temp, exv); |
| 397 | return temp; |
| 398 | } |
| 399 | |
| 400 | // An expression with non-zero rank is an array expression. |
| 401 | template <typename A> |
| 402 | static bool isArray(const A &x) { |
| 403 | return x.Rank() != 0; |
| 404 | } |
| 405 | |
| 406 | /// Is this a variable wrapped in parentheses? |
| 407 | template <typename A> |
| 408 | static bool isParenthesizedVariable(const A &) { |
| 409 | return false; |
| 410 | } |
| 411 | template <typename T> |
| 412 | static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) { |
| 413 | using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u); |
| 414 | using Parentheses = Fortran::evaluate::Parentheses<T>; |
| 415 | if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) { |
| 416 | if (const auto *parentheses = std::get_if<Parentheses>(&expr.u)) |
| 417 | return Fortran::evaluate::IsVariable(parentheses->left()); |
| 418 | return false; |
| 419 | } else { |
| 420 | return Fortran::common::visit( |
| 421 | [&](const auto &x) { return isParenthesizedVariable(x); }, expr.u); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | /// Generate a load of a value from an address. Beware that this will lose |
| 426 | /// any dynamic type information for polymorphic entities (note that unlimited |
| 427 | /// polymorphic cannot be loaded and must not be provided here). |
| 428 | static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder, |
| 429 | mlir::Location loc, |
| 430 | const fir::ExtendedValue &addr) { |
| 431 | return addr.match( |
| 432 | [](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; }, |
| 433 | [&](const fir::PolymorphicValue &p) -> fir::ExtendedValue { |
| 434 | if (mlir::isa<fir::RecordType>( |
| 435 | fir::unwrapRefType(fir::getBase(p).getType()))) |
| 436 | return p; |
| 437 | mlir::Value load = builder.create<fir::LoadOp>(loc, fir::getBase(p)); |
| 438 | return fir::PolymorphicValue(load, p.getSourceBox()); |
| 439 | }, |
| 440 | [&](const fir::UnboxedValue &v) -> fir::ExtendedValue { |
| 441 | if (mlir::isa<fir::RecordType>( |
| 442 | fir::unwrapRefType(fir::getBase(v).getType()))) |
| 443 | return v; |
| 444 | return builder.create<fir::LoadOp>(loc, fir::getBase(v)); |
| 445 | }, |
| 446 | [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue { |
| 447 | return genLoad(builder, loc, |
| 448 | fir::factory::genMutableBoxRead(builder, loc, box)); |
| 449 | }, |
| 450 | [&](const fir::BoxValue &box) -> fir::ExtendedValue { |
| 451 | return genLoad(builder, loc, |
| 452 | fir::factory::readBoxValue(builder, loc, box)); |
| 453 | }, |
| 454 | [&](const auto &) -> fir::ExtendedValue { |
| 455 | fir::emitFatalError( |
| 456 | loc, "attempting to load whole array or procedure address" ); |
| 457 | }); |
| 458 | } |
| 459 | |
| 460 | /// Create an optional dummy argument value from entity \p exv that may be |
| 461 | /// absent. This can only be called with numerical or logical scalar \p exv. |
| 462 | /// If \p exv is considered absent according to 15.5.2.12 point 1., the returned |
| 463 | /// value is zero (or false), otherwise it is the value of \p exv. |
| 464 | static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder, |
| 465 | mlir::Location loc, |
| 466 | const fir::ExtendedValue &exv, |
| 467 | mlir::Value isPresent) { |
| 468 | mlir::Type eleType = fir::getBaseTypeOf(exv); |
| 469 | assert(exv.rank() == 0 && fir::isa_trivial(eleType) && |
| 470 | "must be a numerical or logical scalar" ); |
| 471 | return builder |
| 472 | .genIfOp(loc, {eleType}, isPresent, |
| 473 | /*withElseRegion=*/true) |
| 474 | .genThen([&]() { |
| 475 | mlir::Value val = fir::getBase(genLoad(builder, loc, exv)); |
| 476 | builder.create<fir::ResultOp>(loc, val); |
| 477 | }) |
| 478 | .genElse([&]() { |
| 479 | mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType); |
| 480 | builder.create<fir::ResultOp>(loc, zero); |
| 481 | }) |
| 482 | .getResults()[0]; |
| 483 | } |
| 484 | |
| 485 | /// Create an optional dummy argument address from entity \p exv that may be |
| 486 | /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the |
| 487 | /// returned value is a null pointer, otherwise it is the address of \p exv. |
| 488 | static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder, |
| 489 | mlir::Location loc, |
| 490 | const fir::ExtendedValue &exv, |
| 491 | mlir::Value isPresent) { |
| 492 | // If it is an exv pointer/allocatable, then it cannot be absent |
| 493 | // because it is passed to a non-pointer/non-allocatable. |
| 494 | if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) |
| 495 | return fir::factory::genMutableBoxRead(builder, loc, *box); |
| 496 | // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL |
| 497 | // address and can be passed directly. |
| 498 | return exv; |
| 499 | } |
| 500 | |
| 501 | /// Create an optional dummy argument address from entity \p exv that may be |
| 502 | /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the |
| 503 | /// returned value is an absent fir.box, otherwise it is a fir.box describing \p |
| 504 | /// exv. |
| 505 | static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder, |
| 506 | mlir::Location loc, |
| 507 | const fir::ExtendedValue &exv, |
| 508 | mlir::Value isPresent) { |
| 509 | // Non allocatable/pointer optional box -> simply forward |
| 510 | if (exv.getBoxOf<fir::BoxValue>()) |
| 511 | return exv; |
| 512 | |
| 513 | fir::ExtendedValue newExv = exv; |
| 514 | // Optional allocatable/pointer -> Cannot be absent, but need to translate |
| 515 | // unallocated/diassociated into absent fir.box. |
| 516 | if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) |
| 517 | newExv = fir::factory::genMutableBoxRead(builder, loc, *box); |
| 518 | |
| 519 | // createBox will not do create any invalid memory dereferences if exv is |
| 520 | // absent. The created fir.box will not be usable, but the SelectOp below |
| 521 | // ensures it won't be. |
| 522 | mlir::Value box = builder.createBox(loc, newExv); |
| 523 | mlir::Type boxType = box.getType(); |
| 524 | auto absent = builder.create<fir::AbsentOp>(loc, boxType); |
| 525 | auto boxOrAbsent = builder.create<mlir::arith::SelectOp>( |
| 526 | loc, boxType, isPresent, box, absent); |
| 527 | return fir::BoxValue(boxOrAbsent); |
| 528 | } |
| 529 | |
| 530 | /// Is this a call to an elemental procedure with at least one array argument? |
| 531 | static bool |
| 532 | isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) { |
| 533 | if (procRef.IsElemental()) |
| 534 | for (const std::optional<Fortran::evaluate::ActualArgument> &arg : |
| 535 | procRef.arguments()) |
| 536 | if (arg && arg->Rank() != 0) |
| 537 | return true; |
| 538 | return false; |
| 539 | } |
| 540 | template <typename T> |
| 541 | static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) { |
| 542 | return false; |
| 543 | } |
| 544 | template <> |
| 545 | bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) { |
| 546 | if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u)) |
| 547 | return isElementalProcWithArrayArgs(*procRef); |
| 548 | return false; |
| 549 | } |
| 550 | |
| 551 | /// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the |
| 552 | /// \p funcAddr argument to a boxproc value, with the host-association as |
| 553 | /// required. Call the factory function to finish creating the tuple value. |
| 554 | static mlir::Value |
| 555 | createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter, |
| 556 | mlir::Type argTy, mlir::Value funcAddr, |
| 557 | mlir::Value charLen) { |
| 558 | auto boxTy = mlir::cast<fir::BoxProcType>( |
| 559 | mlir::cast<mlir::TupleType>(argTy).getType(0)); |
| 560 | mlir::Location loc = converter.getCurrentLocation(); |
| 561 | auto &builder = converter.getFirOpBuilder(); |
| 562 | |
| 563 | // While character procedure arguments are expected here, Fortran allows |
| 564 | // actual arguments of other types to be passed instead. |
| 565 | // To support this, we cast any reference to the expected type or extract |
| 566 | // procedures from their boxes if needed. |
| 567 | mlir::Type fromTy = funcAddr.getType(); |
| 568 | mlir::Type toTy = boxTy.getEleTy(); |
| 569 | if (fir::isa_ref_type(fromTy)) |
| 570 | funcAddr = builder.createConvert(loc, toTy, funcAddr); |
| 571 | else if (mlir::isa<fir::BoxProcType>(fromTy)) |
| 572 | funcAddr = builder.create<fir::BoxAddrOp>(loc, toTy, funcAddr); |
| 573 | |
| 574 | auto boxProc = [&]() -> mlir::Value { |
| 575 | if (auto host = Fortran::lower::argumentHostAssocs(converter, funcAddr)) |
| 576 | return builder.create<fir::EmboxProcOp>( |
| 577 | loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host}); |
| 578 | return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr); |
| 579 | }(); |
| 580 | return fir::factory::createCharacterProcedureTuple(builder, loc, argTy, |
| 581 | boxProc, charLen); |
| 582 | } |
| 583 | |
| 584 | /// Given an optional fir.box, returns an fir.box that is the original one if |
| 585 | /// it is present and it otherwise an unallocated box. |
| 586 | /// Absent fir.box are implemented as a null pointer descriptor. Generated |
| 587 | /// code may need to unconditionally read a fir.box that can be absent. |
| 588 | /// This helper allows creating a fir.box that can be read in all cases |
| 589 | /// outside of a fir.if (isPresent) region. However, the usages of the value |
| 590 | /// read from such box should still only be done in a fir.if(isPresent). |
| 591 | static fir::ExtendedValue |
| 592 | absentBoxToUnallocatedBox(fir::FirOpBuilder &builder, mlir::Location loc, |
| 593 | const fir::ExtendedValue &exv, |
| 594 | mlir::Value isPresent) { |
| 595 | mlir::Value box = fir::getBase(exv); |
| 596 | mlir::Type boxType = box.getType(); |
| 597 | assert(mlir::isa<fir::BoxType>(boxType) && "argument must be a fir.box" ); |
| 598 | mlir::Value emptyBox = |
| 599 | fir::factory::createUnallocatedBox(builder, loc, boxType, std::nullopt); |
| 600 | auto safeToReadBox = |
| 601 | builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox); |
| 602 | return fir::substBase(exv, safeToReadBox); |
| 603 | } |
| 604 | |
| 605 | // Helper to get the ultimate first symbol. This works around the fact that |
| 606 | // symbol resolution in the front end doesn't always resolve a symbol to its |
| 607 | // ultimate symbol but may leave placeholder indirections for use and host |
| 608 | // associations. |
| 609 | template <typename A> |
| 610 | const Fortran::semantics::Symbol &getFirstSym(const A &obj) { |
| 611 | const Fortran::semantics::Symbol &sym = obj.GetFirstSymbol(); |
| 612 | return sym.HasLocalLocality() ? sym : sym.GetUltimate(); |
| 613 | } |
| 614 | |
| 615 | // Helper to get the ultimate last symbol. |
| 616 | template <typename A> |
| 617 | const Fortran::semantics::Symbol &getLastSym(const A &obj) { |
| 618 | const Fortran::semantics::Symbol &sym = obj.GetLastSymbol(); |
| 619 | return sym.HasLocalLocality() ? sym : sym.GetUltimate(); |
| 620 | } |
| 621 | |
| 622 | // Return true if TRANSPOSE should be lowered without a runtime call. |
| 623 | static bool |
| 624 | isTransposeOptEnabled(const Fortran::lower::AbstractConverter &converter) { |
| 625 | return optimizeTranspose && |
| 626 | converter.getLoweringOptions().getOptimizeTranspose(); |
| 627 | } |
| 628 | |
| 629 | // A set of visitors to detect if the given expression |
| 630 | // is a TRANSPOSE call that should be lowered without using |
| 631 | // runtime TRANSPOSE implementation. |
| 632 | template <typename T> |
| 633 | static bool isOptimizableTranspose(const T &, |
| 634 | const Fortran::lower::AbstractConverter &) { |
| 635 | return false; |
| 636 | } |
| 637 | |
| 638 | static bool |
| 639 | isOptimizableTranspose(const Fortran::evaluate::ProcedureRef &procRef, |
| 640 | const Fortran::lower::AbstractConverter &converter) { |
| 641 | const Fortran::evaluate::SpecificIntrinsic *intrin = |
| 642 | procRef.proc().GetSpecificIntrinsic(); |
| 643 | if (isTransposeOptEnabled(converter) && intrin && |
| 644 | intrin->name == "transpose" ) { |
| 645 | const std::optional<Fortran::evaluate::ActualArgument> matrix = |
| 646 | procRef.arguments().at(0); |
| 647 | return !(matrix && matrix->GetType() && matrix->GetType()->IsPolymorphic()); |
| 648 | } |
| 649 | return false; |
| 650 | } |
| 651 | |
| 652 | template <typename T> |
| 653 | static bool |
| 654 | isOptimizableTranspose(const Fortran::evaluate::FunctionRef<T> &funcRef, |
| 655 | const Fortran::lower::AbstractConverter &converter) { |
| 656 | return isOptimizableTranspose( |
| 657 | static_cast<const Fortran::evaluate::ProcedureRef &>(funcRef), converter); |
| 658 | } |
| 659 | |
| 660 | template <typename T> |
| 661 | static bool |
| 662 | isOptimizableTranspose(Fortran::evaluate::Expr<T> expr, |
| 663 | const Fortran::lower::AbstractConverter &converter) { |
| 664 | // If optimizeTranspose is not enabled, return false right away. |
| 665 | if (!isTransposeOptEnabled(converter)) |
| 666 | return false; |
| 667 | |
| 668 | return Fortran::common::visit( |
| 669 | [&](const auto &e) { return isOptimizableTranspose(e, converter); }, |
| 670 | expr.u); |
| 671 | } |
| 672 | |
| 673 | namespace { |
| 674 | |
| 675 | /// Lowering of Fortran::evaluate::Expr<T> expressions |
| 676 | class ScalarExprLowering { |
| 677 | public: |
| 678 | using ExtValue = fir::ExtendedValue; |
| 679 | |
| 680 | explicit ScalarExprLowering(mlir::Location loc, |
| 681 | Fortran::lower::AbstractConverter &converter, |
| 682 | Fortran::lower::SymMap &symMap, |
| 683 | Fortran::lower::StatementContext &stmtCtx, |
| 684 | bool inInitializer = false) |
| 685 | : location{loc}, converter{converter}, |
| 686 | builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap}, |
| 687 | inInitializer{inInitializer} {} |
| 688 | |
| 689 | ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) { |
| 690 | return gen(expr); |
| 691 | } |
| 692 | |
| 693 | /// Lower `expr` to be passed as a fir.box argument. Do not create a temp |
| 694 | /// for the expr if it is a variable that can be described as a fir.box. |
| 695 | ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) { |
| 696 | bool saveUseBoxArg = useBoxArg; |
| 697 | useBoxArg = true; |
| 698 | ExtValue result = gen(expr); |
| 699 | useBoxArg = saveUseBoxArg; |
| 700 | return result; |
| 701 | } |
| 702 | |
| 703 | ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) { |
| 704 | return genval(expr); |
| 705 | } |
| 706 | |
| 707 | /// Lower an expression that is a pointer or an allocatable to a |
| 708 | /// MutableBoxValue. |
| 709 | fir::MutableBoxValue |
| 710 | genMutableBoxValue(const Fortran::lower::SomeExpr &expr) { |
| 711 | // Pointers and allocatables can only be: |
| 712 | // - a simple designator "x" |
| 713 | // - a component designator "a%b(i,j)%x" |
| 714 | // - a function reference "foo()" |
| 715 | // - result of NULL() or NULL(MOLD) intrinsic. |
| 716 | // NULL() requires some context to be lowered, so it is not handled |
| 717 | // here and must be lowered according to the context where it appears. |
| 718 | ExtValue exv = Fortran::common::visit( |
| 719 | [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u); |
| 720 | const fir::MutableBoxValue *mutableBox = |
| 721 | exv.getBoxOf<fir::MutableBoxValue>(); |
| 722 | if (!mutableBox) |
| 723 | fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue" ); |
| 724 | return *mutableBox; |
| 725 | } |
| 726 | |
| 727 | template <typename T> |
| 728 | ExtValue genMutableBoxValueImpl(const T &) { |
| 729 | // NULL() case should not be handled here. |
| 730 | fir::emitFatalError(getLoc(), "NULL() must be lowered in its context" ); |
| 731 | } |
| 732 | |
| 733 | /// A `NULL()` in a position where a mutable box is expected has the same |
| 734 | /// semantics as an absent optional box value. Note: this code should |
| 735 | /// be depreciated because the rank information is not known here. A |
| 736 | /// scalar fir.box is created: it should not be cast to an array box type |
| 737 | /// later, but there is no way to enforce that here. |
| 738 | ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) { |
| 739 | mlir::Location loc = getLoc(); |
| 740 | mlir::Type noneTy = mlir::NoneType::get(builder.getContext()); |
| 741 | mlir::Type polyRefTy = fir::PointerType::get(noneTy); |
| 742 | mlir::Type boxType = fir::BoxType::get(polyRefTy); |
| 743 | mlir::Value tempBox = |
| 744 | fir::factory::genNullBoxStorage(builder, loc, boxType); |
| 745 | return fir::MutableBoxValue(tempBox, |
| 746 | /*lenParameters=*/mlir::ValueRange{}, |
| 747 | /*mutableProperties=*/{}); |
| 748 | } |
| 749 | |
| 750 | template <typename T> |
| 751 | ExtValue |
| 752 | genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) { |
| 753 | return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef))); |
| 754 | } |
| 755 | |
| 756 | template <typename T> |
| 757 | ExtValue |
| 758 | genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) { |
| 759 | return Fortran::common::visit( |
| 760 | Fortran::common::visitors{ |
| 761 | [&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue { |
| 762 | return converter.getSymbolExtendedValue(*sym, &symMap); |
| 763 | }, |
| 764 | [&](const Fortran::evaluate::Component &comp) -> ExtValue { |
| 765 | return genComponent(comp); |
| 766 | }, |
| 767 | [&](const auto &) -> ExtValue { |
| 768 | fir::emitFatalError(getLoc(), |
| 769 | "not an allocatable or pointer designator" ); |
| 770 | }}, |
| 771 | designator.u); |
| 772 | } |
| 773 | |
| 774 | template <typename T> |
| 775 | ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) { |
| 776 | return Fortran::common::visit( |
| 777 | [&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u); |
| 778 | } |
| 779 | |
| 780 | mlir::Location getLoc() { return location; } |
| 781 | |
| 782 | template <typename A> |
| 783 | mlir::Value genunbox(const A &expr) { |
| 784 | ExtValue e = genval(expr); |
| 785 | if (const fir::UnboxedValue *r = e.getUnboxed()) |
| 786 | return *r; |
| 787 | fir::emitFatalError(getLoc(), "unboxed expression expected" ); |
| 788 | } |
| 789 | |
| 790 | /// Generate an integral constant of `value` |
| 791 | template <int KIND> |
| 792 | mlir::Value genIntegerConstant(mlir::MLIRContext *context, |
| 793 | std::int64_t value) { |
| 794 | mlir::Type type = |
| 795 | converter.genType(Fortran::common::TypeCategory::Integer, KIND); |
| 796 | return builder.createIntegerConstant(getLoc(), type, value); |
| 797 | } |
| 798 | |
| 799 | /// Generate a logical/boolean constant of `value` |
| 800 | mlir::Value genBoolConstant(bool value) { |
| 801 | return builder.createBool(getLoc(), value); |
| 802 | } |
| 803 | |
| 804 | mlir::Type getSomeKindInteger() { return builder.getIndexType(); } |
| 805 | |
| 806 | mlir::func::FuncOp getFunction(llvm::StringRef name, |
| 807 | mlir::FunctionType funTy) { |
| 808 | if (mlir::func::FuncOp func = builder.getNamedFunction(name)) |
| 809 | return func; |
| 810 | return builder.createFunction(getLoc(), name, funTy); |
| 811 | } |
| 812 | |
| 813 | template <typename OpTy> |
| 814 | mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred, |
| 815 | const ExtValue &left, const ExtValue &right, |
| 816 | std::optional<int> unsignedKind = std::nullopt) { |
| 817 | if (const fir::UnboxedValue *lhs = left.getUnboxed()) { |
| 818 | if (const fir::UnboxedValue *rhs = right.getUnboxed()) { |
| 819 | auto loc = getLoc(); |
| 820 | if (unsignedKind) { |
| 821 | mlir::Type signlessType = converter.genType( |
| 822 | Fortran::common::TypeCategory::Integer, *unsignedKind); |
| 823 | mlir::Value lhsSL = builder.createConvert(loc, signlessType, *lhs); |
| 824 | mlir::Value rhsSL = builder.createConvert(loc, signlessType, *rhs); |
| 825 | return builder.create<OpTy>(loc, pred, lhsSL, rhsSL); |
| 826 | } |
| 827 | return builder.create<OpTy>(loc, pred, *lhs, *rhs); |
| 828 | } |
| 829 | } |
| 830 | fir::emitFatalError(getLoc(), "array compare should be handled in genarr" ); |
| 831 | } |
| 832 | template <typename OpTy, typename A> |
| 833 | mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred, |
| 834 | std::optional<int> unsignedKind = std::nullopt) { |
| 835 | ExtValue left = genval(ex.left()); |
| 836 | return createCompareOp<OpTy>(pred, left, genval(ex.right()), unsignedKind); |
| 837 | } |
| 838 | |
| 839 | template <typename OpTy> |
| 840 | mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred, |
| 841 | const ExtValue &left, const ExtValue &right) { |
| 842 | if (const fir::UnboxedValue *lhs = left.getUnboxed()) |
| 843 | if (const fir::UnboxedValue *rhs = right.getUnboxed()) |
| 844 | return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs); |
| 845 | fir::emitFatalError(getLoc(), "array compare should be handled in genarr" ); |
| 846 | } |
| 847 | template <typename OpTy, typename A> |
| 848 | mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) { |
| 849 | ExtValue left = genval(ex.left()); |
| 850 | return createFltCmpOp<OpTy>(pred, left, genval(ex.right())); |
| 851 | } |
| 852 | |
| 853 | /// Create a call to the runtime to compare two CHARACTER values. |
| 854 | /// Precondition: This assumes that the two values have `fir.boxchar` type. |
| 855 | mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred, |
| 856 | const ExtValue &left, const ExtValue &right) { |
| 857 | return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right); |
| 858 | } |
| 859 | |
| 860 | template <typename A> |
| 861 | mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) { |
| 862 | ExtValue left = genval(ex.left()); |
| 863 | return createCharCompare(pred, left, genval(ex.right())); |
| 864 | } |
| 865 | |
| 866 | /// Returns a reference to a symbol or its box/boxChar descriptor if it has |
| 867 | /// one. |
| 868 | ExtValue gen(Fortran::semantics::SymbolRef sym) { |
| 869 | fir::ExtendedValue exv = converter.getSymbolExtendedValue(sym, &symMap); |
| 870 | if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>()) |
| 871 | return fir::factory::genMutableBoxRead(builder, getLoc(), *box); |
| 872 | return exv; |
| 873 | } |
| 874 | |
| 875 | ExtValue genLoad(const ExtValue &exv) { |
| 876 | return ::genLoad(builder, getLoc(), exv); |
| 877 | } |
| 878 | |
| 879 | ExtValue genval(Fortran::semantics::SymbolRef sym) { |
| 880 | mlir::Location loc = getLoc(); |
| 881 | ExtValue var = gen(sym); |
| 882 | if (const fir::UnboxedValue *s = var.getUnboxed()) { |
| 883 | if (fir::isa_ref_type(s->getType())) { |
| 884 | // A function with multiple entry points returning different types |
| 885 | // tags all result variables with one of the largest types to allow |
| 886 | // them to share the same storage. A reference to a result variable |
| 887 | // of one of the other types requires conversion to the actual type. |
| 888 | fir::UnboxedValue addr = *s; |
| 889 | if (Fortran::semantics::IsFunctionResult(sym)) { |
| 890 | mlir::Type resultType = converter.genType(*sym); |
| 891 | if (addr.getType() != resultType) |
| 892 | addr = builder.createConvert(loc, builder.getRefType(resultType), |
| 893 | addr); |
| 894 | } else if (sym->test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
| 895 | // get the corresponding Cray pointer |
| 896 | Fortran::semantics::SymbolRef ptrSym{ |
| 897 | Fortran::semantics::GetCrayPointer(sym)}; |
| 898 | ExtValue ptr = gen(ptrSym); |
| 899 | mlir::Value ptrVal = fir::getBase(ptr); |
| 900 | mlir::Type ptrTy = converter.genType(*ptrSym); |
| 901 | |
| 902 | ExtValue pte = gen(sym); |
| 903 | mlir::Value pteVal = fir::getBase(pte); |
| 904 | |
| 905 | mlir::Value cnvrt = Fortran::lower::addCrayPointerInst( |
| 906 | loc, builder, ptrVal, ptrTy, pteVal.getType()); |
| 907 | addr = builder.create<fir::LoadOp>(loc, cnvrt); |
| 908 | } |
| 909 | return genLoad(addr); |
| 910 | } |
| 911 | } |
| 912 | return var; |
| 913 | } |
| 914 | |
| 915 | ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) { |
| 916 | TODO(getLoc(), "BOZ" ); |
| 917 | } |
| 918 | |
| 919 | /// Return indirection to function designated in ProcedureDesignator. |
| 920 | /// The type of the function indirection is not guaranteed to match the one |
| 921 | /// of the ProcedureDesignator due to Fortran implicit typing rules. |
| 922 | ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) { |
| 923 | return Fortran::lower::convertProcedureDesignator(getLoc(), converter, proc, |
| 924 | symMap, stmtCtx); |
| 925 | } |
| 926 | ExtValue genval(const Fortran::evaluate::NullPointer &) { |
| 927 | return builder.createNullConstant(getLoc()); |
| 928 | } |
| 929 | |
| 930 | static bool |
| 931 | isDerivedTypeWithLenParameters(const Fortran::semantics::Symbol &sym) { |
| 932 | if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) |
| 933 | if (const Fortran::semantics::DerivedTypeSpec *derived = |
| 934 | declTy->AsDerived()) |
| 935 | return Fortran::semantics::CountLenParameters(*derived) > 0; |
| 936 | return false; |
| 937 | } |
| 938 | |
| 939 | /// A structure constructor is lowered two ways. In an initializer context, |
| 940 | /// the entire structure must be constant, so the aggregate value is |
| 941 | /// constructed inline. This allows it to be the body of a GlobalOp. |
| 942 | /// Otherwise, the structure constructor is in an expression. In that case, a |
| 943 | /// temporary object is constructed in the stack frame of the procedure. |
| 944 | ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) { |
| 945 | mlir::Location loc = getLoc(); |
| 946 | if (inInitializer) |
| 947 | return Fortran::lower::genInlinedStructureCtorLit(converter, loc, ctor); |
| 948 | mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor)); |
| 949 | auto recTy = mlir::cast<fir::RecordType>(ty); |
| 950 | auto fieldTy = fir::FieldType::get(ty.getContext()); |
| 951 | mlir::Value res = builder.createTemporary(loc, recTy); |
| 952 | mlir::Value box = builder.createBox(loc, fir::ExtendedValue{res}); |
| 953 | fir::runtime::genDerivedTypeInitialize(builder, loc, box); |
| 954 | |
| 955 | for (const auto &value : ctor.values()) { |
| 956 | const Fortran::semantics::Symbol &sym = *value.first; |
| 957 | const Fortran::lower::SomeExpr &expr = value.second.value(); |
| 958 | if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp)) { |
| 959 | ExtValue from = gen(expr); |
| 960 | mlir::Type fromTy = fir::unwrapPassByRefType( |
| 961 | fir::unwrapRefType(fir::getBase(from).getType())); |
| 962 | mlir::Value resCast = |
| 963 | builder.createConvert(loc, builder.getRefType(fromTy), res); |
| 964 | fir::factory::genRecordAssignment(builder, loc, resCast, from); |
| 965 | continue; |
| 966 | } |
| 967 | |
| 968 | if (isDerivedTypeWithLenParameters(sym)) |
| 969 | TODO(loc, "component with length parameters in structure constructor" ); |
| 970 | |
| 971 | std::string name = converter.getRecordTypeFieldName(sym); |
| 972 | // FIXME: type parameters must come from the derived-type-spec |
| 973 | mlir::Value field = builder.create<fir::FieldIndexOp>( |
| 974 | loc, fieldTy, name, ty, |
| 975 | /*typeParams=*/mlir::ValueRange{} /*TODO*/); |
| 976 | mlir::Type coorTy = builder.getRefType(recTy.getType(name)); |
| 977 | auto coor = builder.create<fir::CoordinateOp>(loc, coorTy, |
| 978 | fir::getBase(res), field); |
| 979 | ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor); |
| 980 | to.match( |
| 981 | [&](const fir::UnboxedValue &toPtr) { |
| 982 | ExtValue value = genval(expr); |
| 983 | fir::factory::genScalarAssignment(builder, loc, to, value); |
| 984 | }, |
| 985 | [&](const fir::CharBoxValue &) { |
| 986 | ExtValue value = genval(expr); |
| 987 | fir::factory::genScalarAssignment(builder, loc, to, value); |
| 988 | }, |
| 989 | [&](const fir::ArrayBoxValue &) { |
| 990 | Fortran::lower::createSomeArrayAssignment(converter, to, expr, |
| 991 | symMap, stmtCtx); |
| 992 | }, |
| 993 | [&](const fir::CharArrayBoxValue &) { |
| 994 | Fortran::lower::createSomeArrayAssignment(converter, to, expr, |
| 995 | symMap, stmtCtx); |
| 996 | }, |
| 997 | [&](const fir::BoxValue &toBox) { |
| 998 | fir::emitFatalError(loc, "derived type components must not be " |
| 999 | "represented by fir::BoxValue" ); |
| 1000 | }, |
| 1001 | [&](const fir::PolymorphicValue &) { |
| 1002 | TODO(loc, "polymorphic component in derived type assignment" ); |
| 1003 | }, |
| 1004 | [&](const fir::MutableBoxValue &toBox) { |
| 1005 | if (toBox.isPointer()) { |
| 1006 | Fortran::lower::associateMutableBox(converter, loc, toBox, expr, |
| 1007 | /*lbounds=*/std::nullopt, |
| 1008 | stmtCtx); |
| 1009 | return; |
| 1010 | } |
| 1011 | // For allocatable components, a deep copy is needed. |
| 1012 | TODO(loc, "allocatable components in derived type assignment" ); |
| 1013 | }, |
| 1014 | [&](const fir::ProcBoxValue &toBox) { |
| 1015 | TODO(loc, "procedure pointer component in derived type assignment" ); |
| 1016 | }); |
| 1017 | } |
| 1018 | return res; |
| 1019 | } |
| 1020 | |
| 1021 | /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol. |
| 1022 | ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) { |
| 1023 | mlir::Value value = converter.impliedDoBinding(toStringRef(var.name)); |
| 1024 | // The index value generated by the implied-do has Index type, |
| 1025 | // while computations based on it inside the loop body are using |
| 1026 | // the original data type. So we need to cast it appropriately. |
| 1027 | mlir::Type varTy = converter.genType(toEvExpr(var)); |
| 1028 | return builder.createConvert(getLoc(), varTy, value); |
| 1029 | } |
| 1030 | |
| 1031 | ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) { |
| 1032 | ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base())) |
| 1033 | : gen(desc.base().GetComponent()); |
| 1034 | mlir::IndexType idxTy = builder.getIndexType(); |
| 1035 | mlir::Location loc = getLoc(); |
| 1036 | auto castResult = [&](mlir::Value v) { |
| 1037 | using ResTy = Fortran::evaluate::DescriptorInquiry::Result; |
| 1038 | return builder.createConvert( |
| 1039 | loc, converter.genType(ResTy::category, ResTy::kind), v); |
| 1040 | }; |
| 1041 | switch (desc.field()) { |
| 1042 | case Fortran::evaluate::DescriptorInquiry::Field::Len: |
| 1043 | return castResult(fir::factory::readCharLen(builder, loc, exv)); |
| 1044 | case Fortran::evaluate::DescriptorInquiry::Field::LowerBound: |
| 1045 | return castResult(fir::factory::readLowerBound( |
| 1046 | builder, loc, exv, desc.dimension(), |
| 1047 | builder.createIntegerConstant(loc, idxTy, 1))); |
| 1048 | case Fortran::evaluate::DescriptorInquiry::Field::Extent: |
| 1049 | return castResult( |
| 1050 | fir::factory::readExtent(builder, loc, exv, desc.dimension())); |
| 1051 | case Fortran::evaluate::DescriptorInquiry::Field::Rank: |
| 1052 | TODO(loc, "rank inquiry on assumed rank" ); |
| 1053 | case Fortran::evaluate::DescriptorInquiry::Field::Stride: |
| 1054 | // So far the front end does not generate this inquiry. |
| 1055 | TODO(loc, "stride inquiry" ); |
| 1056 | } |
| 1057 | llvm_unreachable("unknown descriptor inquiry" ); |
| 1058 | } |
| 1059 | |
| 1060 | ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) { |
| 1061 | TODO(getLoc(), "type parameter inquiry" ); |
| 1062 | } |
| 1063 | |
| 1064 | mlir::Value (mlir::Value cplx, bool isImagPart) { |
| 1065 | return fir::factory::Complex{builder, getLoc()}.extractComplexPart( |
| 1066 | cplx, isImagPart); |
| 1067 | } |
| 1068 | |
| 1069 | template <int KIND> |
| 1070 | ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) { |
| 1071 | return extractComplexPart(genunbox(part.left()), part.isImaginaryPart); |
| 1072 | } |
| 1073 | |
| 1074 | template <int KIND> |
| 1075 | ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| 1076 | Fortran::common::TypeCategory::Integer, KIND>> &op) { |
| 1077 | mlir::Value input = genunbox(op.left()); |
| 1078 | // Like LLVM, integer negation is the binary op "0 - value" |
| 1079 | mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0); |
| 1080 | return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input); |
| 1081 | } |
| 1082 | template <int KIND> |
| 1083 | ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| 1084 | Fortran::common::TypeCategory::Unsigned, KIND>> &op) { |
| 1085 | auto loc = getLoc(); |
| 1086 | mlir::Type signlessType = |
| 1087 | converter.genType(Fortran::common::TypeCategory::Integer, KIND); |
| 1088 | mlir::Value input = genunbox(op.left()); |
| 1089 | mlir::Value signless = builder.createConvert(loc, signlessType, input); |
| 1090 | mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0); |
| 1091 | mlir::Value neg = builder.create<mlir::arith::SubIOp>(loc, zero, signless); |
| 1092 | return builder.createConvert(loc, input.getType(), neg); |
| 1093 | } |
| 1094 | template <int KIND> |
| 1095 | ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| 1096 | Fortran::common::TypeCategory::Real, KIND>> &op) { |
| 1097 | return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left())); |
| 1098 | } |
| 1099 | template <int KIND> |
| 1100 | ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| 1101 | Fortran::common::TypeCategory::Complex, KIND>> &op) { |
| 1102 | return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left())); |
| 1103 | } |
| 1104 | |
| 1105 | template <typename OpTy> |
| 1106 | mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) { |
| 1107 | assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right)); |
| 1108 | mlir::Value lhs = fir::getBase(left); |
| 1109 | mlir::Value rhs = fir::getBase(right); |
| 1110 | assert(lhs.getType() == rhs.getType() && "types must be the same" ); |
| 1111 | return builder.createUnsigned<OpTy>(getLoc(), lhs.getType(), lhs, rhs); |
| 1112 | } |
| 1113 | |
| 1114 | template <typename OpTy, typename A> |
| 1115 | mlir::Value createBinaryOp(const A &ex) { |
| 1116 | ExtValue left = genval(ex.left()); |
| 1117 | return createBinaryOp<OpTy>(left, genval(ex.right())); |
| 1118 | } |
| 1119 | |
| 1120 | #undef GENBIN |
| 1121 | #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ |
| 1122 | template <int KIND> \ |
| 1123 | ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ |
| 1124 | Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ |
| 1125 | return createBinaryOp<GenBinFirOp>(x); \ |
| 1126 | } |
| 1127 | |
| 1128 | GENBIN(Add, Integer, mlir::arith::AddIOp) |
| 1129 | GENBIN(Add, Unsigned, mlir::arith::AddIOp) |
| 1130 | GENBIN(Add, Real, mlir::arith::AddFOp) |
| 1131 | GENBIN(Add, Complex, fir::AddcOp) |
| 1132 | GENBIN(Subtract, Integer, mlir::arith::SubIOp) |
| 1133 | GENBIN(Subtract, Unsigned, mlir::arith::SubIOp) |
| 1134 | GENBIN(Subtract, Real, mlir::arith::SubFOp) |
| 1135 | GENBIN(Subtract, Complex, fir::SubcOp) |
| 1136 | GENBIN(Multiply, Integer, mlir::arith::MulIOp) |
| 1137 | GENBIN(Multiply, Unsigned, mlir::arith::MulIOp) |
| 1138 | GENBIN(Multiply, Real, mlir::arith::MulFOp) |
| 1139 | GENBIN(Multiply, Complex, fir::MulcOp) |
| 1140 | GENBIN(Divide, Integer, mlir::arith::DivSIOp) |
| 1141 | GENBIN(Divide, Unsigned, mlir::arith::DivUIOp) |
| 1142 | GENBIN(Divide, Real, mlir::arith::DivFOp) |
| 1143 | |
| 1144 | template <int KIND> |
| 1145 | ExtValue genval(const Fortran::evaluate::Divide<Fortran::evaluate::Type< |
| 1146 | Fortran::common::TypeCategory::Complex, KIND>> &op) { |
| 1147 | mlir::Type ty = |
| 1148 | converter.genType(Fortran::common::TypeCategory::Complex, KIND); |
| 1149 | mlir::Value lhs = genunbox(op.left()); |
| 1150 | mlir::Value rhs = genunbox(op.right()); |
| 1151 | return fir::genDivC(builder, getLoc(), ty, lhs, rhs); |
| 1152 | } |
| 1153 | |
| 1154 | template <Fortran::common::TypeCategory TC, int KIND> |
| 1155 | ExtValue genval( |
| 1156 | const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) { |
| 1157 | mlir::Type ty = converter.genType(TC, KIND); |
| 1158 | mlir::Value lhs = genunbox(op.left()); |
| 1159 | mlir::Value rhs = genunbox(op.right()); |
| 1160 | return fir::genPow(builder, getLoc(), ty, lhs, rhs); |
| 1161 | } |
| 1162 | |
| 1163 | template <Fortran::common::TypeCategory TC, int KIND> |
| 1164 | ExtValue genval( |
| 1165 | const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> |
| 1166 | &op) { |
| 1167 | mlir::Type ty = converter.genType(TC, KIND); |
| 1168 | mlir::Value lhs = genunbox(op.left()); |
| 1169 | mlir::Value rhs = genunbox(op.right()); |
| 1170 | return fir::genPow(builder, getLoc(), ty, lhs, rhs); |
| 1171 | } |
| 1172 | |
| 1173 | template <int KIND> |
| 1174 | ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) { |
| 1175 | mlir::Value realPartValue = genunbox(op.left()); |
| 1176 | return fir::factory::Complex{builder, getLoc()}.createComplex( |
| 1177 | realPartValue, genunbox(op.right())); |
| 1178 | } |
| 1179 | |
| 1180 | template <int KIND> |
| 1181 | ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) { |
| 1182 | ExtValue lhs = genval(op.left()); |
| 1183 | ExtValue rhs = genval(op.right()); |
| 1184 | const fir::CharBoxValue *lhsChar = lhs.getCharBox(); |
| 1185 | const fir::CharBoxValue *rhsChar = rhs.getCharBox(); |
| 1186 | if (lhsChar && rhsChar) |
| 1187 | return fir::factory::CharacterExprHelper{builder, getLoc()} |
| 1188 | .createConcatenate(*lhsChar, *rhsChar); |
| 1189 | TODO(getLoc(), "character array concatenate" ); |
| 1190 | } |
| 1191 | |
| 1192 | /// MIN and MAX operations |
| 1193 | template <Fortran::common::TypeCategory TC, int KIND> |
| 1194 | ExtValue |
| 1195 | genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> |
| 1196 | &op) { |
| 1197 | mlir::Value lhs = genunbox(op.left()); |
| 1198 | mlir::Value rhs = genunbox(op.right()); |
| 1199 | switch (op.ordering) { |
| 1200 | case Fortran::evaluate::Ordering::Greater: |
| 1201 | return fir::genMax(builder, getLoc(), |
| 1202 | llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
| 1203 | case Fortran::evaluate::Ordering::Less: |
| 1204 | return fir::genMin(builder, getLoc(), |
| 1205 | llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
| 1206 | case Fortran::evaluate::Ordering::Equal: |
| 1207 | llvm_unreachable("Equal is not a valid ordering in this context" ); |
| 1208 | } |
| 1209 | llvm_unreachable("unknown ordering" ); |
| 1210 | } |
| 1211 | |
| 1212 | // Change the dynamic length information without actually changing the |
| 1213 | // underlying character storage. |
| 1214 | fir::ExtendedValue |
| 1215 | replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar, |
| 1216 | mlir::Value newLenValue) { |
| 1217 | mlir::Location loc = getLoc(); |
| 1218 | const fir::CharBoxValue *charBox = scalarChar.getCharBox(); |
| 1219 | if (!charBox) |
| 1220 | fir::emitFatalError(loc, "expected scalar character" ); |
| 1221 | mlir::Value charAddr = charBox->getAddr(); |
| 1222 | auto charType = mlir::cast<fir::CharacterType>( |
| 1223 | fir::unwrapPassByRefType(charAddr.getType())); |
| 1224 | if (charType.hasConstantLen()) { |
| 1225 | // Erase previous constant length from the base type. |
| 1226 | fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen(); |
| 1227 | mlir::Type newCharTy = fir::CharacterType::get( |
| 1228 | builder.getContext(), charType.getFKind(), newLen); |
| 1229 | mlir::Type newType = fir::ReferenceType::get(newCharTy); |
| 1230 | charAddr = builder.createConvert(loc, newType, charAddr); |
| 1231 | return fir::CharBoxValue{charAddr, newLenValue}; |
| 1232 | } |
| 1233 | return fir::CharBoxValue{charAddr, newLenValue}; |
| 1234 | } |
| 1235 | |
| 1236 | template <int KIND> |
| 1237 | ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) { |
| 1238 | mlir::Value newLenValue = genunbox(x.right()); |
| 1239 | fir::ExtendedValue lhs = gen(x.left()); |
| 1240 | fir::factory::CharacterExprHelper charHelper(builder, getLoc()); |
| 1241 | fir::CharBoxValue temp = charHelper.createCharacterTemp( |
| 1242 | charHelper.getCharacterType(fir::getBase(lhs).getType()), newLenValue); |
| 1243 | charHelper.createAssign(temp, lhs); |
| 1244 | return fir::ExtendedValue{temp}; |
| 1245 | } |
| 1246 | |
| 1247 | template <int KIND> |
| 1248 | ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| 1249 | Fortran::common::TypeCategory::Integer, KIND>> &op) { |
| 1250 | return createCompareOp<mlir::arith::CmpIOp>( |
| 1251 | op, translateSignedRelational(op.opr)); |
| 1252 | } |
| 1253 | template <int KIND> |
| 1254 | ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| 1255 | Fortran::common::TypeCategory::Unsigned, KIND>> &op) { |
| 1256 | return createCompareOp<mlir::arith::CmpIOp>( |
| 1257 | op, translateUnsignedRelational(op.opr), KIND); |
| 1258 | } |
| 1259 | template <int KIND> |
| 1260 | ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| 1261 | Fortran::common::TypeCategory::Real, KIND>> &op) { |
| 1262 | return createFltCmpOp<mlir::arith::CmpFOp>( |
| 1263 | op, translateFloatRelational(op.opr)); |
| 1264 | } |
| 1265 | template <int KIND> |
| 1266 | ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| 1267 | Fortran::common::TypeCategory::Complex, KIND>> &op) { |
| 1268 | return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr)); |
| 1269 | } |
| 1270 | template <int KIND> |
| 1271 | ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| 1272 | Fortran::common::TypeCategory::Character, KIND>> &op) { |
| 1273 | return createCharCompare(op, translateSignedRelational(op.opr)); |
| 1274 | } |
| 1275 | |
| 1276 | ExtValue |
| 1277 | genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) { |
| 1278 | return Fortran::common::visit([&](const auto &x) { return genval(x); }, |
| 1279 | op.u); |
| 1280 | } |
| 1281 | |
| 1282 | template <Fortran::common::TypeCategory TC1, int KIND, |
| 1283 | Fortran::common::TypeCategory TC2> |
| 1284 | ExtValue |
| 1285 | genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, |
| 1286 | TC2> &convert) { |
| 1287 | mlir::Type ty = converter.genType(TC1, KIND); |
| 1288 | auto fromExpr = genval(convert.left()); |
| 1289 | auto loc = getLoc(); |
| 1290 | return fromExpr.match( |
| 1291 | [&](const fir::CharBoxValue &boxchar) -> ExtValue { |
| 1292 | if constexpr (TC1 == Fortran::common::TypeCategory::Character && |
| 1293 | TC2 == TC1) { |
| 1294 | return fir::factory::convertCharacterKind(builder, loc, boxchar, |
| 1295 | KIND); |
| 1296 | } else { |
| 1297 | fir::emitFatalError( |
| 1298 | loc, "unsupported evaluate::Convert between CHARACTER type " |
| 1299 | "category and non-CHARACTER category" ); |
| 1300 | } |
| 1301 | }, |
| 1302 | [&](const fir::UnboxedValue &value) -> ExtValue { |
| 1303 | return builder.convertWithSemantics(loc, ty, value); |
| 1304 | }, |
| 1305 | [&](auto &) -> ExtValue { |
| 1306 | fir::emitFatalError(loc, "unsupported evaluate::Convert" ); |
| 1307 | }); |
| 1308 | } |
| 1309 | |
| 1310 | template <typename A> |
| 1311 | ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) { |
| 1312 | ExtValue input = genval(op.left()); |
| 1313 | mlir::Value base = fir::getBase(input); |
| 1314 | mlir::Value newBase = |
| 1315 | builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base); |
| 1316 | return fir::substBase(input, newBase); |
| 1317 | } |
| 1318 | |
| 1319 | template <int KIND> |
| 1320 | ExtValue genval(const Fortran::evaluate::Not<KIND> &op) { |
| 1321 | mlir::Value logical = genunbox(op.left()); |
| 1322 | mlir::Value one = genBoolConstant(true); |
| 1323 | mlir::Value val = |
| 1324 | builder.createConvert(getLoc(), builder.getI1Type(), logical); |
| 1325 | return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one); |
| 1326 | } |
| 1327 | |
| 1328 | template <int KIND> |
| 1329 | ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) { |
| 1330 | mlir::IntegerType i1Type = builder.getI1Type(); |
| 1331 | mlir::Value slhs = genunbox(op.left()); |
| 1332 | mlir::Value srhs = genunbox(op.right()); |
| 1333 | mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs); |
| 1334 | mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs); |
| 1335 | switch (op.logicalOperator) { |
| 1336 | case Fortran::evaluate::LogicalOperator::And: |
| 1337 | return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs); |
| 1338 | case Fortran::evaluate::LogicalOperator::Or: |
