| 1 | //===-- ConvertVariable.cpp -- bridge to lower to MLIR --------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "flang/Lower/ConvertVariable.h" |
| 14 | #include "flang/Lower/AbstractConverter.h" |
| 15 | #include "flang/Lower/Allocatable.h" |
| 16 | #include "flang/Lower/BoxAnalyzer.h" |
| 17 | #include "flang/Lower/CallInterface.h" |
| 18 | #include "flang/Lower/ConvertConstant.h" |
| 19 | #include "flang/Lower/ConvertExpr.h" |
| 20 | #include "flang/Lower/ConvertExprToHLFIR.h" |
| 21 | #include "flang/Lower/ConvertProcedureDesignator.h" |
| 22 | #include "flang/Lower/Cuda.h" |
| 23 | #include "flang/Lower/Mangler.h" |
| 24 | #include "flang/Lower/PFTBuilder.h" |
| 25 | #include "flang/Lower/StatementContext.h" |
| 26 | #include "flang/Lower/Support/Utils.h" |
| 27 | #include "flang/Lower/SymbolMap.h" |
| 28 | #include "flang/Optimizer/Builder/CUFCommon.h" |
| 29 | #include "flang/Optimizer/Builder/Character.h" |
| 30 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
| 31 | #include "flang/Optimizer/Builder/HLFIRTools.h" |
| 32 | #include "flang/Optimizer/Builder/IntrinsicCall.h" |
| 33 | #include "flang/Optimizer/Builder/Runtime/Derived.h" |
| 34 | #include "flang/Optimizer/Builder/Todo.h" |
| 35 | #include "flang/Optimizer/Dialect/CUF/CUFOps.h" |
| 36 | #include "flang/Optimizer/Dialect/FIRAttr.h" |
| 37 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
| 38 | #include "flang/Optimizer/Dialect/FIROps.h" |
| 39 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
| 40 | #include "flang/Optimizer/HLFIR/HLFIROps.h" |
| 41 | #include "flang/Optimizer/Support/FatalError.h" |
| 42 | #include "flang/Optimizer/Support/InternalNames.h" |
| 43 | #include "flang/Optimizer/Support/Utils.h" |
| 44 | #include "flang/Runtime/allocator-registry-consts.h" |
| 45 | #include "flang/Semantics/runtime-type-info.h" |
| 46 | #include "flang/Semantics/tools.h" |
| 47 | #include "llvm/Support/CommandLine.h" |
| 48 | #include "llvm/Support/Debug.h" |
| 49 | #include <optional> |
| 50 | |
| 51 | static llvm::cl::opt<bool> |
| 52 | allowAssumedRank("allow-assumed-rank" , |
| 53 | llvm::cl::desc("Enable assumed rank lowering" ), |
| 54 | llvm::cl::init(Val: true)); |
| 55 | |
| 56 | #define DEBUG_TYPE "flang-lower-variable" |
| 57 | |
| 58 | /// Helper to lower a scalar expression using a specific symbol mapping. |
| 59 | static mlir::Value genScalarValue(Fortran::lower::AbstractConverter &converter, |
| 60 | mlir::Location loc, |
| 61 | const Fortran::lower::SomeExpr &expr, |
| 62 | Fortran::lower::SymMap &symMap, |
| 63 | Fortran::lower::StatementContext &context) { |
| 64 | // This does not use the AbstractConverter member function to override the |
| 65 | // symbol mapping to be used expression lowering. |
| 66 | if (converter.getLoweringOptions().getLowerToHighLevelFIR()) { |
| 67 | hlfir::EntityWithAttributes loweredExpr = |
| 68 | Fortran::lower::convertExprToHLFIR(loc, converter, expr, symMap, |
| 69 | context); |
| 70 | return hlfir::loadTrivialScalar(loc, converter.getFirOpBuilder(), |
| 71 | loweredExpr); |
| 72 | } |
| 73 | return fir::getBase(Fortran::lower::createSomeExtendedExpression( |
| 74 | loc, converter, expr, symMap, context)); |
| 75 | } |
| 76 | |
| 77 | /// Does this variable have a default initialization? |
| 78 | bool Fortran::lower::hasDefaultInitialization( |
| 79 | const Fortran::semantics::Symbol &sym) { |
| 80 | if (sym.has<Fortran::semantics::ObjectEntityDetails>() && sym.size()) |
| 81 | if (!Fortran::semantics::IsAllocatableOrPointer(sym)) |
| 82 | if (const Fortran::semantics::DeclTypeSpec *declTypeSpec = sym.GetType()) |
| 83 | if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec = |
| 84 | declTypeSpec->AsDerived()) { |
| 85 | // Pointer assignments in the runtime may hit undefined behaviors if |
| 86 | // the RHS contains garbage. Pointer objects are always established by |
| 87 | // lowering to NULL() (in Fortran::lower::createMutableBox). However, |
| 88 | // pointer components need special care here so that local and global |
| 89 | // derived type containing pointers are always initialized. |
| 90 | // Intent(out), however, do not need to be initialized since the |
| 91 | // related descriptor storage comes from a local or global that has |
| 92 | // been initialized (it may not be NULL() anymore, but the rank, type, |
| 93 | // and non deferred length parameters are still correct in a |
| 94 | // conformant program, and that is what matters). |
| 95 | const bool ignorePointer = Fortran::semantics::IsIntentOut(sym); |
| 96 | return derivedTypeSpec->HasDefaultInitialization( |
| 97 | /*ignoreAllocatable=*/false, ignorePointer); |
| 98 | } |
| 99 | return false; |
| 100 | } |
| 101 | |
| 102 | // Does this variable have a finalization? |
| 103 | static bool hasFinalization(const Fortran::semantics::Symbol &sym) { |
| 104 | if (sym.has<Fortran::semantics::ObjectEntityDetails>()) |
| 105 | if (const Fortran::semantics::DeclTypeSpec *declTypeSpec = sym.GetType()) |
| 106 | if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec = |
| 107 | declTypeSpec->AsDerived()) |
| 108 | return Fortran::semantics::IsFinalizable(*derivedTypeSpec); |
| 109 | return false; |
| 110 | } |
| 111 | |
| 112 | // Does this variable have an allocatable direct component? |
| 113 | static bool |
| 114 | hasAllocatableDirectComponent(const Fortran::semantics::Symbol &sym) { |
| 115 | if (sym.has<Fortran::semantics::ObjectEntityDetails>()) |
| 116 | if (const Fortran::semantics::DeclTypeSpec *declTypeSpec = sym.GetType()) |
| 117 | if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec = |
| 118 | declTypeSpec->AsDerived()) |
| 119 | return Fortran::semantics::HasAllocatableDirectComponent( |
| 120 | *derivedTypeSpec); |
| 121 | return false; |
| 122 | } |
| 123 | //===----------------------------------------------------------------===// |
| 124 | // Global variables instantiation (not for alias and common) |
| 125 | //===----------------------------------------------------------------===// |
| 126 | |
| 127 | /// Helper to generate expression value inside global initializer. |
| 128 | static fir::ExtendedValue |
| 129 | genInitializerExprValue(Fortran::lower::AbstractConverter &converter, |
| 130 | mlir::Location loc, |
| 131 | const Fortran::lower::SomeExpr &expr, |
| 132 | Fortran::lower::StatementContext &stmtCtx) { |
| 133 | // Data initializer are constant value and should not depend on other symbols |
| 134 | // given the front-end fold parameter references. In any case, the "current" |
| 135 | // map of the converter should not be used since it holds mapping to |
| 136 | // mlir::Value from another mlir region. If these value are used by accident |
| 137 | // in the initializer, this will lead to segfaults in mlir code. |
| 138 | Fortran::lower::SymMap emptyMap; |
| 139 | return Fortran::lower::createSomeInitializerExpression(loc, converter, expr, |
| 140 | emptyMap, stmtCtx); |
| 141 | } |
| 142 | |
| 143 | /// Can this symbol constant be placed in read-only memory? |
| 144 | static bool isConstant(const Fortran::semantics::Symbol &sym) { |
| 145 | return sym.attrs().test(Fortran::semantics::Attr::PARAMETER) || |
| 146 | sym.test(Fortran::semantics::Symbol::Flag::ReadOnly); |
| 147 | } |
| 148 | |
| 149 | /// Call \p genInit to generate code inside \p global initializer region. |
| 150 | static void |
| 151 | createGlobalInitialization(fir::FirOpBuilder &builder, fir::GlobalOp global, |
| 152 | std::function<void(fir::FirOpBuilder &)> genInit); |
| 153 | |
| 154 | static mlir::Location genLocation(Fortran::lower::AbstractConverter &converter, |
| 155 | const Fortran::semantics::Symbol &sym) { |
| 156 | // Compiler generated name cannot be used as source location, their name |
| 157 | // is not pointing to the source files. |
| 158 | if (!sym.test(Fortran::semantics::Symbol::Flag::CompilerCreated)) |
| 159 | return converter.genLocation(sym.name()); |
| 160 | return converter.getCurrentLocation(); |
| 161 | } |
| 162 | |
| 163 | /// Create the global op declaration without any initializer |
| 164 | static fir::GlobalOp declareGlobal(Fortran::lower::AbstractConverter &converter, |
| 165 | const Fortran::lower::pft::Variable &var, |
| 166 | llvm::StringRef globalName, |
| 167 | mlir::StringAttr linkage) { |
| 168 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 169 | if (fir::GlobalOp global = builder.getNamedGlobal(globalName)) |
| 170 | return global; |
| 171 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 172 | cuf::DataAttributeAttr dataAttr = |
| 173 | Fortran::lower::translateSymbolCUFDataAttribute( |
| 174 | converter.getFirOpBuilder().getContext(), sym); |
| 175 | // Always define linkonce data since it may be optimized out from the module |
| 176 | // that actually owns the variable if it does not refers to it. |
| 177 | if (linkage == builder.createLinkOnceODRLinkage() || |
| 178 | linkage == builder.createLinkOnceLinkage()) |
| 179 | return defineGlobal(converter, var, globalName, linkage, dataAttr); |
| 180 | mlir::Location loc = genLocation(converter, sym); |
| 181 | // Resolve potential host and module association before checking that this |
| 182 | // symbol is an object of a function pointer. |
| 183 | const Fortran::semantics::Symbol &ultimate = sym.GetUltimate(); |
| 184 | if (!ultimate.has<Fortran::semantics::ObjectEntityDetails>() && |
| 185 | !Fortran::semantics::IsProcedurePointer(ultimate)) |
| 186 | mlir::emitError(loc, "processing global declaration: symbol '" ) |
| 187 | << toStringRef(sym.name()) << "' has unexpected details\n" ; |
| 188 | return builder.createGlobal(loc, converter.genType(var), globalName, linkage, |
| 189 | mlir::Attribute{}, isConstant(ultimate), |
| 190 | var.isTarget(), dataAttr); |
| 191 | } |
| 192 | |
| 193 | /// Temporary helper to catch todos in initial data target lowering. |
| 194 | static bool |
| 195 | hasDerivedTypeWithLengthParameters(const Fortran::semantics::Symbol &sym) { |
| 196 | if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) |
| 197 | if (const Fortran::semantics::DerivedTypeSpec *derived = |
| 198 | declTy->AsDerived()) |
| 199 | return Fortran::semantics::CountLenParameters(*derived) > 0; |
| 200 | return false; |
| 201 | } |
| 202 | |
| 203 | fir::ExtendedValue Fortran::lower::genExtAddrInInitializer( |
| 204 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 205 | const Fortran::lower::SomeExpr &addr) { |
| 206 | Fortran::lower::SymMap globalOpSymMap; |
| 207 | Fortran::lower::AggregateStoreMap storeMap; |
| 208 | Fortran::lower::StatementContext stmtCtx; |
| 209 | if (const Fortran::semantics::Symbol *sym = |
| 210 | Fortran::evaluate::GetFirstSymbol(addr)) { |
| 211 | // Length parameters processing will need care in global initializer |
| 212 | // context. |
| 213 | if (hasDerivedTypeWithLengthParameters(*sym)) |
| 214 | TODO(loc, "initial-data-target with derived type length parameters" ); |
| 215 | |
| 216 | auto var = Fortran::lower::pft::Variable(*sym, /*global=*/true); |
| 217 | Fortran::lower::instantiateVariable(converter, var, globalOpSymMap, |
| 218 | storeMap); |
| 219 | } |
| 220 | |
| 221 | if (converter.getLoweringOptions().getLowerToHighLevelFIR()) |
| 222 | return Fortran::lower::convertExprToAddress(loc, converter, addr, |
| 223 | globalOpSymMap, stmtCtx); |
| 224 | return Fortran::lower::createInitializerAddress(loc, converter, addr, |
| 225 | globalOpSymMap, stmtCtx); |
| 226 | } |
| 227 | |
| 228 | /// create initial-data-target fir.box in a global initializer region. |
| 229 | mlir::Value Fortran::lower::genInitialDataTarget( |
| 230 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 231 | mlir::Type boxType, const Fortran::lower::SomeExpr &initialTarget, |
| 232 | bool couldBeInEquivalence) { |
| 233 | Fortran::lower::SymMap globalOpSymMap; |
| 234 | Fortran::lower::AggregateStoreMap storeMap; |
| 235 | Fortran::lower::StatementContext stmtCtx; |
| 236 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 237 | if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>( |
| 238 | initialTarget)) |
| 239 | return fir::factory::createUnallocatedBox( |
| 240 | builder, loc, boxType, |
| 241 | /*nonDeferredParams=*/std::nullopt); |
| 242 | // Pointer initial data target, and NULL(mold). |
| 243 | for (const auto &sym : Fortran::evaluate::CollectSymbols(initialTarget)) { |
| 244 | // Derived type component symbols should not be instantiated as objects |
| 245 | // on their own. |
| 246 | if (sym->owner().IsDerivedType()) |
| 247 | continue; |
| 248 | // Length parameters processing will need care in global initializer |
| 249 | // context. |
| 250 | if (hasDerivedTypeWithLengthParameters(sym)) |
| 251 | TODO(loc, "initial-data-target with derived type length parameters" ); |
| 252 | auto var = Fortran::lower::pft::Variable(sym, /*global=*/true); |
| 253 | if (couldBeInEquivalence) { |
| 254 | auto dependentVariableList = |
| 255 | Fortran::lower::pft::getDependentVariableList(sym); |
| 256 | for (Fortran::lower::pft::Variable var : dependentVariableList) { |
| 257 | if (!var.isAggregateStore()) |
| 258 | break; |
| 259 | instantiateVariable(converter, var, globalOpSymMap, storeMap); |
| 260 | } |
| 261 | var = dependentVariableList.back(); |
| 262 | assert(var.getSymbol().name() == sym->name() && |
| 263 | "missing symbol in dependence list" ); |
| 264 | } |
| 265 | Fortran::lower::instantiateVariable(converter, var, globalOpSymMap, |
| 266 | storeMap); |
| 267 | } |
| 268 | |
| 269 | // Handle NULL(mold) as a special case. Return an unallocated box of MOLD |
| 270 | // type. The return box is correctly created as a fir.box<fir.ptr<T>> where |
| 271 | // T is extracted from the MOLD argument. |
| 272 | if (const Fortran::evaluate::ProcedureRef *procRef = |
| 273 | Fortran::evaluate::UnwrapProcedureRef(initialTarget)) { |
| 274 | const Fortran::evaluate::SpecificIntrinsic *intrinsic = |
| 275 | procRef->proc().GetSpecificIntrinsic(); |
| 276 | if (intrinsic && intrinsic->name == "null" ) { |
| 277 | assert(procRef->arguments().size() == 1 && |
| 278 | "Expecting mold argument for NULL intrinsic" ); |
| 279 | const auto *argExpr = procRef->arguments()[0].value().UnwrapExpr(); |
| 280 | assert(argExpr); |
| 281 | const Fortran::semantics::Symbol *sym = |
| 282 | Fortran::evaluate::GetFirstSymbol(*argExpr); |
| 283 | assert(sym && "MOLD must be a pointer or allocatable symbol" ); |
| 284 | mlir::Type boxType = converter.genType(*sym); |
| 285 | mlir::Value box = |
| 286 | fir::factory::createUnallocatedBox(builder, loc, boxType, {}); |
| 287 | return box; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | mlir::Value targetBox; |
| 292 | mlir::Value targetShift; |
| 293 | if (converter.getLoweringOptions().getLowerToHighLevelFIR()) { |
| 294 | auto target = Fortran::lower::convertExprToBox( |
| 295 | loc, converter, initialTarget, globalOpSymMap, stmtCtx); |
| 296 | targetBox = fir::getBase(target); |
| 297 | targetShift = builder.createShape(loc, target); |
| 298 | } else { |
| 299 | if (initialTarget.Rank() > 0) { |
| 300 | auto target = Fortran::lower::createSomeArrayBox(converter, initialTarget, |
| 301 | globalOpSymMap, stmtCtx); |
| 302 | targetBox = fir::getBase(target); |
| 303 | targetShift = builder.createShape(loc, target); |
| 304 | } else { |
| 305 | fir::ExtendedValue addr = Fortran::lower::createInitializerAddress( |
| 306 | loc, converter, initialTarget, globalOpSymMap, stmtCtx); |
| 307 | targetBox = builder.createBox(loc, addr); |
| 308 | // Nothing to do for targetShift, the target is a scalar. |
| 309 | } |
| 310 | } |
| 311 | // The targetBox is a fir.box<T>, not a fir.box<fir.ptr<T>> as it should for |
| 312 | // pointers (this matters to get the POINTER attribute correctly inside the |
| 313 | // initial value of the descriptor). |
| 314 | // Create a fir.rebox to set the attribute correctly, and use targetShift |
| 315 | // to preserve the target lower bounds if any. |
| 316 | return builder.create<fir::ReboxOp>(loc, boxType, targetBox, targetShift, |
| 317 | /*slice=*/mlir::Value{}); |
| 318 | } |
| 319 | |
| 320 | /// Generate default initial value for a derived type object \p sym with mlir |
| 321 | /// type \p symTy. |
| 322 | static mlir::Value genDefaultInitializerValue( |
| 323 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 324 | const Fortran::semantics::Symbol &sym, mlir::Type symTy, |
| 325 | Fortran::lower::StatementContext &stmtCtx); |
| 326 | |
| 327 | /// Generate the initial value of a derived component \p component and insert |
| 328 | /// it into the derived type initial value \p insertInto of type \p recTy. |
| 329 | /// Return the new derived type initial value after the insertion. |
| 330 | static mlir::Value genComponentDefaultInit( |
| 331 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 332 | const Fortran::semantics::Symbol &component, fir::RecordType recTy, |
| 333 | mlir::Value insertInto, Fortran::lower::StatementContext &stmtCtx) { |
| 334 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 335 | std::string name = converter.getRecordTypeFieldName(component); |
| 336 | mlir::Type componentTy = recTy.getType(name); |
| 337 | assert(componentTy && "component not found in type" ); |
