| 1 | //===-- HLFIRTools.cpp ----------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Tools to manipulate HLFIR variable and expressions |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "flang/Optimizer/Builder/HLFIRTools.h" |
| 14 | #include "flang/Optimizer/Builder/Character.h" |
| 15 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
| 16 | #include "flang/Optimizer/Builder/MutableBox.h" |
| 17 | #include "flang/Optimizer/Builder/Runtime/Allocatable.h" |
| 18 | #include "flang/Optimizer/Builder/Todo.h" |
| 19 | #include "flang/Optimizer/Dialect/FIRType.h" |
| 20 | #include "flang/Optimizer/HLFIR/HLFIROps.h" |
| 21 | #include "mlir/IR/IRMapping.h" |
| 22 | #include "mlir/Support/LLVM.h" |
| 23 | #include "llvm/ADT/TypeSwitch.h" |
| 24 | #include <mlir/Dialect/LLVMIR/LLVMAttrs.h> |
| 25 | #include <mlir/Dialect/OpenMP/OpenMPDialect.h> |
| 26 | #include <optional> |
| 27 | |
| 28 | // Return explicit extents. If the base is a fir.box, this won't read it to |
| 29 | // return the extents and will instead return an empty vector. |
| 30 | llvm::SmallVector<mlir::Value> |
| 31 | hlfir::getExplicitExtentsFromShape(mlir::Value shape, |
| 32 | fir::FirOpBuilder &builder) { |
| 33 | llvm::SmallVector<mlir::Value> result; |
| 34 | auto *shapeOp = shape.getDefiningOp(); |
| 35 | if (auto s = mlir::dyn_cast_or_null<fir::ShapeOp>(shapeOp)) { |
| 36 | auto e = s.getExtents(); |
| 37 | result.append(e.begin(), e.end()); |
| 38 | } else if (auto s = mlir::dyn_cast_or_null<fir::ShapeShiftOp>(shapeOp)) { |
| 39 | auto e = s.getExtents(); |
| 40 | result.append(e.begin(), e.end()); |
| 41 | } else if (mlir::dyn_cast_or_null<fir::ShiftOp>(shapeOp)) { |
| 42 | return {}; |
| 43 | } else if (auto s = mlir::dyn_cast_or_null<hlfir::ShapeOfOp>(shapeOp)) { |
| 44 | hlfir::ExprType expr = mlir::cast<hlfir::ExprType>(s.getExpr().getType()); |
| 45 | llvm::ArrayRef<int64_t> exprShape = expr.getShape(); |
| 46 | mlir::Type indexTy = builder.getIndexType(); |
| 47 | fir::ShapeType shapeTy = mlir::cast<fir::ShapeType>(shape.getType()); |
| 48 | result.reserve(shapeTy.getRank()); |
| 49 | for (unsigned i = 0; i < shapeTy.getRank(); ++i) { |
| 50 | int64_t extent = exprShape[i]; |
| 51 | mlir::Value extentVal; |
| 52 | if (extent == expr.getUnknownExtent()) { |
| 53 | auto op = builder.create<hlfir::GetExtentOp>(shape.getLoc(), shape, i); |
| 54 | extentVal = op.getResult(); |
| 55 | } else { |
| 56 | extentVal = |
| 57 | builder.createIntegerConstant(shape.getLoc(), indexTy, extent); |
| 58 | } |
| 59 | result.emplace_back(extentVal); |
| 60 | } |
| 61 | } else { |
| 62 | TODO(shape.getLoc(), "read fir.shape to get extents" ); |
| 63 | } |
| 64 | return result; |
| 65 | } |
| 66 | static llvm::SmallVector<mlir::Value> |
| 67 | getExplicitExtents(fir::FortranVariableOpInterface var, |
| 68 | fir::FirOpBuilder &builder) { |
| 69 | if (mlir::Value shape = var.getShape()) |
| 70 | return hlfir::getExplicitExtentsFromShape(var.getShape(), builder); |
| 71 | return {}; |
| 72 | } |
| 73 | |
| 74 | // Return explicit lower bounds from a shape result. |
| 75 | // Only fir.shape, fir.shift and fir.shape_shift are currently |
| 76 | // supported as shape. |
| 77 | static llvm::SmallVector<mlir::Value> |
| 78 | getExplicitLboundsFromShape(mlir::Value shape) { |