| 1339 | return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs); |
| 1340 | case Fortran::evaluate::LogicalOperator::Eqv: |
| 1341 | return createCompareOp<mlir::arith::CmpIOp>( |
| 1342 | mlir::arith::CmpIPredicate::eq, lhs, rhs); |
| 1343 | case Fortran::evaluate::LogicalOperator::Neqv: |
| 1344 | return createCompareOp<mlir::arith::CmpIOp>( |
| 1345 | mlir::arith::CmpIPredicate::ne, lhs, rhs); |
| 1346 | case Fortran::evaluate::LogicalOperator::Not: |
| 1347 | // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>. |
| 1348 | llvm_unreachable(".NOT. is not a binary operator" ); |
| 1349 | } |
| 1350 | llvm_unreachable("unhandled logical operation" ); |
| 1351 | } |
| 1352 | |
| 1353 | template <Fortran::common::TypeCategory TC, int KIND> |
| 1354 | ExtValue |
| 1355 | genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>> |
| 1356 | &con) { |
| 1357 | return Fortran::lower::convertConstant( |
| 1358 | converter, getLoc(), con, |
| 1359 | /*outlineBigConstantsInReadOnlyMemory=*/!inInitializer); |
| 1360 | } |
| 1361 | |
| 1362 | fir::ExtendedValue genval( |
| 1363 | const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) { |
| 1364 | if (auto ctor = con.GetScalarValue()) |
| 1365 | return genval(*ctor); |
| 1366 | return Fortran::lower::convertConstant( |
| 1367 | converter, getLoc(), con, |
| 1368 | /*outlineBigConstantsInReadOnlyMemory=*/false); |
| 1369 | } |
| 1370 | |
| 1371 | template <typename A> |
| 1372 | ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) { |
| 1373 | fir::emitFatalError(getLoc(), "array constructor: should not reach here" ); |
| 1374 | } |
| 1375 | |
| 1376 | ExtValue gen(const Fortran::evaluate::ComplexPart &x) { |
| 1377 | mlir::Location loc = getLoc(); |
| 1378 | auto idxTy = builder.getI32Type(); |
| 1379 | ExtValue exv = gen(x.complex()); |
| 1380 | mlir::Value base = fir::getBase(exv); |
| 1381 | fir::factory::Complex helper{builder, loc}; |
| 1382 | mlir::Type eleTy = |
| 1383 | helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType())); |
| 1384 | mlir::Value offset = builder.createIntegerConstant( |
| 1385 | loc, idxTy, |
| 1386 | x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1); |
| 1387 | mlir::Value result = builder.create<fir::CoordinateOp>( |
| 1388 | loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset}); |
| 1389 | return {result}; |
| 1390 | } |
| 1391 | ExtValue genval(const Fortran::evaluate::ComplexPart &x) { |
| 1392 | return genLoad(gen(x)); |
| 1393 | } |
| 1394 | |
| 1395 | /// Reference to a substring. |
| 1396 | ExtValue gen(const Fortran::evaluate::Substring &s) { |
| 1397 | // Get base string |
| 1398 | auto baseString = Fortran::common::visit( |
| 1399 | Fortran::common::visitors{ |
| 1400 | [&](const Fortran::evaluate::DataRef &x) { return gen(x); }, |
| 1401 | [&](const Fortran::evaluate::StaticDataObject::Pointer &p) |
| 1402 | -> ExtValue { |
| 1403 | if (std::optional<std::string> str = p->AsString()) |
| 1404 | return fir::factory::createStringLiteral(builder, getLoc(), |
| 1405 | *str); |
| 1406 | // TODO: convert StaticDataObject to Constant<T> and use normal |
| 1407 | // constant path. Beware that StaticDataObject data() takes into |
| 1408 | // account build machine endianness. |
| 1409 | TODO(getLoc(), |
| 1410 | "StaticDataObject::Pointer substring with kind > 1" ); |
| 1411 | }, |
| 1412 | }, |
| 1413 | s.parent()); |
| 1414 | llvm::SmallVector<mlir::Value> bounds; |
| 1415 | mlir::Value lower = genunbox(s.lower()); |
| 1416 | bounds.push_back(lower); |
| 1417 | if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) { |
| 1418 | mlir::Value upper = genunbox(*upperBound); |
| 1419 | bounds.push_back(upper); |
| 1420 | } |
| 1421 | fir::factory::CharacterExprHelper charHelper{builder, getLoc()}; |
| 1422 | return baseString.match( |
| 1423 | [&](const fir::CharBoxValue &x) -> ExtValue { |
| 1424 | return charHelper.createSubstring(x, bounds); |
| 1425 | }, |
| 1426 | [&](const fir::CharArrayBoxValue &) -> ExtValue { |
| 1427 | fir::emitFatalError( |
| 1428 | getLoc(), |
| 1429 | "array substring should be handled in array expression" ); |
| 1430 | }, |
| 1431 | [&](const auto &) -> ExtValue { |
| 1432 | fir::emitFatalError(getLoc(), "substring base is not a CharBox" ); |
| 1433 | }); |
| 1434 | } |
| 1435 | |
| 1436 | /// The value of a substring. |
| 1437 | ExtValue genval(const Fortran::evaluate::Substring &ss) { |
| 1438 | // FIXME: why is the value of a substring being lowered the same as the |
| 1439 | // address of a substring? |
| 1440 | return gen(ss); |
| 1441 | } |
| 1442 | |
| 1443 | ExtValue genval(const Fortran::evaluate::Subscript &subs) { |
| 1444 | if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>( |
| 1445 | &subs.u)) { |
| 1446 | if (s->value().Rank() > 0) |
| 1447 | fir::emitFatalError(getLoc(), "vector subscript is not scalar" ); |
| 1448 | return {genval(s->value())}; |
| 1449 | } |
| 1450 | fir::emitFatalError(getLoc(), "subscript triple notation is not scalar" ); |
| 1451 | } |
| 1452 | ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) { |
| 1453 | return genval(subs); |
| 1454 | } |
| 1455 | |
| 1456 | ExtValue gen(const Fortran::evaluate::DataRef &dref) { |
| 1457 | return Fortran::common::visit([&](const auto &x) { return gen(x); }, |
| 1458 | dref.u); |
| 1459 | } |
| 1460 | ExtValue genval(const Fortran::evaluate::DataRef &dref) { |
| 1461 | return Fortran::common::visit([&](const auto &x) { return genval(x); }, |
| 1462 | dref.u); |
| 1463 | } |
| 1464 | |
| 1465 | // Helper function to turn the Component structure into a list of nested |
| 1466 | // components, ordered from largest/leftmost to smallest/rightmost: |
| 1467 | // - where only the smallest/rightmost item may be allocatable or a pointer |
| 1468 | // (nested allocatable/pointer components require nested coordinate_of ops) |
| 1469 | // - that does not contain any parent components |
| 1470 | // (the front end places parent components directly in the object) |
| 1471 | // Return the object used as the base coordinate for the component chain. |
| 1472 | static Fortran::evaluate::DataRef const * |
| 1473 | reverseComponents(const Fortran::evaluate::Component &cmpt, |
| 1474 | std::list<const Fortran::evaluate::Component *> &list) { |
| 1475 | if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp)) |
| 1476 | list.push_front(&cmpt); |
| 1477 | return Fortran::common::visit( |
| 1478 | Fortran::common::visitors{ |
| 1479 | [&](const Fortran::evaluate::Component &x) { |
| 1480 | if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x))) |
| 1481 | return &cmpt.base(); |
| 1482 | return reverseComponents(x, list); |
| 1483 | }, |
| 1484 | [&](auto &) { return &cmpt.base(); }, |
| 1485 | }, |
| 1486 | cmpt.base().u); |
| 1487 | } |
| 1488 | |
| 1489 | // Return the coordinate of the component reference |
| 1490 | ExtValue genComponent(const Fortran::evaluate::Component &cmpt) { |
| 1491 | std::list<const Fortran::evaluate::Component *> list; |
| 1492 | const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list); |
| 1493 | llvm::SmallVector<mlir::Value> coorArgs; |
| 1494 | ExtValue obj = gen(*base); |
| 1495 | mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType()); |
| 1496 | mlir::Location loc = getLoc(); |
| 1497 | auto fldTy = fir::FieldType::get(&converter.getMLIRContext()); |
| 1498 | // FIXME: need to thread the LEN type parameters here. |
| 1499 | for (const Fortran::evaluate::Component *field : list) { |
| 1500 | auto recTy = mlir::cast<fir::RecordType>(ty); |
| 1501 | const Fortran::semantics::Symbol &sym = getLastSym(*field); |
| 1502 | std::string name = converter.getRecordTypeFieldName(sym); |
| 1503 | coorArgs.push_back(builder.create<fir::FieldIndexOp>( |
| 1504 | loc, fldTy, name, recTy, fir::getTypeParams(obj))); |
| 1505 | ty = recTy.getType(name); |
| 1506 | } |
| 1507 | // If parent component is referred then it has no coordinate argument. |
| 1508 | if (coorArgs.size() == 0) |
| 1509 | return obj; |
| 1510 | ty = builder.getRefType(ty); |
| 1511 | return fir::factory::componentToExtendedValue( |
| 1512 | builder, loc, |
| 1513 | builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj), |
| 1514 | coorArgs)); |
| 1515 | } |
| 1516 | |
| 1517 | ExtValue gen(const Fortran::evaluate::Component &cmpt) { |
| 1518 | // Components may be pointer or allocatable. In the gen() path, the mutable |
| 1519 | // aspect is lost to simplify handling on the client side. To retain the |
| 1520 | // mutable aspect, genMutableBoxValue should be used. |
| 1521 | return genComponent(cmpt).match( |
| 1522 | [&](const fir::MutableBoxValue &mutableBox) { |
| 1523 | return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox); |
| 1524 | }, |
| 1525 | [](auto &box) -> ExtValue { return box; }); |
| 1526 | } |
| 1527 | |
| 1528 | ExtValue genval(const Fortran::evaluate::Component &cmpt) { |
| 1529 | return genLoad(gen(cmpt)); |
| 1530 | } |
| 1531 | |
| 1532 | // Determine the result type after removing `dims` dimensions from the array |
| 1533 | // type `arrTy` |
| 1534 | mlir::Type genSubType(mlir::Type arrTy, unsigned dims) { |
| 1535 | mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy); |
| 1536 | assert(unwrapTy && "must be a pointer or box type" ); |
| 1537 | auto seqTy = mlir::cast<fir::SequenceType>(unwrapTy); |
| 1538 | llvm::ArrayRef<int64_t> shape = seqTy.getShape(); |
| 1539 | assert(shape.size() > 0 && "removing columns for sequence sans shape" ); |
| 1540 | assert(dims <= shape.size() && "removing more columns than exist" ); |
| 1541 | fir::SequenceType::Shape newBnds; |
| 1542 | // follow Fortran semantics and remove columns (from right) |
| 1543 | std::size_t e = shape.size() - dims; |
| 1544 | for (decltype(e) i = 0; i < e; ++i) |
| 1545 | newBnds.push_back(shape[i]); |
| 1546 | if (!newBnds.empty()) |
| 1547 | return fir::SequenceType::get(newBnds, seqTy.getEleTy()); |
| 1548 | return seqTy.getEleTy(); |
| 1549 | } |
| 1550 | |
| 1551 | // Generate the code for a Bound value. |
| 1552 | ExtValue genval(const Fortran::semantics::Bound &bound) { |
| 1553 | if (bound.isExplicit()) { |
| 1554 | Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit(); |
| 1555 | if (sub.has_value()) |
| 1556 | return genval(*sub); |
| 1557 | return genIntegerConstant<8>(builder.getContext(), 1); |
| 1558 | } |
| 1559 | TODO(getLoc(), "non explicit semantics::Bound implementation" ); |
| 1560 | } |
| 1561 | |
| 1562 | static bool isSlice(const Fortran::evaluate::ArrayRef &aref) { |
| 1563 | for (const Fortran::evaluate::Subscript &sub : aref.subscript()) |
| 1564 | if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u)) |
| 1565 | return true; |
| 1566 | return false; |
| 1567 | } |
| 1568 | |
| 1569 | /// Lower an ArrayRef to a fir.coordinate_of given its lowered base. |
| 1570 | ExtValue genCoordinateOp(const ExtValue &array, |
| 1571 | const Fortran::evaluate::ArrayRef &aref) { |
| 1572 | mlir::Location loc = getLoc(); |
| 1573 | // References to array of rank > 1 with non constant shape that are not |
| 1574 | // fir.box must be collapsed into an offset computation in lowering already. |
| 1575 | // The same is needed with dynamic length character arrays of all ranks. |
| 1576 | mlir::Type baseType = |
| 1577 | fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType()); |
| 1578 | if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) || |
| 1579 | fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType))) |
| 1580 | if (!array.getBoxOf<fir::BoxValue>()) |
| 1581 | return genOffsetAndCoordinateOp(array, aref); |
| 1582 | // Generate a fir.coordinate_of with zero based array indexes. |
| 1583 | llvm::SmallVector<mlir::Value> args; |
| 1584 | for (const auto &subsc : llvm::enumerate(aref.subscript())) { |
| 1585 | ExtValue subVal = genSubscript(subsc.value()); |
| 1586 | assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar" ); |
| 1587 | mlir::Value val = fir::getBase(subVal); |
| 1588 | mlir::Type ty = val.getType(); |
| 1589 | mlir::Value lb = getLBound(array, subsc.index(), ty); |
| 1590 | args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb)); |
| 1591 | } |
| 1592 | mlir::Value base = fir::getBase(array); |
| 1593 | |
| 1594 | auto baseSym = getFirstSym(aref); |
| 1595 | if (baseSym.test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
| 1596 | // get the corresponding Cray pointer |
| 1597 | Fortran::semantics::SymbolRef ptrSym{ |
| 1598 | Fortran::semantics::GetCrayPointer(baseSym)}; |
| 1599 | fir::ExtendedValue ptr = gen(ptrSym); |
| 1600 | mlir::Value ptrVal = fir::getBase(ptr); |
| 1601 | mlir::Type ptrTy = ptrVal.getType(); |
| 1602 | |
| 1603 | mlir::Value cnvrt = Fortran::lower::addCrayPointerInst( |
| 1604 | loc, builder, ptrVal, ptrTy, base.getType()); |
| 1605 | base = builder.create<fir::LoadOp>(loc, cnvrt); |
| 1606 | } |
| 1607 | |
| 1608 | mlir::Type eleTy = fir::dyn_cast_ptrOrBoxEleTy(base.getType()); |
| 1609 | if (auto classTy = mlir::dyn_cast<fir::ClassType>(eleTy)) |
| 1610 | eleTy = classTy.getEleTy(); |
| 1611 | auto seqTy = mlir::cast<fir::SequenceType>(eleTy); |
| 1612 | assert(args.size() == seqTy.getDimension()); |
| 1613 | mlir::Type ty = builder.getRefType(seqTy.getEleTy()); |
| 1614 | auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args); |
| 1615 | return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr); |
| 1616 | } |
| 1617 | |
| 1618 | /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead |
| 1619 | /// of array indexes. |
| 1620 | /// This generates offset computation from the indexes and length parameters, |
| 1621 | /// and use the offset to access the element with a fir.coordinate_of. This |
| 1622 | /// must only be used if it is not possible to generate a normal |
| 1623 | /// fir.coordinate_of using array indexes (i.e. when the shape information is |
| 1624 | /// unavailable in the IR). |
| 1625 | ExtValue genOffsetAndCoordinateOp(const ExtValue &array, |
| 1626 | const Fortran::evaluate::ArrayRef &aref) { |
| 1627 | mlir::Location loc = getLoc(); |
| 1628 | mlir::Value addr = fir::getBase(array); |
| 1629 | mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType()); |
| 1630 | auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
| 1631 | mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy)); |
| 1632 | mlir::Type refTy = builder.getRefType(eleTy); |
| 1633 | mlir::Value base = builder.createConvert(loc, seqTy, addr); |
| 1634 | mlir::IndexType idxTy = builder.getIndexType(); |
| 1635 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 1636 | mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); |
| 1637 | auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value { |
| 1638 | return arr.getLBounds().empty() ? one : arr.getLBounds()[dim]; |
| 1639 | }; |
| 1640 | auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value { |
| 1641 | mlir::Value total = zero; |
| 1642 | assert(arr.getExtents().size() == aref.subscript().size()); |
| 1643 | delta = builder.createConvert(loc, idxTy, delta); |
| 1644 | unsigned dim = 0; |
| 1645 | for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) { |
| 1646 | ExtValue subVal = genSubscript(sub); |
| 1647 | assert(fir::isUnboxedValue(subVal)); |
| 1648 | mlir::Value val = |
| 1649 | builder.createConvert(loc, idxTy, fir::getBase(subVal)); |
| 1650 | mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim)); |
| 1651 | mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb); |
| 1652 | mlir::Value prod = |
| 1653 | builder.create<mlir::arith::MulIOp>(loc, delta, diff); |
| 1654 | total = builder.create<mlir::arith::AddIOp>(loc, prod, total); |
| 1655 | if (ext) |
| 1656 | delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext); |
| 1657 | ++dim; |
| 1658 | } |
| 1659 | mlir::Type origRefTy = refTy; |
| 1660 | if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) { |
| 1661 | fir::CharacterType chTy = |
| 1662 | fir::factory::CharacterExprHelper::getCharacterType(refTy); |
| 1663 | if (fir::characterWithDynamicLen(chTy)) { |
| 1664 | mlir::MLIRContext *ctx = builder.getContext(); |
| 1665 | fir::KindTy kind = |
| 1666 | fir::factory::CharacterExprHelper::getCharacterKind(chTy); |
| 1667 | fir::CharacterType singleTy = |
| 1668 | fir::CharacterType::getSingleton(ctx, kind); |
| 1669 | refTy = builder.getRefType(singleTy); |
| 1670 | mlir::Type seqRefTy = |
| 1671 | builder.getRefType(builder.getVarLenSeqTy(singleTy)); |
| 1672 | base = builder.createConvert(loc, seqRefTy, base); |
| 1673 | } |
| 1674 | } |
| 1675 | auto coor = builder.create<fir::CoordinateOp>( |
| 1676 | loc, refTy, base, llvm::ArrayRef<mlir::Value>{total}); |
| 1677 | // Convert to expected, original type after address arithmetic. |
| 1678 | return builder.createConvert(loc, origRefTy, coor); |
| 1679 | }; |
| 1680 | return array.match( |
| 1681 | [&](const fir::ArrayBoxValue &arr) -> ExtValue { |
| 1682 | // FIXME: this check can be removed when slicing is implemented |
| 1683 | if (isSlice(aref)) |
| 1684 | fir::emitFatalError( |
| 1685 | getLoc(), |
| 1686 | "slice should be handled in array expression context" ); |
| 1687 | return genFullDim(arr, one); |
| 1688 | }, |
| 1689 | [&](const fir::CharArrayBoxValue &arr) -> ExtValue { |
| 1690 | mlir::Value delta = arr.getLen(); |
| 1691 | // If the length is known in the type, fir.coordinate_of will |
| 1692 | // already take the length into account. |
| 1693 | if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr)) |
| 1694 | delta = one; |
| 1695 | return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen()); |
| 1696 | }, |
| 1697 | [&](const fir::BoxValue &arr) -> ExtValue { |
| 1698 | // CoordinateOp for BoxValue is not generated here. The dimensions |
| 1699 | // must be kept in the fir.coordinate_op so that potential fir.box |
| 1700 | // strides can be applied by codegen. |
| 1701 | fir::emitFatalError( |
| 1702 | loc, "internal: BoxValue in dim-collapsed fir.coordinate_of" ); |
| 1703 | }, |
| 1704 | [&](const auto &) -> ExtValue { |
| 1705 | fir::emitFatalError(loc, "internal: array processing failed" ); |
| 1706 | }); |
| 1707 | } |
| 1708 | |
| 1709 | /// Lower an ArrayRef to a fir.array_coor. |
| 1710 | ExtValue genArrayCoorOp(const ExtValue &exv, |
| 1711 | const Fortran::evaluate::ArrayRef &aref) { |
| 1712 | mlir::Location loc = getLoc(); |
| 1713 | mlir::Value addr = fir::getBase(exv); |
| 1714 | mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); |
| 1715 | mlir::Type eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
| 1716 | mlir::Type refTy = builder.getRefType(eleTy); |
| 1717 | mlir::IndexType idxTy = builder.getIndexType(); |
| 1718 | llvm::SmallVector<mlir::Value> arrayCoorArgs; |
| 1719 | // The ArrayRef is expected to be scalar here, arrays are handled in array |
| 1720 | // expression lowering. So no vector subscript or triplet is expected here. |
| 1721 | for (const auto &sub : aref.subscript()) { |
| 1722 | ExtValue subVal = genSubscript(sub); |
| 1723 | assert(fir::isUnboxedValue(subVal)); |
| 1724 | arrayCoorArgs.push_back( |
| 1725 | builder.createConvert(loc, idxTy, fir::getBase(subVal))); |
| 1726 | } |
| 1727 | mlir::Value shape = builder.createShape(loc, exv); |
| 1728 | mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>( |
| 1729 | loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs, |
| 1730 | fir::getTypeParams(exv)); |
| 1731 | return fir::factory::arrayElementToExtendedValue(builder, loc, exv, |
| 1732 | elementAddr); |
| 1733 | } |
| 1734 | |
| 1735 | /// Return the coordinate of the array reference. |
| 1736 | ExtValue gen(const Fortran::evaluate::ArrayRef &aref) { |
| 1737 | ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base())) |
| 1738 | : gen(aref.base().GetComponent()); |
| 1739 | // Check for command-line override to use array_coor op. |
| 1740 | if (generateArrayCoordinate) |
| 1741 | return genArrayCoorOp(base, aref); |
| 1742 | // Otherwise, use coordinate_of op. |
| 1743 | return genCoordinateOp(base, aref); |
| 1744 | } |
| 1745 | |
| 1746 | /// Return lower bounds of \p box in dimension \p dim. The returned value |
| 1747 | /// has type \ty. |
| 1748 | mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) { |
| 1749 | assert(box.rank() > 0 && "must be an array" ); |
| 1750 | mlir::Location loc = getLoc(); |
| 1751 | mlir::Value one = builder.createIntegerConstant(loc, ty, 1); |
| 1752 | mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one); |
| 1753 | return builder.createConvert(loc, ty, lb); |
| 1754 | } |
| 1755 | |
| 1756 | ExtValue genval(const Fortran::evaluate::ArrayRef &aref) { |
| 1757 | return genLoad(gen(aref)); |
| 1758 | } |
| 1759 | |
| 1760 | ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) { |
| 1761 | return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} |
| 1762 | .genAddr(coref); |
| 1763 | } |
| 1764 | |
| 1765 | ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) { |
| 1766 | return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap} |
| 1767 | .genValue(coref); |
| 1768 | } |
| 1769 | |
| 1770 | template <typename A> |
| 1771 | ExtValue gen(const Fortran::evaluate::Designator<A> &des) { |
| 1772 | return Fortran::common::visit([&](const auto &x) { return gen(x); }, des.u); |
| 1773 | } |
| 1774 | template <typename A> |
| 1775 | ExtValue genval(const Fortran::evaluate::Designator<A> &des) { |
| 1776 | return Fortran::common::visit([&](const auto &x) { return genval(x); }, |
| 1777 | des.u); |
| 1778 | } |
| 1779 | |
| 1780 | mlir::Type genType(const Fortran::evaluate::DynamicType &dt) { |
| 1781 | if (dt.category() != Fortran::common::TypeCategory::Derived) |
| 1782 | return converter.genType(dt.category(), dt.kind()); |
| 1783 | if (dt.IsUnlimitedPolymorphic()) |
| 1784 | return mlir::NoneType::get(&converter.getMLIRContext()); |
| 1785 | return converter.genType(dt.GetDerivedTypeSpec()); |
| 1786 | } |
| 1787 | |
| 1788 | /// Lower a function reference |
| 1789 | template <typename A> |
| 1790 | ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) { |
| 1791 | if (!funcRef.GetType().has_value()) |
| 1792 | fir::emitFatalError(getLoc(), "a function must have a type" ); |
| 1793 | mlir::Type resTy = genType(*funcRef.GetType()); |
| 1794 | return genProcedureRef(funcRef, {resTy}); |
| 1795 | } |
| 1796 | |
| 1797 | /// Lower function call `funcRef` and return a reference to the resultant |
| 1798 | /// value. This is required for lowering expressions such as `f1(f2(v))`. |
| 1799 | template <typename A> |
| 1800 | ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) { |
| 1801 | ExtValue retVal = genFunctionRef(funcRef); |
| 1802 | mlir::Type resultType = converter.genType(toEvExpr(funcRef)); |
| 1803 | return placeScalarValueInMemory(builder, getLoc(), retVal, resultType); |
| 1804 | } |
| 1805 | |
| 1806 | /// Helper to lower intrinsic arguments for inquiry intrinsic. |
| 1807 | ExtValue |
| 1808 | lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) { |
| 1809 | if (Fortran::evaluate::IsAllocatableOrPointerObject(expr)) |
| 1810 | return genMutableBoxValue(expr); |
| 1811 | /// Do not create temps for array sections whose properties only need to be |
| 1812 | /// inquired: create a descriptor that will be inquired. |
| 1813 | if (Fortran::evaluate::IsVariable(expr) && isArray(expr) && |
| 1814 | !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)) |
| 1815 | return lowerIntrinsicArgumentAsBox(expr); |
| 1816 | return gen(expr); |
| 1817 | } |
| 1818 | |
| 1819 | /// Helper to lower intrinsic arguments to a fir::BoxValue. |
| 1820 | /// It preserves all the non default lower bounds/non deferred length |
| 1821 | /// parameter information. |
| 1822 | ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) { |
| 1823 | mlir::Location loc = getLoc(); |
| 1824 | ExtValue exv = genBoxArg(expr); |
| 1825 | auto exvTy = fir::getBase(exv).getType(); |
| 1826 | if (mlir::isa<mlir::FunctionType>(exvTy)) { |
| 1827 | auto boxProcTy = |
| 1828 | builder.getBoxProcType(mlir::cast<mlir::FunctionType>(exvTy)); |
| 1829 | return builder.create<fir::EmboxProcOp>(loc, boxProcTy, |
| 1830 | fir::getBase(exv)); |
| 1831 | } |
| 1832 | mlir::Value box = builder.createBox(loc, exv, exv.isPolymorphic()); |
| 1833 | if (Fortran::lower::isParentComponent(expr)) { |
| 1834 | fir::ExtendedValue newExv = |
| 1835 | Fortran::lower::updateBoxForParentComponent(converter, box, expr); |
| 1836 | box = fir::getBase(newExv); |
| 1837 | } |
| 1838 | return fir::BoxValue( |
| 1839 | box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv), |
| 1840 | fir::factory::getNonDeferredLenParams(exv)); |
| 1841 | } |
| 1842 | |
| 1843 | /// Generate a call to a Fortran intrinsic or intrinsic module procedure. |
| 1844 | ExtValue genIntrinsicRef( |
| 1845 | const Fortran::evaluate::ProcedureRef &procRef, |
| 1846 | std::optional<mlir::Type> resultType, |
| 1847 | std::optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic = |
| 1848 | std::nullopt) { |
| 1849 | llvm::SmallVector<ExtValue> operands; |
| 1850 | |
| 1851 | std::string name = |
| 1852 | intrinsic ? intrinsic->name |
| 1853 | : procRef.proc().GetSymbol()->GetUltimate().name().ToString(); |
| 1854 | mlir::Location loc = getLoc(); |
| 1855 | if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling( |
| 1856 | procRef, *intrinsic, converter)) { |
| 1857 | using ExvAndPresence = std::pair<ExtValue, std::optional<mlir::Value>>; |
| 1858 | llvm::SmallVector<ExvAndPresence, 4> operands; |
| 1859 | auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { |
| 1860 | ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr); |
| 1861 | mlir::Value isPresent = |
| 1862 | genActualIsPresentTest(builder, loc, optionalArg); |
| 1863 | operands.emplace_back(optionalArg, isPresent); |
| 1864 | }; |
| 1865 | auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr, |
| 1866 | fir::LowerIntrinsicArgAs lowerAs) { |
| 1867 | switch (lowerAs) { |
| 1868 | case fir::LowerIntrinsicArgAs::Value: |
| 1869 | operands.emplace_back(genval(expr), std::nullopt); |
| 1870 | return; |
| 1871 | case fir::LowerIntrinsicArgAs::Addr: |
| 1872 | operands.emplace_back(gen(expr), std::nullopt); |
| 1873 | return; |
| 1874 | case fir::LowerIntrinsicArgAs::Box: |
| 1875 | operands.emplace_back(lowerIntrinsicArgumentAsBox(expr), |
| 1876 | std::nullopt); |
| 1877 | return; |
| 1878 | case fir::LowerIntrinsicArgAs::Inquired: |
| 1879 | operands.emplace_back(lowerIntrinsicArgumentAsInquired(expr), |
| 1880 | std::nullopt); |
| 1881 | return; |
| 1882 | } |
| 1883 | }; |
| 1884 | Fortran::lower::prepareCustomIntrinsicArgument( |
| 1885 | procRef, *intrinsic, resultType, prepareOptionalArg, prepareOtherArg, |
| 1886 | converter); |
| 1887 | |
| 1888 | auto getArgument = [&](std::size_t i, bool loadArg) -> ExtValue { |
| 1889 | if (loadArg && fir::conformsWithPassByRef( |
| 1890 | fir::getBase(operands[i].first).getType())) |
| 1891 | return genLoad(operands[i].first); |
| 1892 | return operands[i].first; |
| 1893 | }; |
| 1894 | auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> { |
| 1895 | return operands[i].second; |
| 1896 | }; |
| 1897 | return Fortran::lower::lowerCustomIntrinsic( |
| 1898 | builder, loc, name, resultType, isPresent, getArgument, |
| 1899 | operands.size(), stmtCtx); |
| 1900 | } |
| 1901 | |
| 1902 | const fir::IntrinsicArgumentLoweringRules *argLowering = |
| 1903 | fir::getIntrinsicArgumentLowering(name); |
| 1904 | for (const auto &arg : llvm::enumerate(procRef.arguments())) { |
| 1905 | auto *expr = |
| 1906 | Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value()); |
| 1907 | |
| 1908 | if (!expr && arg.value() && arg.value()->GetAssumedTypeDummy()) { |
| 1909 | // Assumed type optional. |
| 1910 | const Fortran::evaluate::Symbol *assumedTypeSym = |
| 1911 | arg.value()->GetAssumedTypeDummy(); |
| 1912 | auto symBox = symMap.lookupSymbol(*assumedTypeSym); |
| 1913 | ExtValue exv = |
| 1914 | converter.getSymbolExtendedValue(*assumedTypeSym, &symMap); |
| 1915 | if (argLowering) { |
| 1916 | fir::ArgLoweringRule argRules = |
| 1917 | fir::lowerIntrinsicArgumentAs(*argLowering, arg.index()); |
| 1918 | // Note: usages of TYPE(*) is limited by C710 but C_LOC and |
| 1919 | // IS_CONTIGUOUS may require an assumed size TYPE(*) to be passed to |
| 1920 | // the intrinsic library utility as a fir.box. |
| 1921 | if (argRules.lowerAs == fir::LowerIntrinsicArgAs::Box && |
| 1922 | !mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType())) { |
| 1923 | operands.emplace_back( |
| 1924 | fir::factory::createBoxValue(builder, loc, exv)); |
| 1925 | continue; |
| 1926 | } |
| 1927 | } |
| 1928 | operands.emplace_back(std::move(exv)); |
| 1929 | continue; |
| 1930 | } |
| 1931 | if (!expr) { |
| 1932 | // Absent optional. |
| 1933 | operands.emplace_back(fir::getAbsentIntrinsicArgument()); |
| 1934 | continue; |
| 1935 | } |
| 1936 | if (!argLowering) { |
| 1937 | // No argument lowering instruction, lower by value. |
| 1938 | operands.emplace_back(genval(*expr)); |
| 1939 | continue; |
| 1940 | } |
| 1941 | // Ad-hoc argument lowering handling. |
| 1942 | fir::ArgLoweringRule argRules = |
| 1943 | fir::lowerIntrinsicArgumentAs(*argLowering, arg.index()); |
| 1944 | if (argRules.handleDynamicOptional && |
| 1945 | Fortran::evaluate::MayBePassedAsAbsentOptional(*expr)) { |
| 1946 | ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr); |
| 1947 | mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional); |
| 1948 | switch (argRules.lowerAs) { |
| 1949 | case fir::LowerIntrinsicArgAs::Value: |
| 1950 | operands.emplace_back( |
| 1951 | genOptionalValue(builder, loc, optional, isPresent)); |
| 1952 | continue; |
| 1953 | case fir::LowerIntrinsicArgAs::Addr: |
| 1954 | operands.emplace_back( |
| 1955 | genOptionalAddr(builder, loc, optional, isPresent)); |
| 1956 | continue; |
| 1957 | case fir::LowerIntrinsicArgAs::Box: |
| 1958 | operands.emplace_back( |
| 1959 | genOptionalBox(builder, loc, optional, isPresent)); |
| 1960 | continue; |
| 1961 | case fir::LowerIntrinsicArgAs::Inquired: |
| 1962 | operands.emplace_back(optional); |
| 1963 | continue; |
| 1964 | } |
| 1965 | llvm_unreachable("bad switch" ); |
| 1966 | } |
| 1967 | switch (argRules.lowerAs) { |
| 1968 | case fir::LowerIntrinsicArgAs::Value: |
| 1969 | operands.emplace_back(genval(*expr)); |
| 1970 | continue; |
| 1971 | case fir::LowerIntrinsicArgAs::Addr: |
| 1972 | operands.emplace_back(gen(*expr)); |
| 1973 | continue; |
| 1974 | case fir::LowerIntrinsicArgAs::Box: |
| 1975 | operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr)); |
| 1976 | continue; |
| 1977 | case fir::LowerIntrinsicArgAs::Inquired: |
| 1978 | operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr)); |
| 1979 | continue; |
| 1980 | } |
| 1981 | llvm_unreachable("bad switch" ); |
| 1982 | } |
| 1983 | // Let the intrinsic library lower the intrinsic procedure call |
| 1984 | return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType, |
| 1985 | operands, stmtCtx, &converter); |
| 1986 | } |
| 1987 | |
| 1988 | /// helper to detect statement functions |
| 1989 | static bool |
| 1990 | isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) { |
| 1991 | if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol()) |
| 1992 | if (const auto *details = |
| 1993 | symbol->detailsIf<Fortran::semantics::SubprogramDetails>()) |
| 1994 | return details->stmtFunction().has_value(); |
| 1995 | return false; |
| 1996 | } |
| 1997 | |
| 1998 | /// Generate Statement function calls |
| 1999 | ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) { |
| 2000 | const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol(); |
| 2001 | assert(symbol && "expected symbol in ProcedureRef of statement functions" ); |
| 2002 | const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>(); |
| 2003 | |
| 2004 | // Statement functions have their own scope, we just need to associate |
| 2005 | // the dummy symbols to argument expressions. They are no |
| 2006 | // optional/alternate return arguments. Statement functions cannot be |
| 2007 | // recursive (directly or indirectly) so it is safe to add dummy symbols to |
| 2008 | // the local map here. |
| 2009 | symMap.pushScope(); |
| 2010 | for (auto [arg, bind] : |
| 2011 | llvm::zip(details.dummyArgs(), procRef.arguments())) { |
| 2012 | assert(arg && "alternate return in statement function" ); |
| 2013 | assert(bind && "optional argument in statement function" ); |
| 2014 | const auto *expr = bind->UnwrapExpr(); |
| 2015 | // TODO: assumed type in statement function, that surprisingly seems |
| 2016 | // allowed, probably because nobody thought of restricting this usage. |
| 2017 | // gfortran/ifort compiles this. |
| 2018 | assert(expr && "assumed type used as statement function argument" ); |
| 2019 | // As per Fortran 2018 C1580, statement function arguments can only be |
| 2020 | // scalars, so just pass the box with the address. The only care is to |
| 2021 | // to use the dummy character explicit length if any instead of the |
| 2022 | // actual argument length (that can be bigger). |
| 2023 | if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType()) |
| 2024 | if (type->category() == Fortran::semantics::DeclTypeSpec::Character) |
| 2025 | if (const Fortran::semantics::MaybeIntExpr &lenExpr = |
| 2026 | type->characterTypeSpec().length().GetExplicit()) { |
| 2027 | mlir::Value len = fir::getBase(genval(*lenExpr)); |
| 2028 | // F2018 7.4.4.2 point 5. |
| 2029 | len = fir::factory::genMaxWithZero(builder, getLoc(), len); |
| 2030 | symMap.addSymbol(*arg, |
| 2031 | replaceScalarCharacterLength(gen(*expr), len)); |
| 2032 | continue; |
| 2033 | } |
| 2034 | symMap.addSymbol(*arg, gen(*expr)); |
| 2035 | } |
| 2036 | |
| 2037 | // Explicitly map statement function host associated symbols to their |
| 2038 | // parent scope lowered symbol box. |
| 2039 | for (const Fortran::semantics::SymbolRef &sym : |
| 2040 | Fortran::evaluate::CollectSymbols(*details.stmtFunction())) |
| 2041 | if (const auto *details = |
| 2042 | sym->detailsIf<Fortran::semantics::HostAssocDetails>()) |
| 2043 | if (!symMap.lookupSymbol(*sym)) |
| 2044 | symMap.addSymbol(*sym, gen(details->symbol())); |
| 2045 | |
| 2046 | ExtValue result = genval(details.stmtFunction().value()); |
| 2047 | LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n'); |
| 2048 | symMap.popScope(); |
| 2049 | return result; |
| 2050 | } |
| 2051 | |
| 2052 | /// Create a contiguous temporary array with the same shape, |
| 2053 | /// length parameters and type as mold. It is up to the caller to deallocate |
| 2054 | /// the temporary. |
| 2055 | ExtValue genArrayTempFromMold(const ExtValue &mold, |
| 2056 | llvm::StringRef tempName) { |
| 2057 | mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType()); |
| 2058 | assert(type && "expected descriptor or memory type" ); |
| 2059 | mlir::Location loc = getLoc(); |
| 2060 | llvm::SmallVector<mlir::Value> extents = |
| 2061 | fir::factory::getExtents(loc, builder, mold); |
| 2062 | llvm::SmallVector<mlir::Value> allocMemTypeParams = |
| 2063 | fir::getTypeParams(mold); |
| 2064 | mlir::Value charLen; |
| 2065 | mlir::Type elementType = fir::unwrapSequenceType(type); |
| 2066 | if (auto charType = mlir::dyn_cast<fir::CharacterType>(elementType)) { |
| 2067 | charLen = allocMemTypeParams.empty() |
| 2068 | ? fir::factory::readCharLen(builder, loc, mold) |
| 2069 | : allocMemTypeParams[0]; |
| 2070 | if (charType.hasDynamicLen() && allocMemTypeParams.empty()) |
| 2071 | allocMemTypeParams.push_back(charLen); |
| 2072 | } else if (fir::hasDynamicSize(elementType)) { |
| 2073 | TODO(loc, "creating temporary for derived type with length parameters" ); |
| 2074 | } |
| 2075 | |
| 2076 | mlir::Value temp = builder.create<fir::AllocMemOp>( |
| 2077 | loc, type, tempName, allocMemTypeParams, extents); |
| 2078 | if (mlir::isa<fir::CharacterType>(fir::unwrapSequenceType(type))) |
| 2079 | return fir::CharArrayBoxValue{temp, charLen, extents}; |
| 2080 | return fir::ArrayBoxValue{temp, extents}; |
| 2081 | } |
| 2082 | |
| 2083 | /// Copy \p source array into \p dest array. Both arrays must be |
| 2084 | /// conforming, but neither array must be contiguous. |
| 2085 | void genArrayCopy(ExtValue dest, ExtValue source) { |
| 2086 | return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx); |
| 2087 | } |
| 2088 | |
| 2089 | /// Lower a non-elemental procedure reference and read allocatable and pointer |
| 2090 | /// results into normal values. |
| 2091 | ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, |
| 2092 | std::optional<mlir::Type> resultType) { |
| 2093 | ExtValue res = genRawProcedureRef(procRef, resultType); |
| 2094 | // In most contexts, pointers and allocatable do not appear as allocatable |
| 2095 | // or pointer variable on the caller side (see 8.5.3 note 1 for |
| 2096 | // allocatables). The few context where this can happen must call |
| 2097 | // genRawProcedureRef directly. |
| 2098 | if (const auto *box = res.getBoxOf<fir::MutableBoxValue>()) |
| 2099 | return fir::factory::genMutableBoxRead(builder, getLoc(), *box); |
| 2100 | return res; |
| 2101 | } |
| 2102 | |
| 2103 | /// Like genExtAddr, but ensure the address returned is a temporary even if \p |
| 2104 | /// expr is variable inside parentheses. |
| 2105 | ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) { |
| 2106 | // In general, genExtAddr might not create a temp for variable inside |
| 2107 | // parentheses to avoid creating array temporary in sub-expressions. It only |
| 2108 | // ensures the sub-expression is not re-associated with other parts of the |
| 2109 | // expression. In the call semantics, there is a difference between expr and |
| 2110 | // variable (see R1524). For expressions, a variable storage must not be |
| 2111 | // argument associated since it could be modified inside the call, or the |
| 2112 | // variable could also be modified by other means during the call. |
| 2113 | if (!isParenthesizedVariable(expr)) |
| 2114 | return genExtAddr(expr); |
| 2115 | if (expr.Rank() > 0) |
| 2116 | return asArray(expr); |
| 2117 | mlir::Location loc = getLoc(); |
| 2118 | return genExtValue(expr).match( |
| 2119 | [&](const fir::CharBoxValue &boxChar) -> ExtValue { |
| 2120 | return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom( |
| 2121 | boxChar); |
| 2122 | }, |
| 2123 | [&](const fir::UnboxedValue &v) -> ExtValue { |
| 2124 | mlir::Type type = v.getType(); |
| 2125 | mlir::Value value = v; |
| 2126 | if (fir::isa_ref_type(type)) |
| 2127 | value = builder.create<fir::LoadOp>(loc, value); |
| 2128 | mlir::Value temp = builder.createTemporary(loc, value.getType()); |
| 2129 | builder.create<fir::StoreOp>(loc, value, temp); |
| 2130 | return temp; |
| 2131 | }, |
| 2132 | [&](const fir::BoxValue &x) -> ExtValue { |
| 2133 | // Derived type scalar that may be polymorphic. |
| 2134 | if (fir::isPolymorphicType(fir::getBase(x).getType())) |
| 2135 | TODO(loc, "polymorphic array temporary" ); |
| 2136 | assert(!x.hasRank() && x.isDerived()); |
| 2137 | if (x.isDerivedWithLenParameters()) |
| 2138 | fir::emitFatalError( |
| 2139 | loc, "making temps for derived type with length parameters" ); |
| 2140 | // TODO: polymorphic aspects should be kept but for now the temp |
| 2141 | // created always has the declared type. |
| 2142 | mlir::Value var = |
| 2143 | fir::getBase(fir::factory::readBoxValue(builder, loc, x)); |
| 2144 | auto value = builder.create<fir::LoadOp>(loc, var); |
| 2145 | mlir::Value temp = builder.createTemporary(loc, value.getType()); |
| 2146 | builder.create<fir::StoreOp>(loc, value, temp); |
| 2147 | return temp; |
| 2148 | }, |
| 2149 | [&](const fir::PolymorphicValue &p) -> ExtValue { |
| 2150 | TODO(loc, "creating polymorphic temporary" ); |
| 2151 | }, |
| 2152 | [&](const auto &) -> ExtValue { |
| 2153 | fir::emitFatalError(loc, "expr is not a scalar value" ); |
| 2154 | }); |
| 2155 | } |
| 2156 | |
| 2157 | /// Helper structure to track potential copy-in of non contiguous variable |
| 2158 | /// argument into a contiguous temp. It is used to deallocate the temp that |
| 2159 | /// may have been created as well as to the copy-out from the temp to the |
| 2160 | /// variable after the call. |
| 2161 | struct CopyOutPair { |
| 2162 | ExtValue var; |
| 2163 | ExtValue temp; |
| 2164 | // Flag to indicate if the argument may have been modified by the |
| 2165 | // callee, in which case it must be copied-out to the variable. |
| 2166 | bool argMayBeModifiedByCall; |
| 2167 | // Optional boolean value that, if present and false, prevents |
| 2168 | // the copy-out and temp deallocation. |
| 2169 | std::optional<mlir::Value> restrictCopyAndFreeAtRuntime; |
| 2170 | }; |
| 2171 | using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>; |
| 2172 | |
| 2173 | /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories |
| 2174 | /// not based on fir.box. |
| 2175 | /// This will lose any non contiguous stride information and dynamic type and |
| 2176 | /// should only be called if \p exv is known to be contiguous or if its base |
| 2177 | /// address will be replaced by a contiguous one. If \p exv is not a |
| 2178 | /// fir::BoxValue, this is a no-op. |
| 2179 | ExtValue readIfBoxValue(const ExtValue &exv) { |
| 2180 | if (const auto *box = exv.getBoxOf<fir::BoxValue>()) |
| 2181 | return fir::factory::readBoxValue(builder, getLoc(), *box); |
| 2182 | return exv; |
| 2183 | } |
| 2184 | |
| 2185 | /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The |
| 2186 | /// creation of the temp and copy-in can be made conditional at runtime by |
| 2187 | /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case |
| 2188 | /// the temp and copy will only be made if the value is true at runtime). |
| 2189 | ExtValue genCopyIn(const ExtValue &actualArg, |
| 2190 | const Fortran::lower::CallerInterface::PassedEntity &arg, |
| 2191 | CopyOutPairs ©OutPairs, |
| 2192 | std::optional<mlir::Value> restrictCopyAtRuntime, |
| 2193 | bool byValue) { |
| 2194 | const bool doCopyOut = !byValue && arg.mayBeModifiedByCall(); |
| 2195 | llvm::StringRef tempName = byValue ? ".copy" : ".copyinout" ; |
| 2196 | mlir::Location loc = getLoc(); |
| 2197 | bool isActualArgBox = fir::isa_box_type(fir::getBase(actualArg).getType()); |
| 2198 | mlir::Value isContiguousResult; |
| 2199 | mlir::Type addrType = fir::HeapType::get( |
| 2200 | fir::unwrapPassByRefType(fir::getBase(actualArg).getType())); |
| 2201 | |
| 2202 | if (isActualArgBox) { |
| 2203 | // Check at runtime if the argument is contiguous so no copy is needed. |
| 2204 | isContiguousResult = |
| 2205 | fir::runtime::genIsContiguous(builder, loc, fir::getBase(actualArg)); |
| 2206 | } |
| 2207 | |
| 2208 | auto doCopyIn = [&]() -> ExtValue { |
| 2209 | ExtValue temp = genArrayTempFromMold(actualArg, tempName); |
| 2210 | if (!arg.mayBeReadByCall() && |
| 2211 | // INTENT(OUT) dummy argument finalization, automatically |
| 2212 | // done when the procedure is invoked, may imply reading |
| 2213 | // the argument value in the finalization routine. |
| 2214 | // So we need to make a copy, if finalization may occur. |
| 2215 | // TODO: do we have to avoid the copying for an actual |
| 2216 | // argument of type that does not require finalization? |
| 2217 | !arg.mayRequireIntentoutFinalization() && |
| 2218 | // ALLOCATABLE dummy argument may require finalization. |
| 2219 | // If it has to be automatically deallocated at the end |
| 2220 | // of the procedure invocation (9.7.3.2 p. 2), |
| 2221 | // then the finalization may happen if the actual argument |
| 2222 | // is allocated (7.5.6.3 p. 2). |
| 2223 | !arg.hasAllocatableAttribute()) { |
| 2224 | // We have to initialize the temp if it may have components |
| 2225 | // that need initialization. If there are no components |
| 2226 | // requiring initialization, then the call is a no-op. |
| 2227 | if (mlir::isa<fir::RecordType>(getElementTypeOf(temp))) { |
| 2228 | mlir::Value tempBox = fir::getBase(builder.createBox(loc, temp)); |
| 2229 | fir::runtime::genDerivedTypeInitialize(builder, loc, tempBox); |