| 338 | mlir::Value componentValue; |
| 339 | if (const auto *object{ |
| 340 | component.detailsIf<Fortran::semantics::ObjectEntityDetails>()}) { |
| 341 | if (const auto &init = object->init()) { |
| 342 | // Component has explicit initialization. |
| 343 | if (Fortran::semantics::IsPointer(component)) |
| 344 | // Initial data target. |
| 345 | componentValue = |
| 346 | genInitialDataTarget(converter, loc, componentTy, *init); |
| 347 | else |
| 348 | // Initial value. |
| 349 | componentValue = fir::getBase( |
| 350 | genInitializerExprValue(converter, loc, *init, stmtCtx)); |
| 351 | } else if (Fortran::semantics::IsAllocatableOrPointer(component)) { |
| 352 | // Pointer or allocatable without initialization. |
| 353 | // Create deallocated/disassociated value. |
| 354 | // From a standard point of view, pointer without initialization do not |
| 355 | // need to be disassociated, but for sanity and simplicity, do it in |
| 356 | // global constructor since this has no runtime cost. |
| 357 | componentValue = fir::factory::createUnallocatedBox( |
| 358 | builder, loc, componentTy, std::nullopt); |
| 359 | } else if (Fortran::lower::hasDefaultInitialization(component)) { |
| 360 | // Component type has default initialization. |
| 361 | componentValue = genDefaultInitializerValue(converter, loc, component, |
| 362 | componentTy, stmtCtx); |
| 363 | } else { |
| 364 | // Component has no initial value. Set its bits to zero by extension |
| 365 | // to match what is expected because other compilers are doing it. |
| 366 | componentValue = builder.create<fir::ZeroOp>(loc, componentTy); |
| 367 | } |
| 368 | } else if (const auto *proc{ |
| 369 | component |
| 370 | .detailsIf<Fortran::semantics::ProcEntityDetails>()}) { |
| 371 | if (proc->init().has_value()) { |
| 372 | auto sym{*proc->init()}; |
| 373 | if (sym) // Has a procedure target. |
| 374 | componentValue = |
| 375 | Fortran::lower::convertProcedureDesignatorInitialTarget(converter, |
| 376 | loc, *sym); |
| 377 | else // Has NULL() target. |
| 378 | componentValue = |
| 379 | fir::factory::createNullBoxProc(builder, loc, componentTy); |
| 380 | } else |
| 381 | componentValue = builder.create<fir::ZeroOp>(loc, componentTy); |
| 382 | } |
| 383 | assert(componentValue && "must have been computed" ); |
| 384 | componentValue = builder.createConvert(loc, componentTy, componentValue); |
| 385 | auto fieldTy = fir::FieldType::get(recTy.getContext()); |
| 386 | // FIXME: type parameters must come from the derived-type-spec |
| 387 | auto field = builder.create<fir::FieldIndexOp>( |
| 388 | loc, fieldTy, name, recTy, |
| 389 | /*typeParams=*/mlir::ValueRange{} /*TODO*/); |
| 390 | return builder.create<fir::InsertValueOp>( |
| 391 | loc, recTy, insertInto, componentValue, |
| 392 | builder.getArrayAttr(field.getAttributes())); |
| 393 | } |
| 394 | |
| 395 | static mlir::Value genDefaultInitializerValue( |
| 396 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 397 | const Fortran::semantics::Symbol &sym, mlir::Type symTy, |
| 398 | Fortran::lower::StatementContext &stmtCtx) { |
| 399 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 400 | mlir::Type scalarType = symTy; |
| 401 | fir::SequenceType sequenceType; |
| 402 | if (auto ty = mlir::dyn_cast<fir::SequenceType>(symTy)) { |
| 403 | sequenceType = ty; |
| 404 | scalarType = ty.getEleTy(); |
| 405 | } |
| 406 | // Build a scalar default value of the symbol type, looping through the |
| 407 | // components to build each component initial value. |
| 408 | auto recTy = mlir::cast<fir::RecordType>(scalarType); |
| 409 | mlir::Value initialValue = builder.create<fir::UndefOp>(loc, scalarType); |
| 410 | const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType(); |
| 411 | assert(declTy && "var with default initialization must have a type" ); |
| 412 | |
| 413 | if (converter.getLoweringOptions().getLowerToHighLevelFIR()) { |
| 414 | // In HLFIR, the parent type is the first component, while in FIR there is |
| 415 | // not parent component in the fir.type and the component of the parent are |
| 416 | // "inlined" at the beginning of the fir.type. |
| 417 | const Fortran::semantics::Symbol &typeSymbol = |
| 418 | declTy->derivedTypeSpec().typeSymbol(); |
| 419 | const Fortran::semantics::Scope *derivedScope = |
| 420 | declTy->derivedTypeSpec().GetScope(); |
| 421 | assert(derivedScope && "failed to retrieve derived type scope" ); |
| 422 | for (const auto &componentName : |
| 423 | typeSymbol.get<Fortran::semantics::DerivedTypeDetails>() |
| 424 | .componentNames()) { |
| 425 | auto scopeIter = derivedScope->find(componentName); |
| 426 | assert(scopeIter != derivedScope->cend() && |
| 427 | "failed to find derived type component symbol" ); |
| 428 | const Fortran::semantics::Symbol &component = scopeIter->second.get(); |
| 429 | initialValue = genComponentDefaultInit(converter, loc, component, recTy, |
| 430 | initialValue, stmtCtx); |
| 431 | } |
| 432 | } else { |
| 433 | Fortran::semantics::OrderedComponentIterator components( |
| 434 | declTy->derivedTypeSpec()); |
| 435 | for (const auto &component : components) { |
| 436 | // Skip parent components, the sub-components of parent types are part of |
| 437 | // components and will be looped through right after. |
| 438 | if (component.test(Fortran::semantics::Symbol::Flag::ParentComp)) |
| 439 | continue; |
| 440 | initialValue = genComponentDefaultInit(converter, loc, component, recTy, |
| 441 | initialValue, stmtCtx); |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | if (sequenceType) { |
| 446 | // For arrays, duplicate the scalar value to all elements with an |
| 447 | // fir.insert_range covering the whole array. |
| 448 | auto arrayInitialValue = builder.create<fir::UndefOp>(loc, sequenceType); |
| 449 | llvm::SmallVector<int64_t> rangeBounds; |
| 450 | for (int64_t extent : sequenceType.getShape()) { |
| 451 | if (extent == fir::SequenceType::getUnknownExtent()) |
| 452 | TODO(loc, |
| 453 | "default initial value of array component with length parameters" ); |
| 454 | rangeBounds.push_back(0); |
| 455 | rangeBounds.push_back(extent - 1); |
| 456 | } |
| 457 | return builder.create<fir::InsertOnRangeOp>( |
| 458 | loc, sequenceType, arrayInitialValue, initialValue, |
| 459 | builder.getIndexVectorAttr(rangeBounds)); |
| 460 | } |
| 461 | return initialValue; |
| 462 | } |
| 463 | |
| 464 | /// Does this global already have an initializer ? |
| 465 | static bool globalIsInitialized(fir::GlobalOp global) { |
| 466 | return !global.getRegion().empty() || global.getInitVal(); |
| 467 | } |
| 468 | |
| 469 | /// Call \p genInit to generate code inside \p global initializer region. |
| 470 | static void |
| 471 | createGlobalInitialization(fir::FirOpBuilder &builder, fir::GlobalOp global, |
| 472 | std::function<void(fir::FirOpBuilder &)> genInit) { |
| 473 | mlir::Region ®ion = global.getRegion(); |
| 474 | region.push_back(new mlir::Block); |
| 475 | mlir::Block &block = region.back(); |
| 476 | auto insertPt = builder.saveInsertionPoint(); |
| 477 | builder.setInsertionPointToStart(&block); |
| 478 | genInit(builder); |
| 479 | builder.restoreInsertionPoint(insertPt); |
| 480 | } |
| 481 | |
| 482 | static unsigned getAllocatorIdxFromDataAttr(cuf::DataAttributeAttr dataAttr) { |
| 483 | if (dataAttr) { |
| 484 | if (dataAttr.getValue() == cuf::DataAttribute::Pinned) |
| 485 | return kPinnedAllocatorPos; |
| 486 | if (dataAttr.getValue() == cuf::DataAttribute::Device) |
| 487 | return kDeviceAllocatorPos; |
| 488 | if (dataAttr.getValue() == cuf::DataAttribute::Managed) |
| 489 | return kManagedAllocatorPos; |
| 490 | if (dataAttr.getValue() == cuf::DataAttribute::Unified) |
| 491 | return kUnifiedAllocatorPos; |
| 492 | } |
| 493 | return kDefaultAllocator; |
| 494 | } |
| 495 | |
| 496 | /// Create the global op and its init if it has one |
| 497 | fir::GlobalOp Fortran::lower::defineGlobal( |
| 498 | Fortran::lower::AbstractConverter &converter, |
| 499 | const Fortran::lower::pft::Variable &var, llvm::StringRef globalName, |
| 500 | mlir::StringAttr linkage, cuf::DataAttributeAttr dataAttr) { |
| 501 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 502 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 503 | mlir::Location loc = genLocation(converter, sym); |
| 504 | bool isConst = isConstant(sym); |
| 505 | fir::GlobalOp global = builder.getNamedGlobal(globalName); |
| 506 | mlir::Type symTy = converter.genType(var); |
| 507 | |
| 508 | if (global && globalIsInitialized(global)) |
| 509 | return global; |
| 510 | |
| 511 | if (!converter.getLoweringOptions().getLowerToHighLevelFIR() && |
| 512 | Fortran::semantics::IsProcedurePointer(sym)) |
| 513 | TODO(loc, "procedure pointer globals" ); |
| 514 | |
| 515 | // If this is an array, check to see if we can use a dense attribute |
| 516 | // with a tensor mlir type. This optimization currently only supports |
| 517 | // Fortran arrays of integer, real, complex, or logical. The tensor |
| 518 | // type does not support nested structures. |
| 519 | if (mlir::isa<fir::SequenceType>(symTy) && |
| 520 | !Fortran::semantics::IsAllocatableOrPointer(sym)) { |
| 521 | mlir::Type eleTy = mlir::cast<fir::SequenceType>(symTy).getElementType(); |
| 522 | if (mlir::isa<mlir::IntegerType, mlir::FloatType, mlir::ComplexType, |
| 523 | fir::LogicalType>(eleTy)) { |
| 524 | const auto *details = |
| 525 | sym.detailsIf<Fortran::semantics::ObjectEntityDetails>(); |
| 526 | if (details->init()) { |
| 527 | global = Fortran::lower::tryCreatingDenseGlobal( |
| 528 | builder, loc, symTy, globalName, linkage, isConst, |
| 529 | details->init().value(), dataAttr); |
| 530 | if (global) { |
| 531 | global.setVisibility(mlir::SymbolTable::Visibility::Public); |
| 532 | return global; |
| 533 | } |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | if (!global) |
| 538 | global = |
| 539 | builder.createGlobal(loc, symTy, globalName, linkage, mlir::Attribute{}, |
| 540 | isConst, var.isTarget(), dataAttr); |
| 541 | if (Fortran::semantics::IsAllocatableOrPointer(sym) && |
| 542 | !Fortran::semantics::IsProcedure(sym)) { |
| 543 | const auto *details = |
| 544 | sym.detailsIf<Fortran::semantics::ObjectEntityDetails>(); |
| 545 | if (details && details->init()) { |
| 546 | auto expr = *details->init(); |
| 547 | createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &b) { |
| 548 | mlir::Value box = |
| 549 | Fortran::lower::genInitialDataTarget(converter, loc, symTy, expr); |
| 550 | b.create<fir::HasValueOp>(loc, box); |
| 551 | }); |
| 552 | } else { |
| 553 | // Create unallocated/disassociated descriptor if no explicit init |
| 554 | createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &b) { |
| 555 | mlir::Value box = fir::factory::createUnallocatedBox( |
| 556 | b, loc, symTy, |
| 557 | /*nonDeferredParams=*/std::nullopt, |
| 558 | /*typeSourceBox=*/{}, getAllocatorIdxFromDataAttr(dataAttr)); |
| 559 | b.create<fir::HasValueOp>(loc, box); |
| 560 | }); |
| 561 | } |
| 562 | } else if (const auto *details = |
| 563 | sym.detailsIf<Fortran::semantics::ObjectEntityDetails>()) { |
| 564 | if (details->init()) { |
| 565 | createGlobalInitialization( |
| 566 | builder, global, [&](fir::FirOpBuilder &builder) { |
| 567 | Fortran::lower::StatementContext stmtCtx( |
| 568 | /*cleanupProhibited=*/true); |
| 569 | fir::ExtendedValue initVal = genInitializerExprValue( |
| 570 | converter, loc, details->init().value(), stmtCtx); |
| 571 | mlir::Value castTo = |
| 572 | builder.createConvert(loc, symTy, fir::getBase(initVal)); |
| 573 | builder.create<fir::HasValueOp>(loc, castTo); |
| 574 | }); |
| 575 | } else if (Fortran::lower::hasDefaultInitialization(sym)) { |
| 576 | createGlobalInitialization( |
| 577 | builder, global, [&](fir::FirOpBuilder &builder) { |
| 578 | Fortran::lower::StatementContext stmtCtx( |
| 579 | /*cleanupProhibited=*/true); |
| 580 | mlir::Value initVal = |
| 581 | genDefaultInitializerValue(converter, loc, sym, symTy, stmtCtx); |
| 582 | mlir::Value castTo = builder.createConvert(loc, symTy, initVal); |
| 583 | builder.create<fir::HasValueOp>(loc, castTo); |
| 584 | }); |
| 585 | } |
| 586 | } else if (Fortran::semantics::IsProcedurePointer(sym)) { |
| 587 | const auto *details{sym.detailsIf<Fortran::semantics::ProcEntityDetails>()}; |
| 588 | if (details && details->init()) { |
| 589 | auto sym{*details->init()}; |
| 590 | if (sym) // Has a procedure target. |
| 591 | createGlobalInitialization( |
| 592 | builder, global, [&](fir::FirOpBuilder &b) { |
| 593 | Fortran::lower::StatementContext stmtCtx( |
| 594 | /*cleanupProhibited=*/true); |
| 595 | auto box{Fortran::lower::convertProcedureDesignatorInitialTarget( |
| 596 | converter, loc, *sym)}; |
| 597 | auto castTo{builder.createConvert(loc, symTy, box)}; |
| 598 | b.create<fir::HasValueOp>(loc, castTo); |
| 599 | }); |
| 600 | else { // Has NULL() target. |
| 601 | createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &b) { |
| 602 | auto box{fir::factory::createNullBoxProc(b, loc, symTy)}; |
| 603 | b.create<fir::HasValueOp>(loc, box); |
| 604 | }); |
| 605 | } |
| 606 | } else { |
| 607 | // No initialization. |
| 608 | createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &b) { |
| 609 | auto box{fir::factory::createNullBoxProc(b, loc, symTy)}; |
| 610 | b.create<fir::HasValueOp>(loc, box); |
| 611 | }); |
| 612 | } |
| 613 | } else if (sym.has<Fortran::semantics::CommonBlockDetails>()) { |
| 614 | mlir::emitError(loc, "COMMON symbol processed elsewhere" ); |
| 615 | } else { |
| 616 | TODO(loc, "global" ); // Something else |
| 617 | } |
| 618 | // Creates zero initializer for globals without initializers, this is a common |
| 619 | // and expected behavior (although not required by the standard) |
| 620 | if (!globalIsInitialized(global)) { |
| 621 | // Fortran does not provide means to specify that a BIND(C) module |
| 622 | // uninitialized variables will be defined in C. |
| 623 | // Add the common linkage to those to allow some level of support |
| 624 | // for this use case. Note that this use case will not work if the Fortran |
| 625 | // module code is placed in a shared library since, at least for the ELF |
| 626 | // format, common symbols are assigned a section in shared libraries. |
| 627 | // The best is still to declare C defined variables in a Fortran module file |
| 628 | // with no other definitions, and to never link the resulting module object |
| 629 | // file. |
| 630 | if (sym.attrs().test(Fortran::semantics::Attr::BIND_C)) |
| 631 | global.setLinkName(builder.createCommonLinkage()); |
| 632 | createGlobalInitialization( |
| 633 | builder, global, [&](fir::FirOpBuilder &builder) { |
| 634 | mlir::Value initValue; |
| 635 | if (converter.getLoweringOptions().getInitGlobalZero()) |
| 636 | initValue = builder.create<fir::ZeroOp>(loc, symTy); |
| 637 | else |
| 638 | initValue = builder.create<fir::UndefOp>(loc, symTy); |
| 639 | builder.create<fir::HasValueOp>(loc, initValue); |
| 640 | }); |
| 641 | } |
| 642 | // Set public visibility to prevent global definition to be optimized out |
| 643 | // even if they have no initializer and are unused in this compilation unit. |
| 644 | global.setVisibility(mlir::SymbolTable::Visibility::Public); |
| 645 | return global; |
| 646 | } |
| 647 | |
| 648 | /// Return linkage attribute for \p var. |
| 649 | static mlir::StringAttr |
| 650 | getLinkageAttribute(fir::FirOpBuilder &builder, |
| 651 | const Fortran::lower::pft::Variable &var) { |
| 652 | // Runtime type info for a same derived type is identical in each compilation |
| 653 | // unit. It desired to avoid having to link against module that only define a |
| 654 | // type. Therefore the runtime type info is generated everywhere it is needed |
| 655 | // with `linkonce_odr` LLVM linkage. |
| 656 | if (var.isRuntimeTypeInfoData()) |
| 657 | return builder.createLinkOnceODRLinkage(); |
| 658 | if (var.isModuleOrSubmoduleVariable()) |
| 659 | return {}; // external linkage |
| 660 | // Otherwise, the variable is owned by a procedure and must not be visible in |
| 661 | // other compilation units. |
| 662 | return builder.createInternalLinkage(); |
| 663 | } |
| 664 | |
| 665 | /// Instantiate a global variable. If it hasn't already been processed, add |
| 666 | /// the global to the ModuleOp as a new uniqued symbol and initialize it with |
| 667 | /// the correct value. It will be referenced on demand using `fir.addr_of`. |
| 668 | static void instantiateGlobal(Fortran::lower::AbstractConverter &converter, |
| 669 | const Fortran::lower::pft::Variable &var, |
| 670 | Fortran::lower::SymMap &symMap) { |
| 671 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 672 | assert(!var.isAlias() && "must be handled in instantiateAlias" ); |
| 673 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 674 | std::string globalName = converter.mangleName(sym); |
| 675 | mlir::Location loc = genLocation(converter, sym); |
| 676 | mlir::StringAttr linkage = getLinkageAttribute(builder, var); |
| 677 | fir::GlobalOp global; |
| 678 | if (var.isModuleOrSubmoduleVariable()) { |
| 679 | // A non-intrinsic module global is defined when lowering the module. |