| 79 | llvm::SmallVector<mlir::Value> result; |
| 80 | auto *shapeOp = shape.getDefiningOp(); |
| 81 | if (auto s = mlir::dyn_cast_or_null<fir::ShapeOp>(shapeOp)) { |
| 82 | return {}; |
| 83 | } else if (auto s = mlir::dyn_cast_or_null<fir::ShapeShiftOp>(shapeOp)) { |
| 84 | auto e = s.getOrigins(); |
| 85 | result.append(e.begin(), e.end()); |
| 86 | } else if (auto s = mlir::dyn_cast_or_null<fir::ShiftOp>(shapeOp)) { |
| 87 | auto e = s.getOrigins(); |
| 88 | result.append(e.begin(), e.end()); |
| 89 | } else { |
| 90 | TODO(shape.getLoc(), "read fir.shape to get lower bounds" ); |
| 91 | } |
| 92 | return result; |
| 93 | } |
| 94 | |
| 95 | // Return explicit lower bounds. For pointers and allocatables, this will not |
| 96 | // read the lower bounds and instead return an empty vector. |
| 97 | static llvm::SmallVector<mlir::Value> |
| 98 | getExplicitLbounds(fir::FortranVariableOpInterface var) { |
| 99 | if (mlir::Value shape = var.getShape()) |
| 100 | return getExplicitLboundsFromShape(shape); |
| 101 | return {}; |
| 102 | } |
| 103 | |
| 104 | static llvm::SmallVector<mlir::Value> |
| 105 | getNonDefaultLowerBounds(mlir::Location loc, fir::FirOpBuilder &builder, |
| 106 | hlfir::Entity entity) { |
| 107 | assert(!entity.isAssumedRank() && |
| 108 | "cannot compute assumed rank bounds statically" ); |
| 109 | if (!entity.mayHaveNonDefaultLowerBounds()) |
| 110 | return {}; |
| 111 | if (auto varIface = entity.getIfVariableInterface()) { |
| 112 | llvm::SmallVector<mlir::Value> lbounds = getExplicitLbounds(varIface); |
| 113 | if (!lbounds.empty()) |
| 114 | return lbounds; |
| 115 | } |
| 116 | if (entity.isMutableBox()) |
| 117 | entity = hlfir::derefPointersAndAllocatables(loc, builder, entity); |
| 118 | llvm::SmallVector<mlir::Value> lowerBounds; |
| 119 | fir::factory::genDimInfoFromBox(builder, loc, entity, &lowerBounds, |
| 120 | /*extents=*/nullptr, /*strides=*/nullptr); |
| 121 | return lowerBounds; |
| 122 | } |
| 123 | |
| 124 | static llvm::SmallVector<mlir::Value> toSmallVector(mlir::ValueRange range) { |
| 125 | llvm::SmallVector<mlir::Value> res; |
| 126 | res.append(in_start: range.begin(), in_end: range.end()); |
| 127 | return res; |
| 128 | } |
| 129 | |
| 130 | static llvm::SmallVector<mlir::Value> getExplicitTypeParams(hlfir::Entity var) { |
| 131 | if (auto varIface = var.getMaybeDereferencedVariableInterface()) |
| 132 | return toSmallVector(varIface.getExplicitTypeParams()); |
| 133 | return {}; |
| 134 | } |
| 135 | |
| 136 | static mlir::Value tryGettingNonDeferredCharLen(hlfir::Entity var) { |
| 137 | if (auto varIface = var.getMaybeDereferencedVariableInterface()) |
| 138 | if (!varIface.getExplicitTypeParams().empty()) |
| 139 | return varIface.getExplicitTypeParams()[0]; |
| 140 | return mlir::Value{}; |
| 141 | } |
| 142 | |
| 143 | static mlir::Value genCharacterVariableLength(mlir::Location loc, |
| 144 | fir::FirOpBuilder &builder, |
| 145 | hlfir::Entity var) { |
| 146 | if (mlir::Value len = tryGettingNonDeferredCharLen(var)) |
| 147 | return len; |
| 148 | auto charType = mlir::cast<fir::CharacterType>(var.getFortranElementType()); |
| 149 | if (charType.hasConstantLen()) |
| 150 | return builder.createIntegerConstant(loc, builder.getIndexType(), |
| 151 | charType.getLen()); |
| 152 | if (var.isMutableBox()) |