| 2230 | } |
| 2231 | return temp; |
| 2232 | } |
| 2233 | if (!isActualArgBox || inlineCopyInOutForBoxes) { |
| 2234 | genArrayCopy(temp, actualArg); |
| 2235 | return temp; |
| 2236 | } |
| 2237 | |
| 2238 | // Generate AssignTemporary() call to copy data from the actualArg |
| 2239 | // to a temporary. AssignTemporary() will initialize the temporary, |
| 2240 | // if needed, before doing the assignment, which is required |
| 2241 | // since the temporary's components (if any) are uninitialized |
| 2242 | // at this point. |
| 2243 | mlir::Value destBox = fir::getBase(builder.createBox(loc, temp)); |
| 2244 | mlir::Value boxRef = builder.createTemporary(loc, destBox.getType()); |
| 2245 | builder.create<fir::StoreOp>(loc, destBox, boxRef); |
| 2246 | fir::runtime::genAssignTemporary(builder, loc, boxRef, |
| 2247 | fir::getBase(actualArg)); |
| 2248 | return temp; |
| 2249 | }; |
| 2250 | |
| 2251 | auto noCopy = [&]() { |
| 2252 | mlir::Value box = fir::getBase(actualArg); |
| 2253 | mlir::Value boxAddr = builder.create<fir::BoxAddrOp>(loc, addrType, box); |
| 2254 | builder.create<fir::ResultOp>(loc, boxAddr); |
| 2255 | }; |
| 2256 | |
| 2257 | auto combinedCondition = [&]() { |
| 2258 | if (isActualArgBox) { |
| 2259 | mlir::Value zero = |
| 2260 | builder.createIntegerConstant(loc, builder.getI1Type(), 0); |
| 2261 | mlir::Value notContiguous = builder.create<mlir::arith::CmpIOp>( |
| 2262 | loc, mlir::arith::CmpIPredicate::eq, isContiguousResult, zero); |
| 2263 | if (!restrictCopyAtRuntime) { |
| 2264 | restrictCopyAtRuntime = notContiguous; |
| 2265 | } else { |
| 2266 | mlir::Value cond = builder.create<mlir::arith::AndIOp>( |
| 2267 | loc, *restrictCopyAtRuntime, notContiguous); |
| 2268 | restrictCopyAtRuntime = cond; |
| 2269 | } |
| 2270 | } |
| 2271 | }; |
| 2272 | |
| 2273 | if (!restrictCopyAtRuntime) { |
| 2274 | if (isActualArgBox) { |
| 2275 | // isContiguousResult = genIsContiguousCall(); |
| 2276 | mlir::Value addr = |
| 2277 | builder |
| 2278 | .genIfOp(loc, {addrType}, isContiguousResult, |
| 2279 | /*withElseRegion=*/true) |
| 2280 | .genThen([&]() { noCopy(); }) |
| 2281 | .genElse([&] { |
| 2282 | ExtValue temp = doCopyIn(); |
| 2283 | builder.create<fir::ResultOp>(loc, fir::getBase(temp)); |
| 2284 | }) |
| 2285 | .getResults()[0]; |
| 2286 | fir::ExtendedValue temp = |
| 2287 | fir::substBase(readIfBoxValue(actualArg), addr); |
| 2288 | combinedCondition(); |
| 2289 | copyOutPairs.emplace_back( |
| 2290 | Args: CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime}); |
| 2291 | return temp; |
| 2292 | } |
| 2293 | |
| 2294 | ExtValue temp = doCopyIn(); |
| 2295 | copyOutPairs.emplace_back(Args: CopyOutPair{actualArg, temp, doCopyOut, {}}); |
| 2296 | return temp; |
| 2297 | } |
| 2298 | |
| 2299 | // Otherwise, need to be careful to only copy-in if allowed at runtime. |
| 2300 | mlir::Value addr = |
| 2301 | builder |
| 2302 | .genIfOp(loc, {addrType}, *restrictCopyAtRuntime, |
| 2303 | /*withElseRegion=*/true) |
| 2304 | .genThen([&]() { |
| 2305 | if (isActualArgBox) { |
| 2306 | // isContiguousResult = genIsContiguousCall(); |
| 2307 | // Avoid copyin if the argument is contiguous at runtime. |
| 2308 | mlir::Value addr1 = |
| 2309 | builder |
| 2310 | .genIfOp(loc, {addrType}, isContiguousResult, |
| 2311 | /*withElseRegion=*/true) |
| 2312 | .genThen([&]() { noCopy(); }) |
| 2313 | .genElse([&]() { |
| 2314 | ExtValue temp = doCopyIn(); |
| 2315 | builder.create<fir::ResultOp>(loc, |
| 2316 | fir::getBase(temp)); |
| 2317 | }) |
| 2318 | .getResults()[0]; |
| 2319 | builder.create<fir::ResultOp>(loc, addr1); |
| 2320 | } else { |
| 2321 | ExtValue temp = doCopyIn(); |
| 2322 | builder.create<fir::ResultOp>(loc, fir::getBase(temp)); |
| 2323 | } |
| 2324 | }) |
| 2325 | .genElse([&]() { |
| 2326 | mlir::Value nullPtr = builder.createNullConstant(loc, addrType); |
| 2327 | builder.create<fir::ResultOp>(loc, nullPtr); |
| 2328 | }) |
| 2329 | .getResults()[0]; |
| 2330 | // Associate the temp address with actualArg lengths and extents if a |
| 2331 | // temporary is generated. Otherwise the same address is associated. |
| 2332 | fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr); |
| 2333 | combinedCondition(); |
| 2334 | copyOutPairs.emplace_back( |
| 2335 | Args: CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime}); |
| 2336 | return temp; |
| 2337 | } |
| 2338 | |
| 2339 | /// Generate copy-out if needed and free the temporary for an argument that |
| 2340 | /// has been copied-in into a contiguous temp. |
| 2341 | void genCopyOut(const CopyOutPair ©OutPair) { |
| 2342 | mlir::Location loc = getLoc(); |
| 2343 | bool isActualArgBox = |
| 2344 | fir::isa_box_type(fir::getBase(copyOutPair.var).getType()); |
| 2345 | auto doCopyOut = [&]() { |
| 2346 | if (!isActualArgBox || inlineCopyInOutForBoxes) { |
| 2347 | if (copyOutPair.argMayBeModifiedByCall) |
| 2348 | genArrayCopy(copyOutPair.var, copyOutPair.temp); |
| 2349 | if (mlir::isa<fir::RecordType>( |
| 2350 | fir::getElementTypeOf(copyOutPair.temp))) { |
| 2351 | // Destroy components of the temporary (if any). |
| 2352 | // If there are no components requiring destruction, then the call |
| 2353 | // is a no-op. |
| 2354 | mlir::Value tempBox = |
| 2355 | fir::getBase(builder.createBox(loc, copyOutPair.temp)); |
| 2356 | fir::runtime::genDerivedTypeDestroyWithoutFinalization(builder, loc, |
| 2357 | tempBox); |
| 2358 | } |
| 2359 | // Deallocate the top-level entity of the temporary. |
| 2360 | builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp)); |
| 2361 | return; |
| 2362 | } |
| 2363 | // Generate CopyOutAssign() call to copy data from the temporary |
| 2364 | // to the actualArg. Note that in case the actual argument |
| 2365 | // is ALLOCATABLE/POINTER the CopyOutAssign() implementation |
| 2366 | // should not engage its reallocation, because the temporary |
| 2367 | // is rank, shape and type compatible with it. |
| 2368 | // Moreover, CopyOutAssign() guarantees that there will be no |
| 2369 | // finalization for the LHS even if it is of a derived type |
| 2370 | // with finalization. |
| 2371 | |
| 2372 | // Create allocatable descriptor for the temp so that the runtime may |
| 2373 | // deallocate it. |
| 2374 | mlir::Value srcBox = |
| 2375 | fir::getBase(builder.createBox(loc, copyOutPair.temp)); |
| 2376 | mlir::Type allocBoxTy = |
| 2377 | mlir::cast<fir::BaseBoxType>(srcBox.getType()) |
| 2378 | .getBoxTypeWithNewAttr(fir::BaseBoxType::Attribute::Allocatable); |
| 2379 | srcBox = builder.create<fir::ReboxOp>(loc, allocBoxTy, srcBox, |
| 2380 | /*shift=*/mlir::Value{}, |
| 2381 | /*slice=*/mlir::Value{}); |
| 2382 | mlir::Value srcBoxRef = builder.createTemporary(loc, srcBox.getType()); |
| 2383 | builder.create<fir::StoreOp>(loc, srcBox, srcBoxRef); |
| 2384 | // Create descriptor pointer to variable descriptor if copy out is needed, |
| 2385 | // and nullptr otherwise. |
| 2386 | mlir::Value destBoxRef; |
| 2387 | if (copyOutPair.argMayBeModifiedByCall) { |
| 2388 | mlir::Value destBox = |
| 2389 | fir::getBase(builder.createBox(loc, copyOutPair.var)); |
| 2390 | destBoxRef = builder.createTemporary(loc, destBox.getType()); |
| 2391 | builder.create<fir::StoreOp>(loc, destBox, destBoxRef); |
| 2392 | } else { |
| 2393 | destBoxRef = builder.create<fir::ZeroOp>(loc, srcBoxRef.getType()); |
| 2394 | } |
| 2395 | fir::runtime::genCopyOutAssign(builder, loc, destBoxRef, srcBoxRef); |
| 2396 | }; |
| 2397 | |
| 2398 | if (!copyOutPair.restrictCopyAndFreeAtRuntime) |
| 2399 | doCopyOut(); |
| 2400 | else |
| 2401 | builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime) |
| 2402 | .genThen([&]() { doCopyOut(); }) |
| 2403 | .end(); |
| 2404 | } |
| 2405 | |
| 2406 | /// Lower a designator to a variable that may be absent at runtime into an |
| 2407 | /// ExtendedValue where all the properties (base address, shape and length |
| 2408 | /// parameters) can be safely read (set to zero if not present). It also |
| 2409 | /// returns a boolean mlir::Value telling if the variable is present at |
| 2410 | /// runtime. |
| 2411 | /// This is useful to later be able to do conditional copy-in/copy-out |
| 2412 | /// or to retrieve the base address without having to deal with the case |
| 2413 | /// where the actual may be an absent fir.box. |
| 2414 | std::pair<ExtValue, mlir::Value> |
| 2415 | prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) { |
| 2416 | mlir::Location loc = getLoc(); |
| 2417 | if (Fortran::evaluate::IsAllocatableOrPointerObject(expr)) { |
| 2418 | // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, |
| 2419 | // it is as if the argument was absent. The main care here is to |
| 2420 | // not do a copy-in/copy-out because the temp address, even though |
| 2421 | // pointing to a null size storage, would not be a nullptr and |
| 2422 | // therefore the argument would not be considered absent on the |
| 2423 | // callee side. Note: if wholeSymbol is optional, it cannot be |
| 2424 | // absent as per 15.5.2.12 point 7. and 8. We rely on this to |
| 2425 | // un-conditionally read the allocatable/pointer descriptor here. |
| 2426 | fir::MutableBoxValue mutableBox = genMutableBoxValue(expr); |
| 2427 | mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest( |
| 2428 | builder, loc, mutableBox); |
| 2429 | fir::ExtendedValue actualArg = |
| 2430 | fir::factory::genMutableBoxRead(builder, loc, mutableBox); |
| 2431 | return {actualArg, isPresent}; |
| 2432 | } |
| 2433 | // Absent descriptor cannot be read. To avoid any issue in |
| 2434 | // copy-in/copy-out, and when retrieving the address/length |
| 2435 | // create an descriptor pointing to a null address here if the |
| 2436 | // fir.box is absent. |
| 2437 | ExtValue actualArg = gen(expr); |
| 2438 | mlir::Value actualArgBase = fir::getBase(actualArg); |
| 2439 | mlir::Value isPresent = builder.create<fir::IsPresentOp>( |
| 2440 | loc, builder.getI1Type(), actualArgBase); |
| 2441 | if (!mlir::isa<fir::BoxType>(actualArgBase.getType())) |
| 2442 | return {actualArg, isPresent}; |
| 2443 | ExtValue safeToReadBox = |
| 2444 | absentBoxToUnallocatedBox(builder, loc, actualArg, isPresent); |
| 2445 | return {safeToReadBox, isPresent}; |
| 2446 | } |
| 2447 | |
| 2448 | /// Create a temp on the stack for scalar actual arguments that may be absent |
| 2449 | /// at runtime, but must be passed via a temp if they are presents. |
| 2450 | fir::ExtendedValue |
| 2451 | createScalarTempForArgThatMayBeAbsent(ExtValue actualArg, |
| 2452 | mlir::Value isPresent) { |
| 2453 | mlir::Location loc = getLoc(); |
| 2454 | mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType()); |
| 2455 | if (fir::isDerivedWithLenParameters(actualArg)) |
| 2456 | TODO(loc, "parametrized derived type optional scalar argument copy-in" ); |
| 2457 | if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) { |
| 2458 | mlir::Value len = charBox->getLen(); |
| 2459 | mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0); |
| 2460 | len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero); |
| 2461 | mlir::Value temp = |
| 2462 | builder.createTemporary(loc, type, /*name=*/{}, |
| 2463 | /*shape=*/{}, mlir::ValueRange{len}, |
| 2464 | llvm::ArrayRef<mlir::NamedAttribute>{ |
| 2465 | fir::getAdaptToByRefAttr(builder)}); |
| 2466 | return fir::CharBoxValue{temp, len}; |
| 2467 | } |
| 2468 | assert((fir::isa_trivial(type) || mlir::isa<fir::RecordType>(type)) && |
| 2469 | "must be simple scalar" ); |
| 2470 | return builder.createTemporary(loc, type, |
| 2471 | llvm::ArrayRef<mlir::NamedAttribute>{ |
| 2472 | fir::getAdaptToByRefAttr(builder)}); |
| 2473 | } |
| 2474 | |
| 2475 | template <typename A> |
| 2476 | bool isCharacterType(const A &exp) { |
| 2477 | if (auto type = exp.GetType()) |
| 2478 | return type->category() == Fortran::common::TypeCategory::Character; |
| 2479 | return false; |
| 2480 | } |
| 2481 | |
| 2482 | /// Lower an actual argument that must be passed via an address. |
| 2483 | /// This generates of the copy-in/copy-out if the actual is not contiguous, or |
| 2484 | /// the creation of the temp if the actual is a variable and \p byValue is |
| 2485 | /// true. It handles the cases where the actual may be absent, and all of the |
| 2486 | /// copying has to be conditional at runtime. |
| 2487 | /// If the actual argument may be dynamically absent, return an additional |
| 2488 | /// boolean mlir::Value that if true means that the actual argument is |
| 2489 | /// present. |
| 2490 | std::pair<ExtValue, std::optional<mlir::Value>> |
| 2491 | prepareActualToBaseAddressLike( |
| 2492 | const Fortran::lower::SomeExpr &expr, |
| 2493 | const Fortran::lower::CallerInterface::PassedEntity &arg, |
| 2494 | CopyOutPairs ©OutPairs, bool byValue) { |
| 2495 | mlir::Location loc = getLoc(); |
| 2496 | const bool isArray = expr.Rank() > 0; |
| 2497 | const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr); |
| 2498 | // It must be possible to modify VALUE arguments on the callee side, even |
| 2499 | // if the actual argument is a literal or named constant. Hence, the |
| 2500 | // address of static storage must not be passed in that case, and a copy |
| 2501 | // must be made even if this is not a variable. |
| 2502 | // Note: isArray should be used here, but genBoxArg already creates copies |
| 2503 | // for it, so do not duplicate the copy until genBoxArg behavior is changed. |
| 2504 | const bool isStaticConstantByValue = |
| 2505 | byValue && Fortran::evaluate::IsActuallyConstant(expr) && |
| 2506 | (isCharacterType(expr)); |
| 2507 | const bool variableNeedsCopy = |
| 2508 | actualArgIsVariable && |
| 2509 | (byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous( |
| 2510 | expr, converter.getFoldingContext()))); |
| 2511 | const bool needsCopy = isStaticConstantByValue || variableNeedsCopy; |
| 2512 | auto [argAddr, isPresent] = |
| 2513 | [&]() -> std::pair<ExtValue, std::optional<mlir::Value>> { |
| 2514 | if (!actualArgIsVariable && !needsCopy) |
| 2515 | // Actual argument is not a variable. Make sure a variable address is |
| 2516 | // not passed. |
| 2517 | return {genTempExtAddr(expr), std::nullopt}; |
| 2518 | ExtValue baseAddr; |
| 2519 | if (arg.isOptional() && |
| 2520 | Fortran::evaluate::MayBePassedAsAbsentOptional(expr)) { |
| 2521 | auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr); |
| 2522 | const ExtValue &actualArg = actualArgBind; |
| 2523 | if (!needsCopy) |
| 2524 | return {actualArg, isPresent}; |
| 2525 | |
| 2526 | if (isArray) |
| 2527 | return {genCopyIn(actualArg, arg, copyOutPairs, isPresent, byValue), |
| 2528 | isPresent}; |
| 2529 | // Scalars, create a temp, and use it conditionally at runtime if |
| 2530 | // the argument is present. |
| 2531 | ExtValue temp = |
| 2532 | createScalarTempForArgThatMayBeAbsent(actualArg, isPresent); |
| 2533 | mlir::Type tempAddrTy = fir::getBase(temp).getType(); |
| 2534 | mlir::Value selectAddr = |
| 2535 | builder |
| 2536 | .genIfOp(loc, {tempAddrTy}, isPresent, |
| 2537 | /*withElseRegion=*/true) |
| 2538 | .genThen([&]() { |
| 2539 | fir::factory::genScalarAssignment(builder, loc, temp, |
| 2540 | actualArg); |
| 2541 | builder.create<fir::ResultOp>(loc, fir::getBase(temp)); |
| 2542 | }) |
| 2543 | .genElse([&]() { |
| 2544 | mlir::Value absent = |
| 2545 | builder.create<fir::AbsentOp>(loc, tempAddrTy); |
| 2546 | builder.create<fir::ResultOp>(loc, absent); |
| 2547 | }) |
| 2548 | .getResults()[0]; |
| 2549 | return {fir::substBase(temp, selectAddr), isPresent}; |
| 2550 | } |
| 2551 | // Actual cannot be absent, the actual argument can safely be |
| 2552 | // copied-in/copied-out without any care if needed. |
| 2553 | if (isArray) { |
| 2554 | ExtValue box = genBoxArg(expr); |
| 2555 | if (needsCopy) |
| 2556 | return {genCopyIn(box, arg, copyOutPairs, |
| 2557 | /*restrictCopyAtRuntime=*/std::nullopt, byValue), |
| 2558 | std::nullopt}; |
| 2559 | // Contiguous: just use the box we created above! |
| 2560 | // This gets "unboxed" below, if needed. |
| 2561 | return {box, std::nullopt}; |
| 2562 | } |
| 2563 | // Actual argument is a non-optional, non-pointer, non-allocatable |
| 2564 | // scalar. |
| 2565 | ExtValue actualArg = genExtAddr(expr); |
| 2566 | if (needsCopy) |
| 2567 | return {createInMemoryScalarCopy(builder, loc, actualArg), |
| 2568 | std::nullopt}; |
| 2569 | return {actualArg, std::nullopt}; |
| 2570 | }(); |
| 2571 | // Scalar and contiguous expressions may be lowered to a fir.box, |
| 2572 | // either to account for potential polymorphism, or because lowering |
| 2573 | // did not account for some contiguity hints. |
| 2574 | // Here, polymorphism does not matter (an entity of the declared type |
| 2575 | // is passed, not one of the dynamic type), and the expr is known to |
| 2576 | // be simply contiguous, so it is safe to unbox it and pass the |
| 2577 | // address without making a copy. |
| 2578 | return {readIfBoxValue(argAddr), isPresent}; |
| 2579 | } |
| 2580 | |
| 2581 | /// Lower a non-elemental procedure reference. |
| 2582 | ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef, |
| 2583 | std::optional<mlir::Type> resultType) { |
| 2584 | mlir::Location loc = getLoc(); |
| 2585 | if (isElementalProcWithArrayArgs(procRef)) |
| 2586 | fir::emitFatalError(loc, "trying to lower elemental procedure with array " |
| 2587 | "arguments as normal procedure" ); |
| 2588 | |
| 2589 | if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = |
| 2590 | procRef.proc().GetSpecificIntrinsic()) |
| 2591 | return genIntrinsicRef(procRef, resultType, *intrinsic); |
| 2592 | |
| 2593 | if (Fortran::lower::isIntrinsicModuleProcRef(procRef) && |
| 2594 | !Fortran::semantics::IsBindCProcedure(*procRef.proc().GetSymbol())) |
| 2595 | return genIntrinsicRef(procRef, resultType); |
| 2596 | |
| 2597 | if (isStatementFunctionCall(procRef)) |
| 2598 | return genStmtFunctionRef(procRef); |
| 2599 | |
| 2600 | Fortran::lower::CallerInterface caller(procRef, converter); |
| 2601 | using PassBy = Fortran::lower::CallerInterface::PassEntityBy; |
| 2602 | |
| 2603 | llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall; |
| 2604 | // List of <var, temp> where temp must be copied into var after the call. |
| 2605 | CopyOutPairs copyOutPairs; |
| 2606 | |
| 2607 | mlir::FunctionType callSiteType = caller.genFunctionType(); |
| 2608 | |
| 2609 | // Lower the actual arguments and map the lowered values to the dummy |
| 2610 | // arguments. |
| 2611 | for (const Fortran::lower::CallInterface< |
| 2612 | Fortran::lower::CallerInterface>::PassedEntity &arg : |
| 2613 | caller.getPassedArguments()) { |
| 2614 | const auto *actual = arg.entity; |
| 2615 | mlir::Type argTy = callSiteType.getInput(arg.firArgument); |
| 2616 | if (!actual) { |
| 2617 | // Optional dummy argument for which there is no actual argument. |
| 2618 | caller.placeInput(arg, builder.genAbsentOp(loc, argTy)); |
| 2619 | continue; |
| 2620 | } |
| 2621 | const auto *expr = actual->UnwrapExpr(); |
| 2622 | if (!expr) |
| 2623 | TODO(loc, "assumed type actual argument" ); |
| 2624 | |
| 2625 | if (arg.passBy == PassBy::Value) { |
| 2626 | ExtValue argVal = genval(*expr); |
| 2627 | if (!fir::isUnboxedValue(argVal)) |
| 2628 | fir::emitFatalError( |
| 2629 | loc, "internal error: passing non trivial value by value" ); |
| 2630 | caller.placeInput(arg, fir::getBase(argVal)); |
| 2631 | continue; |
| 2632 | } |
| 2633 | |
| 2634 | if (arg.passBy == PassBy::MutableBox) { |
| 2635 | if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>( |
| 2636 | *expr)) { |
| 2637 | // If expr is NULL(), the mutableBox created must be a deallocated |
| 2638 | // pointer with the dummy argument characteristics (see table 16.5 |
| 2639 | // in Fortran 2018 standard). |
| 2640 | // No length parameters are set for the created box because any non |
| 2641 | // deferred type parameters of the dummy will be evaluated on the |
| 2642 | // callee side, and it is illegal to use NULL without a MOLD if any |
| 2643 | // dummy length parameters are assumed. |
| 2644 | mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy); |
| 2645 | assert(boxTy && mlir::isa<fir::BaseBoxType>(boxTy) && |
| 2646 | "must be a fir.box type" ); |
| 2647 | mlir::Value boxStorage = builder.createTemporary(loc, boxTy); |
| 2648 | mlir::Value nullBox = fir::factory::createUnallocatedBox( |
| 2649 | builder, loc, boxTy, /*nonDeferredParams=*/{}); |
| 2650 | builder.create<fir::StoreOp>(loc, nullBox, boxStorage); |
| 2651 | caller.placeInput(arg, boxStorage); |
| 2652 | continue; |
| 2653 | } |
| 2654 | if (fir::isPointerType(argTy) && |
| 2655 | !Fortran::evaluate::IsObjectPointer(*expr)) { |
| 2656 | // Passing a non POINTER actual argument to a POINTER dummy argument. |
| 2657 | // Create a pointer of the dummy argument type and assign the actual |
| 2658 | // argument to it. |
| 2659 | mlir::Value irBox = |
| 2660 | builder.createTemporary(loc, fir::unwrapRefType(argTy)); |
| 2661 | // Non deferred parameters will be evaluated on the callee side. |
| 2662 | fir::MutableBoxValue pointer(irBox, |
| 2663 | /*nonDeferredParams=*/mlir::ValueRange{}, |
| 2664 | /*mutableProperties=*/{}); |
| 2665 | Fortran::lower::associateMutableBox(converter, loc, pointer, *expr, |
| 2666 | /*lbounds=*/std::nullopt, |
| 2667 | stmtCtx); |
| 2668 | caller.placeInput(arg, irBox); |
| 2669 | continue; |
| 2670 | } |
| 2671 | // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE. |
| 2672 | fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); |
| 2673 | if (fir::isAllocatableType(argTy) && arg.isIntentOut() && |
| 2674 | Fortran::semantics::IsBindCProcedure(*procRef.proc().GetSymbol())) |
| 2675 | Fortran::lower::genDeallocateIfAllocated(converter, mutableBox, loc); |
| 2676 | mlir::Value irBox = |
| 2677 | fir::factory::getMutableIRBox(builder, loc, mutableBox); |
| 2678 | caller.placeInput(arg, irBox); |
| 2679 | if (arg.mayBeModifiedByCall()) |
| 2680 | mutableModifiedByCall.emplace_back(std::move(mutableBox)); |
| 2681 | continue; |
| 2682 | } |
| 2683 | if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar || |
| 2684 | arg.passBy == PassBy::BaseAddressValueAttribute || |
| 2685 | arg.passBy == PassBy::CharBoxValueAttribute) { |
| 2686 | const bool byValue = arg.passBy == PassBy::BaseAddressValueAttribute || |
| 2687 | arg.passBy == PassBy::CharBoxValueAttribute; |
| 2688 | ExtValue argAddr = |
| 2689 | prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue) |
| 2690 | .first; |
| 2691 | if (arg.passBy == PassBy::BaseAddress || |
| 2692 | arg.passBy == PassBy::BaseAddressValueAttribute) { |
| 2693 | caller.placeInput(arg, fir::getBase(argAddr)); |
| 2694 | } else { |
| 2695 | assert(arg.passBy == PassBy::BoxChar || |
| 2696 | arg.passBy == PassBy::CharBoxValueAttribute); |
| 2697 | auto helper = fir::factory::CharacterExprHelper{builder, loc}; |
| 2698 | auto boxChar = argAddr.match( |
| 2699 | [&](const fir::CharBoxValue &x) -> mlir::Value { |
| 2700 | // If a character procedure was passed instead, handle the |
| 2701 | // mismatch. |
| 2702 | auto funcTy = |
| 2703 | mlir::dyn_cast<mlir::FunctionType>(x.getAddr().getType()); |
| 2704 | if (funcTy && funcTy.getNumResults() == 1 && |
| 2705 | mlir::isa<fir::BoxCharType>(funcTy.getResult(0))) { |
| 2706 | auto boxTy = |
| 2707 | mlir::cast<fir::BoxCharType>(funcTy.getResult(0)); |
| 2708 | mlir::Value ref = builder.createConvertWithVolatileCast( |
| 2709 | loc, builder.getRefType(boxTy.getEleTy()), x.getAddr()); |
| 2710 | auto len = builder.create<fir::UndefOp>( |
| 2711 | loc, builder.getCharacterLengthType()); |
| 2712 | return builder.create<fir::EmboxCharOp>(loc, boxTy, ref, len); |
| 2713 | } |
| 2714 | return helper.createEmbox(x); |
| 2715 | }, |
| 2716 | [&](const fir::CharArrayBoxValue &x) { |
| 2717 | return helper.createEmbox(x); |
| 2718 | }, |
| 2719 | [&](const auto &x) -> mlir::Value { |
| 2720 | // Fortran allows an actual argument of a completely different |
| 2721 | // type to be passed to a procedure expecting a CHARACTER in the |
| 2722 | // dummy argument position. When this happens, the data pointer |
| 2723 | // argument is simply assumed to point to CHARACTER data and the |
| 2724 | // LEN argument used is garbage. Simulate this behavior by |
| 2725 | // free-casting the base address to be a !fir.char reference and |
| 2726 | // setting the LEN argument to undefined. What could go wrong? |
| 2727 | auto dataPtr = fir::getBase(x); |
| 2728 | assert(!mlir::isa<fir::BoxType>(dataPtr.getType())); |
| 2729 | return builder.convertWithSemantics( |
| 2730 | loc, argTy, dataPtr, |
| 2731 | /*allowCharacterConversion=*/true); |
| 2732 | }); |
| 2733 | caller.placeInput(arg, boxChar); |
| 2734 | } |
| 2735 | } else if (arg.passBy == PassBy::Box) { |
| 2736 | if (arg.mustBeMadeContiguous() && |
| 2737 | !Fortran::evaluate::IsSimplyContiguous( |
| 2738 | *expr, converter.getFoldingContext())) { |
| 2739 | // If the expression is a PDT, or a polymorphic entity, or an assumed |
| 2740 | // rank, it cannot currently be safely handled by |
| 2741 | // prepareActualToBaseAddressLike that is intended to prepare |
| 2742 | // arguments that can be passed as simple base address. |
| 2743 | if (auto dynamicType = expr->GetType()) |
| 2744 | if (dynamicType->IsPolymorphic()) |
| 2745 | TODO(loc, "passing a polymorphic entity to an OPTIONAL " |
| 2746 | "CONTIGUOUS argument" ); |
| 2747 | if (fir::isRecordWithTypeParameters( |
| 2748 | fir::unwrapSequenceType(fir::unwrapPassByRefType(argTy)))) |
| 2749 | TODO(loc, "passing to an OPTIONAL CONTIGUOUS derived type argument " |
| 2750 | "with length parameters" ); |
| 2751 | if (Fortran::evaluate::IsAssumedRank(*expr)) |
| 2752 | TODO(loc, "passing an assumed rank entity to an OPTIONAL " |
| 2753 | "CONTIGUOUS argument" ); |
| 2754 | // Assumed shape VALUE are currently TODO in the call interface |
| 2755 | // lowering. |
| 2756 | const bool byValue = false; |
| 2757 | auto [argAddr, isPresentValue] = |
| 2758 | prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue); |
| 2759 | mlir::Value box = builder.createBox(loc, argAddr); |
| 2760 | if (isPresentValue) { |
| 2761 | mlir::Value convertedBox = builder.createConvert(loc, argTy, box); |
| 2762 | auto absent = builder.create<fir::AbsentOp>(loc, argTy); |
| 2763 | caller.placeInput(arg, |
| 2764 | builder.create<mlir::arith::SelectOp>( |
| 2765 | loc, *isPresentValue, convertedBox, absent)); |
| 2766 | } else { |
| 2767 | caller.placeInput(arg, builder.createBox(loc, argAddr)); |
| 2768 | } |
| 2769 | |
| 2770 | } else if (arg.isOptional() && |
| 2771 | Fortran::evaluate::IsAllocatableOrPointerObject(*expr)) { |
| 2772 | // Before lowering to an address, handle the allocatable/pointer |
| 2773 | // actual argument to optional fir.box dummy. It is legal to pass |
| 2774 | // unallocated/disassociated entity to an optional. In this case, an |
| 2775 | // absent fir.box must be created instead of a fir.box with a null |
| 2776 | // value (Fortran 2018 15.5.2.12 point 1). |
| 2777 | // |
| 2778 | // Note that passing an absent allocatable to a non-allocatable |
| 2779 | // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So |
| 2780 | // nothing has to be done to generate an absent argument in this case, |
| 2781 | // and it is OK to unconditionally read the mutable box here. |
| 2782 | fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr); |
| 2783 | mlir::Value isAllocated = |
| 2784 | fir::factory::genIsAllocatedOrAssociatedTest(builder, loc, |
| 2785 | mutableBox); |
| 2786 | auto absent = builder.create<fir::AbsentOp>(loc, argTy); |
| 2787 | /// For now, assume it is not OK to pass the allocatable/pointer |
| 2788 | /// descriptor to a non pointer/allocatable dummy. That is a strict |
| 2789 | /// interpretation of 18.3.6 point 4 that stipulates the descriptor |
| 2790 | /// has the dummy attributes in BIND(C) contexts. |
| 2791 | mlir::Value box = builder.createBox( |
| 2792 | loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox)); |
| 2793 | |
| 2794 | // NULL() passed as argument is passed as a !fir.box<none>. Since |
| 2795 | // select op requires the same type for its two argument, convert |
| 2796 | // !fir.box<none> to !fir.class<none> when the argument is |
| 2797 | // polymorphic. |
| 2798 | if (fir::isBoxNone(box.getType()) && fir::isPolymorphicType(argTy)) { |
| 2799 | box = builder.createConvert( |
| 2800 | loc, |
| 2801 | fir::ClassType::get(mlir::NoneType::get(builder.getContext())), |
| 2802 | box); |
| 2803 | } else if (mlir::isa<fir::BoxType>(box.getType()) && |
| 2804 | fir::isPolymorphicType(argTy)) { |
| 2805 | box = builder.create<fir::ReboxOp>(loc, argTy, box, mlir::Value{}, |
| 2806 | /*slice=*/mlir::Value{}); |
| 2807 | } |
| 2808 | |
| 2809 | // Need the box types to be exactly similar for the selectOp. |
| 2810 | mlir::Value convertedBox = builder.createConvert(loc, argTy, box); |
| 2811 | caller.placeInput(arg, builder.create<mlir::arith::SelectOp>( |
| 2812 | loc, isAllocated, convertedBox, absent)); |
| 2813 | } else { |
| 2814 | auto dynamicType = expr->GetType(); |
| 2815 | mlir::Value box; |
| 2816 | |
| 2817 | // Special case when an intrinsic scalar variable is passed to a |
| 2818 | // function expecting an optional unlimited polymorphic dummy |
| 2819 | // argument. |
| 2820 | // The presence test needs to be performed before emboxing otherwise |
| 2821 | // the program will crash. |
| 2822 | if (dynamicType->category() != |
| 2823 | Fortran::common::TypeCategory::Derived && |
| 2824 | expr->Rank() == 0 && fir::isUnlimitedPolymorphicType(argTy) && |
| 2825 | arg.isOptional()) { |
| 2826 | ExtValue opt = lowerIntrinsicArgumentAsInquired(*expr); |
| 2827 | mlir::Value isPresent = genActualIsPresentTest(builder, loc, opt); |
| 2828 | box = |
| 2829 | builder |
| 2830 | .genIfOp(loc, {argTy}, isPresent, /*withElseRegion=*/true) |
| 2831 | .genThen([&]() { |
| 2832 | auto boxed = builder.createBox( |
| 2833 | loc, genBoxArg(*expr), fir::isPolymorphicType(argTy)); |
| 2834 | builder.create<fir::ResultOp>(loc, boxed); |
| 2835 | }) |
| 2836 | .genElse([&]() { |
| 2837 | auto absent = |
| 2838 | builder.create<fir::AbsentOp>(loc, argTy).getResult(); |
| 2839 | builder.create<fir::ResultOp>(loc, absent); |
| 2840 | }) |
| 2841 | .getResults()[0]; |
| 2842 | } else { |
| 2843 | // Make sure a variable address is only passed if the expression is |
| 2844 | // actually a variable. |
| 2845 | box = Fortran::evaluate::IsVariable(*expr) |
| 2846 | ? builder.createBox(loc, genBoxArg(*expr), |
| 2847 | fir::isPolymorphicType(argTy), |
| 2848 | fir::isAssumedType(argTy)) |
| 2849 | : builder.createBox(getLoc(), genTempExtAddr(*expr), |
| 2850 | fir::isPolymorphicType(argTy), |
| 2851 | fir::isAssumedType(argTy)); |
| 2852 | if (mlir::isa<fir::BoxType>(box.getType()) && |
| 2853 | fir::isPolymorphicType(argTy) && !fir::isAssumedType(argTy)) { |
| 2854 | mlir::Type actualTy = argTy; |
| 2855 | if (Fortran::lower::isParentComponent(*expr)) |
| 2856 | actualTy = fir::BoxType::get(converter.genType(*expr)); |
| 2857 | // Rebox can only be performed on a present argument. |
| 2858 | if (arg.isOptional()) { |
| 2859 | mlir::Value isPresent = |
| 2860 | genActualIsPresentTest(builder, loc, box); |
| 2861 | box = builder |
| 2862 | .genIfOp(loc, {actualTy}, isPresent, |
| 2863 | /*withElseRegion=*/true) |
| 2864 | .genThen([&]() { |
| 2865 | auto rebox = |
| 2866 | builder |
| 2867 | .create<fir::ReboxOp>( |
| 2868 | loc, actualTy, box, mlir::Value{}, |
| 2869 | /*slice=*/mlir::Value{}) |
| 2870 | .getResult(); |
| 2871 | builder.create<fir::ResultOp>(loc, rebox); |
| 2872 | }) |
| 2873 | .genElse([&]() { |
| 2874 | auto absent = |
| 2875 | builder.create<fir::AbsentOp>(loc, actualTy) |
| 2876 | .getResult(); |
| 2877 | builder.create<fir::ResultOp>(loc, absent); |
| 2878 | }) |
| 2879 | .getResults()[0]; |
| 2880 | } else { |
| 2881 | box = builder.create<fir::ReboxOp>(loc, actualTy, box, |
| 2882 | mlir::Value{}, |
| 2883 | /*slice=*/mlir::Value{}); |
| 2884 | } |
| 2885 | } else if (Fortran::lower::isParentComponent(*expr)) { |
| 2886 | fir::ExtendedValue newExv = |
| 2887 | Fortran::lower::updateBoxForParentComponent(converter, box, |
| 2888 | *expr); |
| 2889 | box = fir::getBase(newExv); |
| 2890 | } |
| 2891 | } |
| 2892 | caller.placeInput(arg, box); |
| 2893 | } |
| 2894 | } else if (arg.passBy == PassBy::AddressAndLength) { |
| 2895 | ExtValue argRef = genExtAddr(*expr); |
| 2896 | caller.placeAddressAndLengthInput(arg, fir::getBase(argRef), |
| 2897 | fir::getLen(argRef)); |
| 2898 | } else if (arg.passBy == PassBy::CharProcTuple) { |
| 2899 | ExtValue argRef = genExtAddr(*expr); |
| 2900 | mlir::Value tuple = createBoxProcCharTuple( |
| 2901 | converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); |
| 2902 | caller.placeInput(arg, tuple); |
| 2903 | } else { |
| 2904 | TODO(loc, "pass by value in non elemental function call" ); |
| 2905 | } |
| 2906 | } |
| 2907 | |
| 2908 | auto loweredResult = |
| 2909 | Fortran::lower::genCallOpAndResult(loc, converter, symMap, stmtCtx, |
| 2910 | caller, callSiteType, resultType) |
| 2911 | .first; |
| 2912 | auto &result = std::get<ExtValue>(loweredResult); |
| 2913 | |
| 2914 | // Sync pointers and allocatables that may have been modified during the |
| 2915 | // call. |
| 2916 | for (const auto &mutableBox : mutableModifiedByCall) |
| 2917 | fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox); |
| 2918 | // Handle case where result was passed as argument |
| 2919 | |
| 2920 | // Copy-out temps that were created for non contiguous variable arguments if |
| 2921 | // needed. |
| 2922 | for (const auto ©OutPair : copyOutPairs) |
| 2923 | genCopyOut(copyOutPair); |
| 2924 | |
| 2925 | return result; |
| 2926 | } |
| 2927 | |
| 2928 | template <typename A> |
| 2929 | ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) { |
| 2930 | ExtValue result = genFunctionRef(funcRef); |
| 2931 | if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType())) |
| 2932 | return genLoad(result); |
| 2933 | return result; |
| 2934 | } |
| 2935 | |
| 2936 | ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) { |
| 2937 | std::optional<mlir::Type> resTy; |
| 2938 | if (procRef.hasAlternateReturns()) |
| 2939 | resTy = builder.getIndexType(); |
| 2940 | return genProcedureRef(procRef, resTy); |
| 2941 | } |
| 2942 | |
| 2943 | template <typename A> |
| 2944 | bool isScalar(const A &x) { |
| 2945 | return x.Rank() == 0; |
| 2946 | } |
| 2947 | |
| 2948 | /// Helper to detect Transformational function reference. |
| 2949 | template <typename T> |
| 2950 | bool isTransformationalRef(const T &) { |
| 2951 | return false; |
| 2952 | } |
| 2953 | template <typename T> |
| 2954 | bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) { |
| 2955 | return !funcRef.IsElemental() && funcRef.Rank(); |
| 2956 | } |
| 2957 | template <typename T> |
| 2958 | bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) { |
| 2959 | return Fortran::common::visit( |
| 2960 | [&](const auto &e) { return isTransformationalRef(e); }, expr.u); |
| 2961 | } |
| 2962 | |
| 2963 | template <typename A> |
| 2964 | ExtValue asArray(const A &x) { |
| 2965 | return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x), |
| 2966 | symMap, stmtCtx); |
| 2967 | } |
| 2968 | |
| 2969 | /// Lower an array value as an argument. This argument can be passed as a box |
| 2970 | /// value, so it may be possible to avoid making a temporary. |
| 2971 | template <typename A> |
| 2972 | ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) { |
| 2973 | return Fortran::common::visit( |
| 2974 | [&](const auto &e) { return asArrayArg(e, x); }, x.u); |
| 2975 | } |
| 2976 | template <typename A, typename B> |
| 2977 | ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) { |
| 2978 | return Fortran::common::visit( |
| 2979 | [&](const auto &e) { return asArrayArg(e, y); }, x.u); |
| 2980 | } |
| 2981 | template <typename A, typename B> |
| 2982 | ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) { |
| 2983 | // Designator is being passed as an argument to a procedure. Lower the |
| 2984 | // expression to a boxed value. |
| 2985 | auto someExpr = toEvExpr(x); |
| 2986 | return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap, |
| 2987 | stmtCtx); |
| 2988 | } |
| 2989 | template <typename A, typename B> |
| 2990 | ExtValue asArrayArg(const A &, const B &x) { |
| 2991 | // If the expression to pass as an argument is not a designator, then create |
| 2992 | // an array temp. |
| 2993 | return asArray(x); |
| 2994 | } |
| 2995 | |
| 2996 | template <typename A> |
| 2997 | mlir::Value getIfOverridenExpr(const Fortran::evaluate::Expr<A> &x) { |
| 2998 | if (const Fortran::lower::ExprToValueMap *map = |
| 2999 | converter.getExprOverrides()) { |
| 3000 | Fortran::lower::SomeExpr someExpr = toEvExpr(x); |
| 3001 | if (auto match = map->find(&someExpr); match != map->end()) |
| 3002 | return match->second; |
| 3003 | } |
| 3004 | return mlir::Value{}; |
| 3005 | } |
| 3006 | |
| 3007 | template <typename A> |
| 3008 | ExtValue gen(const Fortran::evaluate::Expr<A> &x) { |
| 3009 | if (mlir::Value val = getIfOverridenExpr(x)) |
| 3010 | return val; |
| 3011 | // Whole array symbols or components, and results of transformational |
| 3012 | // functions already have a storage and the scalar expression lowering path |
| 3013 | // is used to not create a new temporary storage. |
| 3014 | if (isScalar(x) || |
| 3015 | Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) || |
| 3016 | (isTransformationalRef(x) && !isOptimizableTranspose(x, converter))) |
| 3017 | return Fortran::common::visit([&](const auto &e) { return genref(e); }, |
| 3018 | x.u); |
| 3019 | if (useBoxArg) |
| 3020 | return asArrayArg(x); |
| 3021 | return asArray(x); |
| 3022 | } |
| 3023 | template <typename A> |
| 3024 | ExtValue genval(const Fortran::evaluate::Expr<A> &x) { |
| 3025 | if (mlir::Value val = getIfOverridenExpr(x)) |
| 3026 | return val; |
| 3027 | if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) || |
| 3028 | inInitializer) |
| 3029 | return Fortran::common::visit([&](const auto &e) { return genval(e); }, |
| 3030 | x.u); |
| 3031 | return asArray(x); |
| 3032 | } |
| 3033 | |
| 3034 | template <int KIND> |
| 3035 | ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type< |
| 3036 | Fortran::common::TypeCategory::Logical, KIND>> &exp) { |
| 3037 | if (mlir::Value val = getIfOverridenExpr(exp)) |
| 3038 | return val; |
| 3039 | return Fortran::common::visit([&](const auto &e) { return genval(e); }, |
| 3040 | exp.u); |
| 3041 | } |
| 3042 | |
| 3043 | using RefSet = |
| 3044 | std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring, |
| 3045 | Fortran::evaluate::DataRef, Fortran::evaluate::Component, |
| 3046 | Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef, |
| 3047 | Fortran::semantics::SymbolRef>; |
| 3048 | template <typename A> |
| 3049 | static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>; |
| 3050 | |
| 3051 | template <typename A, typename = std::enable_if_t<inRefSet<A>>> |
| 3052 | ExtValue genref(const A &a) { |
| 3053 | return gen(a); |
| 3054 | } |
| 3055 | template <typename A> |
| 3056 | ExtValue genref(const A &a) { |
| 3057 | if (inInitializer) { |
| 3058 | // Initialization expressions can never allocate memory. |
| 3059 | return genval(a); |
| 3060 | } |
| 3061 | mlir::Type storageType = converter.genType(toEvExpr(a)); |
| 3062 | return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType); |
| 3063 | } |
| 3064 | |
| 3065 | template <typename A, template <typename> typename T, |
| 3066 | typename B = std::decay_t<T<A>>, |
| 3067 | std::enable_if_t< |
| 3068 | std::is_same_v<B, Fortran::evaluate::Expr<A>> || |
| 3069 | std::is_same_v<B, Fortran::evaluate::Designator<A>> || |
| 3070 | std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>, |
| 3071 | bool> = true> |
| 3072 | ExtValue genref(const T<A> &x) { |
| 3073 | return gen(x); |
| 3074 | } |
| 3075 | |
| 3076 | private: |
| 3077 | mlir::Location location; |
| 3078 | Fortran::lower::AbstractConverter &converter; |
| 3079 | fir::FirOpBuilder &builder; |
| 3080 | Fortran::lower::StatementContext &stmtCtx; |
| 3081 | Fortran::lower::SymMap &symMap; |
| 3082 | bool inInitializer = false; |
| 3083 | bool useBoxArg = false; // expression lowered as argument |
| 3084 | }; |
| 3085 | } // namespace |
| 3086 | |
| 3087 | #define CONCAT(x, y) CONCAT2(x, y) |
| 3088 | #define CONCAT2(x, y) x##y |
| 3089 | |
| 3090 | // Helper for changing the semantics in a given context. Preserves the current |
| 3091 | // semantics which is resumed when the "push" goes out of scope. |
| 3092 | #define PushSemantics(PushVal) \ |
| 3093 | [[maybe_unused]] auto CONCAT(pushSemanticsLocalVariable, __LINE__) = \ |
| 3094 | Fortran::common::ScopedSet(semant, PushVal); |
| 3095 | |
| 3096 | static bool isAdjustedArrayElementType(mlir::Type t) { |
| 3097 | return fir::isa_char(t) || fir::isa_derived(t) || |
| 3098 | mlir::isa<fir::SequenceType>(t); |
| 3099 | } |
| 3100 | static bool elementTypeWasAdjusted(mlir::Type t) { |
| 3101 | if (auto ty = mlir::dyn_cast<fir::ReferenceType>(t)) |
| 3102 | return isAdjustedArrayElementType(ty.getEleTy()); |
| 3103 | return false; |
| 3104 | } |
| 3105 | static mlir::Type adjustedArrayElementType(mlir::Type t) { |
| 3106 | return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t; |
| 3107 | } |
| 3108 | |
| 3109 | /// Helper to generate calls to scalar user defined assignment procedures. |
| 3110 | static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder, |
| 3111 | mlir::Location loc, |
| 3112 | mlir::func::FuncOp func, |
| 3113 | const fir::ExtendedValue &lhs, |
| 3114 | const fir::ExtendedValue &rhs) { |
| 3115 | auto prepareUserDefinedArg = |
| 3116 | [](fir::FirOpBuilder &builder, mlir::Location loc, |
| 3117 | const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value { |
| 3118 | if (mlir::isa<fir::BoxCharType>(argType)) { |
| 3119 | const fir::CharBoxValue *charBox = value.getCharBox(); |
| 3120 | assert(charBox && "argument type mismatch in elemental user assignment" ); |
| 3121 | return fir::factory::CharacterExprHelper{builder, loc}.createEmbox( |
| 3122 | *charBox); |
| 3123 | } |
| 3124 | if (mlir::isa<fir::BaseBoxType>(argType)) { |
| 3125 | mlir::Value box = |
| 3126 | builder.createBox(loc, value, mlir::isa<fir::ClassType>(argType)); |
| 3127 | return builder.createConvert(loc, argType, box); |
| 3128 | } |
| 3129 | // Simple pass by address. |
| 3130 | mlir::Type argBaseType = fir::unwrapRefType(argType); |
| 3131 | assert(!fir::hasDynamicSize(argBaseType)); |
| 3132 | mlir::Value from = fir::getBase(value); |
| 3133 | if (argBaseType != fir::unwrapRefType(from.getType())) { |
| 3134 | // With logicals, it is possible that from is i1 here. |
| 3135 | if (fir::isa_ref_type(from.getType())) |
| 3136 | from = builder.create<fir::LoadOp>(loc, from); |
| 3137 | from = builder.createConvert(loc, argBaseType, from); |
| 3138 | } |
| 3139 | if (!fir::isa_ref_type(from.getType())) { |
| 3140 | mlir::Value temp = builder.createTemporary(loc, argBaseType); |
| 3141 | builder.create<fir::StoreOp>(loc, from, temp); |
| 3142 | from = temp; |
| 3143 | } |
| 3144 | return builder.createConvert(loc, argType, from); |
| 3145 | }; |
| 3146 | assert(func.getNumArguments() == 2); |
| 3147 | mlir::Type lhsType = func.getFunctionType().getInput(0); |
| 3148 | mlir::Type rhsType = func.getFunctionType().getInput(1); |
| 3149 | mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType); |
| 3150 | mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType); |
| 3151 | builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg}); |
| 3152 | } |
| 3153 | |
| 3154 | /// Convert the result of a fir.array_modify to an ExtendedValue given the |
| 3155 | /// related fir.array_load. |
| 3156 | static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder, |
| 3157 | mlir::Location loc, |
| 3158 | fir::ArrayLoadOp load, |