| 680 | // Emit only a declaration if the global does not exist. |
| 681 | global = declareGlobal(converter, var, globalName, linkage); |
| 682 | } else { |
| 683 | cuf::DataAttributeAttr dataAttr = |
| 684 | Fortran::lower::translateSymbolCUFDataAttribute(builder.getContext(), |
| 685 | sym); |
| 686 | global = defineGlobal(converter, var, globalName, linkage, dataAttr); |
| 687 | } |
| 688 | auto addrOf = builder.create<fir::AddrOfOp>(loc, global.resultType(), |
| 689 | global.getSymbol()); |
| 690 | Fortran::lower::StatementContext stmtCtx; |
| 691 | mapSymbolAttributes(converter, var, symMap, stmtCtx, addrOf); |
| 692 | } |
| 693 | |
| 694 | //===----------------------------------------------------------------===// |
| 695 | // Local variables instantiation (not for alias) |
| 696 | //===----------------------------------------------------------------===// |
| 697 | |
| 698 | /// Create a stack slot for a local variable. Precondition: the insertion |
| 699 | /// point of the builder must be in the entry block, which is currently being |
| 700 | /// constructed. |
| 701 | static mlir::Value createNewLocal(Fortran::lower::AbstractConverter &converter, |
| 702 | mlir::Location loc, |
| 703 | const Fortran::lower::pft::Variable &var, |
| 704 | mlir::Value preAlloc, |
| 705 | llvm::ArrayRef<mlir::Value> shape = {}, |
| 706 | llvm::ArrayRef<mlir::Value> lenParams = {}) { |
| 707 | if (preAlloc) |
| 708 | return preAlloc; |
| 709 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 710 | std::string nm = converter.mangleName(var.getSymbol()); |
| 711 | mlir::Type ty = converter.genType(var); |
| 712 | const Fortran::semantics::Symbol &ultimateSymbol = |
| 713 | var.getSymbol().GetUltimate(); |
| 714 | llvm::StringRef symNm = toStringRef(ultimateSymbol.name()); |
| 715 | bool isTarg = var.isTarget(); |
| 716 | |
| 717 | // Do not allocate storage for cray pointee. The address inside the cray |
| 718 | // pointer will be used instead when using the pointee. Allocating space |
| 719 | // would be a waste of space, and incorrect if the pointee is a non dummy |
| 720 | // assumed-size (possible with cray pointee). |
| 721 | if (ultimateSymbol.test(Fortran::semantics::Symbol::Flag::CrayPointee)) |
| 722 | return builder.create<fir::ZeroOp>(loc, fir::ReferenceType::get(ty)); |
| 723 | |
| 724 | if (Fortran::semantics::NeedCUDAAlloc(ultimateSymbol)) { |
| 725 | cuf::DataAttributeAttr dataAttr = |
| 726 | Fortran::lower::translateSymbolCUFDataAttribute(builder.getContext(), |
| 727 | ultimateSymbol); |
| 728 | llvm::SmallVector<mlir::Value> indices; |
| 729 | llvm::SmallVector<mlir::Value> elidedShape = |
| 730 | fir::factory::elideExtentsAlreadyInType(ty, shape); |
| 731 | llvm::SmallVector<mlir::Value> elidedLenParams = |
| 732 | fir::factory::elideLengthsAlreadyInType(ty, lenParams); |
| 733 | auto idxTy = builder.getIndexType(); |
| 734 | for (mlir::Value sh : elidedShape) |
| 735 | indices.push_back(builder.createConvert(loc, idxTy, sh)); |
| 736 | if (dataAttr.getValue() == cuf::DataAttribute::Shared) |
| 737 | return builder.create<cuf::SharedMemoryOp>(loc, ty, nm, symNm, lenParams, |
| 738 | indices); |
| 739 | |
| 740 | if (!cuf::isCUDADeviceContext(builder.getRegion())) |
| 741 | return builder.create<cuf::AllocOp>(loc, ty, nm, symNm, dataAttr, |
| 742 | lenParams, indices); |
| 743 | } |
| 744 | |
| 745 | // Let the builder do all the heavy lifting. |
| 746 | if (!Fortran::semantics::IsProcedurePointer(ultimateSymbol)) |
| 747 | return builder.allocateLocal(loc, ty, nm, symNm, shape, lenParams, isTarg); |
| 748 | |
| 749 | // Local procedure pointer. |
| 750 | auto res{builder.allocateLocal(loc, ty, nm, symNm, shape, lenParams, isTarg)}; |
| 751 | auto box{fir::factory::createNullBoxProc(builder, loc, ty)}; |
| 752 | builder.create<fir::StoreOp>(loc, box, res); |
| 753 | return res; |
| 754 | } |
| 755 | |
| 756 | /// Must \p var be default initialized at runtime when entering its scope. |
| 757 | static bool |
| 758 | mustBeDefaultInitializedAtRuntime(const Fortran::lower::pft::Variable &var) { |
| 759 | if (!var.hasSymbol()) |
| 760 | return false; |
| 761 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 762 | if (var.isGlobal()) |
| 763 | // Global variables are statically initialized. |
| 764 | return false; |
| 765 | if (Fortran::semantics::IsDummy(sym) && !Fortran::semantics::IsIntentOut(sym)) |
| 766 | return false; |
| 767 | // Polymorphic intent(out) dummy might need default initialization |
| 768 | // at runtime. |
| 769 | if (Fortran::semantics::IsPolymorphic(sym) && |
| 770 | Fortran::semantics::IsDummy(sym) && |
| 771 | Fortran::semantics::IsIntentOut(sym) && |
| 772 | !Fortran::semantics::IsAllocatable(sym) && |
| 773 | !Fortran::semantics::IsPointer(sym)) |
| 774 | return true; |
| 775 | // Local variables (including function results), and intent(out) dummies must |
| 776 | // be default initialized at runtime if their type has default initialization. |
| 777 | return Fortran::lower::hasDefaultInitialization(sym); |
| 778 | } |
| 779 | |
| 780 | /// Call default initialization runtime routine to initialize \p var. |
| 781 | void Fortran::lower::defaultInitializeAtRuntime( |
| 782 | Fortran::lower::AbstractConverter &converter, |
| 783 | const Fortran::semantics::Symbol &sym, Fortran::lower::SymMap &symMap) { |
| 784 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 785 | mlir::Location loc = converter.getCurrentLocation(); |
| 786 | fir::ExtendedValue exv = converter.getSymbolExtendedValue(sym, &symMap); |
| 787 | if (Fortran::semantics::IsOptional(sym)) { |
| 788 | // 15.5.2.12 point 3, absent optional dummies are not initialized. |
| 789 | // Creating descriptor/passing null descriptor to the runtime would |
| 790 | // create runtime crashes. |
| 791 | auto isPresent = builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), |
| 792 | fir::getBase(exv)); |
| 793 | builder.genIfThen(loc, isPresent) |
| 794 | .genThen([&]() { |
| 795 | auto box = builder.createBox(loc, exv); |
| 796 | fir::runtime::genDerivedTypeInitialize(builder, loc, box); |
| 797 | }) |
| 798 | .end(); |
| 799 | } else { |
| 800 | /// For "simpler" types, relying on "_FortranAInitialize" |
| 801 | /// leads to poor runtime performance. Hence optimize |
| 802 | /// the same. |
| 803 | const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType(); |
| 804 | mlir::Type symTy = converter.genType(sym); |
| 805 | const auto *details = |
| 806 | sym.detailsIf<Fortran::semantics::ObjectEntityDetails>(); |
| 807 | if (details && !Fortran::semantics::IsPolymorphic(sym) && |
| 808 | declTy->category() == |
| 809 | Fortran::semantics::DeclTypeSpec::Category::TypeDerived && |
| 810 | !mlir::isa<fir::SequenceType>(symTy) && |
| 811 | !sym.test(Fortran::semantics::Symbol::Flag::OmpPrivate) && |
| 812 | !sym.test(Fortran::semantics::Symbol::Flag::OmpFirstPrivate)) { |
| 813 | std::string globalName = fir::NameUniquer::doGenerated( |
| 814 | (converter.mangleName(*declTy->AsDerived()) + fir::kNameSeparator + |
| 815 | fir::kDerivedTypeInitSuffix) |
| 816 | .str()); |
| 817 | mlir::Location loc = genLocation(converter, sym); |
| 818 | mlir::StringAttr linkage = builder.createInternalLinkage(); |
| 819 | fir::GlobalOp global = builder.getNamedGlobal(globalName); |
| 820 | if (!global && details->init()) { |
| 821 | global = builder.createGlobal(loc, symTy, globalName, linkage, |
| 822 | mlir::Attribute{}, |
| 823 | /*isConst=*/true, |
| 824 | /*isTarget=*/false, |
| 825 | /*dataAttr=*/{}); |
| 826 | createGlobalInitialization( |
| 827 | builder, global, [&](fir::FirOpBuilder &builder) { |
| 828 | Fortran::lower::StatementContext stmtCtx( |
| 829 | /*cleanupProhibited=*/true); |
| 830 | fir::ExtendedValue initVal = genInitializerExprValue( |
| 831 | converter, loc, details->init().value(), stmtCtx); |
| 832 | mlir::Value castTo = |
| 833 | builder.createConvert(loc, symTy, fir::getBase(initVal)); |
| 834 | builder.create<fir::HasValueOp>(loc, castTo); |
| 835 | }); |
| 836 | } else if (!global) { |
| 837 | global = builder.createGlobal(loc, symTy, globalName, linkage, |
| 838 | mlir::Attribute{}, |
| 839 | /*isConst=*/true, |
| 840 | /*isTarget=*/false, |
| 841 | /*dataAttr=*/{}); |
| 842 | createGlobalInitialization( |
| 843 | builder, global, [&](fir::FirOpBuilder &builder) { |
| 844 | Fortran::lower::StatementContext stmtCtx( |
| 845 | /*cleanupProhibited=*/true); |
| 846 | mlir::Value initVal = genDefaultInitializerValue( |
| 847 | converter, loc, sym, symTy, stmtCtx); |
| 848 | mlir::Value castTo = builder.createConvert(loc, symTy, initVal); |
| 849 | builder.create<fir::HasValueOp>(loc, castTo); |
| 850 | }); |
| 851 | } |
| 852 | auto addrOf = builder.create<fir::AddrOfOp>(loc, global.resultType(), |
| 853 | global.getSymbol()); |
| 854 | builder.create<fir::CopyOp>(loc, addrOf, fir::getBase(exv), |
| 855 | /*noOverlap=*/true); |
| 856 | } else { |
| 857 | mlir::Value box = builder.createBox(loc, exv); |
| 858 | fir::runtime::genDerivedTypeInitialize(builder, loc, box); |
| 859 | } |
| 860 | } |
| 861 | } |
| 862 | |
| 863 | /// Call clone initialization runtime routine to initialize \p sym's value. |
| 864 | void Fortran::lower::initializeCloneAtRuntime( |
| 865 | Fortran::lower::AbstractConverter &converter, |
| 866 | const Fortran::semantics::Symbol &sym, Fortran::lower::SymMap &symMap) { |
| 867 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 868 | mlir::Location loc = converter.getCurrentLocation(); |
| 869 | fir::ExtendedValue exv = converter.getSymbolExtendedValue(sym, &symMap); |
| 870 | mlir::Value newBox = builder.createBox(loc, exv); |
| 871 | lower::SymbolBox hsb = converter.lookupOneLevelUpSymbol(sym); |
| 872 | fir::ExtendedValue hexv = converter.symBoxToExtendedValue(hsb); |
| 873 | mlir::Value box = builder.createBox(loc, hexv); |
| 874 | fir::runtime::genDerivedTypeInitializeClone(builder, loc, newBox, box); |
| 875 | } |
| 876 | |
| 877 | enum class VariableCleanUp { Finalize, Deallocate }; |
| 878 | /// Check whether a local variable needs to be finalized according to clause |
| 879 | /// 7.5.6.3 point 3 or if it is an allocatable that must be deallocated. Note |
| 880 | /// that deallocation will trigger finalization if the type has any. |
| 881 | static std::optional<VariableCleanUp> |
| 882 | needDeallocationOrFinalization(const Fortran::lower::pft::Variable &var) { |
| 883 | if (!var.hasSymbol()) |
| 884 | return std::nullopt; |
| 885 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 886 | const Fortran::semantics::Scope &owner = sym.owner(); |
| 887 | if (owner.kind() == Fortran::semantics::Scope::Kind::MainProgram) { |
| 888 | // The standard does not require finalizing main program variables. |
| 889 | return std::nullopt; |
| 890 | } |
| 891 | if (!Fortran::semantics::IsPointer(sym) && |
| 892 | !Fortran::semantics::IsDummy(sym) && |
| 893 | !Fortran::semantics::IsFunctionResult(sym) && |
| 894 | !Fortran::semantics::IsSaved(sym)) { |
| 895 | if (Fortran::semantics::IsAllocatable(sym)) |
| 896 | return VariableCleanUp::Deallocate; |
| 897 | if (hasFinalization(sym)) |
| 898 | return VariableCleanUp::Finalize; |
| 899 | // hasFinalization() check above handled all cases that require |
| 900 | // finalization, but we also have to deallocate all allocatable |
| 901 | // components of local variables (since they are also local variables |
| 902 | // according to F18 5.4.3.2.2, p. 2, note 1). |
| 903 | // Here, the variable itself is not allocatable. If it has an allocatable |
| 904 | // component the Destroy runtime does the job. Use the Finalize clean-up, |
| 905 | // though there will be no finalization in runtime. |
| 906 | if (hasAllocatableDirectComponent(sym)) |
| 907 | return VariableCleanUp::Finalize; |
| 908 | } |
| 909 | return std::nullopt; |
| 910 | } |
| 911 | |
| 912 | /// Check whether a variable needs the be finalized according to clause 7.5.6.3 |
| 913 | /// point 7. |
| 914 | /// Must be nonpointer, nonallocatable, INTENT (OUT) dummy argument. |
| 915 | static bool |
| 916 | needDummyIntentoutFinalization(const Fortran::semantics::Symbol &sym) { |
| 917 | if (!Fortran::semantics::IsDummy(sym) || |
| 918 | !Fortran::semantics::IsIntentOut(sym) || |
| 919 | Fortran::semantics::IsAllocatable(sym) || |
| 920 | Fortran::semantics::IsPointer(sym)) |
| 921 | return false; |
| 922 | // Polymorphic and unlimited polymorphic intent(out) dummy argument might need |
| 923 | // finalization at runtime. |
| 924 | if (Fortran::semantics::IsPolymorphic(sym) || |
| 925 | Fortran::semantics::IsUnlimitedPolymorphic(sym)) |
| 926 | return true; |
| 927 | // Intent(out) dummies must be finalized at runtime if their type has a |
| 928 | // finalization. |
| 929 | // Allocatable components of INTENT(OUT) dummies must be deallocated (9.7.3.2 |
| 930 | // p6). Calling finalization runtime for this works even if the components |
| 931 | // have no final procedures. |
| 932 | return hasFinalization(sym) || hasAllocatableDirectComponent(sym); |
| 933 | } |
| 934 | |
| 935 | /// Check whether a variable needs the be finalized according to clause 7.5.6.3 |
| 936 | /// point 7. |
| 937 | /// Must be nonpointer, nonallocatable, INTENT (OUT) dummy argument. |
| 938 | static bool |
| 939 | needDummyIntentoutFinalization(const Fortran::lower::pft::Variable &var) { |
| 940 | if (!var.hasSymbol()) |
| 941 | return false; |
| 942 | return needDummyIntentoutFinalization(var.getSymbol()); |
| 943 | } |
| 944 | |
| 945 | /// Call default initialization runtime routine to initialize \p var. |
| 946 | static void finalizeAtRuntime(Fortran::lower::AbstractConverter &converter, |
| 947 | const Fortran::lower::pft::Variable &var, |
| 948 | Fortran::lower::SymMap &symMap) { |
| 949 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 950 | mlir::Location loc = converter.getCurrentLocation(); |
| 951 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 952 | fir::ExtendedValue exv = converter.getSymbolExtendedValue(sym, &symMap); |
| 953 | if (Fortran::semantics::IsOptional(sym)) { |
| 954 | // Only finalize if present. |
| 955 | auto isPresent = builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), |
| 956 | fir::getBase(exv)); |
| 957 | builder.genIfThen(loc, isPresent) |
| 958 | .genThen([&]() { |
| 959 | auto box = builder.createBox(loc, exv); |
| 960 | fir::runtime::genDerivedTypeDestroy(builder, loc, box); |
| 961 | }) |
| 962 | .end(); |
| 963 | } else { |
| 964 | mlir::Value box = builder.createBox(loc, exv); |
| 965 | fir::runtime::genDerivedTypeDestroy(builder, loc, box); |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | // Fortran 2018 - 9.7.3.2 point 6 |
| 970 | // When a procedure is invoked, any allocated allocatable object that is an |
| 971 | // actual argument corresponding to an INTENT(OUT) allocatable dummy argument |
| 972 | // is deallocated; any allocated allocatable object that is a subobject of an |
| 973 | // actual argument corresponding to an INTENT(OUT) dummy argument is |
| 974 | // deallocated. |
| 975 | // Note that allocatable components of non-ALLOCATABLE INTENT(OUT) dummy |
| 976 | // arguments are dealt with needDummyIntentoutFinalization (finalization runtime |
| 977 | // is called to reach the intended component deallocation effect). |
| 978 | static void deallocateIntentOut(Fortran::lower::AbstractConverter &converter, |
| 979 | const Fortran::lower::pft::Variable &var, |
| 980 | Fortran::lower::SymMap &symMap) { |
| 981 | if (!var.hasSymbol()) |
| 982 | return; |
| 983 | |
| 984 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 985 | if (Fortran::semantics::IsDummy(sym) && |
| 986 | Fortran::semantics::IsIntentOut(sym) && |
| 987 | Fortran::semantics::IsAllocatable(sym)) { |
| 988 | fir::ExtendedValue extVal = converter.getSymbolExtendedValue(sym, &symMap); |
| 989 | if (auto mutBox = extVal.getBoxOf<fir::MutableBoxValue>()) { |
| 990 | // The dummy argument is not passed in the ENTRY so it should not be |
| 991 | // deallocated. |
| 992 | if (mlir::Operation *op = mutBox->getAddr().getDefiningOp()) { |
| 993 | if (auto declOp = mlir::dyn_cast<hlfir::DeclareOp>(op)) |
| 994 | op = declOp.getMemref().getDefiningOp(); |
| 995 | if (op && mlir::isa<fir::AllocaOp>(op)) |
| 996 | return; |
| 997 | } |
| 998 | mlir::Location loc = converter.getCurrentLocation(); |
| 999 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1000 | |
| 1001 | if (Fortran::semantics::IsOptional(sym)) { |
| 1002 | auto isPresent = builder.create<fir::IsPresentOp>( |
| 1003 | loc, builder.getI1Type(), fir::getBase(extVal)); |
| 1004 | builder.genIfThen(loc, isPresent) |
| 1005 | .genThen([&]() { |
| 1006 | Fortran::lower::genDeallocateIfAllocated(converter, *mutBox, loc); |
| 1007 | }) |
| 1008 | .end(); |
| 1009 | } else { |
| 1010 | Fortran::lower::genDeallocateIfAllocated(converter, *mutBox, loc); |
| 1011 | } |
| 1012 | } |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | /// Return true iff the given symbol represents a dummy array |
| 1017 | /// that needs to be repacked when -frepack-arrays is set. |
| 1018 | /// In general, the repacking is done for assumed-shape |
| 1019 | /// dummy arguments, but there are limitations. |