| 153 | var = hlfir::Entity{builder.create<fir::LoadOp>(loc, var)}; |
| 154 | mlir::Value len = fir::factory::CharacterExprHelper{builder, loc}.getLength( |
| 155 | var.getFirBase()); |
| 156 | assert(len && "failed to retrieve length" ); |
| 157 | return len; |
| 158 | } |
| 159 | |
| 160 | static fir::CharBoxValue genUnboxChar(mlir::Location loc, |
| 161 | fir::FirOpBuilder &builder, |
| 162 | mlir::Value boxChar) { |
| 163 | if (auto emboxChar = boxChar.getDefiningOp<fir::EmboxCharOp>()) |
| 164 | return {emboxChar.getMemref(), emboxChar.getLen()}; |
| 165 | mlir::Type refType = fir::ReferenceType::get( |
| 166 | mlir::cast<fir::BoxCharType>(boxChar.getType()).getEleTy()); |
| 167 | auto unboxed = builder.create<fir::UnboxCharOp>( |
| 168 | loc, refType, builder.getIndexType(), boxChar); |
| 169 | mlir::Value addr = unboxed.getResult(0); |
| 170 | mlir::Value len = unboxed.getResult(1); |
| 171 | if (auto varIface = boxChar.getDefiningOp<fir::FortranVariableOpInterface>()) |
| 172 | if (mlir::Value explicitlen = varIface.getExplicitCharLen()) |
| 173 | len = explicitlen; |
| 174 | return {addr, len}; |
| 175 | } |
| 176 | |
| 177 | // To maximize chances of identifying usage of a same variables in the IR, |
| 178 | // always return the hlfirBase result of declare/associate if it is a raw |
| 179 | // pointer. |
| 180 | static mlir::Value getFirBaseHelper(mlir::Value hlfirBase, |
| 181 | mlir::Value firBase) { |
| 182 | if (fir::isa_ref_type(hlfirBase.getType())) |
| 183 | return hlfirBase; |
| 184 | return firBase; |
| 185 | } |
| 186 | |
| 187 | mlir::Value hlfir::Entity::getFirBase() const { |
| 188 | if (fir::FortranVariableOpInterface variable = getIfVariableInterface()) { |
| 189 | if (auto declareOp = |
| 190 | mlir::dyn_cast<hlfir::DeclareOp>(variable.getOperation())) |
| 191 | return getFirBaseHelper(declareOp.getBase(), declareOp.getOriginalBase()); |
| 192 | if (auto associateOp = |
| 193 | mlir::dyn_cast<hlfir::AssociateOp>(variable.getOperation())) |
| 194 | return getFirBaseHelper(associateOp.getBase(), associateOp.getFirBase()); |
| 195 | } |
| 196 | return getBase(); |
| 197 | } |
| 198 | |
| 199 | static bool isShapeWithLowerBounds(mlir::Value shape) { |
| 200 | if (!shape) |
| 201 | return false; |
| 202 | auto shapeTy = shape.getType(); |
| 203 | return mlir::isa<fir::ShiftType>(shapeTy) || |
| 204 | mlir::isa<fir::ShapeShiftType>(shapeTy); |
| 205 | } |
| 206 | |
| 207 | bool hlfir::Entity::mayHaveNonDefaultLowerBounds() const { |
| 208 | if (!isBoxAddressOrValue() || isScalar()) |
| 209 | return false; |
| 210 | if (isMutableBox()) |
| 211 | return true; |
| 212 | if (auto varIface = getIfVariableInterface()) |
| 213 | return isShapeWithLowerBounds(varIface.getShape()); |
| 214 | // Go through chain of fir.box converts. |
| 215 | if (auto convert = getDefiningOp<fir::ConvertOp>()) |
| 216 | return hlfir::Entity{convert.getValue()}.mayHaveNonDefaultLowerBounds(); |
| 217 | // TODO: Embox and Rebox do not have hlfir variable interface, but are |
| 218 | // easy to reason about. |
| 219 | return true; |
| 220 | } |
| 221 | |
| 222 | mlir::Operation *traverseConverts(mlir::Operation *op) { |
| 223 | while (auto convert = llvm::dyn_cast_or_null<fir::ConvertOp>(op)) |
| 224 | op = convert.getValue().getDefiningOp(); |
| 225 | return op; |
| 226 | } |
| 227 | |