| 3159 | mlir::Value elementAddr) { |
| 3160 | mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType()); |
| 3161 | if (fir::isa_char(eleTy)) { |
| 3162 | auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength( |
| 3163 | load.getMemref()); |
| 3164 | if (!len) { |
| 3165 | assert(load.getTypeparams().size() == 1 && |
| 3166 | "length must be in array_load" ); |
| 3167 | len = load.getTypeparams()[0]; |
| 3168 | } |
| 3169 | return fir::CharBoxValue{elementAddr, len}; |
| 3170 | } |
| 3171 | return elementAddr; |
| 3172 | } |
| 3173 | |
| 3174 | //===----------------------------------------------------------------------===// |
| 3175 | // |
| 3176 | // Lowering of scalar expressions in an explicit iteration space context. |
| 3177 | // |
| 3178 | //===----------------------------------------------------------------------===// |
| 3179 | |
| 3180 | // Shared code for creating a copy of a derived type element. This function is |
| 3181 | // called from a continuation. |
| 3182 | inline static fir::ArrayAmendOp |
| 3183 | createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad, |
| 3184 | fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc, |
| 3185 | const fir::ExtendedValue &elementExv, mlir::Type eleTy, |
| 3186 | mlir::Value innerArg) { |
| 3187 | if (destLoad.getTypeparams().empty()) { |
| 3188 | fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv); |
| 3189 | } else { |
| 3190 | auto boxTy = fir::BoxType::get(eleTy); |
| 3191 | auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(), |
| 3192 | mlir::Value{}, mlir::Value{}, |
| 3193 | destLoad.getTypeparams()); |
| 3194 | auto fromBox = builder.create<fir::EmboxOp>( |
| 3195 | loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{}, |
| 3196 | destLoad.getTypeparams()); |
| 3197 | fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox), |
| 3198 | fir::BoxValue(fromBox)); |
| 3199 | } |
| 3200 | return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg, |
| 3201 | destAcc); |
| 3202 | } |
| 3203 | |
| 3204 | inline static fir::ArrayAmendOp |
| 3205 | createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder, |
| 3206 | fir::ArrayAccessOp dstOp, mlir::Value &dstLen, |
| 3207 | const fir::ExtendedValue &srcExv, mlir::Value innerArg, |
| 3208 | llvm::ArrayRef<mlir::Value> bounds) { |
| 3209 | fir::CharBoxValue dstChar(dstOp, dstLen); |
| 3210 | fir::factory::CharacterExprHelper helper{builder, loc}; |
| 3211 | if (!bounds.empty()) { |
| 3212 | dstChar = helper.createSubstring(dstChar, bounds); |
| 3213 | fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv), |
| 3214 | dstChar.getAddr(), dstChar.getLen(), builder, |
| 3215 | loc); |
| 3216 | // Update the LEN to the substring's LEN. |
| 3217 | dstLen = dstChar.getLen(); |
| 3218 | } |
| 3219 | // For a CHARACTER, we generate the element assignment loops inline. |
| 3220 | helper.createAssign(fir::ExtendedValue{dstChar}, srcExv); |
| 3221 | // Mark this array element as amended. |
| 3222 | mlir::Type ty = innerArg.getType(); |
| 3223 | auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp); |
| 3224 | return amend; |
| 3225 | } |
| 3226 | |
| 3227 | /// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting |
| 3228 | /// the actual extents and lengths. This is only to allow their propagation as |
| 3229 | /// ExtendedValue without triggering verifier failures when propagating |
| 3230 | /// character/arrays as unboxed values. Only the base of the resulting |
| 3231 | /// ExtendedValue should be used, it is undefined to use the length or extents |
| 3232 | /// of the extended value returned, |
| 3233 | inline static fir::ExtendedValue |
| 3234 | convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder, |
| 3235 | mlir::Value val, mlir::Value len) { |
| 3236 | mlir::Type ty = fir::unwrapRefType(val.getType()); |
| 3237 | mlir::IndexType idxTy = builder.getIndexType(); |
| 3238 | auto seqTy = mlir::cast<fir::SequenceType>(ty); |
| 3239 | auto undef = builder.create<fir::UndefOp>(loc, idxTy); |
| 3240 | llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef); |
| 3241 | if (fir::isa_char(seqTy.getEleTy())) |
| 3242 | return fir::CharArrayBoxValue(val, len ? len : undef, extents); |
| 3243 | return fir::ArrayBoxValue(val, extents); |
| 3244 | } |
| 3245 | |
| 3246 | //===----------------------------------------------------------------------===// |
| 3247 | // |
| 3248 | // Lowering of array expressions. |
| 3249 | // |
| 3250 | //===----------------------------------------------------------------------===// |
| 3251 | |
| 3252 | namespace { |
| 3253 | class ArrayExprLowering { |
| 3254 | using ExtValue = fir::ExtendedValue; |
| 3255 | |
| 3256 | /// Structure to keep track of lowered array operands in the |
| 3257 | /// array expression. Useful to later deduce the shape of the |
| 3258 | /// array expression. |
| 3259 | struct ArrayOperand { |
| 3260 | /// Array base (can be a fir.box). |
| 3261 | mlir::Value memref; |
| 3262 | /// ShapeOp, ShapeShiftOp or ShiftOp |
| 3263 | mlir::Value shape; |
| 3264 | /// SliceOp |
| 3265 | mlir::Value slice; |
| 3266 | /// Can this operand be absent ? |
| 3267 | bool mayBeAbsent = false; |
| 3268 | }; |
| 3269 | |
| 3270 | using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts; |
| 3271 | using PathComponent = Fortran::lower::PathComponent; |
| 3272 | |
| 3273 | /// Active iteration space. |
| 3274 | using IterationSpace = Fortran::lower::IterationSpace; |
| 3275 | using IterSpace = const Fortran::lower::IterationSpace &; |
| 3276 | |
| 3277 | /// Current continuation. Function that will generate IR for a single |
| 3278 | /// iteration of the pending iterative loop structure. |
| 3279 | using CC = Fortran::lower::GenerateElementalArrayFunc; |
| 3280 | |
| 3281 | /// Projection continuation. Function that will project one iteration space |
| 3282 | /// into another. |
| 3283 | using PC = std::function<IterationSpace(IterSpace)>; |
| 3284 | using ArrayBaseTy = |
| 3285 | std::variant<std::monostate, const Fortran::evaluate::ArrayRef *, |
| 3286 | const Fortran::evaluate::DataRef *>; |
| 3287 | using ComponentPath = Fortran::lower::ComponentPath; |
| 3288 | |
| 3289 | public: |
| 3290 | //===--------------------------------------------------------------------===// |
| 3291 | // Regular array assignment |
| 3292 | //===--------------------------------------------------------------------===// |
| 3293 | |
| 3294 | /// Entry point for array assignments. Both the left-hand and right-hand sides |
| 3295 | /// can either be ExtendedValue or evaluate::Expr. |
| 3296 | template <typename TL, typename TR> |
| 3297 | static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter, |
| 3298 | Fortran::lower::SymMap &symMap, |
| 3299 | Fortran::lower::StatementContext &stmtCtx, |
| 3300 | const TL &lhs, const TR &rhs) { |
| 3301 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
| 3302 | ConstituentSemantics::CopyInCopyOut); |
| 3303 | ael.lowerArrayAssignment(lhs, rhs); |
| 3304 | } |
| 3305 | |
| 3306 | template <typename TL, typename TR> |
| 3307 | void lowerArrayAssignment(const TL &lhs, const TR &rhs) { |
| 3308 | mlir::Location loc = getLoc(); |
| 3309 | /// Here the target subspace is not necessarily contiguous. The ArrayUpdate |
| 3310 | /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad |
| 3311 | /// in `destination`. |
| 3312 | PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); |
| 3313 | ccStoreToDest = genarr(lhs); |
| 3314 | determineShapeOfDest(lhs); |
| 3315 | semant = ConstituentSemantics::RefTransparent; |
| 3316 | ExtValue exv = lowerArrayExpression(rhs); |
| 3317 | if (explicitSpaceIsActive()) { |
| 3318 | explicitSpace->finalizeContext(); |
| 3319 | builder.create<fir::ResultOp>(loc, fir::getBase(exv)); |
| 3320 | } else { |
| 3321 | builder.create<fir::ArrayMergeStoreOp>( |
| 3322 | loc, destination, fir::getBase(exv), destination.getMemref(), |
| 3323 | destination.getSlice(), destination.getTypeparams()); |
| 3324 | } |
| 3325 | } |
| 3326 | |
| 3327 | //===--------------------------------------------------------------------===// |
| 3328 | // WHERE array assignment, FORALL assignment, and FORALL+WHERE array |
| 3329 | // assignment |
| 3330 | //===--------------------------------------------------------------------===// |
| 3331 | |
| 3332 | /// Entry point for array assignment when the iteration space is explicitly |
| 3333 | /// defined (Fortran's FORALL) with or without masks, and/or the implied |
| 3334 | /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit |
| 3335 | /// space and implicit space with masks) may be present. |
| 3336 | static void lowerAnyMaskedArrayAssignment( |
| 3337 | Fortran::lower::AbstractConverter &converter, |
| 3338 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| 3339 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| 3340 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
| 3341 | Fortran::lower::ImplicitIterSpace &implicitSpace) { |
| 3342 | if (explicitSpace.isActive() && lhs.Rank() == 0) { |
| 3343 | // Scalar assignment expression in a FORALL context. |
| 3344 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
| 3345 | ConstituentSemantics::RefTransparent, |
| 3346 | &explicitSpace, &implicitSpace); |
| 3347 | ael.lowerScalarAssignment(lhs, rhs); |
| 3348 | return; |
| 3349 | } |
| 3350 | // Array assignment expression in a FORALL and/or WHERE context. |
| 3351 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
| 3352 | ConstituentSemantics::CopyInCopyOut, &explicitSpace, |
| 3353 | &implicitSpace); |
| 3354 | ael.lowerArrayAssignment(lhs, rhs); |
| 3355 | } |
| 3356 | |
| 3357 | //===--------------------------------------------------------------------===// |
| 3358 | // Array assignment to array of pointer box values. |
| 3359 | //===--------------------------------------------------------------------===// |
| 3360 | |
| 3361 | /// Entry point for assignment to pointer in an array of pointers. |
| 3362 | static void lowerArrayOfPointerAssignment( |
| 3363 | Fortran::lower::AbstractConverter &converter, |
| 3364 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| 3365 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| 3366 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
| 3367 | Fortran::lower::ImplicitIterSpace &implicitSpace, |
| 3368 | const llvm::SmallVector<mlir::Value> &lbounds, |
| 3369 | std::optional<llvm::SmallVector<mlir::Value>> ubounds) { |
| 3370 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
| 3371 | ConstituentSemantics::CopyInCopyOut, &explicitSpace, |
| 3372 | &implicitSpace); |
| 3373 | ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds); |
| 3374 | } |
| 3375 | |
| 3376 | /// Scalar pointer assignment in an explicit iteration space. |
| 3377 | /// |
| 3378 | /// Pointers may be bound to targets in a FORALL context. This is a scalar |
| 3379 | /// assignment in the sense there is never an implied iteration space, even if |
| 3380 | /// the pointer is to a target with non-zero rank. Since the pointer |
| 3381 | /// assignment must appear in a FORALL construct, correctness may require that |
| 3382 | /// the array of pointers follow copy-in/copy-out semantics. The pointer |
| 3383 | /// assignment may include a bounds-spec (lower bounds), a bounds-remapping |
| 3384 | /// (lower and upper bounds), or neither. |
| 3385 | void lowerArrayOfPointerAssignment( |
| 3386 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| 3387 | const llvm::SmallVector<mlir::Value> &lbounds, |
| 3388 | std::optional<llvm::SmallVector<mlir::Value>> ubounds) { |
| 3389 | setPointerAssignmentBounds(lbounds, ubounds); |
| 3390 | if (rhs.Rank() == 0 || |
| 3391 | (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) && |
| 3392 | Fortran::evaluate::IsAllocatableOrPointerObject(rhs))) { |
| 3393 | lowerScalarAssignment(lhs, rhs); |
| 3394 | return; |
| 3395 | } |
| 3396 | TODO(getLoc(), |
| 3397 | "auto boxing of a ranked expression on RHS for pointer assignment" ); |
| 3398 | } |
| 3399 | |
| 3400 | //===--------------------------------------------------------------------===// |
| 3401 | // Array assignment to allocatable array |
| 3402 | //===--------------------------------------------------------------------===// |
| 3403 | |
| 3404 | /// Entry point for assignment to allocatable array. |
| 3405 | static void lowerAllocatableArrayAssignment( |
| 3406 | Fortran::lower::AbstractConverter &converter, |
| 3407 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| 3408 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| 3409 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
| 3410 | Fortran::lower::ImplicitIterSpace &implicitSpace) { |
| 3411 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
| 3412 | ConstituentSemantics::CopyInCopyOut, &explicitSpace, |
| 3413 | &implicitSpace); |
| 3414 | ael.lowerAllocatableArrayAssignment(lhs, rhs); |
| 3415 | } |
| 3416 | |
| 3417 | /// Lower an assignment to allocatable array, where the LHS array |
| 3418 | /// is represented with \p lhs extended value produced in different |
| 3419 | /// branches created in genReallocIfNeeded(). The RHS lowering |
| 3420 | /// is provided via \p rhsCC continuation. |
| 3421 | void lowerAllocatableArrayAssignment(ExtValue lhs, CC rhsCC) { |
| 3422 | mlir::Location loc = getLoc(); |
| 3423 | // Check if the initial destShape is null, which means |
| 3424 | // it has not been computed from rhs (e.g. rhs is scalar). |
| 3425 | bool destShapeIsEmpty = destShape.empty(); |
| 3426 | // Create ArrayLoad for the mutable box and save it into `destination`. |
| 3427 | PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut); |
| 3428 | ccStoreToDest = genarr(lhs); |
| 3429 | // destShape is either non-null on entry to this function, |
| 3430 | // or has been just set by lhs lowering. |
| 3431 | assert(!destShape.empty() && "destShape must have been set." ); |
| 3432 | // Finish lowering the loop nest. |
| 3433 | assert(destination && "destination must have been set" ); |
| 3434 | ExtValue exv = lowerArrayExpression(rhsCC, destination.getType()); |
| 3435 | if (!explicitSpaceIsActive()) |
| 3436 | builder.create<fir::ArrayMergeStoreOp>( |
| 3437 | loc, destination, fir::getBase(exv), destination.getMemref(), |
| 3438 | destination.getSlice(), destination.getTypeparams()); |
| 3439 | // destShape may originally be null, if rhs did not define a shape. |
| 3440 | // In this case the destShape is computed from lhs, and we may have |
| 3441 | // multiple different lhs values for different branches created |
| 3442 | // in genReallocIfNeeded(). We cannot reuse destShape computed |
| 3443 | // in different branches, so we have to reset it, |
| 3444 | // so that it is recomputed for the next branch FIR generation. |
| 3445 | if (destShapeIsEmpty) |
| 3446 | destShape.clear(); |
| 3447 | } |
| 3448 | |
| 3449 | /// Assignment to allocatable array. |
| 3450 | /// |
| 3451 | /// The semantics are reverse that of a "regular" array assignment. The rhs |
| 3452 | /// defines the iteration space of the computation and the lhs is |
| 3453 | /// resized/reallocated to fit if necessary. |
| 3454 | void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs, |
| 3455 | const Fortran::lower::SomeExpr &rhs) { |
| 3456 | // With assignment to allocatable, we want to lower the rhs first and use |
| 3457 | // its shape to determine if we need to reallocate, etc. |
| 3458 | mlir::Location loc = getLoc(); |
| 3459 | // FIXME: If the lhs is in an explicit iteration space, the assignment may |
| 3460 | // be to an array of allocatable arrays rather than a single allocatable |
| 3461 | // array. |
| 3462 | if (explicitSpaceIsActive() && lhs.Rank() > 0) |
| 3463 | TODO(loc, "assignment to whole allocatable array inside FORALL" ); |
| 3464 | |
| 3465 | fir::MutableBoxValue mutableBox = |
| 3466 | Fortran::lower::createMutableBox(loc, converter, lhs, symMap); |
| 3467 | if (rhs.Rank() > 0) |
| 3468 | determineShapeOfDest(rhs); |
| 3469 | auto rhsCC = [&]() { |
| 3470 | PushSemantics(ConstituentSemantics::RefTransparent); |
| 3471 | return genarr(rhs); |
| 3472 | }(); |
| 3473 | |
| 3474 | llvm::SmallVector<mlir::Value> lengthParams; |
| 3475 | // Currently no safe way to gather length from rhs (at least for |
| 3476 | // character, it cannot be taken from array_loads since it may be |
| 3477 | // changed by concatenations). |
| 3478 | if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) || |
| 3479 | mutableBox.isDerivedWithLenParameters()) |
| 3480 | TODO(loc, "gather rhs LEN parameters in assignment to allocatable" ); |
| 3481 | |
| 3482 | // The allocatable must take lower bounds from the expr if it is |
| 3483 | // reallocated and the right hand side is not a scalar. |
| 3484 | const bool takeLboundsIfRealloc = rhs.Rank() > 0; |
| 3485 | llvm::SmallVector<mlir::Value> lbounds; |
| 3486 | // When the reallocated LHS takes its lower bounds from the RHS, |
| 3487 | // they will be non default only if the RHS is a whole array |
| 3488 | // variable. Otherwise, lbounds is left empty and default lower bounds |
| 3489 | // will be used. |
| 3490 | if (takeLboundsIfRealloc && |
| 3491 | Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) { |
| 3492 | assert(arrayOperands.size() == 1 && |
| 3493 | "lbounds can only come from one array" ); |
| 3494 | auto lbs = fir::factory::getOrigins(arrayOperands[0].shape); |
| 3495 | lbounds.append(lbs.begin(), lbs.end()); |
| 3496 | } |
| 3497 | auto assignToStorage = [&](fir::ExtendedValue newLhs) { |
| 3498 | // The lambda will be called repeatedly by genReallocIfNeeded(). |
| 3499 | lowerAllocatableArrayAssignment(newLhs, rhsCC); |
| 3500 | }; |
| 3501 | fir::factory::MutableBoxReallocation realloc = |
| 3502 | fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape, |
| 3503 | lengthParams, assignToStorage); |
| 3504 | if (explicitSpaceIsActive()) { |
| 3505 | explicitSpace->finalizeContext(); |
| 3506 | builder.create<fir::ResultOp>(loc, fir::getBase(realloc.newValue)); |
| 3507 | } |
| 3508 | fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds, |
| 3509 | takeLboundsIfRealloc, realloc); |
| 3510 | } |
| 3511 | |
| 3512 | /// Entry point for when an array expression appears in a context where the |
| 3513 | /// result must be boxed. (BoxValue semantics.) |
| 3514 | static ExtValue |
| 3515 | lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter, |
| 3516 | Fortran::lower::SymMap &symMap, |
| 3517 | Fortran::lower::StatementContext &stmtCtx, |
| 3518 | const Fortran::lower::SomeExpr &expr) { |
| 3519 | ArrayExprLowering ael{converter, stmtCtx, symMap, |
| 3520 | ConstituentSemantics::BoxValue}; |
| 3521 | return ael.lowerBoxedArrayExpr(expr); |
| 3522 | } |
| 3523 | |
| 3524 | ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) { |
| 3525 | PushSemantics(ConstituentSemantics::BoxValue); |
| 3526 | return Fortran::common::visit( |
| 3527 | [&](const auto &e) { |
| 3528 | auto f = genarr(e); |
| 3529 | ExtValue exv = f(IterationSpace{}); |
| 3530 | if (mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType())) |
| 3531 | return exv; |
| 3532 | fir::emitFatalError(getLoc(), "array must be emboxed" ); |
| 3533 | }, |
| 3534 | exp.u); |
| 3535 | } |
| 3536 | |
| 3537 | /// Entry point into lowering an expression with rank. This entry point is for |
| 3538 | /// lowering a rhs expression, for example. (RefTransparent semantics.) |
| 3539 | static ExtValue |
| 3540 | lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter, |
| 3541 | Fortran::lower::SymMap &symMap, |
| 3542 | Fortran::lower::StatementContext &stmtCtx, |
| 3543 | const Fortran::lower::SomeExpr &expr) { |
| 3544 | ArrayExprLowering ael{converter, stmtCtx, symMap}; |
| 3545 | ael.determineShapeOfDest(expr); |
| 3546 | ExtValue loopRes = ael.lowerArrayExpression(expr); |
| 3547 | fir::ArrayLoadOp dest = ael.destination; |
| 3548 | mlir::Value tempRes = dest.getMemref(); |
| 3549 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 3550 | mlir::Location loc = converter.getCurrentLocation(); |
| 3551 | builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes), |
| 3552 | tempRes, dest.getSlice(), |
| 3553 | dest.getTypeparams()); |
| 3554 | |
| 3555 | auto arrTy = mlir::cast<fir::SequenceType>( |
| 3556 | fir::dyn_cast_ptrEleTy(tempRes.getType())); |
| 3557 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(arrTy.getEleTy())) { |
| 3558 | if (fir::characterWithDynamicLen(charTy)) |
| 3559 | TODO(loc, "CHARACTER does not have constant LEN" ); |
| 3560 | mlir::Value len = builder.createIntegerConstant( |
| 3561 | loc, builder.getCharacterLengthType(), charTy.getLen()); |
| 3562 | return fir::CharArrayBoxValue(tempRes, len, dest.getExtents()); |
| 3563 | } |
| 3564 | return fir::ArrayBoxValue(tempRes, dest.getExtents()); |
| 3565 | } |
| 3566 | |
| 3567 | static void lowerLazyArrayExpression( |
| 3568 | Fortran::lower::AbstractConverter &converter, |
| 3569 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| 3570 | const Fortran::lower::SomeExpr &expr, mlir::Value ) { |
| 3571 | ArrayExprLowering ael(converter, stmtCtx, symMap); |
| 3572 | ael.lowerLazyArrayExpression(expr, raggedHeader); |
| 3573 | } |
| 3574 | |
| 3575 | /// Lower the expression \p expr into a buffer that is created on demand. The |
| 3576 | /// variable containing the pointer to the buffer is \p var and the variable |
| 3577 | /// containing the shape of the buffer is \p shapeBuffer. |
| 3578 | void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr, |
| 3579 | mlir::Value ) { |
| 3580 | mlir::Location loc = getLoc(); |
| 3581 | mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder); |
| 3582 | mlir::IntegerType i32Ty = builder.getIntegerType(32); |
| 3583 | |
| 3584 | // Once the loop extents have been computed, which may require being inside |
| 3585 | // some explicit loops, lazily allocate the expression on the heap. The |
| 3586 | // following continuation creates the buffer as needed. |
| 3587 | ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) { |
| 3588 | mlir::IntegerType i64Ty = builder.getIntegerType(64); |
| 3589 | mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1); |
| 3590 | fir::runtime::genRaggedArrayAllocate( |
| 3591 | loc, builder, header, /*asHeaders=*/false, byteSize, shape); |
| 3592 | }; |
| 3593 | |
| 3594 | // Create a dummy array_load before the loop. We're storing to a lazy |
| 3595 | // temporary, so there will be no conflict and no copy-in. TODO: skip this |
| 3596 | // as there isn't any necessity for it. |
| 3597 | ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp { |
| 3598 | mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); |
| 3599 | auto var = builder.create<fir::CoordinateOp>( |
| 3600 | loc, builder.getRefType(hdrTy.getType(1)), header, one); |
| 3601 | auto load = builder.create<fir::LoadOp>(loc, var); |
| 3602 | mlir::Type eleTy = |
| 3603 | fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); |
| 3604 | auto seqTy = fir::SequenceType::get(eleTy, shape.size()); |
| 3605 | mlir::Value castTo = |
| 3606 | builder.createConvert(loc, fir::HeapType::get(seqTy), load); |
| 3607 | mlir::Value shapeOp = builder.genShape(loc, shape); |
| 3608 | return builder.create<fir::ArrayLoadOp>( |
| 3609 | loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, std::nullopt); |
| 3610 | }; |
| 3611 | // Custom lowering of the element store to deal with the extra indirection |
| 3612 | // to the lazy allocated buffer. |
| 3613 | ccStoreToDest = [=](IterSpace iters) { |
| 3614 | mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); |
| 3615 | auto var = builder.create<fir::CoordinateOp>( |
| 3616 | loc, builder.getRefType(hdrTy.getType(1)), header, one); |
| 3617 | auto load = builder.create<fir::LoadOp>(loc, var); |
| 3618 | mlir::Type eleTy = |
| 3619 | fir::unwrapSequenceType(fir::unwrapRefType(load.getType())); |
| 3620 | auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size()); |
| 3621 | auto toTy = fir::HeapType::get(seqTy); |
| 3622 | mlir::Value castTo = builder.createConvert(loc, toTy, load); |
| 3623 | mlir::Value shape = builder.genShape(loc, genIterationShape()); |
| 3624 | llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( |
| 3625 | loc, builder, castTo.getType(), shape, iters.iterVec()); |
| 3626 | auto eleAddr = builder.create<fir::ArrayCoorOp>( |
| 3627 | loc, builder.getRefType(eleTy), castTo, shape, |
| 3628 | /*slice=*/mlir::Value{}, indices, destination.getTypeparams()); |
| 3629 | mlir::Value eleVal = |
| 3630 | builder.createConvert(loc, eleTy, iters.getElement()); |
| 3631 | builder.create<fir::StoreOp>(loc, eleVal, eleAddr); |
| 3632 | return iters.innerArgument(); |
| 3633 | }; |
| 3634 | |
| 3635 | // Lower the array expression now. Clean-up any temps that may have |
| 3636 | // been generated when lowering `expr` right after the lowered value |
| 3637 | // was stored to the ragged array temporary. The local temps will not |
| 3638 | // be needed afterwards. |
| 3639 | stmtCtx.pushScope(); |
| 3640 | [[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr); |
| 3641 | stmtCtx.finalizeAndPop(); |
| 3642 | assert(fir::getBase(loopRes)); |
| 3643 | } |
| 3644 | |
| 3645 | static void |
| 3646 | lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter, |
| 3647 | Fortran::lower::SymMap &symMap, |
| 3648 | Fortran::lower::StatementContext &stmtCtx, |
| 3649 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
| 3650 | Fortran::lower::ImplicitIterSpace &implicitSpace, |
| 3651 | const Fortran::evaluate::ProcedureRef &procRef) { |
| 3652 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
| 3653 | ConstituentSemantics::CustomCopyInCopyOut, |
| 3654 | &explicitSpace, &implicitSpace); |
| 3655 | assert(procRef.arguments().size() == 2); |
| 3656 | const auto *lhs = procRef.arguments()[0].value().UnwrapExpr(); |
| 3657 | const auto *rhs = procRef.arguments()[1].value().UnwrapExpr(); |
| 3658 | assert(lhs && rhs && |
| 3659 | "user defined assignment arguments must be expressions" ); |
| 3660 | mlir::func::FuncOp func = |
| 3661 | Fortran::lower::CallerInterface(procRef, converter).getFuncOp(); |
| 3662 | ael.lowerElementalUserAssignment(func, *lhs, *rhs); |
| 3663 | } |
| 3664 | |
| 3665 | void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment, |
| 3666 | const Fortran::lower::SomeExpr &lhs, |
| 3667 | const Fortran::lower::SomeExpr &rhs) { |
| 3668 | mlir::Location loc = getLoc(); |
| 3669 | PushSemantics(ConstituentSemantics::CustomCopyInCopyOut); |
| 3670 | auto genArrayModify = genarr(lhs); |
| 3671 | ccStoreToDest = [=](IterSpace iters) -> ExtValue { |
| 3672 | auto modifiedArray = genArrayModify(iters); |
| 3673 | auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>( |
| 3674 | fir::getBase(modifiedArray).getDefiningOp()); |
| 3675 | assert(arrayModify && "must be created by ArrayModifyOp" ); |
| 3676 | fir::ExtendedValue lhs = |
| 3677 | arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0)); |
| 3678 | genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs, |
| 3679 | iters.elementExv()); |
| 3680 | return modifiedArray; |
| 3681 | }; |
| 3682 | determineShapeOfDest(lhs); |
| 3683 | semant = ConstituentSemantics::RefTransparent; |
| 3684 | auto exv = lowerArrayExpression(rhs); |
| 3685 | if (explicitSpaceIsActive()) { |
| 3686 | explicitSpace->finalizeContext(); |
| 3687 | builder.create<fir::ResultOp>(loc, fir::getBase(exv)); |
| 3688 | } else { |
| 3689 | builder.create<fir::ArrayMergeStoreOp>( |
| 3690 | loc, destination, fir::getBase(exv), destination.getMemref(), |
| 3691 | destination.getSlice(), destination.getTypeparams()); |
| 3692 | } |
| 3693 | } |
| 3694 | |
| 3695 | /// Lower an elemental subroutine call with at least one array argument. |
| 3696 | /// An elemental subroutine is an exception and does not have copy-in/copy-out |
| 3697 | /// semantics. See 15.8.3. |
| 3698 | /// Do NOT use this for user defined assignments. |
| 3699 | static void |
| 3700 | lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter, |
| 3701 | Fortran::lower::SymMap &symMap, |
| 3702 | Fortran::lower::StatementContext &stmtCtx, |
| 3703 | const Fortran::lower::SomeExpr &call) { |
| 3704 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
| 3705 | ConstituentSemantics::RefTransparent); |
| 3706 | ael.lowerElementalSubroutine(call); |
| 3707 | } |
| 3708 | |
| 3709 | static const std::optional<Fortran::evaluate::ActualArgument> |
| 3710 | (const Fortran::evaluate::ProcedureRef &procRef, |
| 3711 | Fortran::lower::AbstractConverter &converter) { |
| 3712 | // First look for passed object in actual arguments. |
| 3713 | for (const std::optional<Fortran::evaluate::ActualArgument> &arg : |
| 3714 | procRef.arguments()) |
| 3715 | if (arg && arg->isPassedObject()) |
| 3716 | return arg; |
| 3717 | |
| 3718 | // If passed object is not found by here, it means the call was fully |
| 3719 | // resolved to the correct procedure. Look for the pass object in the |
| 3720 | // dummy arguments. Pick the first polymorphic one. |
| 3721 | Fortran::lower::CallerInterface caller(procRef, converter); |
| 3722 | unsigned idx = 0; |
| 3723 | for (const auto &arg : caller.characterize().dummyArguments) { |
| 3724 | if (const auto *dummy = |
| 3725 | std::get_if<Fortran::evaluate::characteristics::DummyDataObject>( |
| 3726 | &arg.u)) |
| 3727 | if (dummy->type.type().IsPolymorphic()) |
| 3728 | return procRef.arguments()[idx]; |
| 3729 | ++idx; |
| 3730 | } |
| 3731 | return std::nullopt; |
| 3732 | } |
| 3733 | |
| 3734 | // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&). |
| 3735 | // This is skipping generation of copy-in/copy-out code for analysis that is |
| 3736 | // required when arguments are in parentheses. |
| 3737 | void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) { |
| 3738 | if (const auto *procRef = |
| 3739 | std::get_if<Fortran::evaluate::ProcedureRef>(&call.u)) |
| 3740 | setLoweredProcRef(procRef); |
| 3741 | auto f = genarr(call); |
| 3742 | llvm::SmallVector<mlir::Value> shape = genIterationShape(); |
| 3743 | auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{}); |
| 3744 | f(iterSpace); |
| 3745 | finalizeElementCtx(); |
| 3746 | builder.restoreInsertionPoint(insPt); |
| 3747 | } |
| 3748 | |
| 3749 | ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs, |
| 3750 | const Fortran::lower::SomeExpr &rhs) { |
| 3751 | PushSemantics(ConstituentSemantics::RefTransparent); |
| 3752 | // 1) Lower the rhs expression with array_fetch op(s). |
| 3753 | IterationSpace iters; |
| 3754 | iters.setElement(genarr(rhs)(iters)); |
| 3755 | // 2) Lower the lhs expression to an array_update. |
| 3756 | semant = ConstituentSemantics::ProjectedCopyInCopyOut; |
| 3757 | auto lexv = genarr(lhs)(iters); |
| 3758 | // 3) Finalize the inner context. |
| 3759 | explicitSpace->finalizeContext(); |
| 3760 | // 4) Thread the array value updated forward. Note: the lhs might be |
| 3761 | // ill-formed (performing scalar assignment in an array context), |
| 3762 | // in which case there is no array to thread. |
| 3763 | auto loc = getLoc(); |
| 3764 | auto createResult = [&](auto op) { |
| 3765 | mlir::Value oldInnerArg = op.getSequence(); |
| 3766 | std::size_t offset = explicitSpace->argPosition(oldInnerArg); |
| 3767 | explicitSpace->setInnerArg(offset, fir::getBase(lexv)); |
| 3768 | finalizeElementCtx(); |
| 3769 | builder.create<fir::ResultOp>(loc, fir::getBase(lexv)); |
| 3770 | }; |
| 3771 | if (mlir::Operation *defOp = fir::getBase(lexv).getDefiningOp()) { |
| 3772 | llvm::TypeSwitch<mlir::Operation *>(defOp) |
| 3773 | .Case([&](fir::ArrayUpdateOp op) { createResult(op); }) |
| 3774 | .Case([&](fir::ArrayAmendOp op) { createResult(op); }) |
| 3775 | .Case([&](fir::ArrayModifyOp op) { createResult(op); }) |
| 3776 | .Default([&](mlir::Operation *) { finalizeElementCtx(); }); |
| 3777 | } else { |
| 3778 | // `lhs` isn't from a `fir.array_load`, so there is no array modifications |
| 3779 | // to thread through the iteration space. |
| 3780 | finalizeElementCtx(); |
| 3781 | } |
| 3782 | return lexv; |
| 3783 | } |
| 3784 | |
| 3785 | static ExtValue lowerScalarUserAssignment( |
| 3786 | Fortran::lower::AbstractConverter &converter, |
| 3787 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| 3788 | Fortran::lower::ExplicitIterSpace &explicitIterSpace, |
| 3789 | mlir::func::FuncOp userAssignmentFunction, |
| 3790 | const Fortran::lower::SomeExpr &lhs, |
| 3791 | const Fortran::lower::SomeExpr &rhs) { |
| 3792 | Fortran::lower::ImplicitIterSpace implicit; |
| 3793 | ArrayExprLowering ael(converter, stmtCtx, symMap, |
| 3794 | ConstituentSemantics::RefTransparent, |
| 3795 | &explicitIterSpace, &implicit); |
| 3796 | return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs); |
| 3797 | } |
| 3798 | |
| 3799 | ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment, |
| 3800 | const Fortran::lower::SomeExpr &lhs, |
| 3801 | const Fortran::lower::SomeExpr &rhs) { |
| 3802 | mlir::Location loc = getLoc(); |
| 3803 | if (rhs.Rank() > 0) |
| 3804 | TODO(loc, "user-defined elemental assigment from expression with rank" ); |
| 3805 | // 1) Lower the rhs expression with array_fetch op(s). |
| 3806 | IterationSpace iters; |
| 3807 | iters.setElement(genarr(rhs)(iters)); |
| 3808 | fir::ExtendedValue elementalExv = iters.elementExv(); |
| 3809 | // 2) Lower the lhs expression to an array_modify. |
| 3810 | semant = ConstituentSemantics::CustomCopyInCopyOut; |
| 3811 | auto lexv = genarr(lhs)(iters); |
| 3812 | bool isIllFormedLHS = false; |
| 3813 | // 3) Insert the call |
| 3814 | if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>( |
| 3815 | fir::getBase(lexv).getDefiningOp())) { |
| 3816 | mlir::Value oldInnerArg = modifyOp.getSequence(); |
| 3817 | std::size_t offset = explicitSpace->argPosition(oldInnerArg); |
| 3818 | explicitSpace->setInnerArg(offset, fir::getBase(lexv)); |
| 3819 | auto lhsLoad = explicitSpace->getLhsLoad(0); |
| 3820 | assert(lhsLoad.has_value()); |
| 3821 | fir::ExtendedValue exv = |
| 3822 | arrayModifyToExv(builder, loc, *lhsLoad, modifyOp.getResult(0)); |
| 3823 | genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv, |
| 3824 | elementalExv); |
| 3825 | } else { |
| 3826 | // LHS is ill formed, it is a scalar with no references to FORALL |
| 3827 | // subscripts, so there is actually no array assignment here. The user |
| 3828 | // code is probably bad, but still insert user assignment call since it |
| 3829 | // was not rejected by semantics (a warning was emitted). |
| 3830 | isIllFormedLHS = true; |
| 3831 | genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment, |
| 3832 | lexv, elementalExv); |
| 3833 | } |
| 3834 | // 4) Finalize the inner context. |
| 3835 | explicitSpace->finalizeContext(); |
| 3836 | // 5). Thread the array value updated forward. |
| 3837 | if (!isIllFormedLHS) { |
| 3838 | finalizeElementCtx(); |
| 3839 | builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv)); |
| 3840 | } |
| 3841 | return lexv; |
| 3842 | } |
| 3843 | |
| 3844 | private: |
| 3845 | void determineShapeOfDest(const fir::ExtendedValue &lhs) { |
| 3846 | destShape = fir::factory::getExtents(getLoc(), builder, lhs); |
| 3847 | } |
| 3848 | |
| 3849 | void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) { |
| 3850 | if (!destShape.empty()) |
| 3851 | return; |
| 3852 | if (explicitSpaceIsActive() && determineShapeWithSlice(lhs)) |
| 3853 | return; |
| 3854 | mlir::Type idxTy = builder.getIndexType(); |
| 3855 | mlir::Location loc = getLoc(); |
| 3856 | if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape = |
| 3857 | Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(), |
| 3858 | lhs)) |
| 3859 | for (Fortran::common::ConstantSubscript extent : *constantShape) |
| 3860 | destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent)); |
| 3861 | } |
| 3862 | |
| 3863 | bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) { |
| 3864 | return false; |
| 3865 | } |
| 3866 | bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) { |
| 3867 | TODO(getLoc(), "coarray: reference to a coarray in an expression" ); |
| 3868 | return false; |
| 3869 | } |
| 3870 | bool genShapeFromDataRef(const Fortran::evaluate::Component &x) { |
| 3871 | return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false; |
| 3872 | } |
| 3873 | bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) { |
| 3874 | if (x.Rank() == 0) |
| 3875 | return false; |
| 3876 | if (x.base().Rank() > 0) |
| 3877 | if (genShapeFromDataRef(x.base())) |
| 3878 | return true; |
| 3879 | // x has rank and x.base did not produce a shape. |
| 3880 | ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base())) |
| 3881 | : asScalarRef(x.base().GetComponent()); |
| 3882 | mlir::Location loc = getLoc(); |
| 3883 | mlir::IndexType idxTy = builder.getIndexType(); |
| 3884 | llvm::SmallVector<mlir::Value> definedShape = |
| 3885 | fir::factory::getExtents(loc, builder, exv); |
| 3886 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 3887 | for (auto ss : llvm::enumerate(x.subscript())) { |
| 3888 | Fortran::common::visit( |
| 3889 | Fortran::common::visitors{ |
| 3890 | [&](const Fortran::evaluate::Triplet &trip) { |
| 3891 | // For a subscript of triple notation, we compute the |
| 3892 | // range of this dimension of the iteration space. |
| 3893 | auto lo = [&]() { |
| 3894 | if (auto optLo = trip.lower()) |
| 3895 | return fir::getBase(asScalar(*optLo)); |
| 3896 | return getLBound(exv, ss.index(), one); |
| 3897 | }(); |
| 3898 | auto hi = [&]() { |
| 3899 | if (auto optHi = trip.upper()) |
| 3900 | return fir::getBase(asScalar(*optHi)); |
| 3901 | return getUBound(exv, ss.index(), one); |
| 3902 | }(); |
| 3903 | auto step = builder.createConvert( |
| 3904 | loc, idxTy, fir::getBase(asScalar(trip.stride()))); |
| 3905 | auto extent = |
| 3906 | builder.genExtentFromTriplet(loc, lo, hi, step, idxTy); |
| 3907 | destShape.push_back(extent); |
| 3908 | }, |
| 3909 | [&](auto) {}}, |
| 3910 | ss.value().u); |
| 3911 | } |
| 3912 | return true; |
| 3913 | } |
| 3914 | bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) { |
| 3915 | if (x.IsSymbol()) |
| 3916 | return genShapeFromDataRef(getFirstSym(x)); |
| 3917 | return genShapeFromDataRef(x.GetComponent()); |
| 3918 | } |
| 3919 | bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) { |
| 3920 | return Fortran::common::visit( |
| 3921 | [&](const auto &v) { return genShapeFromDataRef(v); }, x.u); |
| 3922 | } |
| 3923 | |
| 3924 | /// When in an explicit space, the ranked component must be evaluated to |
| 3925 | /// determine the actual number of iterations when slicing triples are |
| 3926 | /// present. Lower these expressions here. |
| 3927 | bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) { |
| 3928 | LLVM_DEBUG(Fortran::semantics::DumpEvaluateExpr::Dump( |
| 3929 | llvm::dbgs() << "determine shape of:\n" , lhs)); |
| 3930 | // FIXME: We may not want to use ExtractDataRef here since it doesn't deal |
| 3931 | // with substrings, etc. |
| 3932 | std::optional<Fortran::evaluate::DataRef> dref = |
| 3933 | Fortran::evaluate::ExtractDataRef(lhs); |
| 3934 | return dref.has_value() ? genShapeFromDataRef(*dref) : false; |
| 3935 | } |
| 3936 | |
| 3937 | /// CHARACTER and derived type elements are treated as memory references. The |
| 3938 | /// numeric types are treated as values. |
| 3939 | static mlir::Type adjustedArraySubtype(mlir::Type ty, |
| 3940 | mlir::ValueRange indices) { |
| 3941 | mlir::Type pathTy = fir::applyPathToType(ty, indices); |
| 3942 | assert(pathTy && "indices failed to apply to type" ); |
| 3943 | return adjustedArrayElementType(pathTy); |
| 3944 | } |
| 3945 | |
| 3946 | /// Lower rhs of an array expression. |
| 3947 | ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) { |
| 3948 | mlir::Type resTy = converter.genType(exp); |
| 3949 | |
| 3950 | if (fir::isPolymorphicType(resTy) && |
| 3951 | Fortran::evaluate::HasVectorSubscript(exp)) |
| 3952 | TODO(getLoc(), |
| 3953 | "polymorphic array expression lowering with vector subscript" ); |
| 3954 | |
| 3955 | return Fortran::common::visit( |
| 3956 | [&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); }, |
| 3957 | exp.u); |
| 3958 | } |
| 3959 | ExtValue lowerArrayExpression(const ExtValue &exv) { |
| 3960 | assert(!explicitSpace); |
| 3961 | mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType()); |
| 3962 | return lowerArrayExpression(genarr(exv), resTy); |
| 3963 | } |
| 3964 | |
| 3965 | void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds, |
| 3966 | const Fortran::evaluate::Substring *substring) { |
| 3967 | if (!substring) |
| 3968 | return; |
| 3969 | bounds.push_back(fir::getBase(asScalar(substring->lower()))); |
| 3970 | if (auto upper = substring->upper()) |
| 3971 | bounds.push_back(fir::getBase(asScalar(*upper))); |
| 3972 | } |
| 3973 | |
| 3974 | /// Convert the original value, \p origVal, to type \p eleTy. When in a |
| 3975 | /// pointer assignment context, generate an appropriate `fir.rebox` for |
| 3976 | /// dealing with any bounds parameters on the pointer assignment. |
| 3977 | mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy, |
| 3978 | mlir::Value origVal) { |
| 3979 | if (auto origEleTy = fir::dyn_cast_ptrEleTy(origVal.getType())) |
| 3980 | if (mlir::isa<fir::BaseBoxType>(origEleTy)) { |
| 3981 | // If origVal is a box variable, load it so it is in the value domain. |
| 3982 | origVal = builder.create<fir::LoadOp>(loc, origVal); |
| 3983 | } |
| 3984 | if (mlir::isa<fir::BoxType>(origVal.getType()) && |
| 3985 | !mlir::isa<fir::BoxType>(eleTy)) { |
| 3986 | if (isPointerAssignment()) |
| 3987 | TODO(loc, "lhs of pointer assignment returned unexpected value" ); |
| 3988 | TODO(loc, "invalid box conversion in elemental computation" ); |
| 3989 | } |
| 3990 | if (isPointerAssignment() && mlir::isa<fir::BoxType>(eleTy) && |
| 3991 | !mlir::isa<fir::BoxType>(origVal.getType())) { |
| 3992 | // This is a pointer assignment and the rhs is a raw reference to a TARGET |
| 3993 | // in memory. Embox the reference so it can be stored to the boxed |
| 3994 | // POINTER variable. |
| 3995 | assert(fir::isa_ref_type(origVal.getType())); |
| 3996 | if (auto eleTy = fir::dyn_cast_ptrEleTy(origVal.getType()); |
| 3997 | fir::hasDynamicSize(eleTy)) |
| 3998 | TODO(loc, "TARGET of pointer assignment with runtime size/shape" ); |
| 3999 | auto memrefTy = fir::boxMemRefType(mlir::cast<fir::BoxType>(eleTy)); |
| 4000 | auto castTo = builder.createConvert(loc, memrefTy, origVal); |
| 4001 | origVal = builder.create<fir::EmboxOp>(loc, eleTy, castTo); |
| 4002 | } |
| 4003 | mlir::Value val = builder.convertWithSemantics(loc, eleTy, origVal); |
| 4004 | if (isBoundsSpec()) { |
| 4005 | assert(lbounds.has_value()); |
| 4006 | auto lbs = *lbounds; |
| 4007 | if (lbs.size() > 0) { |
| 4008 | // Rebox the value with user-specified shift. |
| 4009 | auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size()); |
| 4010 | mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs); |
| 4011 | val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp, |
| 4012 | mlir::Value{}); |
| 4013 | } |
| 4014 | } else if (isBoundsRemap()) { |
| 4015 | assert(lbounds.has_value()); |
| 4016 | auto lbs = *lbounds; |
| 4017 | if (lbs.size() > 0) { |
| 4018 | // Rebox the value with user-specified shift and shape. |
| 4019 | assert(ubounds.has_value()); |
| 4020 | auto shapeShiftArgs = flatZip(lbs, *ubounds); |
| 4021 | auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size()); |
| 4022 | mlir::Value shapeShift = |
| 4023 | builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs); |
| 4024 | val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift, |
| 4025 | mlir::Value{}); |
| 4026 | } |
| 4027 | } |
| 4028 | return val; |
| 4029 | } |
| 4030 | |
| 4031 | /// Default store to destination implementation. |
| 4032 | /// This implements the default case, which is to assign the value in |
| 4033 | /// `iters.element` into the destination array, `iters.innerArgument`. Handles |