| 1020 | static bool needsRepack(Fortran::lower::AbstractConverter &converter, |
| 1021 | const Fortran::semantics::Symbol &sym) { |
| 1022 | const auto &attrs = sym.attrs(); |
| 1023 | if (!converter.getLoweringOptions().getRepackArrays() || |
| 1024 | !converter.isRegisteredDummySymbol(sym) || |
| 1025 | !Fortran::semantics::IsAssumedShape(sym) || |
| 1026 | Fortran::evaluate::IsSimplyContiguous(sym, |
| 1027 | converter.getFoldingContext()) || |
| 1028 | // TARGET dummy may be accessed indirectly, so it is unsafe |
| 1029 | // to repack it. Some compilers provide options to override |
| 1030 | // this. |
| 1031 | // Repacking of VOLATILE and ASYNCHRONOUS is also unsafe. |
| 1032 | attrs.HasAny({Fortran::semantics::Attr::ASYNCHRONOUS, |
| 1033 | Fortran::semantics::Attr::TARGET, |
| 1034 | Fortran::semantics::Attr::VOLATILE})) |
| 1035 | return false; |
| 1036 | |
| 1037 | return true; |
| 1038 | } |
| 1039 | |
| 1040 | static mlir::ArrayAttr |
| 1041 | getSafeRepackAttrs(Fortran::lower::AbstractConverter &converter) { |
| 1042 | llvm::SmallVector<mlir::Attribute> attrs; |
| 1043 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1044 | const auto &langFeatures = converter.getFoldingContext().languageFeatures(); |
| 1045 | if (langFeatures.IsEnabled(Fortran::common::LanguageFeature::OpenACC)) |
| 1046 | attrs.push_back( |
| 1047 | fir::OpenACCSafeTempArrayCopyAttr::get(builder.getContext())); |
| 1048 | if (langFeatures.IsEnabled(Fortran::common::LanguageFeature::OpenMP)) |
| 1049 | attrs.push_back( |
| 1050 | fir::OpenMPSafeTempArrayCopyAttr::get(builder.getContext())); |
| 1051 | |
| 1052 | return attrs.empty() ? mlir::ArrayAttr{} : builder.getArrayAttr(attrs); |
| 1053 | } |
| 1054 | |
| 1055 | /// Instantiate a local variable. Precondition: Each variable will be visited |
| 1056 | /// such that if its properties depend on other variables, the variables upon |
| 1057 | /// which its properties depend will already have been visited. |
| 1058 | static void instantiateLocal(Fortran::lower::AbstractConverter &converter, |
| 1059 | const Fortran::lower::pft::Variable &var, |
| 1060 | Fortran::lower::SymMap &symMap) { |
| 1061 | assert(!var.isAlias()); |
| 1062 | Fortran::lower::StatementContext stmtCtx; |
| 1063 | // isUnusedEntryDummy must be computed before mapSymbolAttributes. |
| 1064 | const bool isUnusedEntryDummy = |
| 1065 | var.hasSymbol() && Fortran::semantics::IsDummy(var.getSymbol()) && |
| 1066 | !symMap.lookupSymbol(var.getSymbol()).getAddr(); |
| 1067 | mapSymbolAttributes(converter, var, symMap, stmtCtx); |
| 1068 | // Do not generate code to initialize/finalize/destroy dummy arguments that |
| 1069 | // are nor part of the current ENTRY. They do not have backing storage. |
| 1070 | if (isUnusedEntryDummy) |
| 1071 | return; |
| 1072 | deallocateIntentOut(converter, var, symMap); |
| 1073 | if (needDummyIntentoutFinalization(var)) |
| 1074 | finalizeAtRuntime(converter, var, symMap); |
| 1075 | if (mustBeDefaultInitializedAtRuntime(var)) |
| 1076 | Fortran::lower::defaultInitializeAtRuntime(converter, var.getSymbol(), |
| 1077 | symMap); |
| 1078 | auto *builder = &converter.getFirOpBuilder(); |
| 1079 | if (Fortran::semantics::NeedCUDAAlloc(var.getSymbol()) && |
| 1080 | !cuf::isCUDADeviceContext(builder->getRegion())) { |
| 1081 | cuf::DataAttributeAttr dataAttr = |
| 1082 | Fortran::lower::translateSymbolCUFDataAttribute(builder->getContext(), |
| 1083 | var.getSymbol()); |
| 1084 | mlir::Location loc = converter.getCurrentLocation(); |
| 1085 | fir::ExtendedValue exv = |
| 1086 | converter.getSymbolExtendedValue(var.getSymbol(), &symMap); |
| 1087 | auto *sym = &var.getSymbol(); |
| 1088 | const Fortran::semantics::Scope &owner = sym->owner(); |
| 1089 | if (owner.kind() != Fortran::semantics::Scope::Kind::MainProgram && |
| 1090 | dataAttr.getValue() != cuf::DataAttribute::Shared) { |
| 1091 | converter.getFctCtx().attachCleanup([builder, loc, exv, sym]() { |
| 1092 | cuf::DataAttributeAttr dataAttr = |
| 1093 | Fortran::lower::translateSymbolCUFDataAttribute( |
| 1094 | builder->getContext(), *sym); |
| 1095 | builder->create<cuf::FreeOp>(loc, fir::getBase(exv), dataAttr); |
| 1096 | }); |
| 1097 | } |
| 1098 | } |
| 1099 | if (std::optional<VariableCleanUp> cleanup = |
| 1100 | needDeallocationOrFinalization(var)) { |
| 1101 | auto *builder = &converter.getFirOpBuilder(); |
| 1102 | mlir::Location loc = converter.getCurrentLocation(); |
| 1103 | fir::ExtendedValue exv = |
| 1104 | converter.getSymbolExtendedValue(var.getSymbol(), &symMap); |
| 1105 | switch (*cleanup) { |
| 1106 | case VariableCleanUp::Finalize: |
| 1107 | converter.getFctCtx().attachCleanup([builder, loc, exv]() { |
| 1108 | mlir::Value box = builder->createBox(loc, exv); |
| 1109 | fir::runtime::genDerivedTypeDestroy(*builder, loc, box); |
| 1110 | }); |
| 1111 | break; |
| 1112 | case VariableCleanUp::Deallocate: |
| 1113 | auto *converterPtr = &converter; |
| 1114 | auto *sym = &var.getSymbol(); |
| 1115 | converter.getFctCtx().attachCleanup([converterPtr, loc, exv, sym]() { |
| 1116 | const fir::MutableBoxValue *mutableBox = |
| 1117 | exv.getBoxOf<fir::MutableBoxValue>(); |
| 1118 | assert(mutableBox && |
| 1119 | "trying to deallocate entity not lowered as allocatable" ); |
| 1120 | Fortran::lower::genDeallocateIfAllocated(*converterPtr, *mutableBox, |
| 1121 | loc, sym); |
| 1122 | }); |
| 1123 | } |
| 1124 | } else if (var.hasSymbol() && needsRepack(converter, var.getSymbol())) { |
| 1125 | auto *converterPtr = &converter; |
| 1126 | mlir::Location loc = converter.getCurrentLocation(); |
| 1127 | auto *sym = &var.getSymbol(); |
| 1128 | std::optional<fir::FortranVariableOpInterface> varDef = |
| 1129 | symMap.lookupVariableDefinition(*sym); |
| 1130 | assert(varDef && "cannot find defining operation for an array that needs " |
| 1131 | "to be repacked" ); |
| 1132 | converter.getFctCtx().attachCleanup([converterPtr, loc, varDef, sym]() { |
| 1133 | Fortran::lower::genUnpackArray(*converterPtr, loc, *varDef, *sym); |
| 1134 | }); |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | //===----------------------------------------------------------------===// |
| 1139 | // Aliased (EQUIVALENCE) variables instantiation |
| 1140 | //===----------------------------------------------------------------===// |
| 1141 | |
| 1142 | /// Insert \p aggregateStore instance into an AggregateStoreMap. |
| 1143 | static void insertAggregateStore(Fortran::lower::AggregateStoreMap &storeMap, |
| 1144 | const Fortran::lower::pft::Variable &var, |
| 1145 | mlir::Value aggregateStore) { |
| 1146 | std::size_t off = var.getAggregateStore().getOffset(); |
| 1147 | Fortran::lower::AggregateStoreKey key = {var.getOwningScope(), off}; |
| 1148 | storeMap[key] = aggregateStore; |
| 1149 | } |
| 1150 | |
| 1151 | /// Retrieve the aggregate store instance of \p alias from an |
| 1152 | /// AggregateStoreMap. |
| 1153 | static mlir::Value |
| 1154 | getAggregateStore(Fortran::lower::AggregateStoreMap &storeMap, |
| 1155 | const Fortran::lower::pft::Variable &alias) { |
| 1156 | Fortran::lower::AggregateStoreKey key = {alias.getOwningScope(), |
| 1157 | alias.getAliasOffset()}; |
| 1158 | auto iter = storeMap.find(key); |
| 1159 | assert(iter != storeMap.end()); |
| 1160 | return iter->second; |
| 1161 | } |
| 1162 | |
| 1163 | /// Build the name for the storage of a global equivalence. |
| 1164 | static std::string mangleGlobalAggregateStore( |
| 1165 | Fortran::lower::AbstractConverter &converter, |
| 1166 | const Fortran::lower::pft::Variable::AggregateStore &st) { |
| 1167 | return converter.mangleName(st.getNamingSymbol()); |
| 1168 | } |
| 1169 | |
| 1170 | /// Build the type for the storage of an equivalence. |
| 1171 | static mlir::Type |
| 1172 | getAggregateType(Fortran::lower::AbstractConverter &converter, |
| 1173 | const Fortran::lower::pft::Variable::AggregateStore &st) { |
| 1174 | if (const Fortran::semantics::Symbol *initSym = st.getInitialValueSymbol()) |
| 1175 | return converter.genType(*initSym); |
| 1176 | mlir::IntegerType byteTy = converter.getFirOpBuilder().getIntegerType(8); |
| 1177 | return fir::SequenceType::get(std::get<1>(st.interval), byteTy); |
| 1178 | } |
| 1179 | |
| 1180 | /// Define a GlobalOp for the storage of a global equivalence described |
| 1181 | /// by \p aggregate. The global is named \p aggName and is created with |
| 1182 | /// the provided \p linkage. |
| 1183 | /// If any of the equivalence members are initialized, an initializer is |
| 1184 | /// created for the equivalence. |
| 1185 | /// This is to be used when lowering the scope that owns the equivalence |
| 1186 | /// (as opposed to simply using it through host or use association). |
| 1187 | /// This is not to be used for equivalence of common block members (they |
| 1188 | /// already have the common block GlobalOp for them, see defineCommonBlock). |
| 1189 | static fir::GlobalOp defineGlobalAggregateStore( |
| 1190 | Fortran::lower::AbstractConverter &converter, |
| 1191 | const Fortran::lower::pft::Variable::AggregateStore &aggregate, |
| 1192 | llvm::StringRef aggName, mlir::StringAttr linkage) { |
| 1193 | assert(aggregate.isGlobal() && "not a global interval" ); |
| 1194 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1195 | fir::GlobalOp global = builder.getNamedGlobal(aggName); |
| 1196 | if (global && globalIsInitialized(global)) |
| 1197 | return global; |
| 1198 | mlir::Location loc = converter.getCurrentLocation(); |
| 1199 | mlir::Type aggTy = getAggregateType(converter, aggregate); |
| 1200 | if (!global) |
| 1201 | global = builder.createGlobal(loc, aggTy, aggName, linkage); |
| 1202 | |
| 1203 | if (const Fortran::semantics::Symbol *initSym = |
| 1204 | aggregate.getInitialValueSymbol()) |
| 1205 | if (const auto *objectDetails = |
| 1206 | initSym->detailsIf<Fortran::semantics::ObjectEntityDetails>()) |
| 1207 | if (objectDetails->init()) { |
| 1208 | createGlobalInitialization( |
| 1209 | builder, global, [&](fir::FirOpBuilder &builder) { |
| 1210 | Fortran::lower::StatementContext stmtCtx; |
| 1211 | mlir::Value initVal = fir::getBase(genInitializerExprValue( |
| 1212 | converter, loc, objectDetails->init().value(), stmtCtx)); |
| 1213 | builder.create<fir::HasValueOp>(loc, initVal); |
| 1214 | }); |
| 1215 | return global; |
| 1216 | } |
| 1217 | // Equivalence has no Fortran initial value. Create an undefined FIR initial |
| 1218 | // value to ensure this is consider an object definition in the IR regardless |
| 1219 | // of the linkage. |
| 1220 | createGlobalInitialization(builder, global, [&](fir::FirOpBuilder &builder) { |
| 1221 | Fortran::lower::StatementContext stmtCtx; |
| 1222 | mlir::Value initVal = builder.create<fir::ZeroOp>(loc, aggTy); |
| 1223 | builder.create<fir::HasValueOp>(loc, initVal); |
| 1224 | }); |
| 1225 | return global; |
| 1226 | } |
| 1227 | |
| 1228 | /// Declare a GlobalOp for the storage of a global equivalence described |
| 1229 | /// by \p aggregate. The global is named \p aggName and is created with |
| 1230 | /// the provided \p linkage. |
| 1231 | /// No initializer is built for the created GlobalOp. |
| 1232 | /// This is to be used when lowering the scope that uses members of an |
| 1233 | /// equivalence it through host or use association. |
| 1234 | /// This is not to be used for equivalence of common block members (they |
| 1235 | /// already have the common block GlobalOp for them, see defineCommonBlock). |
| 1236 | static fir::GlobalOp declareGlobalAggregateStore( |
| 1237 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1238 | const Fortran::lower::pft::Variable::AggregateStore &aggregate, |
| 1239 | llvm::StringRef aggName, mlir::StringAttr linkage) { |
| 1240 | assert(aggregate.isGlobal() && "not a global interval" ); |
| 1241 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1242 | if (fir::GlobalOp global = builder.getNamedGlobal(aggName)) |
| 1243 | return global; |
| 1244 | mlir::Type aggTy = getAggregateType(converter, aggregate); |
| 1245 | return builder.createGlobal(loc, aggTy, aggName, linkage); |
| 1246 | } |
| 1247 | |
| 1248 | /// This is an aggregate store for a set of EQUIVALENCED variables. Create the |
| 1249 | /// storage on the stack or global memory and add it to the map. |
| 1250 | static void |
| 1251 | instantiateAggregateStore(Fortran::lower::AbstractConverter &converter, |
| 1252 | const Fortran::lower::pft::Variable &var, |
| 1253 | Fortran::lower::AggregateStoreMap &storeMap) { |
| 1254 | assert(var.isAggregateStore() && "not an interval" ); |
| 1255 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1256 | mlir::IntegerType i8Ty = builder.getIntegerType(8); |
| 1257 | mlir::Location loc = converter.getCurrentLocation(); |
| 1258 | std::string aggName = |
| 1259 | mangleGlobalAggregateStore(converter, var.getAggregateStore()); |
| 1260 | if (var.isGlobal()) { |
| 1261 | fir::GlobalOp global; |
| 1262 | auto &aggregate = var.getAggregateStore(); |
| 1263 | mlir::StringAttr linkage = getLinkageAttribute(builder, var); |
| 1264 | if (var.isModuleOrSubmoduleVariable()) { |
| 1265 | // A module global was or will be defined when lowering the module. Emit |
| 1266 | // only a declaration if the global does not exist at that point. |
| 1267 | global = declareGlobalAggregateStore(converter, loc, aggregate, aggName, |
| 1268 | linkage); |
| 1269 | } else { |
| 1270 | global = |
| 1271 | defineGlobalAggregateStore(converter, aggregate, aggName, linkage); |
| 1272 | } |
| 1273 | auto addr = builder.create<fir::AddrOfOp>(loc, global.resultType(), |
| 1274 | global.getSymbol()); |
| 1275 | auto size = std::get<1>(var.getInterval()); |
| 1276 | fir::SequenceType::Shape shape(1, size); |
| 1277 | auto seqTy = fir::SequenceType::get(shape, i8Ty); |
| 1278 | mlir::Type refTy = builder.getRefType(seqTy); |
| 1279 | mlir::Value aggregateStore = builder.createConvert(loc, refTy, addr); |
| 1280 | insertAggregateStore(storeMap, var, aggregateStore); |
| 1281 | return; |
| 1282 | } |
| 1283 | // This is a local aggregate, allocate an anonymous block of memory. |
| 1284 | auto size = std::get<1>(var.getInterval()); |
| 1285 | fir::SequenceType::Shape shape(1, size); |
| 1286 | auto seqTy = fir::SequenceType::get(shape, i8Ty); |
| 1287 | mlir::Value local = |
| 1288 | builder.allocateLocal(loc, seqTy, aggName, "" , std::nullopt, std::nullopt, |
| 1289 | /*target=*/false); |
| 1290 | insertAggregateStore(storeMap, var, local); |
| 1291 | } |
| 1292 | |
| 1293 | /// Cast an alias address (variable part of an equivalence) to fir.ptr so that |
| 1294 | /// the optimizer is conservative and avoids doing copy elision in assignment |
| 1295 | /// involving equivalenced variables. |
| 1296 | /// TODO: Represent the equivalence aliasing constraint in another way to avoid |
| 1297 | /// pessimizing array assignments involving equivalenced variables. |
| 1298 | static mlir::Value castAliasToPointer(fir::FirOpBuilder &builder, |
| 1299 | mlir::Location loc, mlir::Type aliasType, |
| 1300 | mlir::Value aliasAddr) { |
| 1301 | return builder.createConvert(loc, fir::PointerType::get(aliasType), |
| 1302 | aliasAddr); |
| 1303 | } |
| 1304 | |
| 1305 | /// Instantiate a member of an equivalence. Compute its address in its |
| 1306 | /// aggregate storage and lower its attributes. |
| 1307 | static void instantiateAlias(Fortran::lower::AbstractConverter &converter, |
| 1308 | const Fortran::lower::pft::Variable &var, |
| 1309 | Fortran::lower::SymMap &symMap, |
| 1310 | Fortran::lower::AggregateStoreMap &storeMap) { |
| 1311 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1312 | assert(var.isAlias()); |
| 1313 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 1314 | const mlir::Location loc = genLocation(converter, sym); |
| 1315 | mlir::IndexType idxTy = builder.getIndexType(); |
| 1316 | mlir::IntegerType i8Ty = builder.getIntegerType(8); |
| 1317 | mlir::Type i8Ptr = builder.getRefType(i8Ty); |
| 1318 | mlir::Type symType = converter.genType(sym); |
| 1319 | std::size_t off = sym.GetUltimate().offset() - var.getAliasOffset(); |
| 1320 | mlir::Value storeAddr = getAggregateStore(storeMap, var); |
| 1321 | mlir::Value offset = builder.createIntegerConstant(loc, idxTy, off); |
| 1322 | mlir::Value bytePtr = builder.create<fir::CoordinateOp>( |
| 1323 | loc, i8Ptr, storeAddr, mlir::ValueRange{offset}); |
| 1324 | mlir::Value typedPtr = castAliasToPointer(builder, loc, symType, bytePtr); |
| 1325 | Fortran::lower::StatementContext stmtCtx; |
| 1326 | mapSymbolAttributes(converter, var, symMap, stmtCtx, typedPtr); |
| 1327 | // Default initialization is possible for equivalence members: see |
| 1328 | // F2018 19.5.3.4. Note that if several equivalenced entities have |
| 1329 | // default initialization, they must have the same type, and the standard |
| 1330 | // allows the storage to be default initialized several times (this has |
| 1331 | // no consequences other than wasting some execution time). For now, |
| 1332 | // do not try optimizing this to single default initializations of |
| 1333 | // the equivalenced storages. Keep lowering simple. |
| 1334 | if (mustBeDefaultInitializedAtRuntime(var)) |
| 1335 | Fortran::lower::defaultInitializeAtRuntime(converter, var.getSymbol(), |