| 228 | bool hlfir::Entity::mayBeOptional() const { |
| 229 | if (!isVariable()) |
| 230 | return false; |
| 231 | // TODO: introduce a fir type to better identify optionals. |
| 232 | if (mlir::Operation *op = traverseConverts(getDefiningOp())) { |
| 233 | if (auto varIface = llvm::dyn_cast<fir::FortranVariableOpInterface>(op)) |
| 234 | return varIface.isOptional(); |
| 235 | return !llvm::isa<fir::AllocaOp, fir::AllocMemOp, fir::ReboxOp, |
| 236 | fir::EmboxOp, fir::LoadOp>(op); |
| 237 | } |
| 238 | return true; |
| 239 | } |
| 240 | |
| 241 | fir::FortranVariableOpInterface |
| 242 | hlfir::genDeclare(mlir::Location loc, fir::FirOpBuilder &builder, |
| 243 | const fir::ExtendedValue &exv, llvm::StringRef name, |
| 244 | fir::FortranVariableFlagsAttr flags, mlir::Value dummyScope, |
| 245 | cuf::DataAttributeAttr dataAttr) { |
| 246 | |
| 247 | mlir::Value base = fir::getBase(exv); |
| 248 | assert(fir::conformsWithPassByRef(base.getType()) && |
| 249 | "entity being declared must be in memory" ); |
| 250 | mlir::Value shapeOrShift; |
| 251 | llvm::SmallVector<mlir::Value> lenParams; |
| 252 | exv.match( |
| 253 | [&](const fir::CharBoxValue &box) { |
| 254 | lenParams.emplace_back(box.getLen()); |
| 255 | }, |
| 256 | [&](const fir::ArrayBoxValue &) { |
| 257 | shapeOrShift = builder.createShape(loc, exv); |
| 258 | }, |
| 259 | [&](const fir::CharArrayBoxValue &box) { |
| 260 | shapeOrShift = builder.createShape(loc, exv); |
| 261 | lenParams.emplace_back(box.getLen()); |
| 262 | }, |
| 263 | [&](const fir::BoxValue &box) { |
| 264 | if (!box.getLBounds().empty()) |
| 265 | shapeOrShift = builder.createShape(loc, exv); |
| 266 | lenParams.append(box.getExplicitParameters().begin(), |
| 267 | box.getExplicitParameters().end()); |
| 268 | }, |
| 269 | [&](const fir::MutableBoxValue &box) { |
| 270 | lenParams.append(box.nonDeferredLenParams().begin(), |
| 271 | box.nonDeferredLenParams().end()); |
| 272 | }, |
| 273 | [](const auto &) {}); |
| 274 | auto declareOp = builder.create<hlfir::DeclareOp>( |
| 275 | loc, base, name, shapeOrShift, lenParams, dummyScope, flags, dataAttr); |
| 276 | return mlir::cast<fir::FortranVariableOpInterface>(declareOp.getOperation()); |
| 277 | } |
| 278 | |
| 279 | hlfir::AssociateOp |
| 280 | hlfir::genAssociateExpr(mlir::Location loc, fir::FirOpBuilder &builder, |
| 281 | hlfir::Entity value, mlir::Type variableType, |
| 282 | llvm::StringRef name, |
| 283 | std::optional<mlir::NamedAttribute> attr) { |
| 284 | assert(value.isValue() && "must not be a variable" ); |
| 285 | mlir::Value shape{}; |
| 286 | if (value.isArray()) |
| 287 | shape = genShape(loc, builder, value); |
| 288 | |
| 289 | mlir::Value source = value; |
| 290 | // Lowered scalar expression values for numerical and logical may have a |
| 291 | // different type than what is required for the type in memory (logical |
| 292 | // expressions are typically manipulated as i1, but needs to be stored |
| 293 | // according to the fir.logical<kind> so that the storage size is correct). |
| 294 | // Character length mismatches are ignored (it is ok for one to be dynamic |
| 295 | // and the other static). |
| 296 | mlir::Type varEleTy = getFortranElementType(variableType); |
| 297 | mlir::Type valueEleTy = getFortranElementType(value.getType()); |