| 4034 | /// by value and by reference assignment. |
| 4035 | CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) { |
| 4036 | return [=](IterSpace iterSpace) -> ExtValue { |
| 4037 | mlir::Location loc = getLoc(); |
| 4038 | mlir::Value innerArg = iterSpace.innerArgument(); |
| 4039 | fir::ExtendedValue exv = iterSpace.elementExv(); |
| 4040 | mlir::Type arrTy = innerArg.getType(); |
| 4041 | mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec()); |
| 4042 | if (isAdjustedArrayElementType(eleTy)) { |
| 4043 | // The elemental update is in the memref domain. Under this semantics, |
| 4044 | // we must always copy the computed new element from its location in |
| 4045 | // memory into the destination array. |
| 4046 | mlir::Type resRefTy = builder.getRefType(eleTy); |
| 4047 | // Get a reference to the array element to be amended. |
| 4048 | auto arrayOp = builder.create<fir::ArrayAccessOp>( |
| 4049 | loc, resRefTy, innerArg, iterSpace.iterVec(), |
| 4050 | fir::factory::getTypeParams(loc, builder, destination)); |
| 4051 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| 4052 | llvm::SmallVector<mlir::Value> substringBounds; |
| 4053 | populateBounds(substringBounds, substring); |
| 4054 | mlir::Value dstLen = fir::factory::genLenOfCharacter( |
| 4055 | builder, loc, destination, iterSpace.iterVec(), substringBounds); |
| 4056 | fir::ArrayAmendOp amend = createCharArrayAmend( |
| 4057 | loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds); |
| 4058 | return abstractArrayExtValue(amend, dstLen); |
| 4059 | } |
| 4060 | if (fir::isa_derived(eleTy)) { |
| 4061 | fir::ArrayAmendOp amend = createDerivedArrayAmend( |
| 4062 | loc, destination, builder, arrayOp, exv, eleTy, innerArg); |
| 4063 | return abstractArrayExtValue(amend /*FIXME: typeparams?*/); |
| 4064 | } |
| 4065 | assert(mlir::isa<fir::SequenceType>(eleTy) && "must be an array" ); |
| 4066 | TODO(loc, "array (as element) assignment" ); |
| 4067 | } |
| 4068 | // By value semantics. The element is being assigned by value. |
| 4069 | auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv)); |
| 4070 | auto update = builder.create<fir::ArrayUpdateOp>( |
| 4071 | loc, arrTy, innerArg, ele, iterSpace.iterVec(), |
| 4072 | destination.getTypeparams()); |
| 4073 | return abstractArrayExtValue(update); |
| 4074 | }; |
| 4075 | } |
| 4076 | |
| 4077 | /// For an elemental array expression. |
| 4078 | /// 1. Lower the scalars and array loads. |
| 4079 | /// 2. Create the iteration space. |
| 4080 | /// 3. Create the element-by-element computation in the loop. |
| 4081 | /// 4. Return the resulting array value. |
| 4082 | /// If no destination was set in the array context, a temporary of |
| 4083 | /// \p resultTy will be created to hold the evaluated expression. |
| 4084 | /// Otherwise, \p resultTy is ignored and the expression is evaluated |
| 4085 | /// in the destination. \p f is a continuation built from an |
| 4086 | /// evaluate::Expr or an ExtendedValue. |
| 4087 | ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) { |
| 4088 | mlir::Location loc = getLoc(); |
| 4089 | auto [iterSpace, insPt] = genIterSpace(resultTy); |
| 4090 | auto exv = f(iterSpace); |
| 4091 | iterSpace.setElement(std::move(exv)); |
| 4092 | auto lambda = ccStoreToDest |
| 4093 | ? *ccStoreToDest |
| 4094 | : defaultStoreToDestination(/*substring=*/nullptr); |
| 4095 | mlir::Value updVal = fir::getBase(lambda(iterSpace)); |
| 4096 | finalizeElementCtx(); |
| 4097 | builder.create<fir::ResultOp>(loc, updVal); |
| 4098 | builder.restoreInsertionPoint(insPt); |
| 4099 | return abstractArrayExtValue(iterSpace.outerResult()); |
| 4100 | } |
| 4101 | |
| 4102 | /// Compute the shape of a slice. |
| 4103 | llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) { |
| 4104 | llvm::SmallVector<mlir::Value> slicedShape; |
| 4105 | auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp()); |
| 4106 | mlir::Operation::operand_range triples = slOp.getTriples(); |
| 4107 | mlir::IndexType idxTy = builder.getIndexType(); |
| 4108 | mlir::Location loc = getLoc(); |
| 4109 | for (unsigned i = 0, end = triples.size(); i < end; i += 3) { |
| 4110 | if (!mlir::isa_and_nonnull<fir::UndefOp>( |
| 4111 | triples[i + 1].getDefiningOp())) { |
| 4112 | // (..., lb:ub:step, ...) case: extent = max((ub-lb+step)/step, 0) |
| 4113 | // See Fortran 2018 9.5.3.3.2 section for more details. |
| 4114 | mlir::Value res = builder.genExtentFromTriplet( |
| 4115 | loc, triples[i], triples[i + 1], triples[i + 2], idxTy); |
| 4116 | slicedShape.emplace_back(res); |
| 4117 | } else { |
| 4118 | // do nothing. `..., i, ...` case, so dimension is dropped. |
| 4119 | } |
| 4120 | } |
| 4121 | return slicedShape; |
| 4122 | } |
| 4123 | |
| 4124 | /// Get the shape from an ArrayOperand. The shape of the array is adjusted if |
| 4125 | /// the array was sliced. |
| 4126 | llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) { |
| 4127 | if (array.slice) |
| 4128 | return computeSliceShape(array.slice); |
| 4129 | if (mlir::isa<fir::BaseBoxType>(array.memref.getType())) |
| 4130 | return fir::factory::readExtents(builder, getLoc(), |
| 4131 | fir::BoxValue{array.memref}); |
| 4132 | return fir::factory::getExtents(array.shape); |
| 4133 | } |
| 4134 | |
| 4135 | /// Get the shape from an ArrayLoad. |
| 4136 | llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) { |
| 4137 | return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(), |
| 4138 | arrayLoad.getSlice()}); |
| 4139 | } |
| 4140 | |
| 4141 | /// Returns the first array operand that may not be absent. If all |
| 4142 | /// array operands may be absent, return the first one. |
| 4143 | const ArrayOperand &getInducingShapeArrayOperand() const { |
| 4144 | assert(!arrayOperands.empty()); |
| 4145 | for (const ArrayOperand &op : arrayOperands) |
| 4146 | if (!op.mayBeAbsent) |
| 4147 | return op; |
| 4148 | // If all arrays operand appears in optional position, then none of them |
| 4149 | // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the |
| 4150 | // first operands. |
| 4151 | // TODO: There is an opportunity to add a runtime check here that |
| 4152 | // this array is present as required. |
| 4153 | return arrayOperands[0]; |
| 4154 | } |
| 4155 | |
| 4156 | /// Generate the shape of the iteration space over the array expression. The |
| 4157 | /// iteration space may be implicit, explicit, or both. If it is implied it is |
| 4158 | /// based on the destination and operand array loads, or an optional |
| 4159 | /// Fortran::evaluate::Shape from the front end. If the shape is explicit, |
| 4160 | /// this returns any implicit shape component, if it exists. |
| 4161 | llvm::SmallVector<mlir::Value> genIterationShape() { |
| 4162 | // Use the precomputed destination shape. |
| 4163 | if (!destShape.empty()) |
| 4164 | return destShape; |
| 4165 | // Otherwise, use the destination's shape. |
| 4166 | if (destination) |
| 4167 | return getShape(destination); |
| 4168 | // Otherwise, use the first ArrayLoad operand shape. |
| 4169 | if (!arrayOperands.empty()) |
| 4170 | return getShape(getInducingShapeArrayOperand()); |
| 4171 | // Otherwise, in elemental context, try to find the passed object and |
| 4172 | // retrieve the iteration shape from it. |
| 4173 | if (loweredProcRef && loweredProcRef->IsElemental()) { |
| 4174 | const std::optional<Fortran::evaluate::ActualArgument> passArg = |
| 4175 | extractPassedArgFromProcRef(*loweredProcRef, converter); |
| 4176 | if (passArg) { |
| 4177 | ExtValue exv = asScalarRef(*passArg->UnwrapExpr()); |
| 4178 | fir::FirOpBuilder *builder = &converter.getFirOpBuilder(); |
| 4179 | auto extents = fir::factory::getExtents(getLoc(), *builder, exv); |
| 4180 | if (extents.size() == 0) |
| 4181 | TODO(getLoc(), "getting shape from polymorphic array in elemental " |
| 4182 | "procedure reference" ); |
| 4183 | return extents; |
| 4184 | } |
| 4185 | } |
| 4186 | fir::emitFatalError(getLoc(), |
| 4187 | "failed to compute the array expression shape" ); |
| 4188 | } |
| 4189 | |
| 4190 | bool explicitSpaceIsActive() const { |
| 4191 | return explicitSpace && explicitSpace->isActive(); |
| 4192 | } |
| 4193 | |
| 4194 | bool implicitSpaceHasMasks() const { |
| 4195 | return implicitSpace && !implicitSpace->empty(); |
| 4196 | } |
| 4197 | |
| 4198 | CC genMaskAccess(mlir::Value tmp, mlir::Value shape) { |
| 4199 | mlir::Location loc = getLoc(); |
| 4200 | return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) { |
| 4201 | mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType()); |
| 4202 | auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
| 4203 | mlir::Type eleRefTy = builder->getRefType(eleTy); |
| 4204 | mlir::IntegerType i1Ty = builder->getI1Type(); |
| 4205 | // Adjust indices for any shift of the origin of the array. |
| 4206 | llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( |
| 4207 | loc, *builder, tmp.getType(), shape, iters.iterVec()); |
| 4208 | auto addr = |
| 4209 | builder->create<fir::ArrayCoorOp>(loc, eleRefTy, tmp, shape, |
| 4210 | /*slice=*/mlir::Value{}, indices, |
| 4211 | /*typeParams=*/std::nullopt); |
| 4212 | auto load = builder->create<fir::LoadOp>(loc, addr); |
| 4213 | return builder->createConvert(loc, i1Ty, load); |
| 4214 | }; |
| 4215 | } |
| 4216 | |
| 4217 | /// Construct the incremental instantiations of the ragged array structure. |
| 4218 | /// Rebind the lazy buffer variable, etc. as we go. |
| 4219 | template <bool withAllocation = false> |
| 4220 | mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) { |
| 4221 | assert(explicitSpaceIsActive()); |
| 4222 | mlir::Location loc = getLoc(); |
| 4223 | mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder); |
| 4224 | llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack = |
| 4225 | explicitSpace->getLoopStack(); |
| 4226 | const std::size_t depth = loopStack.size(); |
| 4227 | mlir::IntegerType i64Ty = builder.getIntegerType(64); |
| 4228 | [[maybe_unused]] mlir::Value byteSize = |
| 4229 | builder.createIntegerConstant(loc, i64Ty, 1); |
| 4230 | mlir::Value = implicitSpace->lookupMaskHeader(expr); |
| 4231 | for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) { |
| 4232 | auto insPt = builder.saveInsertionPoint(); |
| 4233 | if (i < depth - 1) |
| 4234 | builder.setInsertionPoint(loopStack[i + 1][0]); |
| 4235 | |
| 4236 | // Compute and gather the extents. |
| 4237 | llvm::SmallVector<mlir::Value> extents; |
| 4238 | for (auto doLoop : loopStack[i]) |
| 4239 | extents.push_back(builder.genExtentFromTriplet( |
| 4240 | loc, doLoop.getLowerBound(), doLoop.getUpperBound(), |
| 4241 | doLoop.getStep(), i64Ty)); |
| 4242 | if constexpr (withAllocation) { |
| 4243 | fir::runtime::genRaggedArrayAllocate( |
| 4244 | loc, builder, header, /*asHeader=*/true, byteSize, extents); |
| 4245 | } |
| 4246 | |
| 4247 | // Compute the dynamic position into the header. |
| 4248 | llvm::SmallVector<mlir::Value> offsets; |
| 4249 | for (auto doLoop : loopStack[i]) { |
| 4250 | auto m = builder.create<mlir::arith::SubIOp>( |
| 4251 | loc, doLoop.getInductionVar(), doLoop.getLowerBound()); |
| 4252 | auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep()); |
| 4253 | mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1); |
| 4254 | offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one)); |
| 4255 | } |
| 4256 | mlir::IntegerType i32Ty = builder.getIntegerType(32); |
| 4257 | mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1); |
| 4258 | mlir::Type coorTy = builder.getRefType(raggedTy.getType(1)); |
| 4259 | auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); |
| 4260 | auto toTy = fir::SequenceType::get(raggedTy, offsets.size()); |
| 4261 | mlir::Type toRefTy = builder.getRefType(toTy); |
| 4262 | auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff); |
| 4263 | mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr); |
| 4264 | auto shapeOp = builder.genShape(loc, extents); |
| 4265 | header = builder.create<fir::ArrayCoorOp>( |
| 4266 | loc, builder.getRefType(raggedTy), hdArr, shapeOp, |
| 4267 | /*slice=*/mlir::Value{}, offsets, |
| 4268 | /*typeparams=*/mlir::ValueRange{}); |
| 4269 | auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno); |
| 4270 | auto inVar = builder.create<fir::LoadOp>(loc, hdrVar); |
| 4271 | mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); |
| 4272 | mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2)); |
| 4273 | auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two); |
| 4274 | auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh); |
| 4275 | // Replace the binding. |
| 4276 | implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr)); |
| 4277 | if (i < depth - 1) |
| 4278 | builder.restoreInsertionPoint(insPt); |
| 4279 | } |
| 4280 | return header; |
| 4281 | } |
| 4282 | |
| 4283 | /// Lower mask expressions with implied iteration spaces from the variants of |
| 4284 | /// WHERE syntax. Since it is legal for mask expressions to have side-effects |
| 4285 | /// and modify values that will be used for the lhs, rhs, or both of |
| 4286 | /// subsequent assignments, the mask must be evaluated before the assignment |
| 4287 | /// is processed. |
| 4288 | /// Mask expressions are array expressions too. |
| 4289 | void genMasks() { |
| 4290 | // Lower the mask expressions, if any. |
| 4291 | if (implicitSpaceHasMasks()) { |
| 4292 | mlir::Location loc = getLoc(); |
| 4293 | // Mask expressions are array expressions too. |
| 4294 | for (const auto *e : implicitSpace->getExprs()) |
| 4295 | if (e && !implicitSpace->isLowered(e)) { |
| 4296 | if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) { |
| 4297 | // Allocate the mask buffer lazily. |
| 4298 | assert(explicitSpaceIsActive()); |
| 4299 | mlir::Value header = |
| 4300 | prepareRaggedArrays</*withAllocations=*/true>(e); |
| 4301 | Fortran::lower::createLazyArrayTempValue(converter, *e, header, |
| 4302 | symMap, stmtCtx); |
| 4303 | // Close the explicit loops. |
| 4304 | builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs()); |
| 4305 | builder.setInsertionPointAfter(explicitSpace->getOuterLoop()); |
| 4306 | // Open a new copy of the explicit loop nest. |
| 4307 | explicitSpace->genLoopNest(); |
| 4308 | continue; |
| 4309 | } |
| 4310 | fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue( |
| 4311 | converter, *e, symMap, stmtCtx); |
| 4312 | mlir::Value shape = builder.createShape(loc, tmp); |
| 4313 | implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape)); |
| 4314 | } |
| 4315 | |
| 4316 | // Set buffer from the header. |
| 4317 | for (const auto *e : implicitSpace->getExprs()) { |
| 4318 | if (!e) |
| 4319 | continue; |
| 4320 | if (implicitSpace->lookupMaskVariable(e)) { |
| 4321 | // Index into the ragged buffer to retrieve cached results. |
| 4322 | const int rank = e->Rank(); |
| 4323 | assert(destShape.empty() || |
| 4324 | static_cast<std::size_t>(rank) == destShape.size()); |
| 4325 | mlir::Value header = prepareRaggedArrays(e); |
| 4326 | mlir::TupleType raggedTy = |
| 4327 | fir::factory::getRaggedArrayHeaderType(builder); |
| 4328 | mlir::IntegerType i32Ty = builder.getIntegerType(32); |
| 4329 | mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1); |
| 4330 | auto coor1 = builder.create<fir::CoordinateOp>( |
| 4331 | loc, builder.getRefType(raggedTy.getType(1)), header, one); |
| 4332 | auto db = builder.create<fir::LoadOp>(loc, coor1); |
| 4333 | mlir::Type eleTy = |
| 4334 | fir::unwrapSequenceType(fir::unwrapRefType(db.getType())); |
| 4335 | mlir::Type buffTy = |
| 4336 | builder.getRefType(fir::SequenceType::get(eleTy, rank)); |
| 4337 | // Address of ragged buffer data. |
| 4338 | mlir::Value buff = builder.createConvert(loc, buffTy, db); |
| 4339 | |
| 4340 | mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2); |
| 4341 | auto coor2 = builder.create<fir::CoordinateOp>( |
| 4342 | loc, builder.getRefType(raggedTy.getType(2)), header, two); |
| 4343 | auto shBuff = builder.create<fir::LoadOp>(loc, coor2); |
| 4344 | mlir::IntegerType i64Ty = builder.getIntegerType(64); |
| 4345 | mlir::IndexType idxTy = builder.getIndexType(); |
| 4346 | llvm::SmallVector<mlir::Value> extents; |
| 4347 | for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) { |
| 4348 | mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i); |
| 4349 | auto coor = builder.create<fir::CoordinateOp>( |
| 4350 | loc, builder.getRefType(i64Ty), shBuff, off); |
| 4351 | auto ldExt = builder.create<fir::LoadOp>(loc, coor); |
| 4352 | extents.push_back(builder.createConvert(loc, idxTy, ldExt)); |
| 4353 | } |
| 4354 | if (destShape.empty()) |
| 4355 | destShape = extents; |
| 4356 | // Construct shape of buffer. |
| 4357 | mlir::Value shapeOp = builder.genShape(loc, extents); |
| 4358 | |
| 4359 | // Replace binding with the local result. |
| 4360 | implicitSpace->rebind(e, genMaskAccess(buff, shapeOp)); |
| 4361 | } |
| 4362 | } |
| 4363 | } |
| 4364 | } |
| 4365 | |
| 4366 | // FIXME: should take multiple inner arguments. |
| 4367 | std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> |
| 4368 | genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) { |
| 4369 | mlir::Location loc = getLoc(); |
| 4370 | mlir::IndexType idxTy = builder.getIndexType(); |
| 4371 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 4372 | mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); |
| 4373 | llvm::SmallVector<mlir::Value> loopUppers; |
| 4374 | |
| 4375 | // Convert any implied shape to closed interval form. The fir.do_loop will |
| 4376 | // run from 0 to `extent - 1` inclusive. |
| 4377 | for (auto extent : shape) |
| 4378 | loopUppers.push_back( |
| 4379 | builder.create<mlir::arith::SubIOp>(loc, extent, one)); |
| 4380 | |
| 4381 | // Iteration space is created with outermost columns, innermost rows |
| 4382 | llvm::SmallVector<fir::DoLoopOp> loops; |
| 4383 | |
| 4384 | const std::size_t loopDepth = loopUppers.size(); |
| 4385 | llvm::SmallVector<mlir::Value> ivars; |
| 4386 | |
| 4387 | for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) { |
| 4388 | if (i.index() > 0) { |
| 4389 | assert(!loops.empty()); |
| 4390 | builder.setInsertionPointToStart(loops.back().getBody()); |
| 4391 | } |
| 4392 | fir::DoLoopOp loop; |
| 4393 | if (innerArg) { |
| 4394 | loop = builder.create<fir::DoLoopOp>( |
| 4395 | loc, zero, i.value(), one, isUnordered(), |
| 4396 | /*finalCount=*/false, mlir::ValueRange{innerArg}); |
| 4397 | innerArg = loop.getRegionIterArgs().front(); |
| 4398 | if (explicitSpaceIsActive()) |
| 4399 | explicitSpace->setInnerArg(0, innerArg); |
| 4400 | } else { |
| 4401 | loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one, |
| 4402 | isUnordered(), |
| 4403 | /*finalCount=*/false); |
| 4404 | } |
| 4405 | ivars.push_back(loop.getInductionVar()); |
| 4406 | loops.push_back(loop); |
| 4407 | } |
| 4408 | |
| 4409 | if (innerArg) |
| 4410 | for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth; |
| 4411 | ++i) { |
| 4412 | builder.setInsertionPointToEnd(loops[i].getBody()); |
| 4413 | builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0)); |
| 4414 | } |
| 4415 | |
| 4416 | // Move insertion point to the start of the innermost loop in the nest. |
| 4417 | builder.setInsertionPointToStart(loops.back().getBody()); |
| 4418 | // Set `afterLoopNest` to just after the entire loop nest. |
| 4419 | auto currPt = builder.saveInsertionPoint(); |
| 4420 | builder.setInsertionPointAfter(loops[0]); |
| 4421 | auto afterLoopNest = builder.saveInsertionPoint(); |
| 4422 | builder.restoreInsertionPoint(currPt); |
| 4423 | |
| 4424 | // Put the implicit loop variables in row to column order to match FIR's |
| 4425 | // Ops. (The loops were constructed from outermost column to innermost |
| 4426 | // row.) |
| 4427 | mlir::Value outerRes; |
| 4428 | if (loops[0].getNumResults() != 0) |
| 4429 | outerRes = loops[0].getResult(0); |
| 4430 | return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)), |
| 4431 | afterLoopNest}; |
| 4432 | } |
| 4433 | |
| 4434 | /// Build the iteration space into which the array expression will be lowered. |
| 4435 | /// The resultType is used to create a temporary, if needed. |
| 4436 | std::pair<IterationSpace, mlir::OpBuilder::InsertPoint> |
| 4437 | genIterSpace(mlir::Type resultType) { |
| 4438 | mlir::Location loc = getLoc(); |
| 4439 | llvm::SmallVector<mlir::Value> shape = genIterationShape(); |
| 4440 | if (!destination) { |
| 4441 | // Allocate storage for the result if it is not already provided. |
| 4442 | destination = createAndLoadSomeArrayTemp(resultType, shape); |
| 4443 | } |
| 4444 | |
| 4445 | // Generate the lazy mask allocation, if one was given. |
| 4446 | if (ccPrelude) |
| 4447 | (*ccPrelude)(shape); |
| 4448 | |
| 4449 | // Now handle the implicit loops. |
| 4450 | mlir::Value inner = explicitSpaceIsActive() |
| 4451 | ? explicitSpace->getInnerArgs().front() |
| 4452 | : destination.getResult(); |
| 4453 | auto [iters, afterLoopNest] = genImplicitLoops(shape, inner); |
| 4454 | mlir::Value innerArg = iters.innerArgument(); |
| 4455 | |
| 4456 | // Generate the mask conditional structure, if there are masks. Unlike the |
| 4457 | // explicit masks, which are interleaved, these mask expression appear in |
| 4458 | // the innermost loop. |
| 4459 | if (implicitSpaceHasMasks()) { |
| 4460 | // Recover the cached condition from the mask buffer. |
| 4461 | auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) { |
| 4462 | return implicitSpace->getBoundClosure(e)(iters); |
| 4463 | }; |
| 4464 | |
| 4465 | // Handle the negated conditions in topological order of the WHERE |
| 4466 | // clauses. See 10.2.3.2p4 as to why this control structure is produced. |
| 4467 | for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs : |
| 4468 | implicitSpace->getMasks()) { |
| 4469 | const std::size_t size = maskExprs.size() - 1; |
| 4470 | auto genFalseBlock = [&](const auto *e, auto &&cond) { |
| 4471 | auto ifOp = builder.create<fir::IfOp>( |
| 4472 | loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), |
| 4473 | /*withElseRegion=*/true); |
| 4474 | builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); |
| 4475 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 4476 | builder.create<fir::ResultOp>(loc, innerArg); |
| 4477 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 4478 | }; |
| 4479 | auto genTrueBlock = [&](const auto *e, auto &&cond) { |
| 4480 | auto ifOp = builder.create<fir::IfOp>( |
| 4481 | loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond), |
| 4482 | /*withElseRegion=*/true); |
| 4483 | builder.create<fir::ResultOp>(loc, ifOp.getResult(0)); |
| 4484 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 4485 | builder.create<fir::ResultOp>(loc, innerArg); |
| 4486 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 4487 | }; |
| 4488 | for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i) |
| 4489 | if (const auto *e = maskExprs[i]) |
| 4490 | genFalseBlock(e, genCond(e, iters)); |
| 4491 | |
| 4492 | // The last condition is either non-negated or unconditionally negated. |
| 4493 | if (const auto *e = maskExprs[size]) |
| 4494 | genTrueBlock(e, genCond(e, iters)); |
| 4495 | } |
| 4496 | } |
| 4497 | |
| 4498 | // We're ready to lower the body (an assignment statement) for this context |
| 4499 | // of loop nests at this point. |
| 4500 | return {iters, afterLoopNest}; |
| 4501 | } |
| 4502 | |
| 4503 | fir::ArrayLoadOp |
| 4504 | createAndLoadSomeArrayTemp(mlir::Type type, |
| 4505 | llvm::ArrayRef<mlir::Value> shape) { |
| 4506 | mlir::Location loc = getLoc(); |
| 4507 | if (fir::isPolymorphicType(type)) |
| 4508 | TODO(loc, "polymorphic array temporary" ); |
| 4509 | if (ccLoadDest) |
| 4510 | return (*ccLoadDest)(shape); |
| 4511 | auto seqTy = mlir::dyn_cast<fir::SequenceType>(type); |
| 4512 | assert(seqTy && "must be an array" ); |
| 4513 | // TODO: Need to thread the LEN parameters here. For character, they may |
| 4514 | // differ from the operands length (e.g concatenation). So the array loads |
| 4515 | // type parameters are not enough. |
| 4516 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(seqTy.getEleTy())) |
| 4517 | if (charTy.hasDynamicLen()) |
| 4518 | TODO(loc, "character array expression temp with dynamic length" ); |
| 4519 | if (auto recTy = mlir::dyn_cast<fir::RecordType>(seqTy.getEleTy())) |
| 4520 | if (recTy.getNumLenParams() > 0) |
| 4521 | TODO(loc, "derived type array expression temp with LEN parameters" ); |
| 4522 | if (mlir::Type eleTy = fir::unwrapSequenceType(type); |
| 4523 | fir::isRecordWithAllocatableMember(eleTy)) |
| 4524 | TODO(loc, "creating an array temp where the element type has " |
| 4525 | "allocatable members" ); |
| 4526 | mlir::Value temp = !seqTy.hasDynamicExtents() |
| 4527 | ? builder.create<fir::AllocMemOp>(loc, type) |
| 4528 | : builder.create<fir::AllocMemOp>( |
| 4529 | loc, type, ".array.expr" , std::nullopt, shape); |
| 4530 | fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); |
| 4531 | stmtCtx.attachCleanup( |
| 4532 | [bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); }); |
| 4533 | mlir::Value shapeOp = genShapeOp(shape); |
| 4534 | return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp, |
| 4535 | /*slice=*/mlir::Value{}, |
| 4536 | std::nullopt); |
| 4537 | } |
| 4538 | |
| 4539 | static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder, |
| 4540 | llvm::ArrayRef<mlir::Value> shape) { |
| 4541 | mlir::IndexType idxTy = builder.getIndexType(); |
| 4542 | llvm::SmallVector<mlir::Value> idxShape; |
| 4543 | for (auto s : shape) |
| 4544 | idxShape.push_back(builder.createConvert(loc, idxTy, s)); |
| 4545 | return builder.create<fir::ShapeOp>(loc, idxShape); |
| 4546 | } |
| 4547 | |
| 4548 | fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) { |
| 4549 | return genShapeOp(getLoc(), builder, shape); |
| 4550 | } |
| 4551 | |
| 4552 | //===--------------------------------------------------------------------===// |
| 4553 | // Expression traversal and lowering. |
| 4554 | //===--------------------------------------------------------------------===// |
| 4555 | |
| 4556 | /// Lower the expression, \p x, in a scalar context. |
| 4557 | template <typename A> |
| 4558 | ExtValue asScalar(const A &x) { |
| 4559 | return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x); |
| 4560 | } |
| 4561 | |
| 4562 | /// Lower the expression, \p x, in a scalar context. If this is an explicit |
| 4563 | /// space, the expression may be scalar and refer to an array. We want to |
| 4564 | /// raise the array access to array operations in FIR to analyze potential |
| 4565 | /// conflicts even when the result is a scalar element. |
| 4566 | template <typename A> |
| 4567 | ExtValue asScalarArray(const A &x) { |
| 4568 | return explicitSpaceIsActive() && !isPointerAssignment() |
| 4569 | ? genarr(x)(IterationSpace{}) |
| 4570 | : asScalar(x); |
| 4571 | } |
| 4572 | |
| 4573 | /// Lower the expression in a scalar context to a memory reference. |
| 4574 | template <typename A> |
| 4575 | ExtValue asScalarRef(const A &x) { |
| 4576 | return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x); |
| 4577 | } |
| 4578 | |
| 4579 | /// Lower an expression without dereferencing any indirection that may be |
| 4580 | /// a nullptr (because this is an absent optional or unallocated/disassociated |
| 4581 | /// descriptor). The returned expression cannot be addressed directly, it is |
| 4582 | /// meant to inquire about its status before addressing the related entity. |
| 4583 | template <typename A> |
| 4584 | ExtValue asInquired(const A &x) { |
| 4585 | return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx} |
| 4586 | .lowerIntrinsicArgumentAsInquired(x); |
| 4587 | } |
| 4588 | |
| 4589 | /// Some temporaries are allocated on an element-by-element basis during the |
| 4590 | /// array expression evaluation. Collect the cleanups here so the resources |
| 4591 | /// can be freed before the next loop iteration, avoiding memory leaks. etc. |
| 4592 | Fortran::lower::StatementContext &getElementCtx() { |
| 4593 | if (!elementCtx) { |
| 4594 | stmtCtx.pushScope(); |
| 4595 | elementCtx = true; |
| 4596 | } |
| 4597 | return stmtCtx; |
| 4598 | } |
| 4599 | |
| 4600 | /// If there were temporaries created for this element evaluation, finalize |
| 4601 | /// and deallocate the resources now. This should be done just prior to the |
| 4602 | /// fir::ResultOp at the end of the innermost loop. |
| 4603 | void finalizeElementCtx() { |
| 4604 | if (elementCtx) { |
| 4605 | stmtCtx.finalizeAndPop(); |
| 4606 | elementCtx = false; |
| 4607 | } |
| 4608 | } |
| 4609 | |
| 4610 | /// Lower an elemental function array argument. This ensures array |
| 4611 | /// sub-expressions that are not variables and must be passed by address |
| 4612 | /// are lowered by value and placed in memory. |
| 4613 | template <typename A> |
| 4614 | CC genElementalArgument(const A &x) { |
| 4615 | // Ensure the returned element is in memory if this is what was requested. |
| 4616 | if ((semant == ConstituentSemantics::RefOpaque || |
| 4617 | semant == ConstituentSemantics::DataAddr || |
| 4618 | semant == ConstituentSemantics::ByValueArg)) { |
| 4619 | if (!Fortran::evaluate::IsVariable(x)) { |
| 4620 | PushSemantics(ConstituentSemantics::DataValue); |
| 4621 | CC cc = genarr(x); |
| 4622 | mlir::Location loc = getLoc(); |
| 4623 | if (isParenthesizedVariable(x)) { |
| 4624 | // Parenthesised variables are lowered to a reference to the variable |
| 4625 | // storage. When passing it as an argument, a copy must be passed. |
| 4626 | return [=](IterSpace iters) -> ExtValue { |
| 4627 | return createInMemoryScalarCopy(builder, loc, cc(iters)); |
| 4628 | }; |
| 4629 | } |
| 4630 | mlir::Type storageType = |
| 4631 | fir::unwrapSequenceType(converter.genType(toEvExpr(x))); |
| 4632 | return [=](IterSpace iters) -> ExtValue { |
| 4633 | return placeScalarValueInMemory(builder, loc, cc(iters), storageType); |
| 4634 | }; |
| 4635 | } else if (isArray(x)) { |
| 4636 | // An array reference is needed, but the indices used in its path must |
| 4637 | // still be retrieved by value. |
| 4638 | assert(!nextPathSemant && "Next path semantics already set!" ); |
| 4639 | nextPathSemant = ConstituentSemantics::RefTransparent; |
| 4640 | CC cc = genarr(x); |
| 4641 | assert(!nextPathSemant && "Next path semantics wasn't used!" ); |
| 4642 | return cc; |
| 4643 | } |
| 4644 | } |
| 4645 | return genarr(x); |
| 4646 | } |
| 4647 | |
| 4648 | // A reference to a Fortran elemental intrinsic or intrinsic module procedure. |
| 4649 | CC genElementalIntrinsicProcRef( |
| 4650 | const Fortran::evaluate::ProcedureRef &procRef, |
| 4651 | std::optional<mlir::Type> retTy, |
| 4652 | std::optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic = |
| 4653 | std::nullopt) { |
| 4654 | |
| 4655 | llvm::SmallVector<CC> operands; |
| 4656 | std::string name = |
| 4657 | intrinsic ? intrinsic->name |
| 4658 | : procRef.proc().GetSymbol()->GetUltimate().name().ToString(); |
| 4659 | const fir::IntrinsicArgumentLoweringRules *argLowering = |
| 4660 | fir::getIntrinsicArgumentLowering(name); |
| 4661 | mlir::Location loc = getLoc(); |
| 4662 | if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling( |
| 4663 | procRef, *intrinsic, converter)) { |
| 4664 | using CcPairT = std::pair<CC, std::optional<mlir::Value>>; |
| 4665 | llvm::SmallVector<CcPairT> operands; |
| 4666 | auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) { |
| 4667 | if (expr.Rank() == 0) { |
| 4668 | ExtValue optionalArg = this->asInquired(expr); |
| 4669 | mlir::Value isPresent = |
| 4670 | genActualIsPresentTest(builder, loc, optionalArg); |
| 4671 | operands.emplace_back( |
| 4672 | [=](IterSpace iters) -> ExtValue { |
| 4673 | return genLoad(builder, loc, optionalArg); |
| 4674 | }, |
| 4675 | isPresent); |
| 4676 | } else { |
| 4677 | auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr); |
| 4678 | operands.emplace_back(cc, isPresent); |
| 4679 | } |
| 4680 | }; |
| 4681 | auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr, |
| 4682 | fir::LowerIntrinsicArgAs lowerAs) { |
| 4683 | assert(lowerAs == fir::LowerIntrinsicArgAs::Value && |
| 4684 | "expect value arguments for elemental intrinsic" ); |
| 4685 | PushSemantics(ConstituentSemantics::RefTransparent); |
| 4686 | operands.emplace_back(genElementalArgument(expr), std::nullopt); |
| 4687 | }; |
| 4688 | Fortran::lower::prepareCustomIntrinsicArgument( |
| 4689 | procRef, *intrinsic, retTy, prepareOptionalArg, prepareOtherArg, |
| 4690 | converter); |
| 4691 | |
| 4692 | fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); |
| 4693 | return [=](IterSpace iters) -> ExtValue { |
| 4694 | auto getArgument = [&](std::size_t i, bool) -> ExtValue { |
| 4695 | return operands[i].first(iters); |
| 4696 | }; |
| 4697 | auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> { |
| 4698 | return operands[i].second; |
| 4699 | }; |
| 4700 | return Fortran::lower::lowerCustomIntrinsic( |
| 4701 | *bldr, loc, name, retTy, isPresent, getArgument, operands.size(), |
| 4702 | getElementCtx()); |
| 4703 | }; |
| 4704 | } |
| 4705 | /// Otherwise, pre-lower arguments and use intrinsic lowering utility. |
| 4706 | for (const auto &arg : llvm::enumerate(procRef.arguments())) { |
| 4707 | const auto *expr = |
| 4708 | Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value()); |
| 4709 | if (!expr) { |
| 4710 | // Absent optional. |
| 4711 | operands.emplace_back([=](IterSpace) { return mlir::Value{}; }); |
| 4712 | } else if (!argLowering) { |
| 4713 | // No argument lowering instruction, lower by value. |
| 4714 | PushSemantics(ConstituentSemantics::RefTransparent); |
| 4715 | operands.emplace_back(genElementalArgument(*expr)); |
| 4716 | } else { |
| 4717 | // Ad-hoc argument lowering handling. |
| 4718 | fir::ArgLoweringRule argRules = |
| 4719 | fir::lowerIntrinsicArgumentAs(*argLowering, arg.index()); |
| 4720 | if (argRules.handleDynamicOptional && |
| 4721 | Fortran::evaluate::MayBePassedAsAbsentOptional(*expr)) { |
| 4722 | // Currently, there is not elemental intrinsic that requires lowering |
| 4723 | // a potentially absent argument to something else than a value (apart |
| 4724 | // from character MAX/MIN that are handled elsewhere.) |
| 4725 | if (argRules.lowerAs != fir::LowerIntrinsicArgAs::Value) |
| 4726 | TODO(loc, "non trivial optional elemental intrinsic array " |
| 4727 | "argument" ); |
| 4728 | PushSemantics(ConstituentSemantics::RefTransparent); |
| 4729 | operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr)); |
| 4730 | continue; |
| 4731 | } |
| 4732 | switch (argRules.lowerAs) { |
| 4733 | case fir::LowerIntrinsicArgAs::Value: { |
| 4734 | PushSemantics(ConstituentSemantics::RefTransparent); |
| 4735 | operands.emplace_back(genElementalArgument(*expr)); |
| 4736 | } break; |
| 4737 | case fir::LowerIntrinsicArgAs::Addr: { |
| 4738 | // Note: assume does not have Fortran VALUE attribute semantics. |
| 4739 | PushSemantics(ConstituentSemantics::RefOpaque); |
| 4740 | operands.emplace_back(genElementalArgument(*expr)); |
| 4741 | } break; |
| 4742 | case fir::LowerIntrinsicArgAs::Box: { |
| 4743 | PushSemantics(ConstituentSemantics::RefOpaque); |
| 4744 | auto lambda = genElementalArgument(*expr); |
| 4745 | operands.emplace_back([=](IterSpace iters) { |
| 4746 | return builder.createBox(loc, lambda(iters)); |
| 4747 | }); |
| 4748 | } break; |
| 4749 | case fir::LowerIntrinsicArgAs::Inquired: |
| 4750 | TODO(loc, "intrinsic function with inquired argument" ); |
| 4751 | break; |
| 4752 | } |
| 4753 | } |
| 4754 | } |
| 4755 | |
| 4756 | // Let the intrinsic library lower the intrinsic procedure call |
| 4757 | return [=](IterSpace iters) { |
| 4758 | llvm::SmallVector<ExtValue> args; |
| 4759 | for (const auto &cc : operands) |
| 4760 | args.push_back(cc(iters)); |
| 4761 | return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args, |
| 4762 | getElementCtx()); |
| 4763 | }; |
| 4764 | } |
| 4765 | |
| 4766 | /// Lower a procedure reference to a user-defined elemental procedure. |
| 4767 | CC genElementalUserDefinedProcRef( |
| 4768 | const Fortran::evaluate::ProcedureRef &procRef, |
| 4769 | std::optional<mlir::Type> retTy) { |
| 4770 | using PassBy = Fortran::lower::CallerInterface::PassEntityBy; |
| 4771 | |
| 4772 | // 10.1.4 p5. Impure elemental procedures must be called in element order. |
| 4773 | if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol()) |
| 4774 | if (!Fortran::semantics::IsPureProcedure(*procSym)) |
| 4775 | setUnordered(false); |
| 4776 | |
| 4777 | Fortran::lower::CallerInterface caller(procRef, converter); |
| 4778 | llvm::SmallVector<CC> operands; |
| 4779 | operands.reserve(caller.getPassedArguments().size()); |
| 4780 | mlir::Location loc = getLoc(); |
| 4781 | mlir::FunctionType callSiteType = caller.genFunctionType(); |
| 4782 | for (const Fortran::lower::CallInterface< |
| 4783 | Fortran::lower::CallerInterface>::PassedEntity &arg : |
| 4784 | caller.getPassedArguments()) { |
| 4785 | // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout) |
| 4786 | // arguments must be called in element order. |
| 4787 | if (arg.mayBeModifiedByCall()) |
| 4788 | setUnordered(false); |
| 4789 | const auto *actual = arg.entity; |
| 4790 | mlir::Type argTy = callSiteType.getInput(arg.firArgument); |
| 4791 | if (!actual) { |
| 4792 | // Optional dummy argument for which there is no actual argument. |
| 4793 | auto absent = builder.create<fir::AbsentOp>(loc, argTy); |
| 4794 | operands.emplace_back([=](IterSpace) { return absent; }); |
| 4795 | continue; |
| 4796 | } |
| 4797 | const auto *expr = actual->UnwrapExpr(); |
| 4798 | if (!expr) |
| 4799 | TODO(loc, "assumed type actual argument" ); |
| 4800 | |
| 4801 | LLVM_DEBUG(expr->AsFortran(llvm::dbgs() |
| 4802 | << "argument: " << arg.firArgument << " = [" ) |
| 4803 | << "]\n" ); |
| 4804 | if (arg.isOptional() && |
| 4805 | Fortran::evaluate::MayBePassedAsAbsentOptional(*expr)) |
| 4806 | TODO(loc, |
| 4807 | "passing dynamically optional argument to elemental procedures" ); |
| 4808 | switch (arg.passBy) { |
| 4809 | case PassBy::Value: { |
| 4810 | // True pass-by-value semantics. |
| 4811 | PushSemantics(ConstituentSemantics::RefTransparent); |
| 4812 | operands.emplace_back(genElementalArgument(*expr)); |
| 4813 | } break; |
| 4814 | case PassBy::BaseAddressValueAttribute: { |
| 4815 | // VALUE attribute or pass-by-reference to a copy semantics. (byval*) |
| 4816 | if (isArray(*expr)) { |
| 4817 | PushSemantics(ConstituentSemantics::ByValueArg); |
| 4818 | operands.emplace_back(genElementalArgument(*expr)); |
| 4819 | } else { |
| 4820 | // Store scalar value in a temp to fulfill VALUE attribute. |
| 4821 | mlir::Value val = fir::getBase(asScalar(*expr)); |
| 4822 | mlir::Value temp = |
| 4823 | builder.createTemporary(loc, val.getType(), |
| 4824 | llvm::ArrayRef<mlir::NamedAttribute>{ |
| 4825 | fir::getAdaptToByRefAttr(builder)}); |
| 4826 | builder.create<fir::StoreOp>(loc, val, temp); |
| 4827 | operands.emplace_back( |
| 4828 | [=](IterSpace iters) -> ExtValue { return temp; }); |
| 4829 | } |
| 4830 | } break; |
| 4831 | case PassBy::BaseAddress: { |
| 4832 | if (isArray(*expr)) { |
| 4833 | PushSemantics(ConstituentSemantics::RefOpaque); |
| 4834 | operands.emplace_back(genElementalArgument(*expr)); |
| 4835 | } else { |
| 4836 | ExtValue exv = asScalarRef(*expr); |
| 4837 | operands.emplace_back([=](IterSpace iters) { return exv; }); |
| 4838 | } |
| 4839 | } break; |
| 4840 | case PassBy::CharBoxValueAttribute: { |
| 4841 | if (isArray(*expr)) { |
| 4842 | PushSemantics(ConstituentSemantics::DataValue); |
| 4843 | auto lambda = genElementalArgument(*expr); |
| 4844 | operands.emplace_back([=](IterSpace iters) { |
| 4845 | return fir::factory::CharacterExprHelper{builder, loc} |
| 4846 | .createTempFrom(lambda(iters)); |
| 4847 | }); |
| 4848 | } else { |
| 4849 | fir::factory::CharacterExprHelper helper(builder, loc); |
| 4850 | fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr)); |
| 4851 | operands.emplace_back( |
| 4852 | [=](IterSpace iters) -> ExtValue { return argVal; }); |
| 4853 | } |
| 4854 | } break; |
| 4855 | case PassBy::BoxChar: { |
| 4856 | PushSemantics(ConstituentSemantics::RefOpaque); |
| 4857 | operands.emplace_back(genElementalArgument(*expr)); |
| 4858 | } break; |
| 4859 | case PassBy::AddressAndLength: |
| 4860 | // PassBy::AddressAndLength is only used for character results. Results |
| 4861 | // are not handled here. |
| 4862 | fir::emitFatalError( |
| 4863 | loc, "unexpected PassBy::AddressAndLength in elemental call" ); |
| 4864 | break; |
| 4865 | case PassBy::CharProcTuple: { |
| 4866 | ExtValue argRef = asScalarRef(*expr); |
| 4867 | mlir::Value tuple = createBoxProcCharTuple( |
| 4868 | converter, argTy, fir::getBase(argRef), fir::getLen(argRef)); |
| 4869 | operands.emplace_back( |
| 4870 | [=](IterSpace iters) -> ExtValue { return tuple; }); |
| 4871 | } break; |
| 4872 | case PassBy::Box: |
| 4873 | case PassBy::MutableBox: |
| 4874 | // Handle polymorphic passed object. |
| 4875 | if (fir::isPolymorphicType(argTy)) { |
| 4876 | if (isArray(*expr)) { |
| 4877 | ExtValue exv = asScalarRef(*expr); |
| 4878 | mlir::Value sourceBox; |
| 4879 | if (fir::isPolymorphicType(fir::getBase(exv).getType())) |
| 4880 | sourceBox = fir::getBase(exv); |
| 4881 | mlir::Type baseTy = |
| 4882 | fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(exv).getType()); |
| 4883 | mlir::Type innerTy = fir::unwrapSequenceType(baseTy); |
| 4884 | operands.emplace_back([=](IterSpace iters) -> ExtValue { |
| 4885 | mlir::Value coord = builder.create<fir::CoordinateOp>( |
| 4886 | loc, fir::ReferenceType::get(innerTy), fir::getBase(exv), |
| 4887 | iters.iterVec()); |
| 4888 | mlir::Value empty; |
| 4889 | mlir::ValueRange emptyRange; |
| 4890 | return builder.create<fir::EmboxOp>( |
| 4891 | loc, fir::ClassType::get(innerTy), coord, empty, empty, |
| 4892 | emptyRange, sourceBox); |
| 4893 | }); |
| 4894 | } else { |
| 4895 | ExtValue exv = asScalarRef(*expr); |
| 4896 | if (mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType())) { |
| 4897 | operands.emplace_back( |
| 4898 | [=](IterSpace iters) -> ExtValue { return exv; }); |
| 4899 | } else { |
| 4900 | mlir::Type baseTy = |
| 4901 | fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(exv).getType()); |
| 4902 | operands.emplace_back([=](IterSpace iters) -> ExtValue { |
| 4903 | mlir::Value empty; |
| 4904 | mlir::ValueRange emptyRange; |
| 4905 | return builder.create<fir::EmboxOp>( |
| 4906 | loc, fir::ClassType::get(baseTy), fir::getBase(exv), empty, |
| 4907 | empty, emptyRange); |
| 4908 | }); |
| 4909 | } |
| 4910 | } |
| 4911 | break; |
| 4912 | } |
| 4913 | // See C15100 and C15101 |
| 4914 | fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE" ); |
| 4915 | case PassBy::BoxProcRef: |
| 4916 | // Procedure pointer: no action here. |
| 4917 | break; |
| 4918 | } |
| 4919 | } |
| 4920 | |
| 4921 | if (caller.getIfIndirectCall()) |
| 4922 | fir::emitFatalError(loc, "cannot be indirect call" ); |
| 4923 | |
| 4924 | // The lambda is mutable so that `caller` copy can be modified inside it. |
| 4925 | return [=, |
| 4926 | caller = std::move(caller)](IterSpace iters) mutable -> ExtValue { |
| 4927 | for (const auto &[cc, argIface] : |
| 4928 | llvm::zip(operands, caller.getPassedArguments())) { |
| 4929 | auto exv = cc(iters); |
| 4930 | auto arg = exv.match( |
| 4931 | [&](const fir::CharBoxValue &cb) -> mlir::Value { |
| 4932 | return fir::factory::CharacterExprHelper{builder, loc} |
| 4933 | .createEmbox(cb); |
| 4934 | }, |
| 4935 | [&](const auto &) { return fir::getBase(exv); }); |
| 4936 | caller.placeInput(argIface, arg); |
| 4937 | } |
| 4938 | Fortran::lower::LoweredResult res = |
| 4939 | Fortran::lower::genCallOpAndResult(loc, converter, symMap, |
| 4940 | getElementCtx(), caller, |
| 4941 | callSiteType, retTy) |
| 4942 | .first; |
| 4943 | return std::get<ExtValue>(res); |