| 1336 | symMap); |
| 1337 | } |
| 1338 | |
| 1339 | //===--------------------------------------------------------------===// |
| 1340 | // COMMON blocks instantiation |
| 1341 | //===--------------------------------------------------------------===// |
| 1342 | |
| 1343 | /// Does any member of the common block has an initializer ? |
| 1344 | static bool |
| 1345 | commonBlockHasInit(const Fortran::semantics::MutableSymbolVector &cmnBlkMems) { |
| 1346 | for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) { |
| 1347 | if (const auto *memDet = |
| 1348 | mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) |
| 1349 | if (memDet->init()) |
| 1350 | return true; |
| 1351 | } |
| 1352 | return false; |
| 1353 | } |
| 1354 | |
| 1355 | /// Build a tuple type for a common block based on the common block |
| 1356 | /// members and the common block size. |
| 1357 | /// This type is only needed to build common block initializers where |
| 1358 | /// the initial value is the collection of the member initial values. |
| 1359 | static mlir::TupleType getTypeOfCommonWithInit( |
| 1360 | Fortran::lower::AbstractConverter &converter, |
| 1361 | const Fortran::semantics::MutableSymbolVector &cmnBlkMems, |
| 1362 | std::size_t commonSize) { |
| 1363 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1364 | llvm::SmallVector<mlir::Type> members; |
| 1365 | std::size_t counter = 0; |
| 1366 | for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) { |
| 1367 | if (const auto *memDet = |
| 1368 | mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) { |
| 1369 | if (mem->offset() > counter) { |
| 1370 | fir::SequenceType::Shape len = { |
| 1371 | static_cast<fir::SequenceType::Extent>(mem->offset() - counter)}; |
| 1372 | mlir::IntegerType byteTy = builder.getIntegerType(8); |
| 1373 | auto memTy = fir::SequenceType::get(len, byteTy); |
| 1374 | members.push_back(memTy); |
| 1375 | counter = mem->offset(); |
| 1376 | } |
| 1377 | if (memDet->init()) { |
| 1378 | mlir::Type memTy = converter.genType(*mem); |
| 1379 | members.push_back(memTy); |
| 1380 | counter = mem->offset() + mem->size(); |
| 1381 | } |
| 1382 | } |
| 1383 | } |
| 1384 | if (counter < commonSize) { |
| 1385 | fir::SequenceType::Shape len = { |
| 1386 | static_cast<fir::SequenceType::Extent>(commonSize - counter)}; |
| 1387 | mlir::IntegerType byteTy = builder.getIntegerType(8); |
| 1388 | auto memTy = fir::SequenceType::get(len, byteTy); |
| 1389 | members.push_back(memTy); |
| 1390 | } |
| 1391 | return mlir::TupleType::get(builder.getContext(), members); |
| 1392 | } |
| 1393 | |
| 1394 | /// Common block members may have aliases. They are not in the common block |
| 1395 | /// member list from the symbol. We need to know about these aliases if they |
| 1396 | /// have initializer to generate the common initializer. |
| 1397 | /// This function takes care of adding aliases with initializer to the member |
| 1398 | /// list. |
| 1399 | static Fortran::semantics::MutableSymbolVector |
| 1400 | getCommonMembersWithInitAliases(const Fortran::semantics::Symbol &common) { |
| 1401 | const auto &commonDetails = |
| 1402 | common.get<Fortran::semantics::CommonBlockDetails>(); |
| 1403 | auto members = commonDetails.objects(); |
| 1404 | |
| 1405 | // The number and size of equivalence and common is expected to be small, so |
| 1406 | // no effort is given to optimize this loop of complexity equivalenced |
| 1407 | // common members * common members |
| 1408 | for (const Fortran::semantics::EquivalenceSet &set : |
| 1409 | common.owner().equivalenceSets()) |
| 1410 | for (const Fortran::semantics::EquivalenceObject &obj : set) { |
| 1411 | if (!obj.symbol.test(Fortran::semantics::Symbol::Flag::CompilerCreated)) { |
| 1412 | if (const auto &details = |
| 1413 | obj.symbol |
| 1414 | .detailsIf<Fortran::semantics::ObjectEntityDetails>()) { |
| 1415 | const Fortran::semantics::Symbol *com = |
| 1416 | FindCommonBlockContaining(obj.symbol); |
| 1417 | if (!details->init() || com != &common) |
| 1418 | continue; |
| 1419 | // This is an alias with an init that belongs to the list |
| 1420 | if (!llvm::is_contained(members, obj.symbol)) |
| 1421 | members.emplace_back(obj.symbol); |
| 1422 | } |
| 1423 | } |
| 1424 | } |
| 1425 | return members; |
| 1426 | } |
| 1427 | |
| 1428 | /// Return the fir::GlobalOp that was created of COMMON block \p common. |
| 1429 | /// It is an error if the fir::GlobalOp was not created before this is |
| 1430 | /// called (it cannot be created on the flight because it is not known here |
| 1431 | /// what mlir type the GlobalOp should have to satisfy all the |
| 1432 | /// appearances in the program). |
| 1433 | static fir::GlobalOp |
| 1434 | getCommonBlockGlobal(Fortran::lower::AbstractConverter &converter, |
| 1435 | const Fortran::semantics::Symbol &common) { |
| 1436 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1437 | std::string commonName = converter.mangleName(common); |
| 1438 | fir::GlobalOp global = builder.getNamedGlobal(commonName); |
| 1439 | // Common blocks are lowered before any subprograms to deal with common |
| 1440 | // whose size may not be the same in every subprograms. |
| 1441 | if (!global) |
| 1442 | fir::emitFatalError(converter.genLocation(common.name()), |
| 1443 | "COMMON block was not lowered before its usage" ); |
| 1444 | return global; |
| 1445 | } |
| 1446 | |
| 1447 | /// Create the fir::GlobalOp for COMMON block \p common. If \p common has an |
| 1448 | /// initial value, it is not created yet. Instead, the common block list |
| 1449 | /// members is returned to later create the initial value in |
| 1450 | /// finalizeCommonBlockDefinition. |
| 1451 | static std::optional<std::tuple< |
| 1452 | fir::GlobalOp, Fortran::semantics::MutableSymbolVector, mlir::Location>> |
| 1453 | declareCommonBlock(Fortran::lower::AbstractConverter &converter, |
| 1454 | const Fortran::semantics::Symbol &common, |
| 1455 | std::size_t commonSize) { |
| 1456 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1457 | std::string commonName = converter.mangleName(common); |
| 1458 | fir::GlobalOp global = builder.getNamedGlobal(commonName); |
| 1459 | if (global) |
| 1460 | return std::nullopt; |
| 1461 | Fortran::semantics::MutableSymbolVector cmnBlkMems = |
| 1462 | getCommonMembersWithInitAliases(common); |
| 1463 | mlir::Location loc = converter.genLocation(common.name()); |
| 1464 | mlir::StringAttr linkage = builder.createCommonLinkage(); |
| 1465 | const auto *details = |
| 1466 | common.detailsIf<Fortran::semantics::CommonBlockDetails>(); |
| 1467 | assert(details && "Expect CommonBlockDetails on the common symbol" ); |
| 1468 | if (!commonBlockHasInit(cmnBlkMems)) { |
| 1469 | // A COMMON block sans initializers is initialized to zero. |
| 1470 | // mlir::Vector types must have a strictly positive size, so at least |
| 1471 | // temporarily, force a zero size COMMON block to have one byte. |
| 1472 | const auto sz = |
| 1473 | static_cast<fir::SequenceType::Extent>(commonSize > 0 ? commonSize : 1); |
| 1474 | fir::SequenceType::Shape shape = {sz}; |
| 1475 | mlir::IntegerType i8Ty = builder.getIntegerType(8); |
| 1476 | auto commonTy = fir::SequenceType::get(shape, i8Ty); |
| 1477 | auto vecTy = mlir::VectorType::get(sz, i8Ty); |
| 1478 | mlir::Attribute zero = builder.getIntegerAttr(i8Ty, 0); |
| 1479 | auto init = mlir::DenseElementsAttr::get(vecTy, llvm::ArrayRef(zero)); |
| 1480 | global = builder.createGlobal(loc, commonTy, commonName, linkage, init); |
| 1481 | global.setAlignment(details->alignment()); |
| 1482 | // No need to add any initial value later. |
| 1483 | return std::nullopt; |
| 1484 | } |
| 1485 | // COMMON block with initializer (note that initialized blank common are |
| 1486 | // accepted as an extension by semantics). Sort members by offset before |
| 1487 | // generating the type and initializer. |
| 1488 | std::sort(cmnBlkMems.begin(), cmnBlkMems.end(), |
| 1489 | [](auto &s1, auto &s2) { return s1->offset() < s2->offset(); }); |
| 1490 | mlir::TupleType commonTy = |
| 1491 | getTypeOfCommonWithInit(converter, cmnBlkMems, commonSize); |
| 1492 | // Create the global object, the initial value will be added later. |
| 1493 | global = builder.createGlobal(loc, commonTy, commonName); |
| 1494 | global.setAlignment(details->alignment()); |
| 1495 | return std::make_tuple(global, std::move(cmnBlkMems), loc); |
| 1496 | } |
| 1497 | |
| 1498 | /// Add initial value to a COMMON block fir::GlobalOp \p global given the list |
| 1499 | /// \p cmnBlkMems of the common block member symbols that contains symbols with |
| 1500 | /// an initial value. |
| 1501 | static void finalizeCommonBlockDefinition( |
| 1502 | mlir::Location loc, Fortran::lower::AbstractConverter &converter, |
| 1503 | fir::GlobalOp global, |
| 1504 | const Fortran::semantics::MutableSymbolVector &cmnBlkMems) { |
| 1505 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1506 | mlir::TupleType commonTy = mlir::cast<mlir::TupleType>(global.getType()); |
| 1507 | auto initFunc = [&](fir::FirOpBuilder &builder) { |
| 1508 | mlir::IndexType idxTy = builder.getIndexType(); |
| 1509 | mlir::Value cb = builder.create<fir::ZeroOp>(loc, commonTy); |
| 1510 | unsigned tupIdx = 0; |
| 1511 | std::size_t offset = 0; |
| 1512 | LLVM_DEBUG(llvm::dbgs() << "block {\n" ); |
| 1513 | for (const Fortran::semantics::MutableSymbolRef &mem : cmnBlkMems) { |
| 1514 | if (const auto *memDet = |
| 1515 | mem->detailsIf<Fortran::semantics::ObjectEntityDetails>()) { |
| 1516 | if (mem->offset() > offset) { |
| 1517 | ++tupIdx; |
| 1518 | offset = mem->offset(); |
| 1519 | } |
| 1520 | if (memDet->init()) { |
| 1521 | LLVM_DEBUG(llvm::dbgs() |
| 1522 | << "offset: " << mem->offset() << " is " << *mem << '\n'); |
| 1523 | Fortran::lower::StatementContext stmtCtx; |
| 1524 | auto initExpr = memDet->init().value(); |
| 1525 | fir::ExtendedValue initVal = |
| 1526 | Fortran::semantics::IsPointer(*mem) |
| 1527 | ? Fortran::lower::genInitialDataTarget( |
| 1528 | converter, loc, converter.genType(*mem), initExpr) |
| 1529 | : genInitializerExprValue(converter, loc, initExpr, stmtCtx); |
| 1530 | mlir::IntegerAttr offVal = builder.getIntegerAttr(idxTy, tupIdx); |
| 1531 | mlir::Value castVal = builder.createConvert( |
| 1532 | loc, commonTy.getType(tupIdx), fir::getBase(initVal)); |
| 1533 | cb = builder.create<fir::InsertValueOp>(loc, commonTy, cb, castVal, |
| 1534 | builder.getArrayAttr(offVal)); |
| 1535 | ++tupIdx; |
| 1536 | offset = mem->offset() + mem->size(); |
| 1537 | } |
| 1538 | } |
| 1539 | } |
| 1540 | LLVM_DEBUG(llvm::dbgs() << "}\n" ); |
| 1541 | builder.create<fir::HasValueOp>(loc, cb); |
| 1542 | }; |
| 1543 | createGlobalInitialization(builder, global, initFunc); |
| 1544 | } |
| 1545 | |
| 1546 | void Fortran::lower::defineCommonBlocks( |
| 1547 | Fortran::lower::AbstractConverter &converter, |
| 1548 | const Fortran::semantics::CommonBlockList &commonBlocks) { |
| 1549 | // Common blocks may depend on another common block address (if they contain |
| 1550 | // pointers with initial targets). To cover this case, create all common block |
| 1551 | // fir::Global before creating the initial values (if any). |
| 1552 | std::vector<std::tuple<fir::GlobalOp, Fortran::semantics::MutableSymbolVector, |
| 1553 | mlir::Location>> |
| 1554 | delayedInitializations; |
| 1555 | for (const auto &[common, size] : commonBlocks) |
| 1556 | if (auto delayedInit = declareCommonBlock(converter, common, size)) |
| 1557 | delayedInitializations.emplace_back(std::move(*delayedInit)); |
| 1558 | for (auto &[global, cmnBlkMems, loc] : delayedInitializations) |
| 1559 | finalizeCommonBlockDefinition(loc, converter, global, cmnBlkMems); |
| 1560 | } |
| 1561 | |
| 1562 | mlir::Value Fortran::lower::genCommonBlockMember( |
| 1563 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1564 | const Fortran::semantics::Symbol &sym, mlir::Value commonValue) { |
| 1565 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1566 | |
| 1567 | std::size_t byteOffset = sym.GetUltimate().offset(); |
| 1568 | mlir::IntegerType i8Ty = builder.getIntegerType(8); |
| 1569 | mlir::Type i8Ptr = builder.getRefType(i8Ty); |
| 1570 | mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(i8Ty)); |
| 1571 | mlir::Value base = builder.createConvert(loc, seqTy, commonValue); |
| 1572 | |
| 1573 | mlir::Value offs = |
| 1574 | builder.createIntegerConstant(loc, builder.getIndexType(), byteOffset); |
| 1575 | mlir::Value varAddr = builder.create<fir::CoordinateOp>( |
| 1576 | loc, i8Ptr, base, mlir::ValueRange{offs}); |
| 1577 | mlir::Type symType = converter.genType(sym); |
| 1578 | |
| 1579 | return Fortran::semantics::FindEquivalenceSet(sym) != nullptr |
| 1580 | ? castAliasToPointer(builder, loc, symType, varAddr) |
| 1581 | : builder.createConvert(loc, builder.getRefType(symType), varAddr); |
| 1582 | } |
| 1583 | |
| 1584 | /// The COMMON block is a global structure. `var` will be at some offset |
| 1585 | /// within the COMMON block. Adds the address of `var` (COMMON + offset) to |
| 1586 | /// the symbol map. |
| 1587 | static void instantiateCommon(Fortran::lower::AbstractConverter &converter, |
| 1588 | const Fortran::semantics::Symbol &common, |
| 1589 | const Fortran::lower::pft::Variable &var, |
| 1590 | Fortran::lower::SymMap &symMap) { |
| 1591 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1592 | const Fortran::semantics::Symbol &varSym = var.getSymbol(); |
| 1593 | mlir::Location loc = converter.genLocation(varSym.name()); |
| 1594 | |
| 1595 | mlir::Value commonAddr; |
| 1596 | if (Fortran::lower::SymbolBox symBox = symMap.lookupSymbol(common)) |
| 1597 | commonAddr = symBox.getAddr(); |
| 1598 | if (!commonAddr) { |
| 1599 | // introduce a local AddrOf and add it to the map |
| 1600 | fir::GlobalOp global = getCommonBlockGlobal(converter, common); |
| 1601 | commonAddr = builder.create<fir::AddrOfOp>(loc, global.resultType(), |
| 1602 | global.getSymbol()); |
| 1603 | |
| 1604 | symMap.addSymbol(common, commonAddr); |
| 1605 | } |
| 1606 | |
| 1607 | mlir::Value local = genCommonBlockMember(converter, loc, varSym, commonAddr); |
| 1608 | Fortran::lower::StatementContext stmtCtx; |
| 1609 | mapSymbolAttributes(converter, var, symMap, stmtCtx, local); |
| 1610 | } |
| 1611 | |
| 1612 | //===--------------------------------------------------------------===// |
| 1613 | // Lower Variables specification expressions and attributes |
| 1614 | //===--------------------------------------------------------------===// |
| 1615 | |
| 1616 | /// Helper to decide if a dummy argument must be tracked in an BoxValue. |
| 1617 | static bool lowerToBoxValue(const Fortran::semantics::Symbol &sym, |
| 1618 | mlir::Value dummyArg, |
| 1619 | Fortran::lower::AbstractConverter &converter) { |
| 1620 | // Only dummy arguments coming as fir.box can be tracked in an BoxValue. |
| 1621 | if (!dummyArg || !mlir::isa<fir::BaseBoxType>(dummyArg.getType())) |
| 1622 | return false; |
| 1623 | // Non contiguous arrays must be tracked in an BoxValue. |
| 1624 | if (sym.Rank() > 0 && !Fortran::evaluate::IsSimplyContiguous( |
| 1625 | sym, converter.getFoldingContext())) |
| 1626 | return true; |
| 1627 | // Assumed rank and optional fir.box cannot yet be read while lowering the |
| 1628 | // specifications. |
| 1629 | if (Fortran::evaluate::IsAssumedRank(sym) || |
| 1630 | Fortran::semantics::IsOptional(sym)) |
| 1631 | return true; |
| 1632 | // Polymorphic entity should be tracked through a fir.box that has the |
| 1633 | // dynamic type info. |
| 1634 | if (const Fortran::semantics::DeclTypeSpec *type = sym.GetType()) |
| 1635 | if (type->IsPolymorphic()) |
| 1636 | return true; |
| 1637 | return false; |
| 1638 | } |
| 1639 | |
| 1640 | /// Lower explicit lower bounds into \p result. Does nothing if this is not an |
| 1641 | /// array, or if the lower bounds are deferred, or all implicit or one. |
| 1642 | static void lowerExplicitLowerBounds( |
| 1643 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 1644 | const Fortran::lower::BoxAnalyzer &box, |
| 1645 | llvm::SmallVectorImpl<mlir::Value> &result, Fortran::lower::SymMap &symMap, |
| 1646 | Fortran::lower::StatementContext &stmtCtx) { |
| 1647 | if (!box.isArray() || box.lboundIsAllOnes()) |
| 1648 | return; |
| 1649 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1650 | mlir::IndexType idxTy = builder.getIndexType(); |
| 1651 | if (box.isStaticArray()) { |
| 1652 | for (int64_t lb : box.staticLBound()) |
| 1653 | result.emplace_back(builder.createIntegerConstant(loc, idxTy, lb)); |
| 1654 | return; |
| 1655 | } |
| 1656 | for (const Fortran::semantics::ShapeSpec *spec : box.dynamicBound()) { |
| 1657 | if (auto low = spec->lbound().GetExplicit()) { |
| 1658 | auto expr = Fortran::lower::SomeExpr{*low}; |
| 1659 | mlir::Value lb = builder.createConvert( |
| 1660 | loc, idxTy, genScalarValue(converter, loc, expr, symMap, stmtCtx)); |
| 1661 | result.emplace_back(lb); |
| 1662 | } |
| 1663 | } |
| 1664 | assert(result.empty() || result.size() == box.dynamicBound().size()); |
| 1665 | } |
| 1666 | |
| 1667 | /// Return -1 for the last dimension extent/upper bound of assumed-size arrays. |