| 298 | if (varEleTy != valueEleTy && !(mlir::isa<fir::CharacterType>(valueEleTy) && |
| 299 | mlir::isa<fir::CharacterType>(varEleTy))) { |
| 300 | assert(value.isScalar() && fir::isa_trivial(value.getType())); |
| 301 | source = builder.createConvert(loc, fir::unwrapPassByRefType(variableType), |
| 302 | value); |
| 303 | } |
| 304 | llvm::SmallVector<mlir::Value> lenParams; |
| 305 | genLengthParameters(loc, builder, value, lenParams); |
| 306 | if (attr) { |
| 307 | assert(name.empty() && "It attribute is provided, no-name is expected" ); |
| 308 | return builder.create<hlfir::AssociateOp>(loc, source, shape, lenParams, |
| 309 | fir::FortranVariableFlagsAttr{}, |
| 310 | llvm::ArrayRef{*attr}); |
| 311 | } |
| 312 | return builder.create<hlfir::AssociateOp>(loc, source, name, shape, lenParams, |
| 313 | fir::FortranVariableFlagsAttr{}); |
| 314 | } |
| 315 | |
| 316 | mlir::Value hlfir::genVariableRawAddress(mlir::Location loc, |
| 317 | fir::FirOpBuilder &builder, |
| 318 | hlfir::Entity var) { |
| 319 | assert(var.isVariable() && "only address of variables can be taken" ); |
| 320 | mlir::Value baseAddr = var.getFirBase(); |
| 321 | if (var.isMutableBox()) |
| 322 | baseAddr = builder.create<fir::LoadOp>(loc, baseAddr); |
| 323 | // Get raw address. |
| 324 | if (mlir::isa<fir::BoxCharType>(var.getType())) |
| 325 | baseAddr = genUnboxChar(loc, builder, var.getBase()).getAddr(); |
| 326 | if (mlir::isa<fir::BaseBoxType>(baseAddr.getType())) |
| 327 | baseAddr = builder.create<fir::BoxAddrOp>(loc, baseAddr); |
| 328 | return baseAddr; |
| 329 | } |
| 330 | |
| 331 | mlir::Value hlfir::genVariableBoxChar(mlir::Location loc, |
| 332 | fir::FirOpBuilder &builder, |
| 333 | hlfir::Entity var) { |
| 334 | assert(var.isVariable() && "only address of variables can be taken" ); |
| 335 | if (mlir::isa<fir::BoxCharType>(var.getType())) |
| 336 | return var; |
| 337 | mlir::Value addr = genVariableRawAddress(loc, builder, var); |
| 338 | llvm::SmallVector<mlir::Value> lengths; |
| 339 | genLengthParameters(loc, builder, var, lengths); |
| 340 | assert(lengths.size() == 1); |
| 341 | auto charType = mlir::cast<fir::CharacterType>(var.getFortranElementType()); |
| 342 | auto boxCharType = |
| 343 | fir::BoxCharType::get(builder.getContext(), charType.getFKind()); |
| 344 | auto scalarAddr = |
| 345 | builder.createConvert(loc, fir::ReferenceType::get(charType), addr); |
| 346 | return builder.create<fir::EmboxCharOp>(loc, boxCharType, scalarAddr, |
| 347 | lengths[0]); |
| 348 | } |
| 349 | |
| 350 | static hlfir::Entity changeBoxAttributes(mlir::Location loc, |
| 351 | fir::FirOpBuilder &builder, |
| 352 | hlfir::Entity var, |
| 353 | fir::BaseBoxType forceBoxType) { |
| 354 | assert(llvm::isa<fir::BaseBoxType>(var.getType()) && "expect box type" ); |
| 355 | // Propagate lower bounds. |
| 356 | mlir::Value shift; |
| 357 | llvm::SmallVector<mlir::Value> lbounds = |
| 358 | getNonDefaultLowerBounds(loc, builder, var); |
| 359 | if (!lbounds.empty()) |
| 360 | shift = builder.genShift(loc, lbounds); |
| 361 | auto rebox = builder.create<fir::ReboxOp>(loc, forceBoxType, var, shift, |
| 362 | /*slice=*/nullptr); |
| 363 | return hlfir::Entity{rebox}; |
| 364 | } |
| 365 | |
| 366 | hlfir::Entity hlfir::genVariableBox(mlir::Location loc, |
| 367 | fir::FirOpBuilder &builder, |