| 4944 | }; |
| 4945 | } |
| 4946 | |
| 4947 | /// Lower TRANSPOSE call without using runtime TRANSPOSE. |
| 4948 | /// Return continuation for generating the TRANSPOSE result. |
| 4949 | /// The continuation just swaps the iteration space before |
| 4950 | /// invoking continuation for the argument. |
| 4951 | CC genTransposeProcRef(const Fortran::evaluate::ProcedureRef &procRef) { |
| 4952 | assert(procRef.arguments().size() == 1 && |
| 4953 | "TRANSPOSE must have one argument." ); |
| 4954 | const auto *argExpr = procRef.arguments()[0].value().UnwrapExpr(); |
| 4955 | assert(argExpr); |
| 4956 | |
| 4957 | llvm::SmallVector<mlir::Value> savedDestShape = destShape; |
| 4958 | assert((destShape.empty() || destShape.size() == 2) && |
| 4959 | "TRANSPOSE destination must have rank 2." ); |
| 4960 | |
| 4961 | if (!savedDestShape.empty()) |
| 4962 | std::swap(destShape[0], destShape[1]); |
| 4963 | |
| 4964 | PushSemantics(ConstituentSemantics::RefTransparent); |
| 4965 | llvm::SmallVector<CC> operands{genElementalArgument(*argExpr)}; |
| 4966 | |
| 4967 | if (!savedDestShape.empty()) { |
| 4968 | // If destShape was set before transpose lowering, then |
| 4969 | // restore it. Otherwise, ... |
| 4970 | destShape = savedDestShape; |
| 4971 | } else if (!destShape.empty()) { |
| 4972 | // ... if destShape has been set from the argument lowering, |
| 4973 | // then reverse it. |
| 4974 | assert(destShape.size() == 2 && |
| 4975 | "TRANSPOSE destination must have rank 2." ); |
| 4976 | std::swap(destShape[0], destShape[1]); |
| 4977 | } |
| 4978 | |
| 4979 | return [=](IterSpace iters) { |
| 4980 | assert(iters.iterVec().size() == 2 && |
| 4981 | "TRANSPOSE expects 2D iterations space." ); |
| 4982 | IterationSpace newIters(iters, {iters.iterValue(1), iters.iterValue(0)}); |
| 4983 | return operands.front()(newIters); |
| 4984 | }; |
| 4985 | } |
| 4986 | |
| 4987 | /// Generate a procedure reference. This code is shared for both functions and |
| 4988 | /// subroutines, the difference being reflected by `retTy`. |
| 4989 | CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef, |
| 4990 | std::optional<mlir::Type> retTy) { |
| 4991 | mlir::Location loc = getLoc(); |
| 4992 | setLoweredProcRef(&procRef); |
| 4993 | |
| 4994 | if (isOptimizableTranspose(procRef, converter)) |
| 4995 | return genTransposeProcRef(procRef); |
| 4996 | |
| 4997 | if (procRef.IsElemental()) { |
| 4998 | if (const Fortran::evaluate::SpecificIntrinsic *intrin = |
| 4999 | procRef.proc().GetSpecificIntrinsic()) { |
| 5000 | // All elemental intrinsic functions are pure and cannot modify their |
| 5001 | // arguments. The only elemental subroutine, MVBITS has an Intent(inout) |
| 5002 | // argument. So for this last one, loops must be in element order |
| 5003 | // according to 15.8.3 p1. |
| 5004 | if (!retTy) |
| 5005 | setUnordered(false); |
| 5006 | |
| 5007 | // Elemental intrinsic call. |
| 5008 | // The intrinsic procedure is called once per element of the array. |
| 5009 | return genElementalIntrinsicProcRef(procRef, retTy, *intrin); |
| 5010 | } |
| 5011 | if (Fortran::lower::isIntrinsicModuleProcRef(procRef)) |
| 5012 | return genElementalIntrinsicProcRef(procRef, retTy); |
| 5013 | if (ScalarExprLowering::isStatementFunctionCall(procRef)) |
| 5014 | fir::emitFatalError(loc, "statement function cannot be elemental" ); |
| 5015 | |
| 5016 | // Elemental call. |
| 5017 | // The procedure is called once per element of the array argument(s). |
| 5018 | return genElementalUserDefinedProcRef(procRef, retTy); |
| 5019 | } |
| 5020 | |
| 5021 | // Transformational call. |
| 5022 | // The procedure is called once and produces a value of rank > 0. |
| 5023 | if (const Fortran::evaluate::SpecificIntrinsic *intrinsic = |
| 5024 | procRef.proc().GetSpecificIntrinsic()) { |
| 5025 | if (explicitSpaceIsActive() && procRef.Rank() == 0) { |
| 5026 | // Elide any implicit loop iters. |
| 5027 | return [=, &procRef](IterSpace) { |
| 5028 | return ScalarExprLowering{loc, converter, symMap, stmtCtx} |
| 5029 | .genIntrinsicRef(procRef, retTy, *intrinsic); |
| 5030 | }; |
| 5031 | } |
| 5032 | return genarr( |
| 5033 | ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef( |
| 5034 | procRef, retTy, *intrinsic)); |
| 5035 | } |
| 5036 | |
| 5037 | const bool isPtrAssn = isPointerAssignment(); |
| 5038 | if (explicitSpaceIsActive() && procRef.Rank() == 0) { |
| 5039 | // Elide any implicit loop iters. |
| 5040 | return [=, &procRef](IterSpace) { |
| 5041 | ScalarExprLowering sel(loc, converter, symMap, stmtCtx); |
| 5042 | return isPtrAssn ? sel.genRawProcedureRef(procRef, retTy) |
| 5043 | : sel.genProcedureRef(procRef, retTy); |
| 5044 | }; |
| 5045 | } |
| 5046 | // In the default case, the call can be hoisted out of the loop nest. Apply |
| 5047 | // the iterations to the result, which may be an array value. |
| 5048 | ScalarExprLowering sel(loc, converter, symMap, stmtCtx); |
| 5049 | auto exv = isPtrAssn ? sel.genRawProcedureRef(procRef, retTy) |
| 5050 | : sel.genProcedureRef(procRef, retTy); |
| 5051 | return genarr(exv); |
| 5052 | } |
| 5053 | |
| 5054 | CC genarr(const Fortran::evaluate::ProcedureDesignator &) { |
| 5055 | TODO(getLoc(), "procedure designator" ); |
| 5056 | } |
| 5057 | CC genarr(const Fortran::evaluate::ProcedureRef &x) { |
| 5058 | if (x.hasAlternateReturns()) |
| 5059 | fir::emitFatalError(getLoc(), |
| 5060 | "array procedure reference with alt-return" ); |
| 5061 | return genProcRef(x, std::nullopt); |
| 5062 | } |
| 5063 | template <typename A> |
| 5064 | CC genScalarAndForwardValue(const A &x) { |
| 5065 | ExtValue result = asScalar(x); |
| 5066 | return [=](IterSpace) { return result; }; |
| 5067 | } |
| 5068 | template <typename A, typename = std::enable_if_t<Fortran::common::HasMember< |
| 5069 | A, Fortran::evaluate::TypelessExpression>>> |
| 5070 | CC genarr(const A &x) { |
| 5071 | return genScalarAndForwardValue(x); |
| 5072 | } |
| 5073 | |
| 5074 | template <typename A> |
| 5075 | CC genarr(const Fortran::evaluate::Expr<A> &x) { |
| 5076 | LLVM_DEBUG(Fortran::semantics::DumpEvaluateExpr::Dump(llvm::dbgs(), x)); |
| 5077 | if (isArray(x) || (explicitSpaceIsActive() && isLeftHandSide()) || |
| 5078 | isElementalProcWithArrayArgs(x)) |
| 5079 | return Fortran::common::visit([&](const auto &e) { return genarr(e); }, |
| 5080 | x.u); |
| 5081 | if (explicitSpaceIsActive()) { |
| 5082 | assert(!isArray(x) && !isLeftHandSide()); |
| 5083 | auto cc = |
| 5084 | Fortran::common::visit([&](const auto &e) { return genarr(e); }, x.u); |
| 5085 | auto result = cc(IterationSpace{}); |
| 5086 | return [=](IterSpace) { return result; }; |
| 5087 | } |
| 5088 | return genScalarAndForwardValue(x); |
| 5089 | } |
| 5090 | |
| 5091 | // Converting a value of memory bound type requires creating a temp and |
| 5092 | // copying the value. |
| 5093 | static ExtValue convertAdjustedType(fir::FirOpBuilder &builder, |
| 5094 | mlir::Location loc, mlir::Type toType, |
| 5095 | const ExtValue &exv) { |
| 5096 | return exv.match( |
| 5097 | [&](const fir::CharBoxValue &cb) -> ExtValue { |
| 5098 | mlir::Value len = cb.getLen(); |
| 5099 | auto mem = |
| 5100 | builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len}); |
| 5101 | fir::CharBoxValue result(mem, len); |
| 5102 | fir::factory::CharacterExprHelper{builder, loc}.createAssign( |
| 5103 | ExtValue{result}, exv); |
| 5104 | return result; |
| 5105 | }, |
| 5106 | [&](const auto &) -> ExtValue { |
| 5107 | fir::emitFatalError(loc, "convert on adjusted extended value" ); |
| 5108 | }); |
| 5109 | } |
| 5110 | template <Fortran::common::TypeCategory TC1, int KIND, |
| 5111 | Fortran::common::TypeCategory TC2> |
| 5112 | CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, |
| 5113 | TC2> &x) { |
| 5114 | mlir::Location loc = getLoc(); |
| 5115 | auto lambda = genarr(x.left()); |
| 5116 | mlir::Type ty = converter.genType(TC1, KIND); |
| 5117 | return [=](IterSpace iters) -> ExtValue { |
| 5118 | auto exv = lambda(iters); |
| 5119 | mlir::Value val = fir::getBase(exv); |
| 5120 | auto valTy = val.getType(); |
| 5121 | if (elementTypeWasAdjusted(valTy) && |
| 5122 | !(fir::isa_ref_type(valTy) && fir::isa_integer(ty))) |
| 5123 | return convertAdjustedType(builder, loc, ty, exv); |
| 5124 | return builder.createConvert(loc, ty, val); |
| 5125 | }; |
| 5126 | } |
| 5127 | |
| 5128 | template <int KIND> |
| 5129 | CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) { |
| 5130 | mlir::Location loc = getLoc(); |
| 5131 | auto lambda = genarr(x.left()); |
| 5132 | bool isImagPart = x.isImaginaryPart; |
| 5133 | return [=](IterSpace iters) -> ExtValue { |
| 5134 | mlir::Value lhs = fir::getBase(lambda(iters)); |
| 5135 | return fir::factory::Complex{builder, loc}.extractComplexPart(lhs, |
| 5136 | isImagPart); |
| 5137 | }; |
| 5138 | } |
| 5139 | |
| 5140 | template <typename T> |
| 5141 | CC genarr(const Fortran::evaluate::Parentheses<T> &x) { |
| 5142 | mlir::Location loc = getLoc(); |
| 5143 | if (isReferentiallyOpaque()) { |
| 5144 | // Context is a call argument in, for example, an elemental procedure |
| 5145 | // call. TODO: all array arguments should use array_load, array_access, |
| 5146 | // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have |
| 5147 | // array_merge_store ops. |
| 5148 | TODO(loc, "parentheses on argument in elemental call" ); |
| 5149 | } |
| 5150 | auto f = genarr(x.left()); |
| 5151 | return [=](IterSpace iters) -> ExtValue { |
| 5152 | auto val = f(iters); |
| 5153 | mlir::Value base = fir::getBase(val); |
| 5154 | auto newBase = |
| 5155 | builder.create<fir::NoReassocOp>(loc, base.getType(), base); |
| 5156 | return fir::substBase(val, newBase); |
| 5157 | }; |
| 5158 | } |
| 5159 | template <Fortran::common::TypeCategory CAT, int KIND> |
| 5160 | CC genarrIntNeg( |
| 5161 | const Fortran::evaluate::Expr<Fortran::evaluate::Type<CAT, KIND>> &left) { |
| 5162 | mlir::Location loc = getLoc(); |
| 5163 | auto f = genarr(left); |
| 5164 | return [=](IterSpace iters) -> ExtValue { |
| 5165 | mlir::Value val = fir::getBase(f(iters)); |
| 5166 | mlir::Type ty = |
| 5167 | converter.genType(Fortran::common::TypeCategory::Integer, KIND); |
| 5168 | mlir::Value zero = builder.createIntegerConstant(loc, ty, 0); |
| 5169 | if constexpr (CAT == Fortran::common::TypeCategory::Unsigned) { |
| 5170 | mlir::Value signless = builder.createConvert(loc, ty, val); |
| 5171 | mlir::Value neg = |
| 5172 | builder.create<mlir::arith::SubIOp>(loc, zero, signless); |
| 5173 | return builder.createConvert(loc, val.getType(), neg); |
| 5174 | } |
| 5175 | return builder.create<mlir::arith::SubIOp>(loc, zero, val); |
| 5176 | }; |
| 5177 | } |
| 5178 | template <int KIND> |
| 5179 | CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| 5180 | Fortran::common::TypeCategory::Integer, KIND>> &x) { |
| 5181 | return genarrIntNeg(x.left()); |
| 5182 | } |
| 5183 | template <int KIND> |
| 5184 | CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| 5185 | Fortran::common::TypeCategory::Unsigned, KIND>> &x) { |
| 5186 | return genarrIntNeg(x.left()); |
| 5187 | } |
| 5188 | template <int KIND> |
| 5189 | CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| 5190 | Fortran::common::TypeCategory::Real, KIND>> &x) { |
| 5191 | mlir::Location loc = getLoc(); |
| 5192 | auto f = genarr(x.left()); |
| 5193 | return [=](IterSpace iters) -> ExtValue { |
| 5194 | return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters))); |
| 5195 | }; |
| 5196 | } |
| 5197 | template <int KIND> |
| 5198 | CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type< |
| 5199 | Fortran::common::TypeCategory::Complex, KIND>> &x) { |
| 5200 | mlir::Location loc = getLoc(); |
| 5201 | auto f = genarr(x.left()); |
| 5202 | return [=](IterSpace iters) -> ExtValue { |
| 5203 | return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters))); |
| 5204 | }; |
| 5205 | } |
| 5206 | |
| 5207 | //===--------------------------------------------------------------------===// |
| 5208 | // Binary elemental ops |
| 5209 | //===--------------------------------------------------------------------===// |
| 5210 | |
| 5211 | template <typename OP, typename A> |
| 5212 | CC createBinaryOp(const A &evEx) { |
| 5213 | mlir::Location loc = getLoc(); |
| 5214 | auto lambda = genarr(evEx.left()); |
| 5215 | auto rf = genarr(evEx.right()); |
| 5216 | return [=](IterSpace iters) -> ExtValue { |
| 5217 | mlir::Value left = fir::getBase(lambda(iters)); |
| 5218 | mlir::Value right = fir::getBase(rf(iters)); |
| 5219 | assert(left.getType() == right.getType() && "types must be the same" ); |
| 5220 | return builder.createUnsigned<OP>(loc, left.getType(), left, right); |
| 5221 | }; |
| 5222 | } |
| 5223 | |
| 5224 | #undef GENBIN |
| 5225 | #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \ |
| 5226 | template <int KIND> \ |
| 5227 | CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \ |
| 5228 | Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \ |
| 5229 | return createBinaryOp<GenBinFirOp>(x); \ |
| 5230 | } |
| 5231 | |
| 5232 | GENBIN(Add, Integer, mlir::arith::AddIOp) |
| 5233 | GENBIN(Add, Unsigned, mlir::arith::AddIOp) |
| 5234 | GENBIN(Add, Real, mlir::arith::AddFOp) |
| 5235 | GENBIN(Add, Complex, fir::AddcOp) |
| 5236 | GENBIN(Subtract, Integer, mlir::arith::SubIOp) |
| 5237 | GENBIN(Subtract, Unsigned, mlir::arith::SubIOp) |
| 5238 | GENBIN(Subtract, Real, mlir::arith::SubFOp) |
| 5239 | GENBIN(Subtract, Complex, fir::SubcOp) |
| 5240 | GENBIN(Multiply, Integer, mlir::arith::MulIOp) |
| 5241 | GENBIN(Multiply, Unsigned, mlir::arith::MulIOp) |
| 5242 | GENBIN(Multiply, Real, mlir::arith::MulFOp) |
| 5243 | GENBIN(Multiply, Complex, fir::MulcOp) |
| 5244 | GENBIN(Divide, Integer, mlir::arith::DivSIOp) |
| 5245 | GENBIN(Divide, Unsigned, mlir::arith::DivUIOp) |
| 5246 | GENBIN(Divide, Real, mlir::arith::DivFOp) |
| 5247 | |
| 5248 | template <int KIND> |
| 5249 | CC genarr(const Fortran::evaluate::Divide<Fortran::evaluate::Type< |
| 5250 | Fortran::common::TypeCategory::Complex, KIND>> &x) { |
| 5251 | mlir::Location loc = getLoc(); |
| 5252 | mlir::Type ty = |
| 5253 | converter.genType(Fortran::common::TypeCategory::Complex, KIND); |
| 5254 | auto lf = genarr(x.left()); |
| 5255 | auto rf = genarr(x.right()); |
| 5256 | return [=](IterSpace iters) -> ExtValue { |
| 5257 | mlir::Value lhs = fir::getBase(lf(iters)); |
| 5258 | mlir::Value rhs = fir::getBase(rf(iters)); |
| 5259 | return fir::genDivC(builder, loc, ty, lhs, rhs); |
| 5260 | }; |
| 5261 | } |
| 5262 | |
| 5263 | template <Fortran::common::TypeCategory TC, int KIND> |
| 5264 | CC genarr( |
| 5265 | const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) { |
| 5266 | mlir::Location loc = getLoc(); |
| 5267 | mlir::Type ty = converter.genType(TC, KIND); |
| 5268 | auto lf = genarr(x.left()); |
| 5269 | auto rf = genarr(x.right()); |
| 5270 | return [=](IterSpace iters) -> ExtValue { |
| 5271 | mlir::Value lhs = fir::getBase(lf(iters)); |
| 5272 | mlir::Value rhs = fir::getBase(rf(iters)); |
| 5273 | return fir::genPow(builder, loc, ty, lhs, rhs); |
| 5274 | }; |
| 5275 | } |
| 5276 | template <Fortran::common::TypeCategory TC, int KIND> |
| 5277 | CC genarr( |
| 5278 | const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) { |
| 5279 | mlir::Location loc = getLoc(); |
| 5280 | auto lf = genarr(x.left()); |
| 5281 | auto rf = genarr(x.right()); |
| 5282 | switch (x.ordering) { |
| 5283 | case Fortran::evaluate::Ordering::Greater: |
| 5284 | return [=](IterSpace iters) -> ExtValue { |
| 5285 | mlir::Value lhs = fir::getBase(lf(iters)); |
| 5286 | mlir::Value rhs = fir::getBase(rf(iters)); |
| 5287 | return fir::genMax(builder, loc, llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
| 5288 | }; |
| 5289 | case Fortran::evaluate::Ordering::Less: |
| 5290 | return [=](IterSpace iters) -> ExtValue { |
| 5291 | mlir::Value lhs = fir::getBase(lf(iters)); |
| 5292 | mlir::Value rhs = fir::getBase(rf(iters)); |
| 5293 | return fir::genMin(builder, loc, llvm::ArrayRef<mlir::Value>{lhs, rhs}); |
| 5294 | }; |
| 5295 | case Fortran::evaluate::Ordering::Equal: |
| 5296 | llvm_unreachable("Equal is not a valid ordering in this context" ); |
| 5297 | } |
| 5298 | llvm_unreachable("unknown ordering" ); |
| 5299 | } |
| 5300 | template <Fortran::common::TypeCategory TC, int KIND> |
| 5301 | CC genarr( |
| 5302 | const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>> |
| 5303 | &x) { |
| 5304 | mlir::Location loc = getLoc(); |
| 5305 | auto ty = converter.genType(TC, KIND); |
| 5306 | auto lf = genarr(x.left()); |
| 5307 | auto rf = genarr(x.right()); |
| 5308 | return [=](IterSpace iters) { |
| 5309 | mlir::Value lhs = fir::getBase(lf(iters)); |
| 5310 | mlir::Value rhs = fir::getBase(rf(iters)); |
| 5311 | return fir::genPow(builder, loc, ty, lhs, rhs); |
| 5312 | }; |
| 5313 | } |
| 5314 | template <int KIND> |
| 5315 | CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) { |
| 5316 | mlir::Location loc = getLoc(); |
| 5317 | auto lf = genarr(x.left()); |
| 5318 | auto rf = genarr(x.right()); |
| 5319 | return [=](IterSpace iters) -> ExtValue { |
| 5320 | mlir::Value lhs = fir::getBase(lf(iters)); |
| 5321 | mlir::Value rhs = fir::getBase(rf(iters)); |
| 5322 | return fir::factory::Complex{builder, loc}.createComplex(lhs, rhs); |
| 5323 | }; |
| 5324 | } |
| 5325 | |
| 5326 | /// Fortran's concatenation operator `//`. |
| 5327 | template <int KIND> |
| 5328 | CC genarr(const Fortran::evaluate::Concat<KIND> &x) { |
| 5329 | mlir::Location loc = getLoc(); |
| 5330 | auto lf = genarr(x.left()); |
| 5331 | auto rf = genarr(x.right()); |
| 5332 | return [=](IterSpace iters) -> ExtValue { |
| 5333 | auto lhs = lf(iters); |
| 5334 | auto rhs = rf(iters); |
| 5335 | const fir::CharBoxValue *lchr = lhs.getCharBox(); |
| 5336 | const fir::CharBoxValue *rchr = rhs.getCharBox(); |
| 5337 | if (lchr && rchr) { |
| 5338 | return fir::factory::CharacterExprHelper{builder, loc} |
| 5339 | .createConcatenate(*lchr, *rchr); |
| 5340 | } |
| 5341 | TODO(loc, "concat on unexpected extended values" ); |
| 5342 | return mlir::Value{}; |
| 5343 | }; |
| 5344 | } |
| 5345 | |
| 5346 | template <int KIND> |
| 5347 | CC genarr(const Fortran::evaluate::SetLength<KIND> &x) { |
| 5348 | auto lf = genarr(x.left()); |
| 5349 | mlir::Value rhs = fir::getBase(asScalar(x.right())); |
| 5350 | fir::CharBoxValue temp = |
| 5351 | fir::factory::CharacterExprHelper(builder, getLoc()) |
| 5352 | .createCharacterTemp( |
| 5353 | fir::CharacterType::getUnknownLen(builder.getContext(), KIND), |
| 5354 | rhs); |
| 5355 | return [=](IterSpace iters) -> ExtValue { |
| 5356 | fir::factory::CharacterExprHelper(builder, getLoc()) |
| 5357 | .createAssign(temp, lf(iters)); |
| 5358 | return temp; |
| 5359 | }; |
| 5360 | } |
| 5361 | |
| 5362 | template <typename T> |
| 5363 | CC genarr(const Fortran::evaluate::Constant<T> &x) { |
| 5364 | if (x.Rank() == 0) |
| 5365 | return genScalarAndForwardValue(x); |
| 5366 | return genarr(Fortran::lower::convertConstant( |
| 5367 | converter, getLoc(), x, |
| 5368 | /*outlineBigConstantsInReadOnlyMemory=*/true)); |
| 5369 | } |
| 5370 | |
| 5371 | //===--------------------------------------------------------------------===// |
| 5372 | // A vector subscript expression may be wrapped with a cast to INTEGER*8. |
| 5373 | // Get rid of it here so the vector can be loaded. Add it back when |
| 5374 | // generating the elemental evaluation (inside the loop nest). |
| 5375 | |
| 5376 | static Fortran::lower::SomeExpr |
| 5377 | ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type< |
| 5378 | Fortran::common::TypeCategory::Integer, 8>> &x) { |
| 5379 | return Fortran::common::visit( |
| 5380 | [&](const auto &v) { return ignoreEvConvert(v); }, x.u); |
| 5381 | } |
| 5382 | template <Fortran::common::TypeCategory FROM> |
| 5383 | static Fortran::lower::SomeExpr ignoreEvConvert( |
| 5384 | const Fortran::evaluate::Convert< |
| 5385 | Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>, |
| 5386 | FROM> &x) { |
| 5387 | return toEvExpr(x.left()); |
| 5388 | } |
| 5389 | template <typename A> |
| 5390 | static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) { |
| 5391 | return toEvExpr(x); |
| 5392 | } |
| 5393 | |
| 5394 | //===--------------------------------------------------------------------===// |
| 5395 | // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can |
| 5396 | // be used to determine the lbound, ubound of the vector. |
| 5397 | |
| 5398 | template <typename A> |
| 5399 | static const Fortran::semantics::Symbol * |
| 5400 | extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) { |
| 5401 | return Fortran::common::visit( |
| 5402 | [&](const auto &v) { return extractSubscriptSymbol(v); }, x.u); |
| 5403 | } |
| 5404 | template <typename A> |
| 5405 | static const Fortran::semantics::Symbol * |
| 5406 | extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) { |
| 5407 | return Fortran::evaluate::UnwrapWholeSymbolDataRef(x); |
| 5408 | } |
| 5409 | template <typename A> |
| 5410 | static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) { |
| 5411 | return nullptr; |
| 5412 | } |
| 5413 | |
| 5414 | //===--------------------------------------------------------------------===// |
| 5415 | |
| 5416 | /// Get the declared lower bound value of the array `x` in dimension `dim`. |
| 5417 | /// The argument `one` must be an ssa-value for the constant 1. |
| 5418 | mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) { |
| 5419 | return fir::factory::readLowerBound(builder, getLoc(), x, dim, one); |
| 5420 | } |
| 5421 | |
| 5422 | /// Get the declared upper bound value of the array `x` in dimension `dim`. |
| 5423 | /// The argument `one` must be an ssa-value for the constant 1. |
| 5424 | mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) { |
| 5425 | mlir::Location loc = getLoc(); |
| 5426 | mlir::Value lb = getLBound(x, dim, one); |
| 5427 | mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim); |
| 5428 | auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent); |
| 5429 | return builder.create<mlir::arith::SubIOp>(loc, add, one); |
| 5430 | } |
| 5431 | |
| 5432 | /// Return the extent of the boxed array `x` in dimesion `dim`. |
| 5433 | mlir::Value getExtent(const ExtValue &x, unsigned dim) { |
| 5434 | return fir::factory::readExtent(builder, getLoc(), x, dim); |
| 5435 | } |
| 5436 | |
| 5437 | template <typename A> |
| 5438 | ExtValue genArrayBase(const A &base) { |
| 5439 | ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx}; |
| 5440 | return base.IsSymbol() ? sel.gen(getFirstSym(base)) |
| 5441 | : sel.gen(base.GetComponent()); |
| 5442 | } |
| 5443 | |
| 5444 | template <typename A> |
| 5445 | bool hasEvArrayRef(const A &x) { |
| 5446 | struct HasEvArrayRefHelper |
| 5447 | : public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> { |
| 5448 | HasEvArrayRefHelper() |
| 5449 | : Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {} |
| 5450 | using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator(); |
| 5451 | bool operator()(const Fortran::evaluate::ArrayRef &) const { |
| 5452 | return true; |
| 5453 | } |
| 5454 | } helper; |
| 5455 | return helper(x); |
| 5456 | } |
| 5457 | |
| 5458 | CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr, |
| 5459 | std::size_t dim) { |
| 5460 | PushSemantics(ConstituentSemantics::RefTransparent); |
| 5461 | auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr); |
| 5462 | llvm::SmallVector<mlir::Value> savedDestShape = destShape; |
| 5463 | destShape.clear(); |
| 5464 | auto result = genarr(expr); |
| 5465 | if (destShape.empty()) |
| 5466 | TODO(getLoc(), "expected vector to have an extent" ); |
| 5467 | assert(destShape.size() == 1 && "vector has rank > 1" ); |
| 5468 | if (destShape[0] != savedDestShape[dim]) { |
| 5469 | // Not the same, so choose the smaller value. |
| 5470 | mlir::Location loc = getLoc(); |
| 5471 | auto cmp = builder.create<mlir::arith::CmpIOp>( |
| 5472 | loc, mlir::arith::CmpIPredicate::sgt, destShape[0], |
| 5473 | savedDestShape[dim]); |
| 5474 | auto sel = builder.create<mlir::arith::SelectOp>( |
| 5475 | loc, cmp, savedDestShape[dim], destShape[0]); |
| 5476 | savedDestShape[dim] = sel; |
| 5477 | destShape = savedDestShape; |
| 5478 | } |
| 5479 | return result; |
| 5480 | } |
| 5481 | |
| 5482 | /// Generate an access by vector subscript using the index in the iteration |
| 5483 | /// vector at `dim`. |
| 5484 | mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch, |
| 5485 | IterSpace iters, std::size_t dim) { |
| 5486 | IterationSpace vecIters(iters, |
| 5487 | llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)}); |
| 5488 | fir::ExtendedValue fetch = genArrFetch(vecIters); |
| 5489 | mlir::IndexType idxTy = builder.getIndexType(); |
| 5490 | return builder.createConvert(loc, idxTy, fir::getBase(fetch)); |
| 5491 | } |
| 5492 | |
| 5493 | /// When we have an array reference, the expressions specified in each |
| 5494 | /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple |
| 5495 | /// (loop-invarianet) scalar expressions. This returns the base entity, the |
| 5496 | /// resulting type, and a continuation to adjust the default iteration space. |
| 5497 | void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv, |
| 5498 | const Fortran::evaluate::ArrayRef &x, bool atBase) { |
| 5499 | mlir::Location loc = getLoc(); |
| 5500 | mlir::IndexType idxTy = builder.getIndexType(); |
| 5501 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 5502 | llvm::SmallVector<mlir::Value> &trips = cmptData.trips; |
| 5503 | LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n'); |
| 5504 | auto &pc = cmptData.pc; |
| 5505 | const bool useTripsForSlice = !explicitSpaceIsActive(); |
| 5506 | const bool createDestShape = destShape.empty(); |
| 5507 | bool useSlice = false; |
| 5508 | std::size_t shapeIndex = 0; |
| 5509 | for (auto sub : llvm::enumerate(x.subscript())) { |
| 5510 | const std::size_t subsIndex = sub.index(); |
| 5511 | Fortran::common::visit( |
| 5512 | Fortran::common::visitors{ |
| 5513 | [&](const Fortran::evaluate::Triplet &t) { |
| 5514 | mlir::Value lowerBound; |
| 5515 | if (auto optLo = t.lower()) |
| 5516 | lowerBound = fir::getBase(asScalarArray(*optLo)); |
| 5517 | else |
| 5518 | lowerBound = getLBound(arrayExv, subsIndex, one); |
| 5519 | lowerBound = builder.createConvert(loc, idxTy, lowerBound); |
| 5520 | mlir::Value stride = fir::getBase(asScalarArray(t.stride())); |
| 5521 | stride = builder.createConvert(loc, idxTy, stride); |
| 5522 | if (useTripsForSlice || createDestShape) { |
| 5523 | // Generate a slice operation for the triplet. The first and |
| 5524 | // second position of the triplet may be omitted, and the |
| 5525 | // declared lbound and/or ubound expression values, |
| 5526 | // respectively, should be used instead. |
| 5527 | trips.push_back(lowerBound); |
| 5528 | mlir::Value upperBound; |
| 5529 | if (auto optUp = t.upper()) |
| 5530 | upperBound = fir::getBase(asScalarArray(*optUp)); |
| 5531 | else |
| 5532 | upperBound = getUBound(arrayExv, subsIndex, one); |
| 5533 | upperBound = builder.createConvert(loc, idxTy, upperBound); |
| 5534 | trips.push_back(upperBound); |
| 5535 | trips.push_back(stride); |
| 5536 | if (createDestShape) { |
| 5537 | auto extent = builder.genExtentFromTriplet( |
| 5538 | loc, lowerBound, upperBound, stride, idxTy); |
| 5539 | destShape.push_back(extent); |
| 5540 | } |
| 5541 | useSlice = true; |
| 5542 | } |
| 5543 | if (!useTripsForSlice) { |
| 5544 | auto currentPC = pc; |
| 5545 | pc = [=](IterSpace iters) { |
| 5546 | IterationSpace newIters = currentPC(iters); |
| 5547 | mlir::Value impliedIter = newIters.iterValue(subsIndex); |
| 5548 | // FIXME: must use the lower bound of this component. |
| 5549 | auto arrLowerBound = |
| 5550 | atBase ? getLBound(arrayExv, subsIndex, one) : one; |
| 5551 | auto initial = builder.create<mlir::arith::SubIOp>( |
| 5552 | loc, lowerBound, arrLowerBound); |
| 5553 | auto prod = builder.create<mlir::arith::MulIOp>( |
| 5554 | loc, impliedIter, stride); |
| 5555 | auto result = |
| 5556 | builder.create<mlir::arith::AddIOp>(loc, initial, prod); |
| 5557 | newIters.setIndexValue(subsIndex, result); |
| 5558 | return newIters; |
| 5559 | }; |
| 5560 | } |
| 5561 | shapeIndex++; |
| 5562 | }, |
| 5563 | [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) { |
| 5564 | const auto &e = ie.value(); // dereference |
| 5565 | if (isArray(e)) { |
| 5566 | // This is a vector subscript. Use the index values as read |
| 5567 | // from a vector to determine the temporary array value. |
| 5568 | // Note: 9.5.3.3.3(3) specifies undefined behavior for |
| 5569 | // multiple updates to any specific array element through a |
| 5570 | // vector subscript with replicated values. |
| 5571 | assert(!isBoxValue() && |
| 5572 | "fir.box cannot be created with vector subscripts" ); |
| 5573 | // TODO: Avoid creating a new evaluate::Expr here |
| 5574 | auto arrExpr = ignoreEvConvert(e); |
| 5575 | if (createDestShape) { |
| 5576 | destShape.push_back(fir::factory::getExtentAtDimension( |
| 5577 | loc, builder, arrayExv, subsIndex)); |
| 5578 | } |
| 5579 | auto genArrFetch = |
| 5580 | genVectorSubscriptArrayFetch(arrExpr, shapeIndex); |
| 5581 | auto currentPC = pc; |
| 5582 | pc = [=](IterSpace iters) { |
| 5583 | IterationSpace newIters = currentPC(iters); |
| 5584 | auto val = genAccessByVector(loc, genArrFetch, newIters, |
| 5585 | subsIndex); |
| 5586 | // Value read from vector subscript array and normalized |
| 5587 | // using the base array's lower bound value. |
| 5588 | mlir::Value lb = fir::factory::readLowerBound( |
| 5589 | builder, loc, arrayExv, subsIndex, one); |
| 5590 | auto origin = builder.create<mlir::arith::SubIOp>( |
| 5591 | loc, idxTy, val, lb); |
| 5592 | newIters.setIndexValue(subsIndex, origin); |
| 5593 | return newIters; |
| 5594 | }; |
| 5595 | if (useTripsForSlice) { |
| 5596 | LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape = |
| 5597 | getShape(arrayOperands.back()); |
| 5598 | auto undef = builder.create<fir::UndefOp>(loc, idxTy); |
| 5599 | trips.push_back(undef); |
| 5600 | trips.push_back(undef); |
| 5601 | trips.push_back(undef); |
| 5602 | } |
| 5603 | shapeIndex++; |
| 5604 | } else { |
| 5605 | // This is a regular scalar subscript. |
| 5606 | if (useTripsForSlice) { |
| 5607 | // A regular scalar index, which does not yield an array |
| 5608 | // section. Use a degenerate slice operation |
| 5609 | // `(e:undef:undef)` in this dimension as a placeholder. |
| 5610 | // This does not necessarily change the rank of the original |
| 5611 | // array, so the iteration space must also be extended to |
| 5612 | // include this expression in this dimension to adjust to |
| 5613 | // the array's declared rank. |
| 5614 | mlir::Value v = fir::getBase(asScalarArray(e)); |
| 5615 | trips.push_back(v); |
| 5616 | auto undef = builder.create<fir::UndefOp>(loc, idxTy); |
| 5617 | trips.push_back(undef); |
| 5618 | trips.push_back(undef); |
| 5619 | auto currentPC = pc; |
| 5620 | // Cast `e` to index type. |
| 5621 | mlir::Value iv = builder.createConvert(loc, idxTy, v); |
| 5622 | // Normalize `e` by subtracting the declared lbound. |
| 5623 | mlir::Value lb = fir::factory::readLowerBound( |
| 5624 | builder, loc, arrayExv, subsIndex, one); |
| 5625 | mlir::Value ivAdj = |
| 5626 | builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb); |
| 5627 | // Add lbound adjusted value of `e` to the iteration vector |
| 5628 | // (except when creating a box because the iteration vector |
| 5629 | // is empty). |
| 5630 | if (!isBoxValue()) |
| 5631 | pc = [=](IterSpace iters) { |
| 5632 | IterationSpace newIters = currentPC(iters); |
| 5633 | newIters.insertIndexValue(subsIndex, ivAdj); |
| 5634 | return newIters; |
| 5635 | }; |
| 5636 | } else { |
| 5637 | auto currentPC = pc; |
| 5638 | mlir::Value newValue = fir::getBase(asScalarArray(e)); |
| 5639 | mlir::Value result = |
| 5640 | builder.createConvert(loc, idxTy, newValue); |
| 5641 | mlir::Value lb = fir::factory::readLowerBound( |
| 5642 | builder, loc, arrayExv, subsIndex, one); |
| 5643 | result = builder.create<mlir::arith::SubIOp>(loc, idxTy, |
| 5644 | result, lb); |
| 5645 | pc = [=](IterSpace iters) { |
| 5646 | IterationSpace newIters = currentPC(iters); |
| 5647 | newIters.insertIndexValue(subsIndex, result); |
| 5648 | return newIters; |
| 5649 | }; |
| 5650 | } |
| 5651 | } |
| 5652 | }}, |
| 5653 | sub.value().u); |
| 5654 | } |
| 5655 | if (!useSlice) |
| 5656 | trips.clear(); |
| 5657 | } |
| 5658 | |
| 5659 | static mlir::Type unwrapBoxEleTy(mlir::Type ty) { |
| 5660 | if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) |
| 5661 | return fir::unwrapRefType(boxTy.getEleTy()); |
| 5662 | return ty; |
| 5663 | } |
| 5664 | |
| 5665 | llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) { |
| 5666 | llvm::SmallVector<mlir::Value> result; |
| 5667 | ty = unwrapBoxEleTy(ty); |
| 5668 | mlir::Location loc = getLoc(); |
| 5669 | mlir::IndexType idxTy = builder.getIndexType(); |
| 5670 | auto seqType = mlir::cast<fir::SequenceType>(ty); |
| 5671 | for (auto extent : seqType.getShape()) { |
| 5672 | auto v = extent == fir::SequenceType::getUnknownExtent() |
| 5673 | ? builder.create<fir::UndefOp>(loc, idxTy).getResult() |
| 5674 | : builder.createIntegerConstant(loc, idxTy, extent); |
| 5675 | result.push_back(v); |
| 5676 | } |
| 5677 | return result; |
| 5678 | } |
| 5679 | |
| 5680 | CC genarr(const Fortran::semantics::SymbolRef &sym, |
| 5681 | ComponentPath &components) { |
| 5682 | return genarr(sym.get(), components); |
| 5683 | } |
| 5684 | |
| 5685 | ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) { |
| 5686 | return convertToArrayBoxValue(getLoc(), builder, val, len); |
| 5687 | } |
| 5688 | |
| 5689 | CC genarr(const ExtValue &extMemref) { |
| 5690 | ComponentPath dummy(/*isImplicit=*/true); |
| 5691 | return genarr(extMemref, dummy); |
| 5692 | } |
| 5693 | |
| 5694 | // If the slice values are given then use them. Otherwise, generate triples |
| 5695 | // that cover the entire shape specified by \p shapeVal. |
| 5696 | inline llvm::SmallVector<mlir::Value> |
| 5697 | padSlice(llvm::ArrayRef<mlir::Value> triples, mlir::Value shapeVal) { |
| 5698 | llvm::SmallVector<mlir::Value> result; |
| 5699 | mlir::Location loc = getLoc(); |
| 5700 | if (triples.size()) { |
| 5701 | result.assign(triples.begin(), triples.end()); |
| 5702 | } else { |
| 5703 | auto one = builder.createIntegerConstant(loc, builder.getIndexType(), 1); |
| 5704 | if (!shapeVal) { |
| 5705 | TODO(loc, "shape must be recovered from box" ); |
| 5706 | } else if (auto shapeOp = mlir::dyn_cast_or_null<fir::ShapeOp>( |
| 5707 | shapeVal.getDefiningOp())) { |
| 5708 | for (auto ext : shapeOp.getExtents()) { |
| 5709 | result.push_back(one); |
| 5710 | result.push_back(ext); |
| 5711 | result.push_back(one); |
| 5712 | } |
| 5713 | } else if (auto shapeShift = mlir::dyn_cast_or_null<fir::ShapeShiftOp>( |
| 5714 | shapeVal.getDefiningOp())) { |
| 5715 | for (auto [lb, ext] : |
| 5716 | llvm::zip(shapeShift.getOrigins(), shapeShift.getExtents())) { |
| 5717 | result.push_back(lb); |
| 5718 | result.push_back(ext); |
| 5719 | result.push_back(one); |
| 5720 | } |
| 5721 | } else { |
| 5722 | TODO(loc, "shape must be recovered from box" ); |
| 5723 | } |
| 5724 | } |
| 5725 | return result; |
| 5726 | } |
| 5727 | |
| 5728 | /// Base case of generating an array reference, |
| 5729 | CC genarr(const ExtValue &extMemref, ComponentPath &components, |
| 5730 | mlir::Value CrayPtr = nullptr) { |
| 5731 | mlir::Location loc = getLoc(); |
| 5732 | mlir::Value memref = fir::getBase(extMemref); |
| 5733 | mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType()); |
| 5734 | assert(mlir::isa<fir::SequenceType>(arrTy) && |
| 5735 | "memory ref must be an array" ); |
| 5736 | mlir::Value shape = builder.createShape(loc, extMemref); |
| 5737 | mlir::Value slice; |
| 5738 | if (components.isSlice()) { |
| 5739 | if (isBoxValue() && components.substring) { |
| 5740 | // Append the substring operator to emboxing Op as it will become an |
| 5741 | // interior adjustment (add offset, adjust LEN) to the CHARACTER value |
| 5742 | // being referenced in the descriptor. |
| 5743 | llvm::SmallVector<mlir::Value> substringBounds; |
| 5744 | populateBounds(substringBounds, components.substring); |
| 5745 | // Convert to (offset, size) |
| 5746 | mlir::Type iTy = substringBounds[0].getType(); |
| 5747 | if (substringBounds.size() != 2) { |
| 5748 | fir::CharacterType charTy = |
| 5749 | fir::factory::CharacterExprHelper::getCharType(arrTy); |
| 5750 | if (charTy.hasConstantLen()) { |
| 5751 | mlir::IndexType idxTy = builder.getIndexType(); |
| 5752 | fir::CharacterType::LenType charLen = charTy.getLen(); |
| 5753 | mlir::Value lenValue = |
| 5754 | builder.createIntegerConstant(loc, idxTy, charLen); |
| 5755 | substringBounds.push_back(lenValue); |
| 5756 | } else { |
| 5757 | llvm::SmallVector<mlir::Value> typeparams = |
| 5758 | fir::getTypeParams(extMemref); |
| 5759 | substringBounds.push_back(typeparams.back()); |
| 5760 | } |
| 5761 | } |
| 5762 | // Convert the lower bound to 0-based substring. |
| 5763 | mlir::Value one = |
| 5764 | builder.createIntegerConstant(loc, substringBounds[0].getType(), 1); |
| 5765 | substringBounds[0] = |
| 5766 | builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one); |
| 5767 | // Convert the upper bound to a length. |
| 5768 | mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]); |
| 5769 | mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0); |
| 5770 | auto size = |
| 5771 | builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]); |
| 5772 | auto cmp = builder.create<mlir::arith::CmpIOp>( |
| 5773 | loc, mlir::arith::CmpIPredicate::sgt, size, zero); |
| 5774 | // size = MAX(upper - (lower - 1), 0) |
| 5775 | substringBounds[1] = |
| 5776 | builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero); |
| 5777 | slice = builder.create<fir::SliceOp>( |
| 5778 | loc, padSlice(components.trips, shape), components.suffixComponents, |
| 5779 | substringBounds); |
| 5780 | } else { |
| 5781 | slice = builder.createSlice(loc, extMemref, components.trips, |
| 5782 | components.suffixComponents); |
| 5783 | } |
| 5784 | if (components.hasComponents()) { |
| 5785 | auto seqTy = mlir::cast<fir::SequenceType>(arrTy); |
| 5786 | mlir::Type eleTy = |
| 5787 | fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents); |
| 5788 | if (!eleTy) |
| 5789 | fir::emitFatalError(loc, "slicing path is ill-formed" ); |
| 5790 | // create the type of the projected array. |
| 5791 | arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy); |
| 5792 | LLVM_DEBUG(llvm::dbgs() |
| 5793 | << "type of array projection from component slicing: " |
| 5794 | << eleTy << ", " << arrTy << '\n'); |
| 5795 | } |
| 5796 | } |
| 5797 | arrayOperands.push_back(ArrayOperand{memref, shape, slice}); |
| 5798 | if (destShape.empty()) |
| 5799 | destShape = getShape(arrayOperands.back()); |
| 5800 | if (isBoxValue()) { |
| 5801 | // Semantics are a reference to a boxed array. |
| 5802 | // This case just requires that an embox operation be created to box the |
| 5803 | // value. The value of the box is forwarded in the continuation. |
| 5804 | mlir::Type reduceTy = reduceRank(arrTy, slice); |
| 5805 | mlir::Type boxTy = fir::BoxType::get(reduceTy); |
| 5806 | if (mlir::isa<fir::ClassType>(memref.getType()) && |
| 5807 | !components.hasComponents()) |
| 5808 | boxTy = fir::ClassType::get(reduceTy); |
| 5809 | if (components.substring) { |
| 5810 | // Adjust char length to substring size. |
| 5811 | fir::CharacterType charTy = |
| 5812 | fir::factory::CharacterExprHelper::getCharType(reduceTy); |
| 5813 | auto seqTy = mlir::cast<fir::SequenceType>(reduceTy); |
| 5814 | // TODO: Use a constant for fir.char LEN if we can compute it. |
| 5815 | boxTy = fir::BoxType::get( |
| 5816 | fir::SequenceType::get(fir::CharacterType::getUnknownLen( |
| 5817 | builder.getContext(), charTy.getFKind()), |
| 5818 | seqTy.getDimension())); |
| 5819 | } |
| 5820 | llvm::SmallVector<mlir::Value> lbounds; |
| 5821 | llvm::SmallVector<mlir::Value> nonDeferredLenParams; |
| 5822 | if (!slice) { |
| 5823 | lbounds = |
| 5824 | fir::factory::getNonDefaultLowerBounds(builder, loc, extMemref); |
| 5825 | nonDeferredLenParams = fir::factory::getNonDeferredLenParams(extMemref); |
| 5826 | } |
| 5827 | mlir::Value embox = |
| 5828 | mlir::isa<fir::BaseBoxType>(memref.getType()) |
| 5829 | ? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice) |
| 5830 | .getResult() |
| 5831 | : builder |
| 5832 | .create<fir::EmboxOp>(loc, boxTy, memref, shape, slice, |
| 5833 | fir::getTypeParams(extMemref)) |
| 5834 | .getResult(); |
| 5835 | return [=](IterSpace) -> ExtValue { |
| 5836 | return fir::BoxValue(embox, lbounds, nonDeferredLenParams); |
| 5837 | }; |
| 5838 | } |
| 5839 | auto eleTy = mlir::cast<fir::SequenceType>(arrTy).getElementType(); |
| 5840 | if (isReferentiallyOpaque()) { |
| 5841 | // Semantics are an opaque reference to an array. |
| 5842 | // This case forwards a continuation that will generate the address |
| 5843 | // arithmetic to the array element. This does not have copy-in/copy-out |
| 5844 | // semantics. No attempt to copy the array value will be made during the |
| 5845 | // interpretation of the Fortran statement. |
| 5846 | mlir::Type refEleTy = builder.getRefType(eleTy); |
| 5847 | return [=](IterSpace iters) -> ExtValue { |
| 5848 | // ArrayCoorOp does not expect zero based indices. |
| 5849 | llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices( |
| 5850 | loc, builder, memref.getType(), shape, iters.iterVec()); |
| 5851 | mlir::Value coor = builder.create<fir::ArrayCoorOp>( |
| 5852 | loc, refEleTy, memref, shape, slice, indices, |
| 5853 | fir::getTypeParams(extMemref)); |
| 5854 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| 5855 | llvm::SmallVector<mlir::Value> substringBounds; |
| 5856 | populateBounds(substringBounds, components.substring); |
| 5857 | if (!substringBounds.empty()) { |
| 5858 | mlir::Value dstLen = fir::factory::genLenOfCharacter( |
| 5859 | builder, loc, mlir::cast<fir::SequenceType>(arrTy), memref, |
| 5860 | fir::getTypeParams(extMemref), iters.iterVec(), |
| 5861 | substringBounds); |
| 5862 | fir::CharBoxValue dstChar(coor, dstLen); |
| 5863 | return fir::factory::CharacterExprHelper{builder, loc} |
| 5864 | .createSubstring(dstChar, substringBounds); |
| 5865 | } |
| 5866 | } |
| 5867 | return fir::factory::arraySectionElementToExtendedValue( |
| 5868 | builder, loc, extMemref, coor, slice); |
| 5869 | }; |
| 5870 | } |
| 5871 | auto arrLoad = builder.create<fir::ArrayLoadOp>( |
| 5872 | loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref)); |
| 5873 | |
| 5874 | if (CrayPtr) { |
| 5875 | mlir::Type ptrTy = CrayPtr.getType(); |
| 5876 | mlir::Value cnvrt = Fortran::lower::addCrayPointerInst( |
| 5877 | loc, builder, CrayPtr, ptrTy, memref.getType()); |
| 5878 | auto addr = builder.create<fir::LoadOp>(loc, cnvrt); |
| 5879 | arrLoad = builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shape, slice, |
| 5880 | fir::getTypeParams(extMemref)); |
| 5881 | } |
| 5882 | |
| 5883 | mlir::Value arrLd = arrLoad.getResult(); |
| 5884 | if (isProjectedCopyInCopyOut()) { |
| 5885 | // Semantics are projected copy-in copy-out. |
| 5886 | // The backing store of the destination of an array expression may be |
| 5887 | // partially modified. These updates are recorded in FIR by forwarding a |
| 5888 | // continuation that generates an `array_update` Op. The destination is |
| 5889 | // always loaded at the beginning of the statement and merged at the |
| 5890 | // end. |
| 5891 | destination = arrLoad; |
| 5892 | auto lambda = ccStoreToDest |
| 5893 | ? *ccStoreToDest |
| 5894 | : defaultStoreToDestination(components.substring); |