| 1668 | /// This value is required to fulfill the requirements for assumed-rank |
| 1669 | /// associated with assumed-size (see for instance UBOUND in 16.9.196, and |
| 1670 | /// CFI_desc_t requirements in 18.5.3 point 5.). |
| 1671 | static mlir::Value getAssumedSizeExtent(mlir::Location loc, |
| 1672 | fir::FirOpBuilder &builder) { |
| 1673 | return builder.createMinusOneInteger(loc, builder.getIndexType()); |
| 1674 | } |
| 1675 | |
| 1676 | /// Lower explicit extents into \p result if this is an explicit-shape or |
| 1677 | /// assumed-size array. Does nothing if this is not an explicit-shape or |
| 1678 | /// assumed-size array. |
| 1679 | static void |
| 1680 | lowerExplicitExtents(Fortran::lower::AbstractConverter &converter, |
| 1681 | mlir::Location loc, const Fortran::lower::BoxAnalyzer &box, |
| 1682 | llvm::SmallVectorImpl<mlir::Value> &lowerBounds, |
| 1683 | llvm::SmallVectorImpl<mlir::Value> &result, |
| 1684 | Fortran::lower::SymMap &symMap, |
| 1685 | Fortran::lower::StatementContext &stmtCtx) { |
| 1686 | if (!box.isArray()) |
| 1687 | return; |
| 1688 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1689 | mlir::IndexType idxTy = builder.getIndexType(); |
| 1690 | if (box.isStaticArray()) { |
| 1691 | for (int64_t extent : box.staticShape()) |
| 1692 | result.emplace_back(builder.createIntegerConstant(loc, idxTy, extent)); |
| 1693 | return; |
| 1694 | } |
| 1695 | for (const auto &spec : llvm::enumerate(box.dynamicBound())) { |
| 1696 | if (auto up = spec.value()->ubound().GetExplicit()) { |
| 1697 | auto expr = Fortran::lower::SomeExpr{*up}; |
| 1698 | mlir::Value ub = builder.createConvert( |
| 1699 | loc, idxTy, genScalarValue(converter, loc, expr, symMap, stmtCtx)); |
| 1700 | if (lowerBounds.empty()) |
| 1701 | result.emplace_back(fir::factory::genMaxWithZero(builder, loc, ub)); |
| 1702 | else |
| 1703 | result.emplace_back(fir::factory::computeExtent( |
| 1704 | builder, loc, lowerBounds[spec.index()], ub)); |
| 1705 | } else if (spec.value()->ubound().isStar()) { |
| 1706 | result.emplace_back(getAssumedSizeExtent(loc, builder)); |
| 1707 | } |
| 1708 | } |
| 1709 | assert(result.empty() || result.size() == box.dynamicBound().size()); |
| 1710 | } |
| 1711 | |
| 1712 | /// Lower explicit character length if any. Return empty mlir::Value if no |
| 1713 | /// explicit length. |
| 1714 | static mlir::Value |
| 1715 | lowerExplicitCharLen(Fortran::lower::AbstractConverter &converter, |
| 1716 | mlir::Location loc, const Fortran::lower::BoxAnalyzer &box, |
| 1717 | Fortran::lower::SymMap &symMap, |
| 1718 | Fortran::lower::StatementContext &stmtCtx) { |
| 1719 | if (!box.isChar()) |
| 1720 | return mlir::Value{}; |
| 1721 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1722 | mlir::Type lenTy = builder.getCharacterLengthType(); |
| 1723 | if (std::optional<int64_t> len = box.getCharLenConst()) |
| 1724 | return builder.createIntegerConstant(loc, lenTy, *len); |
| 1725 | if (std::optional<Fortran::lower::SomeExpr> lenExpr = box.getCharLenExpr()) |
| 1726 | // If the length expression is negative, the length is zero. See F2018 |
| 1727 | // 7.4.4.2 point 5. |
| 1728 | return fir::factory::genMaxWithZero( |
| 1729 | builder, loc, |
| 1730 | genScalarValue(converter, loc, *lenExpr, symMap, stmtCtx)); |
| 1731 | return mlir::Value{}; |
| 1732 | } |
| 1733 | |
| 1734 | /// Assumed size arrays last extent is -1 in the front end. |
| 1735 | static mlir::Value genExtentValue(fir::FirOpBuilder &builder, |
| 1736 | mlir::Location loc, mlir::Type idxTy, |
| 1737 | long frontEndExtent) { |
| 1738 | if (frontEndExtent >= 0) |
| 1739 | return builder.createIntegerConstant(loc, idxTy, frontEndExtent); |
| 1740 | return getAssumedSizeExtent(loc, builder); |
| 1741 | } |
| 1742 | |
| 1743 | /// If a symbol is an array, it may have been declared with unknown extent |
| 1744 | /// parameters (e.g., `*`), but if it has an initial value then the actual size |
| 1745 | /// may be available from the initial array value's type. |
| 1746 | inline static llvm::SmallVector<std::int64_t> |
| 1747 | recoverShapeVector(llvm::ArrayRef<std::int64_t> shapeVec, mlir::Value initVal) { |
| 1748 | llvm::SmallVector<std::int64_t> result; |
| 1749 | if (initVal) { |
| 1750 | if (auto seqTy = fir::unwrapUntilSeqType(initVal.getType())) { |
| 1751 | for (auto [fst, snd] : llvm::zip(shapeVec, seqTy.getShape())) |
| 1752 | result.push_back(fst == fir::SequenceType::getUnknownExtent() ? snd |
| 1753 | : fst); |
| 1754 | return result; |
| 1755 | } |
| 1756 | } |
| 1757 | result.assign(shapeVec.begin(), shapeVec.end()); |
| 1758 | return result; |
| 1759 | } |
| 1760 | |
| 1761 | fir::FortranVariableFlagsAttr Fortran::lower::translateSymbolAttributes( |
| 1762 | mlir::MLIRContext *mlirContext, const Fortran::semantics::Symbol &sym, |
| 1763 | fir::FortranVariableFlagsEnum extraFlags) { |
| 1764 | fir::FortranVariableFlagsEnum flags = extraFlags; |
| 1765 | if (sym.test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
| 1766 | // CrayPointee are represented as pointers. |
| 1767 | flags = flags | fir::FortranVariableFlagsEnum::pointer; |
| 1768 | return fir::FortranVariableFlagsAttr::get(mlirContext, flags); |
| 1769 | } |
| 1770 | const auto &attrs = sym.attrs(); |
| 1771 | if (attrs.test(Fortran::semantics::Attr::ALLOCATABLE)) |
| 1772 | flags = flags | fir::FortranVariableFlagsEnum::allocatable; |
| 1773 | if (attrs.test(Fortran::semantics::Attr::ASYNCHRONOUS)) |
| 1774 | flags = flags | fir::FortranVariableFlagsEnum::asynchronous; |
| 1775 | if (attrs.test(Fortran::semantics::Attr::BIND_C)) |
| 1776 | flags = flags | fir::FortranVariableFlagsEnum::bind_c; |
| 1777 | if (attrs.test(Fortran::semantics::Attr::CONTIGUOUS)) |
| 1778 | flags = flags | fir::FortranVariableFlagsEnum::contiguous; |
| 1779 | if (attrs.test(Fortran::semantics::Attr::INTENT_IN)) |
| 1780 | flags = flags | fir::FortranVariableFlagsEnum::intent_in; |
| 1781 | if (attrs.test(Fortran::semantics::Attr::INTENT_INOUT)) |
| 1782 | flags = flags | fir::FortranVariableFlagsEnum::intent_inout; |
| 1783 | if (attrs.test(Fortran::semantics::Attr::INTENT_OUT)) |
| 1784 | flags = flags | fir::FortranVariableFlagsEnum::intent_out; |
| 1785 | if (attrs.test(Fortran::semantics::Attr::OPTIONAL)) |
| 1786 | flags = flags | fir::FortranVariableFlagsEnum::optional; |
| 1787 | if (attrs.test(Fortran::semantics::Attr::PARAMETER)) |
| 1788 | flags = flags | fir::FortranVariableFlagsEnum::parameter; |
| 1789 | if (attrs.test(Fortran::semantics::Attr::POINTER)) |
| 1790 | flags = flags | fir::FortranVariableFlagsEnum::pointer; |
| 1791 | if (attrs.test(Fortran::semantics::Attr::TARGET)) |
| 1792 | flags = flags | fir::FortranVariableFlagsEnum::target; |
| 1793 | if (attrs.test(Fortran::semantics::Attr::VALUE)) |
| 1794 | flags = flags | fir::FortranVariableFlagsEnum::value; |
| 1795 | if (attrs.test(Fortran::semantics::Attr::VOLATILE)) |
| 1796 | flags = flags | fir::FortranVariableFlagsEnum::fortran_volatile; |
| 1797 | if (flags == fir::FortranVariableFlagsEnum::None) |
| 1798 | return {}; |
| 1799 | return fir::FortranVariableFlagsAttr::get(mlirContext, flags); |
| 1800 | } |
| 1801 | |
| 1802 | cuf::DataAttributeAttr Fortran::lower::translateSymbolCUFDataAttribute( |
| 1803 | mlir::MLIRContext *mlirContext, const Fortran::semantics::Symbol &sym) { |
| 1804 | std::optional<Fortran::common::CUDADataAttr> cudaAttr = |
| 1805 | Fortran::semantics::GetCUDADataAttr(&sym.GetUltimate()); |
| 1806 | return cuf::getDataAttribute(mlirContext, cudaAttr); |
| 1807 | } |
| 1808 | |
| 1809 | static bool |
| 1810 | isCapturedInInternalProcedure(Fortran::lower::AbstractConverter &converter, |
| 1811 | const Fortran::semantics::Symbol &sym) { |
| 1812 | const Fortran::lower::pft::FunctionLikeUnit *funit = |
| 1813 | converter.getCurrentFunctionUnit(); |
| 1814 | if (!funit || funit->getHostAssoc().empty()) |
| 1815 | return false; |
| 1816 | if (funit->getHostAssoc().isAssociated(sym)) |
| 1817 | return true; |
| 1818 | // Consider that any capture of a variable that is in an equivalence with the |
| 1819 | // symbol imply that the storage of the symbol may also be accessed inside |
| 1820 | // symbol implies that the storage of the symbol may also be accessed inside |
| 1821 | |
| 1822 | // the internal procedure and flag it as captured. |
| 1823 | if (const auto *equivSet = Fortran::semantics::FindEquivalenceSet(sym)) |
| 1824 | for (const Fortran::semantics::EquivalenceObject &eqObj : *equivSet) |
| 1825 | if (funit->getHostAssoc().isAssociated(eqObj.symbol)) |
| 1826 | return true; |
| 1827 | return false; |
| 1828 | } |
| 1829 | |
| 1830 | /// Map a symbol to its FIR address and evaluated specification expressions. |
| 1831 | /// Not for symbols lowered to fir.box. |
| 1832 | /// Will optionally create fir.declare. |
| 1833 | static void genDeclareSymbol(Fortran::lower::AbstractConverter &converter, |
| 1834 | Fortran::lower::SymMap &symMap, |
| 1835 | const Fortran::semantics::Symbol &sym, |
| 1836 | mlir::Value base, mlir::Value len = {}, |
| 1837 | llvm::ArrayRef<mlir::Value> shape = std::nullopt, |
| 1838 | llvm::ArrayRef<mlir::Value> lbounds = std::nullopt, |
| 1839 | bool force = false) { |
| 1840 | // In HLFIR, procedure dummy symbols are not added with an hlfir.declare |
| 1841 | // because they are "values", and hlfir.declare is intended for variables. It |
| 1842 | // would add too much complexity to hlfir.declare to support this case, and |
| 1843 | // this would bring very little (the only point being debug info, that are not |
| 1844 | // yet emitted) since alias analysis is meaningless for those. |
| 1845 | // Commonblock names are not variables, but in some lowerings (like OpenMP) it |
| 1846 | // is useful to maintain the address of the commonblock in an MLIR value and |
| 1847 | // query it. hlfir.declare need not be created for these. |
| 1848 | if (converter.getLoweringOptions().getLowerToHighLevelFIR() && |
| 1849 | (!Fortran::semantics::IsProcedure(sym) || |
| 1850 | Fortran::semantics::IsPointer(sym)) && |
| 1851 | !sym.detailsIf<Fortran::semantics::CommonBlockDetails>()) { |
| 1852 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1853 | const mlir::Location loc = genLocation(converter, sym); |
| 1854 | mlir::Value shapeOrShift; |
| 1855 | if (!shape.empty() && !lbounds.empty()) |
| 1856 | shapeOrShift = builder.genShape(loc, lbounds, shape); |
| 1857 | else if (!shape.empty()) |
| 1858 | shapeOrShift = builder.genShape(loc, shape); |
| 1859 | else if (!lbounds.empty()) |
| 1860 | shapeOrShift = builder.genShift(loc, lbounds); |
| 1861 | llvm::SmallVector<mlir::Value> lenParams; |
| 1862 | if (len) |
| 1863 | lenParams.emplace_back(len); |
| 1864 | auto name = converter.mangleName(sym); |
| 1865 | fir::FortranVariableFlagsEnum extraFlags = {}; |
| 1866 | if (isCapturedInInternalProcedure(converter, sym)) |
| 1867 | extraFlags = extraFlags | fir::FortranVariableFlagsEnum::internal_assoc; |
| 1868 | fir::FortranVariableFlagsAttr attributes = |
| 1869 | Fortran::lower::translateSymbolAttributes(builder.getContext(), sym, |
| 1870 | extraFlags); |
| 1871 | cuf::DataAttributeAttr dataAttr = |
| 1872 | Fortran::lower::translateSymbolCUFDataAttribute(builder.getContext(), |
| 1873 | sym); |
| 1874 | |
| 1875 | if (sym.test(Fortran::semantics::Symbol::Flag::CrayPointee)) { |
| 1876 | mlir::Type ptrBoxType = |
| 1877 | Fortran::lower::getCrayPointeeBoxType(base.getType()); |
| 1878 | mlir::Value boxAlloc = builder.createTemporary( |
| 1879 | loc, ptrBoxType, |
| 1880 | /*name=*/{}, /*shape=*/{}, /*lenParams=*/{}, /*attrs=*/{}, |
| 1881 | Fortran::semantics::GetCUDADataAttr(&sym.GetUltimate())); |
| 1882 | |
| 1883 | // Declare a local pointer variable. |
| 1884 | auto newBase = builder.create<hlfir::DeclareOp>( |
| 1885 | loc, boxAlloc, name, /*shape=*/nullptr, lenParams, |
| 1886 | /*dummy_scope=*/nullptr, attributes); |
| 1887 | mlir::Value nullAddr = builder.createNullConstant( |
| 1888 | loc, llvm::cast<fir::BaseBoxType>(ptrBoxType).getEleTy()); |
| 1889 | |
| 1890 | // If the element type is known-length character, then |
| 1891 | // EmboxOp does not need the length parameters. |
| 1892 | if (auto charType = mlir::dyn_cast<fir::CharacterType>( |
| 1893 | hlfir::getFortranElementType(base.getType()))) |
| 1894 | if (!charType.hasDynamicLen()) |
| 1895 | lenParams.clear(); |
| 1896 | |
| 1897 | // Inherit the shape (and maybe length parameters) from the pointee |
| 1898 | // declaration. |
| 1899 | mlir::Value initVal = |
| 1900 | builder.create<fir::EmboxOp>(loc, ptrBoxType, nullAddr, shapeOrShift, |
| 1901 | /*slice=*/nullptr, lenParams); |
| 1902 | builder.create<fir::StoreOp>(loc, initVal, newBase.getBase()); |
| 1903 | |
| 1904 | // Any reference to the pointee is going to be using the pointer |
| 1905 | // box from now on. The base_addr of the descriptor must be updated |
| 1906 | // to hold the value of the Cray pointer at the point of the pointee |
| 1907 | // access. |
| 1908 | // Note that the same Cray pointer may be associated with |
| 1909 | // multiple pointees and each of them has its own descriptor. |
| 1910 | symMap.addVariableDefinition(sym, newBase, force); |
| 1911 | return; |
| 1912 | } |
| 1913 | mlir::Value dummyScope; |
| 1914 | if (converter.isRegisteredDummySymbol(sym)) |
| 1915 | dummyScope = converter.dummyArgsScopeValue(); |
| 1916 | auto newBase = builder.create<hlfir::DeclareOp>( |
| 1917 | loc, base, name, shapeOrShift, lenParams, dummyScope, attributes, |
| 1918 | dataAttr); |
| 1919 | symMap.addVariableDefinition(sym, newBase, force); |
| 1920 | return; |
| 1921 | } |
| 1922 | |
| 1923 | if (len) { |
| 1924 | if (!shape.empty()) { |
| 1925 | if (!lbounds.empty()) |
| 1926 | symMap.addCharSymbolWithBounds(sym, base, len, shape, lbounds, force); |
| 1927 | else |
| 1928 | symMap.addCharSymbolWithShape(sym, base, len, shape, force); |
| 1929 | } else { |
| 1930 | symMap.addCharSymbol(sym, base, len, force); |
| 1931 | } |
| 1932 | } else { |
| 1933 | if (!shape.empty()) { |
| 1934 | if (!lbounds.empty()) |
| 1935 | symMap.addSymbolWithBounds(sym, base, shape, lbounds, force); |
| 1936 | else |
| 1937 | symMap.addSymbolWithShape(sym, base, shape, force); |
| 1938 | } else { |
| 1939 | symMap.addSymbol(sym, base, force); |
| 1940 | } |
| 1941 | } |
| 1942 | } |
| 1943 | |
| 1944 | /// Map a symbol to its FIR address and evaluated specification expressions |
| 1945 | /// provided as a fir::ExtendedValue. Will optionally create fir.declare. |
| 1946 | void Fortran::lower::genDeclareSymbol( |
| 1947 | Fortran::lower::AbstractConverter &converter, |
| 1948 | Fortran::lower::SymMap &symMap, const Fortran::semantics::Symbol &sym, |
| 1949 | const fir::ExtendedValue &exv, fir::FortranVariableFlagsEnum extraFlags, |
| 1950 | bool force) { |
| 1951 | if (converter.getLoweringOptions().getLowerToHighLevelFIR() && |
| 1952 | (!Fortran::semantics::IsProcedure(sym) || |
| 1953 | Fortran::semantics::IsPointer(sym.GetUltimate())) && |
| 1954 | !sym.detailsIf<Fortran::semantics::CommonBlockDetails>()) { |
| 1955 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 1956 | const mlir::Location loc = genLocation(converter, sym); |
| 1957 | if (isCapturedInInternalProcedure(converter, sym)) |
| 1958 | extraFlags = extraFlags | fir::FortranVariableFlagsEnum::internal_assoc; |
| 1959 | // FIXME: Using the ultimate symbol for translating symbol attributes will |
| 1960 | // lead to situations where the VOLATILE/ASYNCHRONOUS attributes are not |
| 1961 | // propagated to the hlfir.declare (these attributes can be added when |
| 1962 | // using module variables). |
| 1963 | fir::FortranVariableFlagsAttr attributes = |
| 1964 | Fortran::lower::translateSymbolAttributes( |
| 1965 | builder.getContext(), sym.GetUltimate(), extraFlags); |
| 1966 | cuf::DataAttributeAttr dataAttr = |
| 1967 | Fortran::lower::translateSymbolCUFDataAttribute(builder.getContext(), |
| 1968 | sym.GetUltimate()); |
| 1969 | auto name = converter.mangleName(sym); |
| 1970 | mlir::Value dummyScope; |
| 1971 | fir::ExtendedValue base = exv; |
| 1972 | if (converter.isRegisteredDummySymbol(sym)) { |
| 1973 | base = genPackArray(converter, sym, exv); |
| 1974 | dummyScope = converter.dummyArgsScopeValue(); |
| 1975 | } |
| 1976 | hlfir::EntityWithAttributes declare = hlfir::genDeclare( |
| 1977 | loc, builder, base, name, attributes, dummyScope, dataAttr); |
| 1978 | symMap.addVariableDefinition(sym, declare.getIfVariableInterface(), force); |
| 1979 | return; |
| 1980 | } |
| 1981 | symMap.addSymbol(sym, exv, force); |
| 1982 | } |
| 1983 | |
| 1984 | /// Map an allocatable or pointer symbol to its FIR address and evaluated |
| 1985 | /// specification expressions. Will optionally create fir.declare. |
| 1986 | static void |
| 1987 | genAllocatableOrPointerDeclare(Fortran::lower::AbstractConverter &converter, |
| 1988 | Fortran::lower::SymMap &symMap, |
| 1989 | const Fortran::semantics::Symbol &sym, |
| 1990 | fir::MutableBoxValue box, bool force = false) { |
| 1991 | if (!converter.getLoweringOptions().getLowerToHighLevelFIR()) { |
| 1992 | symMap.addAllocatableOrPointer(sym, box, force); |
| 1993 | return; |
| 1994 | } |
| 1995 | assert(!box.isDescribedByVariables() && |
| 1996 | "HLFIR alloctables/pointers must be fir.ref<fir.box>" ); |
| 1997 | mlir::Value base = box.getAddr(); |
| 1998 | mlir::Value explictLength; |
| 1999 | if (box.hasNonDeferredLenParams()) { |
| 2000 | if (!box.isCharacter()) |
| 2001 | TODO(genLocation(converter, sym), |
| 2002 | "Pointer or Allocatable parametrized derived type" ); |
| 2003 | explictLength = box.nonDeferredLenParams()[0]; |
| 2004 | } |
| 2005 | genDeclareSymbol(converter, symMap, sym, base, explictLength, |
| 2006 | /*shape=*/std::nullopt, |
| 2007 | /*lbounds=*/std::nullopt, force); |
| 2008 | } |
| 2009 | |
| 2010 | /// Map a procedure pointer |
| 2011 | static void genProcPointer(Fortran::lower::AbstractConverter &converter, |
| 2012 | Fortran::lower::SymMap &symMap, |
| 2013 | const Fortran::semantics::Symbol &sym, |
| 2014 | mlir::Value addr, bool force = false) { |
| 2015 | genDeclareSymbol(converter, symMap, sym, addr, mlir::Value{}, |
| 2016 | /*shape=*/std::nullopt, |
| 2017 | /*lbounds=*/std::nullopt, force); |
| 2018 | } |
| 2019 | |
| 2020 | /// Map a symbol represented with a runtime descriptor to its FIR fir.box and |
| 2021 | /// evaluated specification expressions. Will optionally create fir.declare. |
| 2022 | static void genBoxDeclare(Fortran::lower::AbstractConverter &converter, |
| 2023 | Fortran::lower::SymMap &symMap, |
| 2024 | const Fortran::semantics::Symbol &sym, |
| 2025 | mlir::Value box, llvm::ArrayRef<mlir::Value> lbounds, |
| 2026 | llvm::ArrayRef<mlir::Value> explicitParams, |
| 2027 | llvm::ArrayRef<mlir::Value> explicitExtents, |
| 2028 | bool replace = false) { |
| 2029 | if (converter.getLoweringOptions().getLowerToHighLevelFIR()) { |
| 2030 | fir::BoxValue boxValue{box, lbounds, explicitParams, explicitExtents}; |
| 2031 | Fortran::lower::genDeclareSymbol( |
| 2032 | converter, symMap, sym, std::move(boxValue), |
| 2033 | fir::FortranVariableFlagsEnum::None, replace); |
| 2034 | return; |
| 2035 | } |
| 2036 | symMap.addBoxSymbol(sym, box, lbounds, explicitParams, explicitExtents, |
| 2037 | replace); |
| 2038 | } |
| 2039 | |
| 2040 | /// Lower specification expressions and attributes of variable \p var and |
| 2041 | /// add it to the symbol map. For a global or an alias, the address must be |
| 2042 | /// pre-computed and provided in \p preAlloc. A dummy argument for the current |
| 2043 | /// entry point has already been mapped to an mlir block argument in |
| 2044 | /// mapDummiesAndResults. Its mapping may be updated here. |
| 2045 | void Fortran::lower::mapSymbolAttributes( |
| 2046 | AbstractConverter &converter, const Fortran::lower::pft::Variable &var, |
| 2047 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| 2048 | mlir::Value preAlloc) { |
| 2049 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2050 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 2051 | const mlir::Location loc = genLocation(converter, sym); |
| 2052 | mlir::IndexType idxTy = builder.getIndexType(); |
| 2053 | const bool isDeclaredDummy = Fortran::semantics::IsDummy(sym); |
| 2054 | // An active dummy from the current entry point. |
| 2055 | const bool isDummy = isDeclaredDummy && symMap.lookupSymbol(sym).getAddr(); |
| 2056 | // An unused dummy from another entry point. |
| 2057 | const bool isUnusedEntryDummy = isDeclaredDummy && !isDummy; |
| 2058 | const bool isResult = Fortran::semantics::IsFunctionResult(sym); |
| 2059 | const bool replace = isDummy || isResult; |
| 2060 | fir::factory::CharacterExprHelper charHelp{builder, loc}; |
| 2061 | |
| 2062 | if (Fortran::semantics::IsProcedure(sym)) { |
| 2063 | if (isUnusedEntryDummy) { |
| 2064 | // Additional discussion below. |
| 2065 | mlir::Type dummyProcType = |
| 2066 | Fortran::lower::getDummyProcedureType(sym, converter); |
| 2067 | mlir::Value undefOp = builder.create<fir::UndefOp>(loc, dummyProcType); |
| 2068 | |
| 2069 | Fortran::lower::genDeclareSymbol(converter, symMap, sym, undefOp); |
| 2070 | } |
| 2071 | |
| 2072 | // Procedure pointer. |
| 2073 | if (Fortran::semantics::IsPointer(sym)) { |
| 2074 | // global |
| 2075 | mlir::Value boxAlloc = preAlloc; |
| 2076 | // dummy or passed result |
| 2077 | if (!boxAlloc) |
| 2078 | if (Fortran::lower::SymbolBox symbox = symMap.lookupSymbol(sym)) |
| 2079 | boxAlloc = symbox.getAddr(); |
| 2080 | // local |
| 2081 | if (!boxAlloc) |
| 2082 | boxAlloc = createNewLocal(converter, loc, var, preAlloc); |
| 2083 | genProcPointer(converter, symMap, sym, boxAlloc, replace); |
| 2084 | } |
| 2085 | return; |
| 2086 | } |
| 2087 | |
| 2088 | const bool isAssumedRank = Fortran::evaluate::IsAssumedRank(sym); |
| 2089 | if (isAssumedRank && !allowAssumedRank) |
| 2090 | TODO(loc, "assumed-rank variable in procedure implemented in Fortran" ); |
| 2091 | |
| 2092 | Fortran::lower::BoxAnalyzer ba; |
| 2093 | ba.analyze(sym); |
| 2094 | |
| 2095 | // First deal with pointers and allocatables, because their handling here |
| 2096 | // is the same regardless of their rank. |
| 2097 | if (Fortran::semantics::IsAllocatableOrPointer(sym)) { |
| 2098 | // Get address of fir.box describing the entity. |
| 2099 | // global |
| 2100 | mlir::Value boxAlloc = preAlloc; |
| 2101 | // dummy or passed result |
| 2102 | if (!boxAlloc) |
| 2103 | if (Fortran::lower::SymbolBox symbox = symMap.lookupSymbol(sym)) |
| 2104 | boxAlloc = symbox.getAddr(); |
| 2105 | assert((boxAlloc || !isAssumedRank) && "assumed-ranks cannot be local" ); |
| 2106 | // local |
| 2107 | if (!boxAlloc) |
| 2108 | boxAlloc = createNewLocal(converter, loc, var, preAlloc); |
| 2109 | // Lower non deferred parameters. |
| 2110 | llvm::SmallVector<mlir::Value> nonDeferredLenParams; |
| 2111 | if (ba.isChar()) { |
| 2112 | if (mlir::Value len = |
| 2113 | lowerExplicitCharLen(converter, loc, ba, symMap, stmtCtx)) |
| 2114 | nonDeferredLenParams.push_back(len); |
| 2115 | else if (Fortran::semantics::IsAssumedLengthCharacter(sym)) |
| 2116 | nonDeferredLenParams.push_back( |
| 2117 | Fortran::lower::getAssumedCharAllocatableOrPointerLen( |
| 2118 | builder, loc, sym, boxAlloc)); |
| 2119 | } else if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) { |
| 2120 | if (const Fortran::semantics::DerivedTypeSpec *derived = |
| 2121 | declTy->AsDerived()) |
| 2122 | if (Fortran::semantics::CountLenParameters(*derived) != 0) |
| 2123 | TODO(loc, |
| 2124 | "derived type allocatable or pointer with length parameters" ); |
| 2125 | } |
| 2126 | fir::MutableBoxValue box = Fortran::lower::createMutableBox( |
| 2127 | converter, loc, var, boxAlloc, nonDeferredLenParams, |
| 2128 | /*alwaysUseBox=*/ |
| 2129 | converter.getLoweringOptions().getLowerToHighLevelFIR(), |
| 2130 | Fortran::lower::getAllocatorIdx(var.getSymbol())); |
| 2131 | genAllocatableOrPointerDeclare(converter, symMap, var.getSymbol(), box, |
| 2132 | replace); |
| 2133 | return; |
| 2134 | } |
| 2135 | |
| 2136 | if (isDummy) { |
| 2137 | mlir::Value dummyArg = symMap.lookupSymbol(sym).getAddr(); |
| 2138 | if (lowerToBoxValue(sym, dummyArg, converter)) { |
| 2139 | llvm::SmallVector<mlir::Value> lbounds; |
| 2140 | llvm::SmallVector<mlir::Value> explicitExtents; |
| 2141 | llvm::SmallVector<mlir::Value> explicitParams; |
| 2142 | // Lower lower bounds, explicit type parameters and explicit |
| 2143 | // extents if any. |
| 2144 | if (ba.isChar()) { |
| 2145 | if (mlir::Value len = |
| 2146 | lowerExplicitCharLen(converter, loc, ba, symMap, stmtCtx)) |
| 2147 | explicitParams.push_back(len); |
| 2148 | if (!isAssumedRank && sym.Rank() == 0) { |
| 2149 | // Do not keep scalar characters as fir.box (even when optional). |
| 2150 | // Lowering and FIR is not meant to deal with scalar characters as |
| 2151 | // fir.box outside of calls. |
| 2152 | auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(dummyArg.getType()); |
| 2153 | mlir::Type refTy = builder.getRefType(boxTy.getEleTy()); |
| 2154 | mlir::Type lenType = builder.getCharacterLengthType(); |
| 2155 | mlir::Value addr, len; |
| 2156 | if (Fortran::semantics::IsOptional(sym)) { |
| 2157 | auto isPresent = builder.create<fir::IsPresentOp>( |
| 2158 | loc, builder.getI1Type(), dummyArg); |
| 2159 | auto addrAndLen = |
| 2160 | builder |
| 2161 | .genIfOp(loc, {refTy, lenType}, isPresent, |
| 2162 | /*withElseRegion=*/true) |
| 2163 | .genThen([&]() { |
| 2164 | mlir::Value readAddr = |
| 2165 | builder.create<fir::BoxAddrOp>(loc, refTy, dummyArg); |
| 2166 | mlir::Value readLength = |
| 2167 | charHelp.readLengthFromBox(dummyArg); |
| 2168 | builder.create<fir::ResultOp>( |
| 2169 | loc, mlir::ValueRange{readAddr, readLength}); |
| 2170 | }) |
| 2171 | .genElse([&] { |
| 2172 | mlir::Value readAddr = builder.genAbsentOp(loc, refTy); |
| 2173 | mlir::Value readLength = |
| 2174 | fir::factory::createZeroValue(builder, loc, lenType); |
| 2175 | builder.create<fir::ResultOp>( |
| 2176 | loc, mlir::ValueRange{readAddr, readLength}); |
| 2177 | }) |
| 2178 | .getResults(); |
| 2179 | addr = addrAndLen[0]; |
| 2180 | len = addrAndLen[1]; |
| 2181 | } else { |
| 2182 | addr = builder.create<fir::BoxAddrOp>(loc, refTy, dummyArg); |
| 2183 | len = charHelp.readLengthFromBox(dummyArg); |
| 2184 | } |
| 2185 | if (!explicitParams.empty()) |
| 2186 | len = explicitParams[0]; |
| 2187 | ::genDeclareSymbol(converter, symMap, sym, addr, len, /*extents=*/{}, |
| 2188 | /*lbounds=*/{}, replace); |
| 2189 | return; |
| 2190 | } |
| 2191 | } |
| 2192 | // TODO: derived type length parameters. |
| 2193 | if (!isAssumedRank) { |
| 2194 | lowerExplicitLowerBounds(converter, loc, ba, lbounds, symMap, stmtCtx); |
| 2195 | lowerExplicitExtents(converter, loc, ba, lbounds, explicitExtents, |
| 2196 | symMap, stmtCtx); |
| 2197 | } |
| 2198 | genBoxDeclare(converter, symMap, sym, dummyArg, lbounds, explicitParams, |
| 2199 | explicitExtents, replace); |
| 2200 | return; |
| 2201 | } |
| 2202 | } |
| 2203 | |
| 2204 | // A dummy from another entry point that is not declared in the current |
| 2205 | // entry point requires a skeleton definition. Most such "unused" dummies |
| 2206 | // will not survive into final generated code, but some will. It is illegal |
| 2207 | // to reference one at run time if it does. Such a dummy is mapped to a |
| 2208 | // value in one of three ways: |
| 2209 | // |
| 2210 | // - Generate a fir::UndefOp value. This is lightweight, easy to clean up, |
| 2211 | // and often valid, but it may fail for a dummy with dynamic bounds, |
| 2212 | // or a dummy used to define another dummy. Information to distinguish |
| 2213 | // valid cases is not generally available here, with the exception of |
| 2214 | // dummy procedures. See the first function exit above. |
| 2215 | // |
| 2216 | // - Allocate an uninitialized stack slot. This is an intermediate-weight |
| 2217 | // solution that is harder to clean up. It is often valid, but may fail |
| 2218 | // for an object with dynamic bounds. This option is "automatically" |
| 2219 | // used by default for cases that do not use one of the other options. |
| 2220 | // |
| 2221 | // - Allocate a heap box/descriptor, initialized to zero. This always |
| 2222 | // works, but is more heavyweight and harder to clean up. It is used |
| 2223 | // for dynamic objects via calls to genUnusedEntryPointBox. |
| 2224 | |
| 2225 | auto genUnusedEntryPointBox = [&]() { |
| 2226 | if (isUnusedEntryDummy) { |
| 2227 | assert(!Fortran::semantics::IsAllocatableOrPointer(sym) && |
| 2228 | "handled above" ); |
| 2229 | // The box is read right away because lowering code does not expect |
| 2230 | // a non pointer/allocatable symbol to be mapped to a MutableBox. |
| 2231 | mlir::Type ty = converter.genType(var); |
| 2232 | bool isPolymorphic = false; |
| 2233 | if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) { |
| 2234 | isPolymorphic = mlir::isa<fir::ClassType>(ty); |
| 2235 | ty = boxTy.getEleTy(); |
| 2236 | } |
| 2237 | Fortran::lower::genDeclareSymbol( |
| 2238 | converter, symMap, sym, |
| 2239 | fir::factory::genMutableBoxRead( |
| 2240 | builder, loc, |
| 2241 | fir::factory::createTempMutableBox(builder, loc, ty, {}, {}, |
| 2242 | isPolymorphic)), |
| 2243 | fir::FortranVariableFlagsEnum::None, |
| 2244 | converter.isRegisteredDummySymbol(sym)); |
| 2245 | return true; |
| 2246 | } |
| 2247 | return false; |
| 2248 | }; |
| 2249 | |
| 2250 | if (isAssumedRank) { |
| 2251 | assert(isUnusedEntryDummy && "assumed rank must be pointers/allocatables " |
| 2252 | "or descriptor dummy arguments" ); |
| 2253 | genUnusedEntryPointBox(); |
| 2254 | return; |
| 2255 | } |
| 2256 | |
| 2257 | // Helper to generate scalars for the symbol properties. |
| 2258 | auto genValue = [&](const Fortran::lower::SomeExpr &expr) { |
| 2259 | return genScalarValue(converter, loc, expr, symMap, stmtCtx); |
| 2260 | }; |
| 2261 | |
| 2262 | // For symbols reaching this point, all properties are constant and can be |
| 2263 | // read/computed already into ssa values. |
| 2264 | |
| 2265 | // The origin must be \vec{1}. |
| 2266 | auto populateShape = [&](auto &shapes, const auto &bounds, mlir::Value box) { |
| 2267 | for (auto iter : llvm::enumerate(bounds)) { |
| 2268 | auto *spec = iter.value(); |
| 2269 | assert(spec->lbound().GetExplicit() && |
| 2270 | "lbound must be explicit with constant value 1" ); |
| 2271 | if (auto high = spec->ubound().GetExplicit()) { |
| 2272 | Fortran::lower::SomeExpr highEx{*high}; |
| 2273 | mlir::Value ub = genValue(highEx); |
| 2274 | ub = builder.createConvert(loc, idxTy, ub); |
| 2275 | shapes.emplace_back(fir::factory::genMaxWithZero(builder, loc, ub)); |
| 2276 | } else if (spec->ubound().isColon()) { |
| 2277 | assert(box && "assumed bounds require a descriptor" ); |
| 2278 | mlir::Value dim = |
| 2279 | builder.createIntegerConstant(loc, idxTy, iter.index()); |
| 2280 | auto dimInfo = |
| 2281 | builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, dim); |
| 2282 | shapes.emplace_back(dimInfo.getResult(1)); |
| 2283 | } else if (spec->ubound().isStar()) { |
| 2284 | shapes.emplace_back(getAssumedSizeExtent(loc, builder)); |
| 2285 | } else { |
| 2286 | llvm::report_fatal_error("unknown bound category" ); |
| 2287 | } |
| 2288 | } |
| 2289 | }; |
| 2290 | |
| 2291 | // The origin is not \vec{1}. |
| 2292 | auto populateLBoundsExtents = [&](auto &lbounds, auto &extents, |
| 2293 | const auto &bounds, mlir::Value box) { |
| 2294 | for (auto iter : llvm::enumerate(bounds)) { |
| 2295 | auto *spec = iter.value(); |
| 2296 | fir::BoxDimsOp dimInfo; |
| 2297 | mlir::Value ub, lb; |
| 2298 | if (spec->lbound().isColon() || spec->ubound().isColon()) { |
| 2299 | // This is an assumed shape because allocatables and pointers extents |
| 2300 | // are not constant in the scope and are not read here. |
| 2301 | assert(box && "deferred bounds require a descriptor" ); |
| 2302 | mlir::Value dim = |
| 2303 | builder.createIntegerConstant(loc, idxTy, iter.index()); |
| 2304 | dimInfo = |
| 2305 | builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, dim); |
| 2306 | extents.emplace_back(dimInfo.getResult(1)); |
| 2307 | if (auto low = spec->lbound().GetExplicit()) { |
| 2308 | auto expr = Fortran::lower::SomeExpr{*low}; |
| 2309 | mlir::Value lb = builder.createConvert(loc, idxTy, genValue(expr)); |
| 2310 | lbounds.emplace_back(lb); |
| 2311 | } else { |
| 2312 | // Implicit lower bound is 1 (Fortran 2018 section 8.5.8.3 point 3.) |
| 2313 | lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, 1)); |
| 2314 | } |
| 2315 | } else { |
| 2316 | if (auto low = spec->lbound().GetExplicit()) { |
| 2317 | auto expr = Fortran::lower::SomeExpr{*low}; |
| 2318 | lb = builder.createConvert(loc, idxTy, genValue(expr)); |
| 2319 | } else { |
| 2320 | TODO(loc, "support for assumed rank entities" ); |
| 2321 | } |
| 2322 | lbounds.emplace_back(lb); |
| 2323 | |
| 2324 | if (auto high = spec->ubound().GetExplicit()) { |
| 2325 | auto expr = Fortran::lower::SomeExpr{*high}; |
| 2326 | ub = builder.createConvert(loc, idxTy, genValue(expr)); |
| 2327 | extents.emplace_back( |
| 2328 | fir::factory::computeExtent(builder, loc, lb, ub)); |
| 2329 | } else { |
| 2330 | // An assumed size array. The extent is not computed. |
| 2331 | assert(spec->ubound().isStar() && "expected assumed size" ); |
| 2332 | extents.emplace_back(getAssumedSizeExtent(loc, builder)); |
| 2333 | } |
| 2334 | } |
| 2335 | } |
| 2336 | }; |
| 2337 | |
| 2338 | //===--------------------------------------------------------------===// |
| 2339 | // Non Pointer non allocatable scalar, explicit shape, and assumed |
| 2340 | // size arrays. |
| 2341 | // Lower the specification expressions. |
| 2342 | //===--------------------------------------------------------------===// |
| 2343 | |
| 2344 | mlir::Value len; |
| 2345 | llvm::SmallVector<mlir::Value> extents; |
| 2346 | llvm::SmallVector<mlir::Value> lbounds; |
| 2347 | auto arg = symMap.lookupSymbol(sym).getAddr(); |
| 2348 | mlir::Value addr = preAlloc; |
| 2349 | |
| 2350 | if (arg) |
| 2351 | if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(arg.getType())) { |
| 2352 | // Contiguous assumed shape that can be tracked without a fir.box. |
| 2353 | mlir::Type refTy = builder.getRefType(boxTy.getEleTy()); |