| 5895 | return [=](IterSpace iters) -> ExtValue { return lambda(iters); }; |
| 5896 | } |
| 5897 | if (isCustomCopyInCopyOut()) { |
| 5898 | // Create an array_modify to get the LHS element address and indicate |
| 5899 | // the assignment, the actual assignment must be implemented in |
| 5900 | // ccStoreToDest. |
| 5901 | destination = arrLoad; |
| 5902 | return [=](IterSpace iters) -> ExtValue { |
| 5903 | mlir::Value innerArg = iters.innerArgument(); |
| 5904 | mlir::Type resTy = innerArg.getType(); |
| 5905 | mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec()); |
| 5906 | mlir::Type refEleTy = |
| 5907 | fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); |
| 5908 | auto arrModify = builder.create<fir::ArrayModifyOp>( |
| 5909 | loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(), |
| 5910 | destination.getTypeparams()); |
| 5911 | return abstractArrayExtValue(arrModify.getResult(1)); |
| 5912 | }; |
| 5913 | } |
| 5914 | if (isCopyInCopyOut()) { |
| 5915 | // Semantics are copy-in copy-out. |
| 5916 | // The continuation simply forwards the result of the `array_load` Op, |
| 5917 | // which is the value of the array as it was when loaded. All data |
| 5918 | // references with rank > 0 in an array expression typically have |
| 5919 | // copy-in copy-out semantics. |
| 5920 | return [=](IterSpace) -> ExtValue { return arrLd; }; |
| 5921 | } |
| 5922 | llvm::SmallVector<mlir::Value> arrLdTypeParams = |
| 5923 | fir::factory::getTypeParams(loc, builder, arrLoad); |
| 5924 | if (isValueAttribute()) { |
| 5925 | // Semantics are value attribute. |
| 5926 | // Here the continuation will `array_fetch` a value from an array and |
| 5927 | // then store that value in a temporary. One can thus imitate pass by |
| 5928 | // value even when the call is pass by reference. |
| 5929 | return [=](IterSpace iters) -> ExtValue { |
| 5930 | mlir::Value base; |
| 5931 | mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); |
| 5932 | if (isAdjustedArrayElementType(eleTy)) { |
| 5933 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
| 5934 | base = builder.create<fir::ArrayAccessOp>( |
| 5935 | loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); |
| 5936 | } else { |
| 5937 | base = builder.create<fir::ArrayFetchOp>( |
| 5938 | loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); |
| 5939 | } |
| 5940 | mlir::Value temp = |
| 5941 | builder.createTemporary(loc, base.getType(), |
| 5942 | llvm::ArrayRef<mlir::NamedAttribute>{ |
| 5943 | fir::getAdaptToByRefAttr(builder)}); |
| 5944 | builder.create<fir::StoreOp>(loc, base, temp); |
| 5945 | return fir::factory::arraySectionElementToExtendedValue( |
| 5946 | builder, loc, extMemref, temp, slice); |
| 5947 | }; |
| 5948 | } |
| 5949 | // In the default case, the array reference forwards an `array_fetch` or |
| 5950 | // `array_access` Op in the continuation. |
| 5951 | return [=](IterSpace iters) -> ExtValue { |
| 5952 | mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec()); |
| 5953 | if (isAdjustedArrayElementType(eleTy)) { |
| 5954 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
| 5955 | mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>( |
| 5956 | loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams); |
| 5957 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| 5958 | llvm::SmallVector<mlir::Value> substringBounds; |
| 5959 | populateBounds(substringBounds, components.substring); |
| 5960 | if (!substringBounds.empty()) { |
| 5961 | mlir::Value dstLen = fir::factory::genLenOfCharacter( |
| 5962 | builder, loc, arrLoad, iters.iterVec(), substringBounds); |
| 5963 | fir::CharBoxValue dstChar(arrayOp, dstLen); |
| 5964 | return fir::factory::CharacterExprHelper{builder, loc} |
| 5965 | .createSubstring(dstChar, substringBounds); |
| 5966 | } |
| 5967 | } |
| 5968 | return fir::factory::arraySectionElementToExtendedValue( |
| 5969 | builder, loc, extMemref, arrayOp, slice); |
| 5970 | } |
| 5971 | auto arrFetch = builder.create<fir::ArrayFetchOp>( |
| 5972 | loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams); |
| 5973 | return fir::factory::arraySectionElementToExtendedValue( |
| 5974 | builder, loc, extMemref, arrFetch, slice); |
| 5975 | }; |
| 5976 | } |
| 5977 | |
| 5978 | std::tuple<CC, mlir::Value, mlir::Type> |
| 5979 | genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) { |
| 5980 | assert(expr.Rank() > 0 && "expr must be an array" ); |
| 5981 | mlir::Location loc = getLoc(); |
| 5982 | ExtValue optionalArg = asInquired(expr); |
| 5983 | mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); |
| 5984 | // Generate an array load and access to an array that may be an absent |
| 5985 | // optional or an unallocated optional. |
| 5986 | mlir::Value base = getBase(optionalArg); |
| 5987 | const bool hasOptionalAttr = |
| 5988 | fir::valueHasFirAttribute(base, fir::getOptionalAttrName()); |
| 5989 | mlir::Type baseType = fir::unwrapRefType(base.getType()); |
| 5990 | const bool isBox = mlir::isa<fir::BoxType>(baseType); |
| 5991 | const bool isAllocOrPtr = |
| 5992 | Fortran::evaluate::IsAllocatableOrPointerObject(expr); |
| 5993 | mlir::Type arrType = fir::unwrapPassByRefType(baseType); |
| 5994 | mlir::Type eleType = fir::unwrapSequenceType(arrType); |
| 5995 | ExtValue exv = optionalArg; |
| 5996 | if (hasOptionalAttr && isBox && !isAllocOrPtr) { |
| 5997 | // Elemental argument cannot be allocatable or pointers (C15100). |
| 5998 | // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and |
| 5999 | // Pointer optional arrays cannot be absent. The only kind of entities |
| 6000 | // that can get here are optional assumed shape and polymorphic entities. |
| 6001 | exv = absentBoxToUnallocatedBox(builder, loc, exv, isPresent); |
| 6002 | } |
| 6003 | // All the properties can be read from any fir.box but the read values may |
| 6004 | // be undefined and should only be used inside a fir.if (canBeRead) region. |
| 6005 | if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>()) |
| 6006 | exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox); |
| 6007 | |
| 6008 | mlir::Value memref = fir::getBase(exv); |
| 6009 | mlir::Value shape = builder.createShape(loc, exv); |
| 6010 | mlir::Value noSlice; |
| 6011 | auto arrLoad = builder.create<fir::ArrayLoadOp>( |
| 6012 | loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv)); |
| 6013 | mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams(); |
| 6014 | mlir::Value arrLd = arrLoad.getResult(); |
| 6015 | // Mark the load to tell later passes it is unsafe to use this array_load |
| 6016 | // shape unconditionally. |
| 6017 | arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr()); |
| 6018 | |
| 6019 | // Place the array as optional on the arrayOperands stack so that its |
| 6020 | // shape will only be used as a fallback to induce the implicit loop nest |
| 6021 | // (that is if there is no non optional array arguments). |
| 6022 | arrayOperands.push_back( |
| 6023 | ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true}); |
| 6024 | |
| 6025 | // By value semantics. |
| 6026 | auto cc = [=](IterSpace iters) -> ExtValue { |
| 6027 | auto arrFetch = builder.create<fir::ArrayFetchOp>( |
| 6028 | loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams); |
| 6029 | return fir::factory::arraySectionElementToExtendedValue( |
| 6030 | builder, loc, exv, arrFetch, noSlice); |
| 6031 | }; |
| 6032 | return {cc, isPresent, eleType}; |
| 6033 | } |
| 6034 | |
| 6035 | /// Generate a continuation to pass \p expr to an OPTIONAL argument of an |
| 6036 | /// elemental procedure. This is meant to handle the cases where \p expr might |
| 6037 | /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an |
| 6038 | /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can |
| 6039 | /// directly be called instead. |
| 6040 | CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) { |
| 6041 | mlir::Location loc = getLoc(); |
| 6042 | // Only by-value numerical and logical so far. |
| 6043 | if (semant != ConstituentSemantics::RefTransparent) |
| 6044 | TODO(loc, "optional arguments in user defined elemental procedures" ); |
| 6045 | |
| 6046 | // Handle scalar argument case (the if-then-else is generated outside of the |
| 6047 | // implicit loop nest). |
| 6048 | if (expr.Rank() == 0) { |
| 6049 | ExtValue optionalArg = asInquired(expr); |
| 6050 | mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg); |
| 6051 | mlir::Value elementValue = |
| 6052 | fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent)); |
| 6053 | return [=](IterSpace iters) -> ExtValue { return elementValue; }; |
| 6054 | } |
| 6055 | |
| 6056 | CC cc; |
| 6057 | mlir::Value isPresent; |
| 6058 | mlir::Type eleType; |
| 6059 | std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr); |
| 6060 | return [=](IterSpace iters) -> ExtValue { |
| 6061 | mlir::Value elementValue = |
| 6062 | builder |
| 6063 | .genIfOp(loc, {eleType}, isPresent, |
| 6064 | /*withElseRegion=*/true) |
| 6065 | .genThen([&]() { |
| 6066 | builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters))); |
| 6067 | }) |
| 6068 | .genElse([&]() { |
| 6069 | mlir::Value zero = |
| 6070 | fir::factory::createZeroValue(builder, loc, eleType); |
| 6071 | builder.create<fir::ResultOp>(loc, zero); |
| 6072 | }) |
| 6073 | .getResults()[0]; |
| 6074 | return elementValue; |
| 6075 | }; |
| 6076 | } |
| 6077 | |
| 6078 | /// Reduce the rank of a array to be boxed based on the slice's operands. |
| 6079 | static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) { |
| 6080 | if (slice) { |
| 6081 | auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp()); |
| 6082 | assert(slOp && "expected slice op" ); |
| 6083 | auto seqTy = mlir::dyn_cast<fir::SequenceType>(arrTy); |
| 6084 | assert(seqTy && "expected array type" ); |
| 6085 | mlir::Operation::operand_range triples = slOp.getTriples(); |
| 6086 | fir::SequenceType::Shape shape; |
| 6087 | // reduce the rank for each invariant dimension |
| 6088 | for (unsigned i = 1, end = triples.size(); i < end; i += 3) { |
| 6089 | if (auto extent = fir::factory::getExtentFromTriplet( |
| 6090 | triples[i - 1], triples[i], triples[i + 1])) |
| 6091 | shape.push_back(*extent); |
| 6092 | else if (!mlir::isa_and_nonnull<fir::UndefOp>( |
| 6093 | triples[i].getDefiningOp())) |
| 6094 | shape.push_back(fir::SequenceType::getUnknownExtent()); |
| 6095 | } |
| 6096 | return fir::SequenceType::get(shape, seqTy.getEleTy()); |
| 6097 | } |
| 6098 | // not sliced, so no change in rank |
| 6099 | return arrTy; |
| 6100 | } |
| 6101 | |
| 6102 | /// Example: <code>array%RE</code> |
| 6103 | CC genarr(const Fortran::evaluate::ComplexPart &x, |
| 6104 | ComponentPath &components) { |
| 6105 | components.reversePath.push_back(&x); |
| 6106 | return genarr(x.complex(), components); |
| 6107 | } |
| 6108 | |
| 6109 | template <typename A> |
| 6110 | CC genSlicePath(const A &x, ComponentPath &components) { |
| 6111 | return genarr(x, components); |
| 6112 | } |
| 6113 | |
| 6114 | CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &, |
| 6115 | ComponentPath &components) { |
| 6116 | TODO(getLoc(), "substring of static object inside FORALL" ); |
| 6117 | } |
| 6118 | |
| 6119 | /// Substrings (see 9.4.1) |
| 6120 | CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) { |
| 6121 | components.substring = &x; |
| 6122 | return Fortran::common::visit( |
| 6123 | [&](const auto &v) { return genarr(v, components); }, x.parent()); |
| 6124 | } |
| 6125 | |
| 6126 | template <typename T> |
| 6127 | CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) { |
| 6128 | // Note that it's possible that the function being called returns either an |
| 6129 | // array or a scalar. In the first case, use the element type of the array. |
| 6130 | return genProcRef( |
| 6131 | funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef)))); |
| 6132 | } |
| 6133 | |
| 6134 | //===--------------------------------------------------------------------===// |
| 6135 | // Array construction |
| 6136 | //===--------------------------------------------------------------------===// |
| 6137 | |
| 6138 | /// Target agnostic computation of the size of an element in the array. |
| 6139 | /// Returns the size in bytes with type `index` or a null Value if the element |
| 6140 | /// size is not constant. |
| 6141 | mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy, |
| 6142 | mlir::Type resTy) { |
| 6143 | mlir::Location loc = getLoc(); |
| 6144 | mlir::IndexType idxTy = builder.getIndexType(); |
| 6145 | mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1); |
| 6146 | if (fir::hasDynamicSize(eleTy)) { |
| 6147 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| 6148 | // Array of char with dynamic LEN parameter. Downcast to an array |
| 6149 | // of singleton char, and scale by the len type parameter from |
| 6150 | // `exv`. |
| 6151 | exv.match( |
| 6152 | [&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); }, |
| 6153 | [&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); }, |
| 6154 | [&](const fir::BoxValue &box) { |
| 6155 | multiplier = fir::factory::CharacterExprHelper(builder, loc) |
| 6156 | .readLengthFromBox(box.getAddr()); |
| 6157 | }, |
| 6158 | [&](const fir::MutableBoxValue &box) { |
| 6159 | multiplier = fir::factory::CharacterExprHelper(builder, loc) |
| 6160 | .readLengthFromBox(box.getAddr()); |
| 6161 | }, |
| 6162 | [&](const auto &) { |
| 6163 | fir::emitFatalError(loc, |
| 6164 | "array constructor element has unknown size" ); |
| 6165 | }); |
| 6166 | fir::CharacterType newEleTy = fir::CharacterType::getSingleton( |
| 6167 | eleTy.getContext(), charTy.getFKind()); |
| 6168 | if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(resTy)) { |
| 6169 | assert(eleTy == seqTy.getEleTy()); |
| 6170 | resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy); |
| 6171 | } |
| 6172 | eleTy = newEleTy; |
| 6173 | } else { |
| 6174 | TODO(loc, "dynamic sized type" ); |
| 6175 | } |
| 6176 | } |
| 6177 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
| 6178 | mlir::Type resRefTy = builder.getRefType(resTy); |
| 6179 | mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy); |
| 6180 | auto offset = builder.create<fir::CoordinateOp>( |
| 6181 | loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier}); |
| 6182 | return builder.createConvert(loc, idxTy, offset); |
| 6183 | } |
| 6184 | |
| 6185 | /// Get the function signature of the LLVM memcpy intrinsic. |
| 6186 | mlir::FunctionType memcpyType() { |
| 6187 | auto ptrTy = mlir::LLVM::LLVMPointerType::get(builder.getContext()); |
| 6188 | llvm::SmallVector<mlir::Type> args = {ptrTy, ptrTy, builder.getI64Type()}; |
| 6189 | return mlir::FunctionType::get(builder.getContext(), args, std::nullopt); |
| 6190 | } |
| 6191 | |
| 6192 | /// Create a call to the LLVM memcpy intrinsic. |
| 6193 | void createCallMemcpy(llvm::ArrayRef<mlir::Value> args, bool isVolatile) { |
| 6194 | mlir::Location loc = getLoc(); |
| 6195 | builder.create<mlir::LLVM::MemcpyOp>(loc, args[0], args[1], args[2], |
| 6196 | isVolatile); |
| 6197 | } |
| 6198 | |
| 6199 | // Construct code to check for a buffer overrun and realloc the buffer when |
| 6200 | // space is depleted. This is done between each item in the ac-value-list. |
| 6201 | mlir::Value growBuffer(mlir::Value mem, mlir::Value needed, |
| 6202 | mlir::Value bufferSize, mlir::Value buffSize, |
| 6203 | mlir::Value eleSz) { |
| 6204 | mlir::Location loc = getLoc(); |
| 6205 | mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder); |
| 6206 | auto cond = builder.create<mlir::arith::CmpIOp>( |
| 6207 | loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed); |
| 6208 | auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond, |
| 6209 | /*withElseRegion=*/true); |
| 6210 | auto insPt = builder.saveInsertionPoint(); |
| 6211 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 6212 | // Not enough space, resize the buffer. |
| 6213 | mlir::IndexType idxTy = builder.getIndexType(); |
| 6214 | mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2); |
| 6215 | auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two); |
| 6216 | builder.create<fir::StoreOp>(loc, newSz, buffSize); |
| 6217 | mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz); |
| 6218 | mlir::SymbolRefAttr funcSymAttr = |
| 6219 | builder.getSymbolRefAttr(reallocFunc.getName()); |
| 6220 | mlir::FunctionType funcTy = reallocFunc.getFunctionType(); |
| 6221 | auto newMem = builder.create<fir::CallOp>( |
| 6222 | loc, funcSymAttr, funcTy.getResults(), |
| 6223 | llvm::ArrayRef<mlir::Value>{ |
| 6224 | builder.createConvert(loc, funcTy.getInputs()[0], mem), |
| 6225 | builder.createConvert(loc, funcTy.getInputs()[1], byteSz)}); |
| 6226 | mlir::Value castNewMem = |
| 6227 | builder.createConvert(loc, mem.getType(), newMem.getResult(0)); |
| 6228 | builder.create<fir::ResultOp>(loc, castNewMem); |
| 6229 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 6230 | // Otherwise, just forward the buffer. |
| 6231 | builder.create<fir::ResultOp>(loc, mem); |
| 6232 | builder.restoreInsertionPoint(insPt); |
| 6233 | return ifOp.getResult(0); |
| 6234 | } |
| 6235 | |
| 6236 | /// Copy the next value (or vector of values) into the array being |
| 6237 | /// constructed. |
| 6238 | mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos, |
| 6239 | mlir::Value buffSize, mlir::Value mem, |
| 6240 | mlir::Value eleSz, mlir::Type eleTy, |
| 6241 | mlir::Type eleRefTy, mlir::Type resTy) { |
| 6242 | mlir::Location loc = getLoc(); |
| 6243 | auto off = builder.create<fir::LoadOp>(loc, buffPos); |
| 6244 | auto limit = builder.create<fir::LoadOp>(loc, buffSize); |
| 6245 | mlir::IndexType idxTy = builder.getIndexType(); |
| 6246 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 6247 | |
| 6248 | if (fir::isRecordWithAllocatableMember(eleTy)) |
| 6249 | TODO(loc, "deep copy on allocatable members" ); |
| 6250 | |
| 6251 | if (!eleSz) { |
| 6252 | // Compute the element size at runtime. |
| 6253 | assert(fir::hasDynamicSize(eleTy)); |
| 6254 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| 6255 | auto charBytes = |
| 6256 | builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8; |
| 6257 | mlir::Value bytes = |
| 6258 | builder.createIntegerConstant(loc, idxTy, charBytes); |
| 6259 | mlir::Value length = fir::getLen(exv); |
| 6260 | if (!length) |
| 6261 | fir::emitFatalError(loc, "result is not boxed character" ); |
| 6262 | eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length); |
| 6263 | } else { |
| 6264 | TODO(loc, "PDT size" ); |
| 6265 | // Will call the PDT's size function with the type parameters. |
| 6266 | } |
| 6267 | } |
| 6268 | |
| 6269 | // Compute the coordinate using `fir.coordinate_of`, or, if the type has |
| 6270 | // dynamic size, generating the pointer arithmetic. |
| 6271 | auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) { |
| 6272 | mlir::Type refTy = eleRefTy; |
| 6273 | if (fir::hasDynamicSize(eleTy)) { |
| 6274 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| 6275 | // Scale a simple pointer using dynamic length and offset values. |
| 6276 | auto chTy = fir::CharacterType::getSingleton(charTy.getContext(), |
| 6277 | charTy.getFKind()); |
| 6278 | refTy = builder.getRefType(chTy); |
| 6279 | mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy)); |
| 6280 | buff = builder.createConvert(loc, toTy, buff); |
| 6281 | off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz); |
| 6282 | } else { |
| 6283 | TODO(loc, "PDT offset" ); |
| 6284 | } |
| 6285 | } |
| 6286 | auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff, |
| 6287 | mlir::ValueRange{off}); |
| 6288 | return builder.createConvert(loc, eleRefTy, coor); |
| 6289 | }; |
| 6290 | |
| 6291 | // Lambda to lower an abstract array box value. |
| 6292 | auto doAbstractArray = [&](const auto &v) { |
| 6293 | // Compute the array size. |
| 6294 | mlir::Value arrSz = one; |
| 6295 | for (auto ext : v.getExtents()) |
| 6296 | arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext); |
| 6297 | |
| 6298 | // Grow the buffer as needed. |
| 6299 | auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz); |
| 6300 | mem = growBuffer(mem, endOff, limit, buffSize, eleSz); |
| 6301 | |
| 6302 | // Copy the elements to the buffer. |
| 6303 | mlir::Value byteSz = |
| 6304 | builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz); |
| 6305 | auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
| 6306 | mlir::Value buffi = computeCoordinate(buff, off); |
| 6307 | llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( |
| 6308 | builder, loc, memcpyType(), buffi, v.getAddr(), byteSz); |
| 6309 | const bool isVolatile = fir::isa_volatile_type(v.getAddr().getType()); |
| 6310 | createCallMemcpy(args, isVolatile); |
| 6311 | |
| 6312 | // Save the incremented buffer position. |
| 6313 | builder.create<fir::StoreOp>(loc, endOff, buffPos); |
| 6314 | }; |
| 6315 | |
| 6316 | // Copy a trivial scalar value into the buffer. |
| 6317 | auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) { |
| 6318 | // Increment the buffer position. |
| 6319 | auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); |
| 6320 | |
| 6321 | // Grow the buffer as needed. |
| 6322 | mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); |
| 6323 | |
| 6324 | // Store the element in the buffer. |
| 6325 | mlir::Value buff = |
| 6326 | builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
| 6327 | auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff, |
| 6328 | mlir::ValueRange{off}); |
| 6329 | fir::factory::genScalarAssignment( |
| 6330 | builder, loc, |
| 6331 | [&]() -> ExtValue { |
| 6332 | if (len) |
| 6333 | return fir::CharBoxValue(buffi, len); |
| 6334 | return buffi; |
| 6335 | }(), |
| 6336 | v); |
| 6337 | builder.create<fir::StoreOp>(loc, plusOne, buffPos); |
| 6338 | }; |
| 6339 | |
| 6340 | // Copy the value. |
| 6341 | exv.match( |
| 6342 | [&](mlir::Value) { doTrivialScalar(exv); }, |
| 6343 | [&](const fir::CharBoxValue &v) { |
| 6344 | auto buffer = v.getBuffer(); |
| 6345 | if (fir::isa_char(buffer.getType())) { |
| 6346 | doTrivialScalar(exv, eleSz); |
| 6347 | } else { |
| 6348 | // Increment the buffer position. |
| 6349 | auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one); |
| 6350 | |
| 6351 | // Grow the buffer as needed. |
| 6352 | mem = growBuffer(mem, plusOne, limit, buffSize, eleSz); |
| 6353 | |
| 6354 | // Store the element in the buffer. |
| 6355 | mlir::Value buff = |
| 6356 | builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
| 6357 | mlir::Value buffi = computeCoordinate(buff, off); |
| 6358 | llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments( |
| 6359 | builder, loc, memcpyType(), buffi, v.getAddr(), eleSz); |
| 6360 | const bool isVolatile = |
| 6361 | fir::isa_volatile_type(v.getAddr().getType()); |
| 6362 | createCallMemcpy(args, isVolatile); |
| 6363 | |
| 6364 | builder.create<fir::StoreOp>(loc, plusOne, buffPos); |
| 6365 | } |
| 6366 | }, |
| 6367 | [&](const fir::ArrayBoxValue &v) { doAbstractArray(v); }, |
| 6368 | [&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); }, |
| 6369 | [&](const auto &) { |
| 6370 | TODO(loc, "unhandled array constructor expression" ); |
| 6371 | }); |
| 6372 | return mem; |
| 6373 | } |
| 6374 | |
| 6375 | // Lower the expr cases in an ac-value-list. |
| 6376 | template <typename A> |
| 6377 | std::pair<ExtValue, bool> |
| 6378 | genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type, |
| 6379 | mlir::Value, mlir::Value, mlir::Value, |
| 6380 | Fortran::lower::StatementContext &stmtCtx) { |
| 6381 | if (isArray(x)) |
| 6382 | return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)), |
| 6383 | /*needCopy=*/true}; |
| 6384 | return {asScalar(x), /*needCopy=*/true}; |
| 6385 | } |
| 6386 | |
| 6387 | // Lower an ac-implied-do in an ac-value-list. |
| 6388 | template <typename A> |
| 6389 | std::pair<ExtValue, bool> |
| 6390 | genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x, |
| 6391 | mlir::Type resTy, mlir::Value mem, |
| 6392 | mlir::Value buffPos, mlir::Value buffSize, |
| 6393 | Fortran::lower::StatementContext &) { |
| 6394 | mlir::Location loc = getLoc(); |
| 6395 | mlir::IndexType idxTy = builder.getIndexType(); |
| 6396 | mlir::Value lo = |
| 6397 | builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower()))); |
| 6398 | mlir::Value up = |
| 6399 | builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper()))); |
| 6400 | mlir::Value step = |
| 6401 | builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride()))); |
| 6402 | auto seqTy = mlir::cast<fir::SequenceType>(resTy); |
| 6403 | mlir::Type eleTy = fir::unwrapSequenceType(seqTy); |
| 6404 | auto loop = |
| 6405 | builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false, |
| 6406 | /*finalCount=*/false, mem); |
| 6407 | // create a new binding for x.name(), to ac-do-variable, to the iteration |
| 6408 | // value. |
| 6409 | symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar()); |
| 6410 | auto insPt = builder.saveInsertionPoint(); |
| 6411 | builder.setInsertionPointToStart(loop.getBody()); |
| 6412 | // Thread mem inside the loop via loop argument. |
| 6413 | mem = loop.getRegionIterArgs()[0]; |
| 6414 | |
| 6415 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
| 6416 | |
| 6417 | // Any temps created in the loop body must be freed inside the loop body. |
| 6418 | stmtCtx.pushScope(); |
| 6419 | std::optional<mlir::Value> charLen; |
| 6420 | for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) { |
| 6421 | auto [exv, copyNeeded] = Fortran::common::visit( |
| 6422 | [&](const auto &v) { |
| 6423 | return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize, |
| 6424 | stmtCtx); |
| 6425 | }, |
| 6426 | acv.u); |
| 6427 | mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); |
| 6428 | mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, |
| 6429 | eleSz, eleTy, eleRefTy, resTy) |
| 6430 | : fir::getBase(exv); |
| 6431 | if (fir::isa_char(seqTy.getEleTy()) && !charLen) { |
| 6432 | charLen = builder.createTemporary(loc, builder.getI64Type()); |
| 6433 | mlir::Value castLen = |
| 6434 | builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); |
| 6435 | assert(charLen.has_value()); |
| 6436 | builder.create<fir::StoreOp>(loc, castLen, *charLen); |
| 6437 | } |
| 6438 | } |
| 6439 | stmtCtx.finalizeAndPop(); |
| 6440 | |
| 6441 | builder.create<fir::ResultOp>(loc, mem); |
| 6442 | builder.restoreInsertionPoint(insPt); |
| 6443 | mem = loop.getResult(0); |
| 6444 | symMap.popImpliedDoBinding(); |
| 6445 | llvm::SmallVector<mlir::Value> extents = { |
| 6446 | builder.create<fir::LoadOp>(loc, buffPos).getResult()}; |
| 6447 | |
| 6448 | // Convert to extended value. |
| 6449 | if (fir::isa_char(seqTy.getEleTy())) { |
| 6450 | assert(charLen.has_value()); |
| 6451 | auto len = builder.create<fir::LoadOp>(loc, *charLen); |
| 6452 | return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false}; |
| 6453 | } |
| 6454 | return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false}; |
| 6455 | } |
| 6456 | |
| 6457 | // To simplify the handling and interaction between the various cases, array |
| 6458 | // constructors are always lowered to the incremental construction code |
| 6459 | // pattern, even if the extent of the array value is constant. After the |
| 6460 | // MemToReg pass and constant folding, the optimizer should be able to |
| 6461 | // determine that all the buffer overrun tests are false when the |
| 6462 | // incremental construction wasn't actually required. |
| 6463 | template <typename A> |
| 6464 | CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) { |
| 6465 | mlir::Location loc = getLoc(); |
| 6466 | auto evExpr = toEvExpr(x); |
| 6467 | mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr); |
| 6468 | mlir::IndexType idxTy = builder.getIndexType(); |
| 6469 | auto seqTy = mlir::cast<fir::SequenceType>(resTy); |
| 6470 | mlir::Type eleTy = fir::unwrapSequenceType(resTy); |
| 6471 | mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size" ); |
| 6472 | mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0); |
| 6473 | mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos" ); |
| 6474 | builder.create<fir::StoreOp>(loc, zero, buffPos); |
| 6475 | // Allocate space for the array to be constructed. |
| 6476 | mlir::Value mem; |
| 6477 | if (fir::hasDynamicSize(resTy)) { |
| 6478 | if (fir::hasDynamicSize(eleTy)) { |
| 6479 | // The size of each element may depend on a general expression. Defer |
| 6480 | // creating the buffer until after the expression is evaluated. |
| 6481 | mem = builder.createNullConstant(loc, builder.getRefType(eleTy)); |
| 6482 | builder.create<fir::StoreOp>(loc, zero, buffSize); |
| 6483 | } else { |
| 6484 | mlir::Value initBuffSz = |
| 6485 | builder.createIntegerConstant(loc, idxTy, clInitialBufferSize); |
| 6486 | mem = builder.create<fir::AllocMemOp>( |
| 6487 | loc, eleTy, /*typeparams=*/std::nullopt, initBuffSz); |
| 6488 | builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); |
| 6489 | } |
| 6490 | } else { |
| 6491 | mem = builder.create<fir::AllocMemOp>(loc, resTy); |
| 6492 | int64_t buffSz = 1; |
| 6493 | for (auto extent : seqTy.getShape()) |
| 6494 | buffSz *= extent; |
| 6495 | mlir::Value initBuffSz = |
| 6496 | builder.createIntegerConstant(loc, idxTy, buffSz); |
| 6497 | builder.create<fir::StoreOp>(loc, initBuffSz, buffSize); |
| 6498 | } |
| 6499 | // Compute size of element |
| 6500 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
| 6501 | |
| 6502 | // Populate the buffer with the elements, growing as necessary. |
| 6503 | std::optional<mlir::Value> charLen; |
| 6504 | for (const auto &expr : x) { |
| 6505 | auto [exv, copyNeeded] = Fortran::common::visit( |
| 6506 | [&](const auto &e) { |
| 6507 | return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize, |
| 6508 | stmtCtx); |
| 6509 | }, |
| 6510 | expr.u); |
| 6511 | mlir::Value eleSz = computeElementSize(exv, eleTy, resTy); |
| 6512 | mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem, |
| 6513 | eleSz, eleTy, eleRefTy, resTy) |
| 6514 | : fir::getBase(exv); |
| 6515 | if (fir::isa_char(seqTy.getEleTy()) && !charLen) { |
| 6516 | charLen = builder.createTemporary(loc, builder.getI64Type()); |
| 6517 | mlir::Value castLen = |
| 6518 | builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv)); |
| 6519 | builder.create<fir::StoreOp>(loc, castLen, *charLen); |
| 6520 | } |
| 6521 | } |
| 6522 | mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem); |
| 6523 | llvm::SmallVector<mlir::Value> extents = { |
| 6524 | builder.create<fir::LoadOp>(loc, buffPos)}; |
| 6525 | |
| 6526 | // Cleanup the temporary. |
| 6527 | fir::FirOpBuilder *bldr = &converter.getFirOpBuilder(); |
| 6528 | stmtCtx.attachCleanup( |
| 6529 | [bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); }); |
| 6530 | |
| 6531 | // Return the continuation. |
| 6532 | if (fir::isa_char(seqTy.getEleTy())) { |
| 6533 | if (charLen) { |
| 6534 | auto len = builder.create<fir::LoadOp>(loc, *charLen); |
| 6535 | return genarr(fir::CharArrayBoxValue{mem, len, extents}); |
| 6536 | } |
| 6537 | return genarr(fir::CharArrayBoxValue{mem, zero, extents}); |
| 6538 | } |
| 6539 | return genarr(fir::ArrayBoxValue{mem, extents}); |
| 6540 | } |
| 6541 | |
| 6542 | CC genarr(const Fortran::evaluate::ImpliedDoIndex &) { |
| 6543 | fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0" ); |
| 6544 | } |
| 6545 | CC genarr(const Fortran::evaluate::TypeParamInquiry &x) { |
| 6546 | TODO(getLoc(), "array expr type parameter inquiry" ); |
| 6547 | return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; |
| 6548 | } |
| 6549 | CC genarr(const Fortran::evaluate::DescriptorInquiry &x) { |
| 6550 | TODO(getLoc(), "array expr descriptor inquiry" ); |
| 6551 | return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; |
| 6552 | } |
| 6553 | CC genarr(const Fortran::evaluate::StructureConstructor &x) { |
| 6554 | TODO(getLoc(), "structure constructor" ); |
| 6555 | return [](IterSpace iters) -> ExtValue { return mlir::Value{}; }; |
| 6556 | } |
| 6557 | |
| 6558 | //===--------------------------------------------------------------------===// |
| 6559 | // LOCICAL operators (.NOT., .AND., .EQV., etc.) |
| 6560 | //===--------------------------------------------------------------------===// |
| 6561 | |
| 6562 | template <int KIND> |
| 6563 | CC genarr(const Fortran::evaluate::Not<KIND> &x) { |
| 6564 | mlir::Location loc = getLoc(); |
| 6565 | mlir::IntegerType i1Ty = builder.getI1Type(); |
| 6566 | auto lambda = genarr(x.left()); |
| 6567 | mlir::Value truth = builder.createBool(loc, true); |
| 6568 | return [=](IterSpace iters) -> ExtValue { |
| 6569 | mlir::Value logical = fir::getBase(lambda(iters)); |
| 6570 | mlir::Value val = builder.createConvert(loc, i1Ty, logical); |
| 6571 | return builder.create<mlir::arith::XOrIOp>(loc, val, truth); |
| 6572 | }; |
| 6573 | } |
| 6574 | template <typename OP, typename A> |
| 6575 | CC createBinaryBoolOp(const A &x) { |
| 6576 | mlir::Location loc = getLoc(); |
| 6577 | mlir::IntegerType i1Ty = builder.getI1Type(); |
| 6578 | auto lf = genarr(x.left()); |
| 6579 | auto rf = genarr(x.right()); |
| 6580 | return [=](IterSpace iters) -> ExtValue { |
| 6581 | mlir::Value left = fir::getBase(lf(iters)); |
| 6582 | mlir::Value right = fir::getBase(rf(iters)); |
| 6583 | mlir::Value lhs = builder.createConvert(loc, i1Ty, left); |
| 6584 | mlir::Value rhs = builder.createConvert(loc, i1Ty, right); |
| 6585 | return builder.create<OP>(loc, lhs, rhs); |
| 6586 | }; |
| 6587 | } |
| 6588 | template <typename OP, typename A> |
| 6589 | CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) { |
| 6590 | mlir::Location loc = getLoc(); |
| 6591 | mlir::IntegerType i1Ty = builder.getI1Type(); |
| 6592 | auto lf = genarr(x.left()); |
| 6593 | auto rf = genarr(x.right()); |
| 6594 | return [=](IterSpace iters) -> ExtValue { |
| 6595 | mlir::Value left = fir::getBase(lf(iters)); |
| 6596 | mlir::Value right = fir::getBase(rf(iters)); |
| 6597 | mlir::Value lhs = builder.createConvert(loc, i1Ty, left); |
| 6598 | mlir::Value rhs = builder.createConvert(loc, i1Ty, right); |
| 6599 | return builder.create<OP>(loc, pred, lhs, rhs); |
| 6600 | }; |
| 6601 | } |
| 6602 | template <int KIND> |
| 6603 | CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) { |
| 6604 | switch (x.logicalOperator) { |
| 6605 | case Fortran::evaluate::LogicalOperator::And: |
| 6606 | return createBinaryBoolOp<mlir::arith::AndIOp>(x); |
| 6607 | case Fortran::evaluate::LogicalOperator::Or: |
| 6608 | return createBinaryBoolOp<mlir::arith::OrIOp>(x); |
| 6609 | case Fortran::evaluate::LogicalOperator::Eqv: |
| 6610 | return createCompareBoolOp<mlir::arith::CmpIOp>( |
| 6611 | mlir::arith::CmpIPredicate::eq, x); |
| 6612 | case Fortran::evaluate::LogicalOperator::Neqv: |
| 6613 | return createCompareBoolOp<mlir::arith::CmpIOp>( |
| 6614 | mlir::arith::CmpIPredicate::ne, x); |
| 6615 | case Fortran::evaluate::LogicalOperator::Not: |
| 6616 | llvm_unreachable(".NOT. handled elsewhere" ); |
| 6617 | } |
| 6618 | llvm_unreachable("unhandled case" ); |
| 6619 | } |
| 6620 | |
| 6621 | //===--------------------------------------------------------------------===// |
| 6622 | // Relational operators (<, <=, ==, etc.) |
| 6623 | //===--------------------------------------------------------------------===// |
| 6624 | |
| 6625 | template <typename OP, typename PRED, typename A> |
| 6626 | CC createCompareOp(PRED pred, const A &x, |
| 6627 | std::optional<int> unsignedKind = std::nullopt) { |
| 6628 | mlir::Location loc = getLoc(); |
| 6629 | auto lf = genarr(x.left()); |
| 6630 | auto rf = genarr(x.right()); |
| 6631 | return [=](IterSpace iters) -> ExtValue { |
| 6632 | mlir::Value lhs = fir::getBase(lf(iters)); |
| 6633 | mlir::Value rhs = fir::getBase(rf(iters)); |
| 6634 | if (unsignedKind) { |
| 6635 | mlir::Type signlessType = converter.genType( |
| 6636 | Fortran::common::TypeCategory::Integer, *unsignedKind); |
| 6637 | mlir::Value lhsSL = builder.createConvert(loc, signlessType, lhs); |
| 6638 | mlir::Value rhsSL = builder.createConvert(loc, signlessType, rhs); |
| 6639 | return builder.create<OP>(loc, pred, lhsSL, rhsSL); |
| 6640 | } |
| 6641 | return builder.create<OP>(loc, pred, lhs, rhs); |
| 6642 | }; |
| 6643 | } |
| 6644 | template <typename A> |
| 6645 | CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) { |
| 6646 | mlir::Location loc = getLoc(); |
| 6647 | auto lf = genarr(x.left()); |
| 6648 | auto rf = genarr(x.right()); |
| 6649 | return [=](IterSpace iters) -> ExtValue { |
| 6650 | auto lhs = lf(iters); |
| 6651 | auto rhs = rf(iters); |
| 6652 | return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs); |
| 6653 | }; |
| 6654 | } |
| 6655 | template <int KIND> |
| 6656 | CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| 6657 | Fortran::common::TypeCategory::Integer, KIND>> &x) { |
| 6658 | return createCompareOp<mlir::arith::CmpIOp>( |
| 6659 | translateSignedRelational(x.opr), x); |
| 6660 | } |
| 6661 | template <int KIND> |
| 6662 | CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| 6663 | Fortran::common::TypeCategory::Unsigned, KIND>> &x) { |
| 6664 | return createCompareOp<mlir::arith::CmpIOp>( |
| 6665 | translateUnsignedRelational(x.opr), x, KIND); |
| 6666 | } |
| 6667 | template <int KIND> |
| 6668 | CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| 6669 | Fortran::common::TypeCategory::Character, KIND>> &x) { |
| 6670 | return createCompareCharOp(translateSignedRelational(x.opr), x); |
| 6671 | } |
| 6672 | template <int KIND> |
| 6673 | CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| 6674 | Fortran::common::TypeCategory::Real, KIND>> &x) { |
| 6675 | return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr), |
| 6676 | x); |
| 6677 | } |
| 6678 | template <int KIND> |
| 6679 | CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type< |
| 6680 | Fortran::common::TypeCategory::Complex, KIND>> &x) { |
| 6681 | return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x); |
| 6682 | } |
| 6683 | CC genarr( |
| 6684 | const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) { |
| 6685 | return Fortran::common::visit([&](const auto &x) { return genarr(x); }, |
| 6686 | r.u); |
| 6687 | } |
| 6688 | |
| 6689 | template <typename A> |
| 6690 | CC genarr(const Fortran::evaluate::Designator<A> &des) { |
| 6691 | ComponentPath components(des.Rank() > 0); |
| 6692 | return Fortran::common::visit( |
| 6693 | [&](const auto &x) { return genarr(x, components); }, des.u); |
| 6694 | } |
| 6695 | |
| 6696 | /// Is the path component rank > 0? |
| 6697 | static bool ranked(const PathComponent &x) { |
| 6698 | return Fortran::common::visit( |
| 6699 | Fortran::common::visitors{ |
| 6700 | [](const ImplicitSubscripts &) { return false; }, |
| 6701 | [](const auto *v) { return v->Rank() > 0; }}, |
| 6702 | x); |
| 6703 | } |
| 6704 | |
| 6705 | void extendComponent(Fortran::lower::ComponentPath &component, |
| 6706 | mlir::Type coorTy, mlir::ValueRange vals) { |
| 6707 | auto *bldr = &converter.getFirOpBuilder(); |
| 6708 | llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end()); |
| 6709 | auto currentFunc = component.getExtendCoorRef(); |
| 6710 | auto loc = getLoc(); |
| 6711 | auto newCoorRef = [bldr, coorTy, offsets, currentFunc, |
| 6712 | loc](mlir::Value val) -> mlir::Value { |
| 6713 | return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy), |
| 6714 | currentFunc(val), offsets); |
| 6715 | }; |
| 6716 | component.extendCoorRef = newCoorRef; |
| 6717 | } |
| 6718 | |
| 6719 | //===-------------------------------------------------------------------===// |
| 6720 | // Array data references in an explicit iteration space. |
| 6721 | // |
| 6722 | // Use the base array that was loaded before the loop nest. |
| 6723 | //===-------------------------------------------------------------------===// |
| 6724 | |
| 6725 | /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or |
| 6726 | /// array_update op. \p ty is the initial type of the array |
| 6727 | /// (reference). Returns the type of the element after application of the |
| 6728 | /// path in \p components. |
| 6729 | /// |
| 6730 | /// TODO: This needs to deal with array's with initial bounds other than 1. |
| 6731 | /// TODO: Thread type parameters correctly. |
| 6732 | mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) { |
| 6733 | mlir::Location loc = getLoc(); |
| 6734 | mlir::Type ty = fir::getBase(arrayExv).getType(); |
| 6735 | auto &revPath = components.reversePath; |
| 6736 | ty = fir::unwrapPassByRefType(ty); |
| 6737 | bool prefix = true; |
| 6738 | bool deref = false; |
| 6739 | auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) { |
| 6740 | if (deref) { |
| 6741 | extendComponent(components, ty, vals); |
| 6742 | } else if (prefix) { |
| 6743 | for (auto v : vals) |
| 6744 | components.prefixComponents.push_back(v); |
| 6745 | } else { |
| 6746 | for (auto v : vals) |
| 6747 | components.suffixComponents.push_back(v); |
| 6748 | } |
| 6749 | }; |
| 6750 | mlir::IndexType idxTy = builder.getIndexType(); |
| 6751 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 6752 | bool atBase = true; |
| 6753 | PushSemantics(isProjectedCopyInCopyOut() |
| 6754 | ? ConstituentSemantics::RefTransparent |
| 6755 | : nextPathSemantics()); |
| 6756 | unsigned index = 0; |
| 6757 | for (const auto &v : llvm::reverse(revPath)) { |
| 6758 | Fortran::common::visit( |
| 6759 | Fortran::common::visitors{ |
| 6760 | [&](const ImplicitSubscripts &) { |
| 6761 | prefix = false; |
| 6762 | ty = fir::unwrapSequenceType(ty); |
| 6763 | }, |
| 6764 | [&](const Fortran::evaluate::ComplexPart *x) { |
| 6765 | assert(!prefix && "complex part must be at end" ); |
| 6766 | mlir::Value offset = builder.createIntegerConstant( |
| 6767 | loc, builder.getI32Type(), |
| 6768 | x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 |
| 6769 | : 1); |
| 6770 | components.suffixComponents.push_back(offset); |
| 6771 | ty = fir::applyPathToType(ty, mlir::ValueRange{offset}); |
| 6772 | }, |
| 6773 | [&](const Fortran::evaluate::ArrayRef *x) { |
| 6774 | if (Fortran::lower::isRankedArrayAccess(*x)) { |
| 6775 | genSliceIndices(components, arrayExv, *x, atBase); |
| 6776 | ty = fir::unwrapSeqOrBoxedSeqType(ty); |
| 6777 | } else { |
| 6778 | // Array access where the expressions are scalar and cannot |
| 6779 | // depend upon the implied iteration space. |
| 6780 | unsigned ssIndex = 0u; |
| 6781 | llvm::SmallVector<mlir::Value> componentsToAdd; |
| 6782 | for (const auto &ss : x->subscript()) { |
| 6783 | Fortran::common::visit( |
| 6784 | Fortran::common::visitors{ |
| 6785 | [&](const Fortran::evaluate:: |
| 6786 | IndirectSubscriptIntegerExpr &ie) { |
| 6787 | const auto &e = ie.value(); |
| 6788 | if (isArray(e)) |
| 6789 | fir::emitFatalError( |
| 6790 | loc, |
| 6791 | "multiple components along single path " |
| 6792 | "generating array subexpressions" ); |
| 6793 | // Lower scalar index expression, append it to |
| 6794 | // subs. |
| 6795 | mlir::Value subscriptVal = |
| 6796 | fir::getBase(asScalarArray(e)); |
| 6797 | // arrayExv is the base array. It needs to reflect |
| 6798 | // the current array component instead. |
| 6799 | // FIXME: must use lower bound of this component, |
| 6800 | // not just the constant 1. |
| 6801 | mlir::Value lb = |
| 6802 | atBase ? fir::factory::readLowerBound( |
| 6803 | builder, loc, arrayExv, ssIndex, |
| 6804 | one) |
| 6805 | : one; |
| 6806 | mlir::Value val = builder.createConvert( |
| 6807 | loc, idxTy, subscriptVal); |
| 6808 | mlir::Value ivAdj = |
| 6809 | builder.create<mlir::arith::SubIOp>( |
| 6810 | loc, idxTy, val, lb); |
| 6811 | componentsToAdd.push_back( |
| 6812 | builder.createConvert(loc, idxTy, ivAdj)); |
| 6813 | }, |
| 6814 | [&](const auto &) { |
| 6815 | fir::emitFatalError( |
| 6816 | loc, "multiple components along single path " |