| 2354 | addr = builder.create<fir::BoxAddrOp>(loc, refTy, arg); |
| 2355 | } |
| 2356 | |
| 2357 | // Compute/Extract character length. |
| 2358 | if (ba.isChar()) { |
| 2359 | if (arg) { |
| 2360 | assert(!preAlloc && "dummy cannot be pre-allocated" ); |
| 2361 | if (mlir::isa<fir::BoxCharType>(arg.getType())) { |
| 2362 | std::tie(addr, len) = charHelp.createUnboxChar(arg); |
| 2363 | } else if (mlir::isa<fir::CharacterType>(arg.getType())) { |
| 2364 | // fir.char<1> passed by value (BIND(C) with VALUE attribute). |
| 2365 | addr = builder.create<fir::AllocaOp>(loc, arg.getType()); |
| 2366 | builder.create<fir::StoreOp>(loc, arg, addr); |
| 2367 | } else if (!addr) { |
| 2368 | addr = arg; |
| 2369 | } |
| 2370 | // Ensure proper type is given to array/scalar that was transmitted as a |
| 2371 | // fir.boxchar arg or is a statement function actual argument with |
| 2372 | // a different length than the dummy. |
| 2373 | mlir::Type castTy = builder.getRefType(converter.genType(var)); |
| 2374 | addr = builder.createConvert(loc, castTy, addr); |
| 2375 | } |
| 2376 | if (std::optional<int64_t> cstLen = ba.getCharLenConst()) { |
| 2377 | // Static length |
| 2378 | len = builder.createIntegerConstant(loc, idxTy, *cstLen); |
| 2379 | } else { |
| 2380 | // Dynamic length |
| 2381 | if (genUnusedEntryPointBox()) |
| 2382 | return; |
| 2383 | if (std::optional<Fortran::lower::SomeExpr> charLenExpr = |
| 2384 | ba.getCharLenExpr()) { |
| 2385 | // Explicit length |
| 2386 | mlir::Value rawLen = genValue(*charLenExpr); |
| 2387 | // If the length expression is negative, the length is zero. See |
| 2388 | // F2018 7.4.4.2 point 5. |
| 2389 | len = fir::factory::genMaxWithZero(builder, loc, rawLen); |
| 2390 | } else if (!len) { |
| 2391 | // Assumed length fir.box (possible for contiguous assumed shapes). |
| 2392 | // Read length from box. |
| 2393 | assert(arg && mlir::isa<fir::BoxType>(arg.getType()) && |
| 2394 | "must be character dummy fir.box" ); |
| 2395 | len = charHelp.readLengthFromBox(arg); |
| 2396 | } |
| 2397 | } |
| 2398 | } |
| 2399 | |
| 2400 | // Compute array extents and lower bounds. |
| 2401 | if (ba.isArray()) { |
| 2402 | if (ba.isStaticArray()) { |
| 2403 | if (ba.lboundIsAllOnes()) { |
| 2404 | for (std::int64_t extent : |
| 2405 | recoverShapeVector(ba.staticShape(), preAlloc)) |
| 2406 | extents.push_back(genExtentValue(builder, loc, idxTy, extent)); |
| 2407 | } else { |
| 2408 | for (auto [lb, extent] : |
| 2409 | llvm::zip(ba.staticLBound(), |
| 2410 | recoverShapeVector(ba.staticShape(), preAlloc))) { |
| 2411 | lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, lb)); |
| 2412 | extents.emplace_back(genExtentValue(builder, loc, idxTy, extent)); |
| 2413 | } |
| 2414 | } |
| 2415 | } else { |
| 2416 | // Non compile time constant shape. |
| 2417 | if (genUnusedEntryPointBox()) |
| 2418 | return; |
| 2419 | if (ba.lboundIsAllOnes()) |
| 2420 | populateShape(extents, ba.dynamicBound(), arg); |
| 2421 | else |
| 2422 | populateLBoundsExtents(lbounds, extents, ba.dynamicBound(), arg); |
| 2423 | } |
| 2424 | } |
| 2425 | |
| 2426 | // Allocate or extract raw address for the entity |
| 2427 | if (!addr) { |
| 2428 | if (arg) { |
| 2429 | mlir::Type argType = arg.getType(); |
| 2430 | const bool isCptrByVal = Fortran::semantics::IsBuiltinCPtr(sym) && |
| 2431 | Fortran::lower::isCPtrArgByValueType(argType); |
| 2432 | if (isCptrByVal || !fir::conformsWithPassByRef(argType)) { |
| 2433 | // Dummy argument passed in register. Place the value in memory at that |
| 2434 | // point since lowering expect symbols to be mapped to memory addresses. |
| 2435 | mlir::Type symType = converter.genType(sym); |
| 2436 | addr = builder.create<fir::AllocaOp>(loc, symType); |
| 2437 | if (isCptrByVal) { |
| 2438 | // Place the void* address into the CPTR address component. |
| 2439 | mlir::Value addrComponent = |
| 2440 | fir::factory::genCPtrOrCFunptrAddr(builder, loc, addr, symType); |
| 2441 | builder.createStoreWithConvert(loc, arg, addrComponent); |
| 2442 | } else { |
| 2443 | builder.createStoreWithConvert(loc, arg, addr); |
| 2444 | } |
| 2445 | } else { |
| 2446 | // Dummy address, or address of result whose storage is passed by the |
| 2447 | // caller. |
| 2448 | assert(fir::isa_ref_type(argType) && "must be a memory address" ); |
| 2449 | addr = arg; |
| 2450 | } |
| 2451 | } else { |
| 2452 | // Local variables |
| 2453 | llvm::SmallVector<mlir::Value> typeParams; |
| 2454 | if (len) |
| 2455 | typeParams.emplace_back(len); |
| 2456 | addr = createNewLocal(converter, loc, var, preAlloc, extents, typeParams); |
| 2457 | } |
| 2458 | } |
| 2459 | |
| 2460 | ::genDeclareSymbol(converter, symMap, sym, addr, len, extents, lbounds, |
| 2461 | replace); |
| 2462 | return; |
| 2463 | } |
| 2464 | |
| 2465 | void Fortran::lower::defineModuleVariable( |
| 2466 | AbstractConverter &converter, const Fortran::lower::pft::Variable &var) { |
| 2467 | // Use empty linkage for module variables, which makes them available |
| 2468 | // for use in another unit. |
| 2469 | mlir::StringAttr linkage = |
| 2470 | getLinkageAttribute(converter.getFirOpBuilder(), var); |
| 2471 | if (!var.isGlobal()) |
| 2472 | fir::emitFatalError(converter.getCurrentLocation(), |
| 2473 | "attempting to lower module variable as local" ); |
| 2474 | // Define aggregate storages for equivalenced objects. |
| 2475 | if (var.isAggregateStore()) { |
| 2476 | const Fortran::lower::pft::Variable::AggregateStore &aggregate = |
| 2477 | var.getAggregateStore(); |
| 2478 | std::string aggName = mangleGlobalAggregateStore(converter, aggregate); |
| 2479 | defineGlobalAggregateStore(converter, aggregate, aggName, linkage); |
| 2480 | return; |
| 2481 | } |
| 2482 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 2483 | if (const Fortran::semantics::Symbol *common = |
| 2484 | Fortran::semantics::FindCommonBlockContaining(var.getSymbol())) { |
| 2485 | // Nothing to do, common block are generated before everything. Ensure |
| 2486 | // this was done by calling getCommonBlockGlobal. |
| 2487 | getCommonBlockGlobal(converter, *common); |
| 2488 | } else if (var.isAlias()) { |
| 2489 | // Do nothing. Mapping will be done on user side. |
| 2490 | } else { |
| 2491 | std::string globalName = converter.mangleName(sym); |
| 2492 | cuf::DataAttributeAttr dataAttr = |
| 2493 | Fortran::lower::translateSymbolCUFDataAttribute( |
| 2494 | converter.getFirOpBuilder().getContext(), sym); |
| 2495 | defineGlobal(converter, var, globalName, linkage, dataAttr); |
| 2496 | } |
| 2497 | } |
| 2498 | |
| 2499 | void Fortran::lower::instantiateVariable(AbstractConverter &converter, |
| 2500 | const pft::Variable &var, |
| 2501 | Fortran::lower::SymMap &symMap, |
| 2502 | AggregateStoreMap &storeMap) { |
| 2503 | if (var.hasSymbol()) { |
| 2504 | // Do not try to instantiate symbols twice, except for dummies and results, |
| 2505 | // that may have been mapped to the MLIR entry block arguments, and for |
| 2506 | // which the explicit specifications, if any, has not yet been lowered. |
| 2507 | const auto &sym = var.getSymbol(); |
| 2508 | if (!IsDummy(sym) && !IsFunctionResult(sym) && symMap.lookupSymbol(sym)) |
| 2509 | return; |
| 2510 | } |
| 2511 | LLVM_DEBUG(llvm::dbgs() << "instantiateVariable: " ; var.dump()); |
| 2512 | if (var.isAggregateStore()) |
| 2513 | instantiateAggregateStore(converter, var, storeMap); |
| 2514 | else if (const Fortran::semantics::Symbol *common = |
| 2515 | Fortran::semantics::FindCommonBlockContaining( |
| 2516 | var.getSymbol().GetUltimate())) |
| 2517 | instantiateCommon(converter, *common, var, symMap); |
| 2518 | else if (var.isAlias()) |
| 2519 | instantiateAlias(converter, var, symMap, storeMap); |
| 2520 | else if (var.isGlobal()) |
| 2521 | instantiateGlobal(converter, var, symMap); |
| 2522 | else |
| 2523 | instantiateLocal(converter, var, symMap); |
| 2524 | } |
| 2525 | |
| 2526 | static void |
| 2527 | mapCallInterfaceSymbol(const Fortran::semantics::Symbol &interfaceSymbol, |
| 2528 | Fortran::lower::AbstractConverter &converter, |
| 2529 | const Fortran::lower::CallerInterface &caller, |
| 2530 | Fortran::lower::SymMap &symMap) { |
| 2531 | Fortran::lower::AggregateStoreMap storeMap; |
| 2532 | for (Fortran::lower::pft::Variable var : |
| 2533 | Fortran::lower::pft::getDependentVariableList(interfaceSymbol)) { |
| 2534 | if (var.isAggregateStore()) { |
| 2535 | instantiateVariable(converter, var, symMap, storeMap); |
| 2536 | continue; |
| 2537 | } |
| 2538 | const Fortran::semantics::Symbol &sym = var.getSymbol(); |
| 2539 | if (&sym == &interfaceSymbol) |
| 2540 | continue; |
| 2541 | const auto *hostDetails = |
| 2542 | sym.detailsIf<Fortran::semantics::HostAssocDetails>(); |
| 2543 | if (hostDetails && !var.isModuleOrSubmoduleVariable()) { |
| 2544 | // The callee is an internal procedure `A` whose result properties |
| 2545 | // depend on host variables. The caller may be the host, or another |
| 2546 | // internal procedure `B` contained in the same host. In the first |
| 2547 | // case, the host symbol is obviously mapped, in the second case, it |
| 2548 | // must also be mapped because |
| 2549 | // HostAssociations::internalProcedureBindings that was called when |
| 2550 | // lowering `B` will have mapped all host symbols of captured variables |
| 2551 | // to the tuple argument containing the composite of all host associated |
| 2552 | // variables, whether or not the host symbol is actually referred to in |
| 2553 | // `B`. Hence it is possible to simply lookup the variable associated to |
| 2554 | // the host symbol without having to go back to the tuple argument. |
| 2555 | symMap.copySymbolBinding(hostDetails->symbol(), sym); |
| 2556 | // The SymbolBox associated to the host symbols is complete, skip |
| 2557 | // instantiateVariable that would try to allocate a new storage. |
| 2558 | continue; |
| 2559 | } |
| 2560 | if (Fortran::semantics::IsDummy(sym) && |
| 2561 | sym.owner() == interfaceSymbol.owner()) { |
| 2562 | // Get the argument for the dummy argument symbols of the current call. |
| 2563 | symMap.addSymbol(sym, caller.getArgumentValue(sym)); |
| 2564 | // All the properties of the dummy variable may not come from the actual |
| 2565 | // argument, let instantiateVariable handle this. |
| 2566 | } |
| 2567 | // If this is neither a host associated or dummy symbol, it must be a |
| 2568 | // module or common block variable to satisfy specification expression |
| 2569 | // requirements in 10.1.11, instantiateVariable will get its address and |
| 2570 | // properties. |
| 2571 | instantiateVariable(converter, var, symMap, storeMap); |
| 2572 | } |
| 2573 | } |
| 2574 | |
| 2575 | void Fortran::lower::mapCallInterfaceSymbolsForResult( |
| 2576 | AbstractConverter &converter, const Fortran::lower::CallerInterface &caller, |
| 2577 | SymMap &symMap) { |
| 2578 | const Fortran::semantics::Symbol &result = caller.getResultSymbol(); |
| 2579 | mapCallInterfaceSymbol(result, converter, caller, symMap); |
| 2580 | } |
| 2581 | |
| 2582 | void Fortran::lower::mapCallInterfaceSymbolsForDummyArgument( |
| 2583 | AbstractConverter &converter, const Fortran::lower::CallerInterface &caller, |
| 2584 | SymMap &symMap, const Fortran::semantics::Symbol &dummySymbol) { |
| 2585 | mapCallInterfaceSymbol(dummySymbol, converter, caller, symMap); |
| 2586 | } |
| 2587 | |
| 2588 | void Fortran::lower::mapSymbolAttributes( |
| 2589 | AbstractConverter &converter, const Fortran::semantics::SymbolRef &symbol, |
| 2590 | Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, |
| 2591 | mlir::Value preAlloc) { |
| 2592 | mapSymbolAttributes(converter, pft::Variable{symbol}, symMap, stmtCtx, |
| 2593 | preAlloc); |
| 2594 | } |
| 2595 | |
| 2596 | void Fortran::lower::createIntrinsicModuleGlobal( |
| 2597 | Fortran::lower::AbstractConverter &converter, const pft::Variable &var) { |
| 2598 | defineGlobal(converter, var, converter.mangleName(var.getSymbol()), |
| 2599 | converter.getFirOpBuilder().createLinkOnceODRLinkage()); |
| 2600 | } |
| 2601 | |
| 2602 | void Fortran::lower::createRuntimeTypeInfoGlobal( |
| 2603 | Fortran::lower::AbstractConverter &converter, |
| 2604 | const Fortran::semantics::Symbol &typeInfoSym) { |
| 2605 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2606 | std::string globalName = converter.mangleName(typeInfoSym); |
| 2607 | auto var = Fortran::lower::pft::Variable(typeInfoSym, /*global=*/true); |
| 2608 | mlir::StringAttr linkage = getLinkageAttribute(builder, var); |
| 2609 | defineGlobal(converter, var, globalName, linkage); |
| 2610 | } |
| 2611 | |
| 2612 | mlir::Type Fortran::lower::getCrayPointeeBoxType(mlir::Type fortranType) { |
| 2613 | mlir::Type baseType = hlfir::getFortranElementOrSequenceType(fortranType); |
| 2614 | if (auto seqType = mlir::dyn_cast<fir::SequenceType>(baseType)) { |
| 2615 | // The pointer box's sequence type must be with unknown shape. |
| 2616 | llvm::SmallVector<int64_t> shape(seqType.getDimension(), |
| 2617 | fir::SequenceType::getUnknownExtent()); |
| 2618 | baseType = fir::SequenceType::get(shape, seqType.getEleTy()); |
| 2619 | } |
| 2620 | return fir::BoxType::get(fir::PointerType::get(baseType)); |
| 2621 | } |
| 2622 | |
| 2623 | fir::ExtendedValue |
| 2624 | Fortran::lower::genPackArray(Fortran::lower::AbstractConverter &converter, |
| 2625 | const Fortran::semantics::Symbol &sym, |
| 2626 | fir::ExtendedValue exv) { |
| 2627 | if (!needsRepack(converter, sym)) |
| 2628 | return exv; |
| 2629 | |
| 2630 | auto &opts = converter.getLoweringOptions(); |
| 2631 | llvm::SmallVector<mlir::Value> lenParams; |
| 2632 | exv.match( |
| 2633 | [&](const fir::CharArrayBoxValue &box) { |
| 2634 | lenParams.emplace_back(box.getLen()); |
| 2635 | }, |
| 2636 | [&](const fir::BoxValue &box) { |
| 2637 | lenParams.append(box.getExplicitParameters().begin(), |
| 2638 | box.getExplicitParameters().end()); |
| 2639 | }, |
| 2640 | [](const auto &) { |
| 2641 | llvm_unreachable("unexpected lowering for assumed-shape dummy" ); |
| 2642 | }); |
| 2643 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2644 | const mlir::Location loc = genLocation(converter, sym); |
| 2645 | bool stackAlloc = opts.getStackRepackArrays(); |
| 2646 | // 1D arrays must always use 'whole' mode. |
| 2647 | bool isInnermostMode = !opts.getRepackArraysWhole() && sym.Rank() > 1; |
| 2648 | // Avoid copy-in for 'intent(out)' variable, unless this is a dummy |
| 2649 | // argument with INTENT(OUT) that needs finalization on entry |
| 2650 | // to the subprogram. The finalization routine may read the initial |
| 2651 | // value of the array. |
| 2652 | bool noCopy = Fortran::semantics::IsIntentOut(sym) && |
| 2653 | !needDummyIntentoutFinalization(sym); |
| 2654 | auto boxType = mlir::cast<fir::BaseBoxType>(fir::getBase(exv).getType()); |
| 2655 | mlir::Type elementType = boxType.unwrapInnerType(); |
| 2656 | llvm::SmallVector<mlir::Value> elidedLenParams = |
| 2657 | fir::factory::elideLengthsAlreadyInType(elementType, lenParams); |
| 2658 | auto packOp = builder.create<fir::PackArrayOp>( |
| 2659 | loc, fir::getBase(exv), stackAlloc, isInnermostMode, noCopy, |
| 2660 | /*max_size=*/mlir::IntegerAttr{}, |
| 2661 | /*max_element_size=*/mlir::IntegerAttr{}, |
| 2662 | /*min_stride=*/mlir::IntegerAttr{}, fir::PackArrayHeuristics::None, |
| 2663 | elidedLenParams, getSafeRepackAttrs(converter)); |
| 2664 | |
| 2665 | mlir::Value newBase = packOp.getResult(); |
| 2666 | return exv.match( |
| 2667 | [&](const fir::CharArrayBoxValue &box) -> fir::ExtendedValue { |
| 2668 | return box.clone(newBase); |
| 2669 | }, |
| 2670 | [&](const fir::BoxValue &box) -> fir::ExtendedValue { |
| 2671 | return box.clone(newBase); |
| 2672 | }, |
| 2673 | [](const auto &) -> fir::ExtendedValue { |
| 2674 | llvm_unreachable("unexpected lowering for assumed-shape dummy" ); |
| 2675 | }); |
| 2676 | } |
| 2677 | |
| 2678 | void Fortran::lower::genUnpackArray( |
| 2679 | Fortran::lower::AbstractConverter &converter, mlir::Location loc, |
| 2680 | fir::FortranVariableOpInterface def, |
| 2681 | const Fortran::semantics::Symbol &sym) { |
| 2682 | // Subtle: rely on the fact that the memref of the defining |
| 2683 | // hlfir.declare is a result of fir.pack_array. |
| 2684 | // Alternatively, we can track the pack operation for a symbol |
| 2685 | // via SymMap. |
| 2686 | auto declareOp = mlir::dyn_cast<hlfir::DeclareOp>(def.getOperation()); |
| 2687 | assert(declareOp && |
| 2688 | "cannot find hlfir.declare for an array that needs to be repacked" ); |
| 2689 | auto packOp = declareOp.getMemref().getDefiningOp<fir::PackArrayOp>(); |
| 2690 | assert(packOp && "cannot find fir.pack_array" ); |
| 2691 | mlir::Value temp = packOp.getResult(); |
| 2692 | mlir::Value original = packOp.getArray(); |
| 2693 | bool stackAlloc = packOp.getStack(); |
| 2694 | // Avoid copy-out for 'intent(in)' variables. |
| 2695 | bool noCopy = Fortran::semantics::IsIntentIn(sym); |
| 2696 | fir::FirOpBuilder &builder = converter.getFirOpBuilder(); |
| 2697 | builder.create<fir::UnpackArrayOp>(loc, temp, original, stackAlloc, noCopy, |
| 2698 | getSafeRepackAttrs(converter)); |
| 2699 | } |
| 2700 | |