| 6817 | "generating array subexpressions" ); |
| 6818 | }}, |
| 6819 | ss.u); |
| 6820 | ssIndex++; |
| 6821 | } |
| 6822 | ty = fir::unwrapSeqOrBoxedSeqType(ty); |
| 6823 | addComponentList(ty, componentsToAdd); |
| 6824 | } |
| 6825 | }, |
| 6826 | [&](const Fortran::evaluate::Component *x) { |
| 6827 | auto fieldTy = fir::FieldType::get(builder.getContext()); |
| 6828 | std::string name = |
| 6829 | converter.getRecordTypeFieldName(getLastSym(*x)); |
| 6830 | if (auto recTy = mlir::dyn_cast<fir::RecordType>(ty)) { |
| 6831 | ty = recTy.getType(name); |
| 6832 | auto fld = builder.create<fir::FieldIndexOp>( |
| 6833 | loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); |
| 6834 | addComponentList(ty, {fld}); |
| 6835 | if (index != revPath.size() - 1 || !isPointerAssignment()) { |
| 6836 | // Need an intermediate dereference if the boxed value |
| 6837 | // appears in the middle of the component path or if it is |
| 6838 | // on the right and this is not a pointer assignment. |
| 6839 | if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) { |
| 6840 | auto currentFunc = components.getExtendCoorRef(); |
| 6841 | auto loc = getLoc(); |
| 6842 | auto *bldr = &converter.getFirOpBuilder(); |
| 6843 | auto newCoorRef = [=](mlir::Value val) -> mlir::Value { |
| 6844 | return bldr->create<fir::LoadOp>(loc, currentFunc(val)); |
| 6845 | }; |
| 6846 | components.extendCoorRef = newCoorRef; |
| 6847 | deref = true; |
| 6848 | } |
| 6849 | } |
| 6850 | } else if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) { |
| 6851 | ty = fir::unwrapRefType(boxTy.getEleTy()); |
| 6852 | auto recTy = mlir::cast<fir::RecordType>(ty); |
| 6853 | ty = recTy.getType(name); |
| 6854 | auto fld = builder.create<fir::FieldIndexOp>( |
| 6855 | loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv)); |
| 6856 | extendComponent(components, ty, {fld}); |
| 6857 | } else { |
| 6858 | TODO(loc, "other component type" ); |
| 6859 | } |
| 6860 | }}, |
| 6861 | v); |
| 6862 | atBase = false; |
| 6863 | ++index; |
| 6864 | } |
| 6865 | ty = fir::unwrapSequenceType(ty); |
| 6866 | components.applied = true; |
| 6867 | return ty; |
| 6868 | } |
| 6869 | |
| 6870 | llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) { |
| 6871 | llvm::SmallVector<mlir::Value> result; |
| 6872 | if (components.substring) |
| 6873 | populateBounds(result, components.substring); |
| 6874 | return result; |
| 6875 | } |
| 6876 | |
| 6877 | CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) { |
| 6878 | mlir::Location loc = getLoc(); |
| 6879 | auto revPath = components.reversePath; |
| 6880 | fir::ExtendedValue arrayExv = |
| 6881 | arrayLoadExtValue(builder, loc, load, {}, load); |
| 6882 | mlir::Type eleTy = lowerPath(arrayExv, components); |
| 6883 | auto currentPC = components.pc; |
| 6884 | auto pc = [=, prefix = components.prefixComponents, |
| 6885 | suffix = components.suffixComponents](IterSpace iters) { |
| 6886 | // Add path prefix and suffix. |
| 6887 | return IterationSpace(currentPC(iters), prefix, suffix); |
| 6888 | }; |
| 6889 | components.resetPC(); |
| 6890 | llvm::SmallVector<mlir::Value> substringBounds = |
| 6891 | genSubstringBounds(components); |
| 6892 | if (isProjectedCopyInCopyOut()) { |
| 6893 | destination = load; |
| 6894 | auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable { |
| 6895 | mlir::Value innerArg = esp->findArgumentOfLoad(load); |
| 6896 | if (isAdjustedArrayElementType(eleTy)) { |
| 6897 | mlir::Type eleRefTy = builder.getRefType(eleTy); |
| 6898 | auto arrayOp = builder.create<fir::ArrayAccessOp>( |
| 6899 | loc, eleRefTy, innerArg, iters.iterVec(), |
| 6900 | fir::factory::getTypeParams(loc, builder, load)); |
| 6901 | if (auto charTy = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| 6902 | mlir::Value dstLen = fir::factory::genLenOfCharacter( |
| 6903 | builder, loc, load, iters.iterVec(), substringBounds); |
| 6904 | fir::ArrayAmendOp amend = createCharArrayAmend( |
| 6905 | loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg, |
| 6906 | substringBounds); |
| 6907 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend, |
| 6908 | dstLen); |
| 6909 | } |
| 6910 | if (fir::isa_derived(eleTy)) { |
| 6911 | fir::ArrayAmendOp amend = |
| 6912 | createDerivedArrayAmend(loc, load, builder, arrayOp, |
| 6913 | iters.elementExv(), eleTy, innerArg); |
| 6914 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), |
| 6915 | amend); |
| 6916 | } |
| 6917 | assert(mlir::isa<fir::SequenceType>(eleTy)); |
| 6918 | TODO(loc, "array (as element) assignment" ); |
| 6919 | } |
| 6920 | if (components.hasExtendCoorRef()) { |
| 6921 | auto eleBoxTy = |
| 6922 | fir::applyPathToType(innerArg.getType(), iters.iterVec()); |
| 6923 | if (!eleBoxTy || !mlir::isa<fir::BoxType>(eleBoxTy)) |
| 6924 | TODO(loc, "assignment in a FORALL involving a designator with a " |
| 6925 | "POINTER or ALLOCATABLE component part-ref" ); |
| 6926 | auto arrayOp = builder.create<fir::ArrayAccessOp>( |
| 6927 | loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(), |
| 6928 | fir::factory::getTypeParams(loc, builder, load)); |
| 6929 | mlir::Value addr = components.getExtendCoorRef()(arrayOp); |
| 6930 | components.resetExtendCoorRef(); |
| 6931 | // When the lhs is a boxed value and the context is not a pointer |
| 6932 | // assignment, then insert the dereference of the box before any |
| 6933 | // conversion and store. |
| 6934 | if (!isPointerAssignment()) { |
| 6935 | if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(eleTy)) { |
| 6936 | eleTy = fir::boxMemRefType(boxTy); |
| 6937 | addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr); |
| 6938 | eleTy = fir::unwrapRefType(eleTy); |
| 6939 | } |
| 6940 | } |
| 6941 | auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); |
| 6942 | builder.create<fir::StoreOp>(loc, ele, addr); |
| 6943 | auto amend = builder.create<fir::ArrayAmendOp>( |
| 6944 | loc, innerArg.getType(), innerArg, arrayOp); |
| 6945 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend); |
| 6946 | } |
| 6947 | auto ele = convertElementForUpdate(loc, eleTy, iters.getElement()); |
| 6948 | auto update = builder.create<fir::ArrayUpdateOp>( |
| 6949 | loc, innerArg.getType(), innerArg, ele, iters.iterVec(), |
| 6950 | fir::factory::getTypeParams(loc, builder, load)); |
| 6951 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update); |
| 6952 | }; |
| 6953 | return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; |
| 6954 | } |
| 6955 | if (isCustomCopyInCopyOut()) { |
| 6956 | // Create an array_modify to get the LHS element address and indicate |
| 6957 | // the assignment, and create the call to the user defined assignment. |
| 6958 | destination = load; |
| 6959 | auto lambda = [=](IterSpace iters) mutable { |
| 6960 | mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load); |
| 6961 | mlir::Type refEleTy = |
| 6962 | fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy); |
| 6963 | auto arrModify = builder.create<fir::ArrayModifyOp>( |
| 6964 | loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg, |
| 6965 | iters.iterVec(), load.getTypeparams()); |
| 6966 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), |
| 6967 | arrModify.getResult(1)); |
| 6968 | }; |
| 6969 | return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; |
| 6970 | } |
| 6971 | auto lambda = [=, semant = this->semant](IterSpace iters) mutable { |
| 6972 | if (semant == ConstituentSemantics::RefOpaque || |
| 6973 | isAdjustedArrayElementType(eleTy)) { |
| 6974 | mlir::Type resTy = builder.getRefType(eleTy); |
| 6975 | // Use array element reference semantics. |
| 6976 | auto access = builder.create<fir::ArrayAccessOp>( |
| 6977 | loc, resTy, load, iters.iterVec(), |
| 6978 | fir::factory::getTypeParams(loc, builder, load)); |
| 6979 | mlir::Value newBase = access; |
| 6980 | if (fir::isa_char(eleTy)) { |
| 6981 | mlir::Value dstLen = fir::factory::genLenOfCharacter( |
| 6982 | builder, loc, load, iters.iterVec(), substringBounds); |
| 6983 | if (!substringBounds.empty()) { |
| 6984 | fir::CharBoxValue charDst{access, dstLen}; |
| 6985 | fir::factory::CharacterExprHelper helper{builder, loc}; |
| 6986 | charDst = helper.createSubstring(charDst, substringBounds); |
| 6987 | newBase = charDst.getAddr(); |
| 6988 | } |
| 6989 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase, |
| 6990 | dstLen); |
| 6991 | } |
| 6992 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase); |
| 6993 | } |
| 6994 | if (components.hasExtendCoorRef()) { |
| 6995 | auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec()); |
| 6996 | if (!eleBoxTy || !mlir::isa<fir::BoxType>(eleBoxTy)) |
| 6997 | TODO(loc, "assignment in a FORALL involving a designator with a " |
| 6998 | "POINTER or ALLOCATABLE component part-ref" ); |
| 6999 | auto access = builder.create<fir::ArrayAccessOp>( |
| 7000 | loc, builder.getRefType(eleBoxTy), load, iters.iterVec(), |
| 7001 | fir::factory::getTypeParams(loc, builder, load)); |
| 7002 | mlir::Value addr = components.getExtendCoorRef()(access); |
| 7003 | components.resetExtendCoorRef(); |
| 7004 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr); |
| 7005 | } |
| 7006 | if (isPointerAssignment()) { |
| 7007 | auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec()); |
| 7008 | if (!mlir::isa<fir::BoxType>(eleTy)) { |
| 7009 | // Rhs is a regular expression that will need to be boxed before |
| 7010 | // assigning to the boxed variable. |
| 7011 | auto typeParams = fir::factory::getTypeParams(loc, builder, load); |
| 7012 | auto access = builder.create<fir::ArrayAccessOp>( |
| 7013 | loc, builder.getRefType(eleTy), load, iters.iterVec(), |
| 7014 | typeParams); |
| 7015 | auto addr = components.getExtendCoorRef()(access); |
| 7016 | components.resetExtendCoorRef(); |
| 7017 | auto ptrEleTy = fir::PointerType::get(eleTy); |
| 7018 | auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr); |
| 7019 | auto boxTy = fir::BoxType::get( |
| 7020 | ptrEleTy, fir::isa_volatile_type(addr.getType())); |
| 7021 | // FIXME: The typeparams to the load may be different than those of |
| 7022 | // the subobject. |
| 7023 | if (components.hasExtendCoorRef()) |
| 7024 | TODO(loc, "need to adjust typeparameter(s) to reflect the final " |
| 7025 | "component" ); |
| 7026 | mlir::Value embox = |
| 7027 | builder.create<fir::EmboxOp>(loc, boxTy, ptrAddr, |
| 7028 | /*shape=*/mlir::Value{}, |
| 7029 | /*slice=*/mlir::Value{}, typeParams); |
| 7030 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox); |
| 7031 | } |
| 7032 | } |
| 7033 | auto fetch = builder.create<fir::ArrayFetchOp>( |
| 7034 | loc, eleTy, load, iters.iterVec(), load.getTypeparams()); |
| 7035 | return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch); |
| 7036 | }; |
| 7037 | return [=](IterSpace iters) mutable { return lambda(pc(iters)); }; |
| 7038 | } |
| 7039 | |
| 7040 | template <typename A> |
| 7041 | CC genImplicitArrayAccess(const A &x, ComponentPath &components) { |
| 7042 | components.reversePath.push_back(ImplicitSubscripts{}); |
| 7043 | ExtValue exv = asScalarRef(x); |
| 7044 | lowerPath(exv, components); |
| 7045 | auto lambda = genarr(exv, components); |
| 7046 | return [=](IterSpace iters) { return lambda(components.pc(iters)); }; |
| 7047 | } |
| 7048 | CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x, |
| 7049 | ComponentPath &components) { |
| 7050 | if (x.IsSymbol()) |
| 7051 | return genImplicitArrayAccess(getFirstSym(x), components); |
| 7052 | return genImplicitArrayAccess(x.GetComponent(), components); |
| 7053 | } |
| 7054 | |
| 7055 | CC genImplicitArrayAccess(const Fortran::semantics::Symbol &x, |
| 7056 | ComponentPath &components) { |
| 7057 | mlir::Value ptrVal = nullptr; |
| 7058 | if (x.test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
| 7059 | Fortran::semantics::SymbolRef ptrSym{ |
| 7060 | Fortran::semantics::GetCrayPointer(x)}; |
| 7061 | ExtValue ptr = converter.getSymbolExtendedValue(ptrSym); |
| 7062 | ptrVal = fir::getBase(ptr); |
| 7063 | } |
| 7064 | components.reversePath.push_back(ImplicitSubscripts{}); |
| 7065 | ExtValue exv = asScalarRef(x); |
| 7066 | lowerPath(exv, components); |
| 7067 | auto lambda = genarr(exv, components, ptrVal); |
| 7068 | return [=](IterSpace iters) { return lambda(components.pc(iters)); }; |
| 7069 | } |
| 7070 | |
| 7071 | template <typename A> |
| 7072 | CC genAsScalar(const A &x) { |
| 7073 | mlir::Location loc = getLoc(); |
| 7074 | if (isProjectedCopyInCopyOut()) { |
| 7075 | return [=, &x, builder = &converter.getFirOpBuilder()]( |
| 7076 | IterSpace iters) -> ExtValue { |
| 7077 | ExtValue exv = asScalarRef(x); |
| 7078 | mlir::Value addr = fir::getBase(exv); |
| 7079 | mlir::Type eleTy = fir::unwrapRefType(addr.getType()); |
| 7080 | if (isAdjustedArrayElementType(eleTy)) { |
| 7081 | if (fir::isa_char(eleTy)) { |
| 7082 | fir::factory::CharacterExprHelper{*builder, loc}.createAssign( |
| 7083 | exv, iters.elementExv()); |
| 7084 | } else if (fir::isa_derived(eleTy)) { |
| 7085 | TODO(loc, "assignment of derived type" ); |
| 7086 | } else { |
| 7087 | fir::emitFatalError(loc, "array type not expected in scalar" ); |
| 7088 | } |
| 7089 | } else { |
| 7090 | auto eleVal = convertElementForUpdate(loc, eleTy, iters.getElement()); |
| 7091 | builder->create<fir::StoreOp>(loc, eleVal, addr); |
| 7092 | } |
| 7093 | return exv; |
| 7094 | }; |
| 7095 | } |
| 7096 | return [=, &x](IterSpace) { return asScalar(x); }; |
| 7097 | } |
| 7098 | |
| 7099 | bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x, |
| 7100 | ComponentPath &components) { |
| 7101 | return isPointerAssignment() && Fortran::semantics::IsPointer(x) && |
| 7102 | !components.hasComponents(); |
| 7103 | } |
| 7104 | bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x, |
| 7105 | ComponentPath &components) { |
| 7106 | return tailIsPointerInPointerAssignment(getLastSym(x), components); |
| 7107 | } |
| 7108 | |
| 7109 | CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) { |
| 7110 | if (explicitSpaceIsActive()) { |
| 7111 | if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components)) |
| 7112 | components.reversePath.push_back(ImplicitSubscripts{}); |
| 7113 | if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) |
| 7114 | return applyPathToArrayLoad(load, components); |
| 7115 | } else { |
| 7116 | return genImplicitArrayAccess(x, components); |
| 7117 | } |
| 7118 | if (pathIsEmpty(components)) |
| 7119 | return components.substring ? genAsScalar(*components.substring) |
| 7120 | : genAsScalar(x); |
| 7121 | mlir::Location loc = getLoc(); |
| 7122 | return [=](IterSpace) -> ExtValue { |
| 7123 | fir::emitFatalError(loc, "reached symbol with path" ); |
| 7124 | }; |
| 7125 | } |
| 7126 | |
| 7127 | /// Lower a component path with or without rank. |
| 7128 | /// Example: <code>array%baz%qux%waldo</code> |
| 7129 | CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) { |
| 7130 | if (explicitSpaceIsActive()) { |
| 7131 | if (x.base().Rank() == 0 && x.Rank() > 0 && |
| 7132 | !tailIsPointerInPointerAssignment(x, components)) |
| 7133 | components.reversePath.push_back(ImplicitSubscripts{}); |
| 7134 | if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) |
| 7135 | return applyPathToArrayLoad(load, components); |
| 7136 | } else { |
| 7137 | if (x.base().Rank() == 0) |
| 7138 | return genImplicitArrayAccess(x, components); |
| 7139 | } |
| 7140 | bool atEnd = pathIsEmpty(components); |
| 7141 | if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp)) |
| 7142 | // Skip parent components; their components are placed directly in the |
| 7143 | // object. |
| 7144 | components.reversePath.push_back(&x); |
| 7145 | auto result = genarr(x.base(), components); |
| 7146 | if (components.applied) |
| 7147 | return result; |
| 7148 | if (atEnd) |
| 7149 | return genAsScalar(x); |
| 7150 | mlir::Location loc = getLoc(); |
| 7151 | return [=](IterSpace) -> ExtValue { |
| 7152 | fir::emitFatalError(loc, "reached component with path" ); |
| 7153 | }; |
| 7154 | } |
| 7155 | |
| 7156 | /// Array reference with subscripts. If this has rank > 0, this is a form |
| 7157 | /// of an array section (slice). |
| 7158 | /// |
| 7159 | /// There are two "slicing" primitives that may be applied on a dimension by |
| 7160 | /// dimension basis: (1) triple notation and (2) vector addressing. Since |
| 7161 | /// dimensions can be selectively sliced, some dimensions may contain |
| 7162 | /// regular scalar expressions and those dimensions do not participate in |
| 7163 | /// the array expression evaluation. |
| 7164 | CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) { |
| 7165 | if (explicitSpaceIsActive()) { |
| 7166 | if (Fortran::lower::isRankedArrayAccess(x)) |
| 7167 | components.reversePath.push_back(ImplicitSubscripts{}); |
| 7168 | if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) { |
| 7169 | components.reversePath.push_back(&x); |
| 7170 | return applyPathToArrayLoad(load, components); |
| 7171 | } |
| 7172 | } else { |
| 7173 | if (Fortran::lower::isRankedArrayAccess(x)) { |
| 7174 | components.reversePath.push_back(&x); |
| 7175 | return genImplicitArrayAccess(x.base(), components); |
| 7176 | } |
| 7177 | } |
| 7178 | bool atEnd = pathIsEmpty(components); |
| 7179 | components.reversePath.push_back(&x); |
| 7180 | auto result = genarr(x.base(), components); |
| 7181 | if (components.applied) |
| 7182 | return result; |
| 7183 | mlir::Location loc = getLoc(); |
| 7184 | if (atEnd) { |
| 7185 | if (x.Rank() == 0) |
| 7186 | return genAsScalar(x); |
| 7187 | fir::emitFatalError(loc, "expected scalar" ); |
| 7188 | } |
| 7189 | return [=](IterSpace) -> ExtValue { |
| 7190 | fir::emitFatalError(loc, "reached arrayref with path" ); |
| 7191 | }; |
| 7192 | } |
| 7193 | |
| 7194 | CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) { |
| 7195 | TODO(getLoc(), "coarray: reference to a coarray in an expression" ); |
| 7196 | } |
| 7197 | |
| 7198 | CC genarr(const Fortran::evaluate::NamedEntity &x, |
| 7199 | ComponentPath &components) { |
| 7200 | return x.IsSymbol() ? genarr(getFirstSym(x), components) |
| 7201 | : genarr(x.GetComponent(), components); |
| 7202 | } |
| 7203 | |
| 7204 | CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) { |
| 7205 | return Fortran::common::visit( |
| 7206 | [&](const auto &v) { return genarr(v, components); }, x.u); |
| 7207 | } |
| 7208 | |
| 7209 | bool pathIsEmpty(const ComponentPath &components) { |
| 7210 | return components.reversePath.empty(); |
| 7211 | } |
| 7212 | |
| 7213 | explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, |
| 7214 | Fortran::lower::StatementContext &stmtCtx, |
| 7215 | Fortran::lower::SymMap &symMap) |
| 7216 | : converter{converter}, builder{converter.getFirOpBuilder()}, |
| 7217 | stmtCtx{stmtCtx}, symMap{symMap} {} |
| 7218 | |
| 7219 | explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, |
| 7220 | Fortran::lower::StatementContext &stmtCtx, |
| 7221 | Fortran::lower::SymMap &symMap, |
| 7222 | ConstituentSemantics sem) |
| 7223 | : converter{converter}, builder{converter.getFirOpBuilder()}, |
| 7224 | stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {} |
| 7225 | |
| 7226 | explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter, |
| 7227 | Fortran::lower::StatementContext &stmtCtx, |
| 7228 | Fortran::lower::SymMap &symMap, |
| 7229 | ConstituentSemantics sem, |
| 7230 | Fortran::lower::ExplicitIterSpace *expSpace, |
| 7231 | Fortran::lower::ImplicitIterSpace *impSpace) |
| 7232 | : converter{converter}, builder{converter.getFirOpBuilder()}, |
| 7233 | stmtCtx{stmtCtx}, symMap{symMap}, |
| 7234 | explicitSpace((expSpace && expSpace->isActive()) ? expSpace : nullptr), |
| 7235 | implicitSpace((impSpace && !impSpace->empty()) ? impSpace : nullptr), |
| 7236 | semant{sem} { |
| 7237 | // Generate any mask expressions, as necessary. This is the compute step |
| 7238 | // that creates the effective masks. See 10.2.3.2 in particular. |
| 7239 | genMasks(); |
| 7240 | } |
| 7241 | |
| 7242 | mlir::Location getLoc() { return converter.getCurrentLocation(); } |
| 7243 | |
| 7244 | /// Array appears in a lhs context such that it is assigned after the rhs is |
| 7245 | /// fully evaluated. |
| 7246 | inline bool isCopyInCopyOut() { |
| 7247 | return semant == ConstituentSemantics::CopyInCopyOut; |
| 7248 | } |
| 7249 | |
| 7250 | /// Array appears in a lhs (or temp) context such that a projected, |
| 7251 | /// discontiguous subspace of the array is assigned after the rhs is fully |
| 7252 | /// evaluated. That is, the rhs array value is merged into a section of the |
| 7253 | /// lhs array. |
| 7254 | inline bool isProjectedCopyInCopyOut() { |
| 7255 | return semant == ConstituentSemantics::ProjectedCopyInCopyOut; |
| 7256 | } |
| 7257 | |
| 7258 | // ???: Do we still need this? |
| 7259 | inline bool isCustomCopyInCopyOut() { |
| 7260 | return semant == ConstituentSemantics::CustomCopyInCopyOut; |
| 7261 | } |
| 7262 | |
| 7263 | /// Are we lowering in a left-hand side context? |
| 7264 | inline bool isLeftHandSide() { |
| 7265 | return isCopyInCopyOut() || isProjectedCopyInCopyOut() || |
| 7266 | isCustomCopyInCopyOut(); |
| 7267 | } |
| 7268 | |
| 7269 | /// Array appears in a context where it must be boxed. |
| 7270 | inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; } |
| 7271 | |
| 7272 | /// Array appears in a context where differences in the memory reference can |
| 7273 | /// be observable in the computational results. For example, an array |
| 7274 | /// element is passed to an impure procedure. |
| 7275 | inline bool isReferentiallyOpaque() { |
| 7276 | return semant == ConstituentSemantics::RefOpaque; |
| 7277 | } |
| 7278 | |
| 7279 | /// Array appears in a context where it is passed as a VALUE argument. |
| 7280 | inline bool isValueAttribute() { |
| 7281 | return semant == ConstituentSemantics::ByValueArg; |
| 7282 | } |
| 7283 | |
| 7284 | /// Semantics to use when lowering the next array path. |
| 7285 | /// If no value was set, the path uses the same semantics as the array. |
| 7286 | inline ConstituentSemantics nextPathSemantics() { |
| 7287 | if (nextPathSemant) { |
| 7288 | ConstituentSemantics sema = nextPathSemant.value(); |
| 7289 | nextPathSemant.reset(); |
| 7290 | return sema; |
| 7291 | } |
| 7292 | |
| 7293 | return semant; |
| 7294 | } |
| 7295 | |
| 7296 | /// Can the loops over the expression be unordered? |
| 7297 | inline bool isUnordered() const { return unordered; } |
| 7298 | |
| 7299 | void setUnordered(bool b) { unordered = b; } |
| 7300 | |
| 7301 | inline bool isPointerAssignment() const { return lbounds.has_value(); } |
| 7302 | |
| 7303 | inline bool isBoundsSpec() const { |
| 7304 | return isPointerAssignment() && !ubounds.has_value(); |
| 7305 | } |
| 7306 | |
| 7307 | inline bool isBoundsRemap() const { |
| 7308 | return isPointerAssignment() && ubounds.has_value(); |
| 7309 | } |
| 7310 | |
| 7311 | void setPointerAssignmentBounds( |
| 7312 | const llvm::SmallVector<mlir::Value> &lbs, |
| 7313 | std::optional<llvm::SmallVector<mlir::Value>> ubs) { |
| 7314 | lbounds = lbs; |
| 7315 | ubounds = ubs; |
| 7316 | } |
| 7317 | |
| 7318 | void setLoweredProcRef(const Fortran::evaluate::ProcedureRef *procRef) { |
| 7319 | loweredProcRef = procRef; |
| 7320 | } |
| 7321 | |
| 7322 | Fortran::lower::AbstractConverter &converter; |
| 7323 | fir::FirOpBuilder &builder; |
| 7324 | Fortran::lower::StatementContext &stmtCtx; |
| 7325 | bool elementCtx = false; |
| 7326 | Fortran::lower::SymMap &symMap; |
| 7327 | /// The continuation to generate code to update the destination. |
| 7328 | std::optional<CC> ccStoreToDest; |
| 7329 | std::optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude; |
| 7330 | std::optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>> |
| 7331 | ccLoadDest; |
| 7332 | /// The destination is the loaded array into which the results will be |
| 7333 | /// merged. |
| 7334 | fir::ArrayLoadOp destination; |
| 7335 | /// The shape of the destination. |
| 7336 | llvm::SmallVector<mlir::Value> destShape; |
| 7337 | /// List of arrays in the expression that have been loaded. |
| 7338 | llvm::SmallVector<ArrayOperand> arrayOperands; |
| 7339 | /// If there is a user-defined iteration space, explicitShape will hold the |
| 7340 | /// information from the front end. |
| 7341 | Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr; |
| 7342 | Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr; |
| 7343 | ConstituentSemantics semant = ConstituentSemantics::RefTransparent; |
| 7344 | std::optional<ConstituentSemantics> nextPathSemant; |
| 7345 | /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only |
| 7346 | /// occur in an explicit iteration space. |
| 7347 | std::optional<llvm::SmallVector<mlir::Value>> lbounds; |
| 7348 | std::optional<llvm::SmallVector<mlir::Value>> ubounds; |
| 7349 | // Can the array expression be evaluated in any order? |
| 7350 | // Will be set to false if any of the expression parts prevent this. |
| 7351 | bool unordered = true; |
| 7352 | // ProcedureRef currently being lowered. Used to retrieve the iteration shape |
| 7353 | // in elemental context with passed object. |
| 7354 | const Fortran::evaluate::ProcedureRef *loweredProcRef = nullptr; |
| 7355 | }; |
| 7356 | } // namespace |
| 7357 | |
| 7358 | fir::ExtendedValue Fortran::lower::createSomeExtendedExpression( |
| 7359 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| 7360 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| 7361 | Fortran::lower::StatementContext &stmtCtx) { |
| 7362 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: " ) << '\n'); |
| 7363 | return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr); |
| 7364 | } |
| 7365 | |
| 7366 | fir::ExtendedValue Fortran::lower::createSomeInitializerExpression( |
| 7367 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| 7368 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| 7369 | Fortran::lower::StatementContext &stmtCtx) { |
| 7370 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: " ) << '\n'); |
| 7371 | return ScalarExprLowering{loc, converter, symMap, stmtCtx, |
| 7372 | /*inInitializer=*/true} |
| 7373 | .genval(expr); |
| 7374 | } |
| 7375 | |
| 7376 | fir::ExtendedValue Fortran::lower::createSomeExtendedAddress( |
| 7377 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| 7378 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| 7379 | Fortran::lower::StatementContext &stmtCtx) { |
| 7380 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: " ) << '\n'); |
| 7381 | return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr); |
| 7382 | } |
| 7383 | |
| 7384 | fir::ExtendedValue Fortran::lower::createInitializerAddress( |
| 7385 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| 7386 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| 7387 | Fortran::lower::StatementContext &stmtCtx) { |
| 7388 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: " ) << '\n'); |
| 7389 | return ScalarExprLowering(loc, converter, symMap, stmtCtx, |
| 7390 | /*inInitializer=*/true) |
| 7391 | .gen(expr); |
| 7392 | } |
| 7393 | |
| 7394 | void Fortran::lower::createSomeArrayAssignment( |
| 7395 | Fortran::lower::AbstractConverter &converter, |
| 7396 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| 7397 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
| 7398 | LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: " ) << '\n'; |
| 7399 | rhs.AsFortran(llvm::dbgs() << "assign expression: " ) << '\n';); |
| 7400 | ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); |
| 7401 | } |
| 7402 | |
| 7403 | void Fortran::lower::createSomeArrayAssignment( |
| 7404 | Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, |
| 7405 | const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap, |
| 7406 | Fortran::lower::StatementContext &stmtCtx) { |
| 7407 | LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n'; |
| 7408 | rhs.AsFortran(llvm::dbgs() << "assign expression: " ) << '\n';); |
| 7409 | ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); |
| 7410 | } |
| 7411 | void Fortran::lower::createSomeArrayAssignment( |
| 7412 | Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs, |
| 7413 | const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap, |
| 7414 | Fortran::lower::StatementContext &stmtCtx) { |
| 7415 | LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n'; |
| 7416 | llvm::dbgs() << "assign expression: " << rhs << '\n';); |
| 7417 | ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs); |
| 7418 | } |
| 7419 | |
| 7420 | void Fortran::lower::createAnyMaskedArrayAssignment( |
| 7421 | Fortran::lower::AbstractConverter &converter, |
| 7422 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| 7423 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
| 7424 | Fortran::lower::ImplicitIterSpace &implicitSpace, |
| 7425 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
| 7426 | LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: " ) << '\n'; |
| 7427 | rhs.AsFortran(llvm::dbgs() << "assign expression: " ) |
| 7428 | << " given the explicit iteration space:\n" |
| 7429 | << explicitSpace << "\n and implied mask conditions:\n" |
| 7430 | << implicitSpace << '\n';); |
| 7431 | ArrayExprLowering::lowerAnyMaskedArrayAssignment( |
| 7432 | converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); |
| 7433 | } |
| 7434 | |
| 7435 | void Fortran::lower::createAllocatableArrayAssignment( |
| 7436 | Fortran::lower::AbstractConverter &converter, |
| 7437 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| 7438 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
| 7439 | Fortran::lower::ImplicitIterSpace &implicitSpace, |
| 7440 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
| 7441 | LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: " ) << '\n'; |
| 7442 | rhs.AsFortran(llvm::dbgs() << "assign expression: " ) |
| 7443 | << " given the explicit iteration space:\n" |
| 7444 | << explicitSpace << "\n and implied mask conditions:\n" |
| 7445 | << implicitSpace << '\n';); |
| 7446 | ArrayExprLowering::lowerAllocatableArrayAssignment( |
| 7447 | converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace); |
| 7448 | } |
| 7449 | |
| 7450 | void Fortran::lower::createArrayOfPointerAssignment( |
| 7451 | Fortran::lower::AbstractConverter &converter, |
| 7452 | const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs, |
| 7453 | Fortran::lower::ExplicitIterSpace &explicitSpace, |
| 7454 | Fortran::lower::ImplicitIterSpace &implicitSpace, |
| 7455 | const llvm::SmallVector<mlir::Value> &lbounds, |
| 7456 | std::optional<llvm::SmallVector<mlir::Value>> ubounds, |
| 7457 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
| 7458 | LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: " ) << '\n'; |
| 7459 | rhs.AsFortran(llvm::dbgs() << "assign expression: " ) |
| 7460 | << " given the explicit iteration space:\n" |
| 7461 | << explicitSpace << "\n and implied mask conditions:\n" |
| 7462 | << implicitSpace << '\n';); |
| 7463 | assert(explicitSpace.isActive() && "must be in FORALL construct" ); |
| 7464 | ArrayExprLowering::lowerArrayOfPointerAssignment( |
| 7465 | converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace, |
| 7466 | lbounds, ubounds); |
| 7467 | } |
| 7468 | |
| 7469 | fir::ExtendedValue Fortran::lower::createSomeArrayTempValue( |
| 7470 | Fortran::lower::AbstractConverter &converter, |
| 7471 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| 7472 | Fortran::lower::StatementContext &stmtCtx) { |
| 7473 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: " ) << '\n'); |
| 7474 | return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx, |
| 7475 | expr); |
| 7476 | } |
| 7477 | |
| 7478 | void Fortran::lower::createLazyArrayTempValue( |
| 7479 | Fortran::lower::AbstractConverter &converter, |
| 7480 | const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader, |
| 7481 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { |
| 7482 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: " ) << '\n'); |
| 7483 | ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr, |
| 7484 | raggedHeader); |
| 7485 | } |
| 7486 | |
| 7487 | fir::ExtendedValue |
| 7488 | Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter, |
| 7489 | const Fortran::lower::SomeExpr &expr, |
| 7490 | Fortran::lower::SymMap &symMap, |
| 7491 | Fortran::lower::StatementContext &stmtCtx) { |
| 7492 | LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: " ) << '\n'); |
| 7493 | return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap, |
| 7494 | stmtCtx, expr); |
| 7495 | } |
| 7496 | |
| 7497 | fir::MutableBoxValue Fortran::lower::createMutableBox( |
| 7498 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| 7499 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) { |
| 7500 | // MutableBox lowering StatementContext does not need to be propagated |
| 7501 | // to the caller because the result value is a variable, not a temporary |
| 7502 | // expression. The StatementContext clean-up can occur before using the |
| 7503 | // resulting MutableBoxValue. Variables of all other types are handled in the |
| 7504 | // bridge. |
| 7505 | Fortran::lower::StatementContext dummyStmtCtx; |
| 7506 | return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx} |
| 7507 | .genMutableBoxValue(expr); |
| 7508 | } |
| 7509 | |
| 7510 | bool Fortran::lower::isParentComponent(const Fortran::lower::SomeExpr &expr) { |
| 7511 | if (const Fortran::semantics::Symbol * symbol{GetLastSymbol(expr)}) { |
| 7512 | if (symbol->test(Fortran::semantics::Symbol::Flag::ParentComp)) |
| 7513 | return true; |
| 7514 | } |
| 7515 | return false; |
| 7516 | } |
| 7517 | |
| 7518 | // Handling special case where the last component is referring to the |
| 7519 | // parent component. |
| 7520 | // |
| 7521 | // TYPE t |
| 7522 | // integer :: a |
| 7523 | // END TYPE |
| 7524 | // TYPE, EXTENDS(t) :: t2 |
| 7525 | // integer :: b |
| 7526 | // END TYPE |
| 7527 | // TYPE(t2) :: y(2) |
| 7528 | // TYPE(t2) :: a |
| 7529 | // y(:)%t ! just need to update the box with a slice pointing to the first |
| 7530 | // ! component of `t`. |
| 7531 | // a%t ! simple conversion to TYPE(t). |
| 7532 | fir::ExtendedValue Fortran::lower::updateBoxForParentComponent( |
| 7533 | Fortran::lower::AbstractConverter &converter, fir::ExtendedValue box, |
| 7534 | const Fortran::lower::SomeExpr &expr) { |
| 7535 | mlir::Location loc = converter.getCurrentLocation(); |
| 7536 | auto &builder = converter.getFirOpBuilder(); |
| 7537 | mlir::Value boxBase = fir::getBase(box); |
| 7538 | mlir::Operation *op = boxBase.getDefiningOp(); |
| 7539 | mlir::Type actualTy = converter.genType(expr); |
| 7540 | |
| 7541 | if (op) { |
| 7542 | if (auto embox = mlir::dyn_cast<fir::EmboxOp>(op)) { |
| 7543 | auto newBox = builder.create<fir::EmboxOp>( |
| 7544 | loc, fir::BoxType::get(actualTy), embox.getMemref(), embox.getShape(), |
| 7545 | embox.getSlice(), embox.getTypeparams()); |
| 7546 | return fir::substBase(box, newBox); |
| 7547 | } |
| 7548 | if (auto rebox = mlir::dyn_cast<fir::ReboxOp>(op)) { |
| 7549 | auto newBox = builder.create<fir::ReboxOp>( |
| 7550 | loc, fir::BoxType::get(actualTy), rebox.getBox(), rebox.getShape(), |
| 7551 | rebox.getSlice()); |
| 7552 | return fir::substBase(box, newBox); |
| 7553 | } |
| 7554 | } |
| 7555 | |
| 7556 | mlir::Value empty; |
| 7557 | mlir::ValueRange emptyRange; |
| 7558 | return builder.create<fir::ReboxOp>(loc, fir::BoxType::get(actualTy), boxBase, |
| 7559 | /*shape=*/empty, |
| 7560 | /*slice=*/empty); |
| 7561 | } |
| 7562 | |
| 7563 | fir::ExtendedValue Fortran::lower::createBoxValue( |
| 7564 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| 7565 | const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap, |
| 7566 | Fortran::lower::StatementContext &stmtCtx) { |
| 7567 | if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) && |
| 7568 | !Fortran::evaluate::HasVectorSubscript(expr)) { |
| 7569 | fir::ExtendedValue result = |
| 7570 | Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx); |
| 7571 | if (isParentComponent(expr)) |
| 7572 | result = updateBoxForParentComponent(converter, result, expr); |
| 7573 | return result; |
| 7574 | } |
| 7575 | fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress( |
| 7576 | loc, converter, expr, symMap, stmtCtx); |
| 7577 | fir::ExtendedValue result = fir::BoxValue( |
| 7578 | converter.getFirOpBuilder().createBox(loc, addr, addr.isPolymorphic())); |
| 7579 | if (isParentComponent(expr)) |
| 7580 | result = updateBoxForParentComponent(converter, result, expr); |
| 7581 | return result; |
| 7582 | } |
| 7583 | |
| 7584 | mlir::Value Fortran::lower::createSubroutineCall( |
| 7585 | AbstractConverter &converter, const evaluate::ProcedureRef &call, |
| 7586 | ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace, |
| 7587 | SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) { |
| 7588 | mlir::Location loc = converter.getCurrentLocation(); |
| 7589 | |
| 7590 | if (isUserDefAssignment) { |
| 7591 | assert(call.arguments().size() == 2); |
| 7592 | const auto *lhs = call.arguments()[0].value().UnwrapExpr(); |
| 7593 | const auto *rhs = call.arguments()[1].value().UnwrapExpr(); |
| 7594 | assert(lhs && rhs && |
| 7595 | "user defined assignment arguments must be expressions" ); |
| 7596 | if (call.IsElemental() && lhs->Rank() > 0) { |
| 7597 | // Elemental user defined assignment has special requirements to deal with |
| 7598 | // LHS/RHS overlaps. See 10.2.1.5 p2. |
| 7599 | ArrayExprLowering::lowerElementalUserAssignment( |
| 7600 | converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace, |
| 7601 | call); |
| 7602 | } else if (explicitIterSpace.isActive() && lhs->Rank() == 0) { |
| 7603 | // Scalar defined assignment (elemental or not) in a FORALL context. |
| 7604 | mlir::func::FuncOp func = |
| 7605 | Fortran::lower::CallerInterface(call, converter).getFuncOp(); |
| 7606 | ArrayExprLowering::lowerScalarUserAssignment( |
| 7607 | converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs); |
| 7608 | } else if (explicitIterSpace.isActive()) { |
| 7609 | // TODO: need to array fetch/modify sub-arrays? |
| 7610 | TODO(loc, "non elemental user defined array assignment inside FORALL" ); |
| 7611 | } else { |
| 7612 | if (!implicitIterSpace.empty()) |
| 7613 | fir::emitFatalError( |
| 7614 | loc, |
| 7615 | "C1032: user defined assignment inside WHERE must be elemental" ); |
| 7616 | // Non elemental user defined assignment outside of FORALL and WHERE. |
| 7617 | // FIXME: The non elemental user defined assignment case with array |
| 7618 | // arguments must be take into account potential overlap. So far the front |
| 7619 | // end does not add parentheses around the RHS argument in the call as it |
| 7620 | // should according to 15.4.3.4.3 p2. |
| 7621 | Fortran::lower::createSomeExtendedExpression( |
| 7622 | loc, converter, toEvExpr(call), symMap, stmtCtx); |
| 7623 | } |
| 7624 | return {}; |
| 7625 | } |
| 7626 | |
| 7627 | assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() && |
| 7628 | "subroutine calls are not allowed inside WHERE and FORALL" ); |
| 7629 | |
| 7630 | if (isElementalProcWithArrayArgs(call)) { |
| 7631 | ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx, |
| 7632 | toEvExpr(call)); |
| 7633 | return {}; |
| 7634 | } |
| 7635 | // Simple subroutine call, with potential alternate return. |
| 7636 | auto res = Fortran::lower::createSomeExtendedExpression( |
| 7637 | loc, converter, toEvExpr(call), symMap, stmtCtx); |
| 7638 | return fir::getBase(res); |
| 7639 | } |
| 7640 | |
| 7641 | template <typename A> |
| 7642 | fir::ArrayLoadOp genArrayLoad(mlir::Location loc, |
| 7643 | Fortran::lower::AbstractConverter &converter, |
| 7644 | fir::FirOpBuilder &builder, const A *x, |
| 7645 | Fortran::lower::SymMap &symMap, |
| 7646 | Fortran::lower::StatementContext &stmtCtx) { |
| 7647 | auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x); |
| 7648 | mlir::Value addr = fir::getBase(exv); |
| 7649 | mlir::Value shapeOp = builder.createShape(loc, exv); |
| 7650 | mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType()); |
| 7651 | return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp, |
| 7652 | /*slice=*/mlir::Value{}, |
| 7653 | fir::getTypeParams(exv)); |
| 7654 | } |
| 7655 | template <> |
| 7656 | fir::ArrayLoadOp |
| 7657 | genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| 7658 | fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x, |
| 7659 | Fortran::lower::SymMap &symMap, |
| 7660 | Fortran::lower::StatementContext &stmtCtx) { |
| 7661 | if (x->base().IsSymbol()) |
| 7662 | return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap, |
| 7663 | stmtCtx); |
| 7664 | return genArrayLoad(loc, converter, builder, &x->base().GetComponent(), |
| 7665 | symMap, stmtCtx); |
| 7666 | } |
| 7667 | |
| 7668 | void Fortran::lower::createArrayLoads( |
| 7669 | Fortran::lower::AbstractConverter &converter, |
| 7670 | Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) { |
| 7671 | std::size_t counter = esp.getCounter(); |
| 7672 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 7673 | mlir::Location loc = converter.getCurrentLocation(); |
| 7674 | Fortran::lower::StatementContext &stmtCtx = esp.stmtContext(); |
| 7675 | // Gen the fir.array_load ops. |
| 7676 | auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp { |
| 7677 | return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx); |
| 7678 | }; |
| 7679 | if (esp.lhsBases[counter]) { |
| 7680 | auto &base = *esp.lhsBases[counter]; |
| 7681 | auto load = Fortran::common::visit(genLoad, base); |
| 7682 | esp.initialArgs.push_back(load); |
| 7683 | esp.resetInnerArgs(); |
| 7684 | esp.bindLoad(base, load); |
| 7685 | } |
| 7686 | for (const auto &base : esp.rhsBases[counter]) |
| 7687 | esp.bindLoad(base, Fortran::common::visit(genLoad, base)); |
| 7688 | } |
| 7689 | |
| 7690 | void Fortran::lower::createArrayMergeStores( |
| 7691 | Fortran::lower::AbstractConverter &converter, |
| 7692 | Fortran::lower::ExplicitIterSpace &esp) { |
| 7693 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 7694 | mlir::Location loc = converter.getCurrentLocation(); |
| 7695 | builder.setInsertionPointAfter(esp.getOuterLoop()); |
| 7696 | // Gen the fir.array_merge_store ops for all LHS arrays. |
| 7697 | for (auto i : llvm::enumerate(esp.getOuterLoop().getResults())) |
| 7698 | if (std::optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) { |
| 7699 | fir::ArrayLoadOp load = *ldOpt; |
| 7700 | builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(), |
| 7701 | load.getMemref(), load.getSlice(), |
| 7702 | load.getTypeparams()); |
| 7703 | } |
| 7704 | if (esp.loopCleanup) { |
| 7705 | (*esp.loopCleanup)(builder); |
| 7706 | esp.loopCleanup = std::nullopt; |
| 7707 | } |
| 7708 | esp.initialArgs.clear(); |
| 7709 | esp.innerArgs.clear(); |
| 7710 | esp.outerLoop = std::nullopt; |
| 7711 | esp.resetBindings(); |
| 7712 | esp.incrementCounter(); |
| 7713 | } |
| 7714 | |
| 7715 | mlir::Value Fortran::lower::addCrayPointerInst(mlir::Location loc, |
| 7716 | fir::FirOpBuilder &builder, |
| 7717 | mlir::Value ptrVal, |
| 7718 | mlir::Type ptrTy, |
| 7719 | mlir::Type pteTy) { |
| 7720 | |
| 7721 | mlir::Value empty; |
| 7722 | mlir::ValueRange emptyRange; |
| 7723 | auto boxTy = fir::BoxType::get(ptrTy); |
| 7724 | auto box = builder.create<fir::EmboxOp>(loc, boxTy, ptrVal, empty, empty, |
| 7725 | emptyRange); |
| 7726 | mlir::Value addrof = |
| 7727 | (mlir::isa<fir::ReferenceType>(ptrTy)) |
| 7728 | ? builder.create<fir::BoxAddrOp>(loc, ptrTy, box) |
| 7729 | : builder.create<fir::BoxAddrOp>(loc, builder.getRefType(ptrTy), box); |
| 7730 | |
| 7731 | auto refPtrTy = |
| 7732 | builder.getRefType(fir::PointerType::get(fir::dyn_cast_ptrEleTy(pteTy))); |
| 7733 | return builder.createConvert(loc, refPtrTy, addrof); |
| 7734 | } |
| 7735 | |