| 368 | hlfir::Entity var, |
| 369 | fir::BaseBoxType forceBoxType) { |
| 370 | assert(var.isVariable() && "must be a variable" ); |
| 371 | var = hlfir::derefPointersAndAllocatables(loc, builder, var); |
| 372 | if (mlir::isa<fir::BaseBoxType>(var.getType())) { |
| 373 | if (!forceBoxType || forceBoxType == var.getType()) |
| 374 | return var; |
| 375 | return changeBoxAttributes(loc, builder, var, forceBoxType); |
| 376 | } |
| 377 | // Note: if the var is not a fir.box/fir.class at that point, it has default |
| 378 | // lower bounds and is not polymorphic. |
| 379 | mlir::Value shape = |
| 380 | var.isArray() ? hlfir::genShape(loc, builder, var) : mlir::Value{}; |
| 381 | llvm::SmallVector<mlir::Value> typeParams; |
| 382 | mlir::Type elementType = |
| 383 | forceBoxType ? fir::getFortranElementType(forceBoxType.getEleTy()) |
| 384 | : var.getFortranElementType(); |
| 385 | auto maybeCharType = mlir::dyn_cast<fir::CharacterType>(elementType); |
| 386 | if (!maybeCharType || maybeCharType.hasDynamicLen()) |
| 387 | hlfir::genLengthParameters(loc, builder, var, typeParams); |
| 388 | mlir::Value addr = var.getBase(); |
| 389 | if (mlir::isa<fir::BoxCharType>(var.getType())) |
| 390 | addr = genVariableRawAddress(loc, builder, var); |
| 391 | const bool isVolatile = fir::isa_volatile_type(var.getType()); |
| 392 | mlir::Type boxType = |
| 393 | fir::BoxType::get(var.getElementOrSequenceType(), isVolatile); |
| 394 | if (forceBoxType) { |
| 395 | boxType = forceBoxType; |
| 396 | mlir::Type baseType = |
| 397 | fir::ReferenceType::get(fir::unwrapRefType(forceBoxType.getEleTy())); |
| 398 | addr = builder.createConvert(loc, baseType, addr); |
| 399 | } |
| 400 | auto embox = |
| 401 | builder.create<fir::EmboxOp>(loc, boxType, addr, shape, |
| 402 | /*slice=*/mlir::Value{}, typeParams); |
| 403 | return hlfir::Entity{embox.getResult()}; |
| 404 | } |
| 405 | |
| 406 | hlfir::Entity hlfir::loadTrivialScalar(mlir::Location loc, |
| 407 | fir::FirOpBuilder &builder, |
| 408 | Entity entity) { |
| 409 | entity = derefPointersAndAllocatables(loc, builder, entity); |
| 410 | if (entity.isVariable() && entity.isScalar() && |
| 411 | fir::isa_trivial(entity.getFortranElementType())) { |
| 412 | return Entity{builder.create<fir::LoadOp>(loc, entity)}; |
| 413 | } |
| 414 | return entity; |
| 415 | } |
| 416 | |
| 417 | hlfir::Entity hlfir::getElementAt(mlir::Location loc, |
| 418 | fir::FirOpBuilder &builder, Entity entity, |
| 419 | mlir::ValueRange oneBasedIndices) { |
| 420 | if (entity.isScalar()) |
| 421 | return entity; |
| 422 | llvm::SmallVector<mlir::Value> lenParams; |
| 423 | genLengthParameters(loc, builder, entity, lenParams); |
| 424 | if (mlir::isa<hlfir::ExprType>(entity.getType())) |
| 425 | return hlfir::Entity{builder.create<hlfir::ApplyOp>( |
| 426 | loc, entity, oneBasedIndices, lenParams)}; |
| 427 | // Build hlfir.designate. The lower bounds may need to be added to |
| 428 | // the oneBasedIndices since hlfir.designate expect indices |
| 429 | // based on the array operand lower bounds. |
| 430 | mlir::Type resultType = hlfir::getVariableElementType(entity); |
| 431 | hlfir::DesignateOp designate; |
| 432 | llvm::SmallVector<mlir::Value> lbounds = |
| 433 | getNonDefaultLowerBounds(loc, builder, entity); |
| 434 | if (!lbounds.empty()) { |
| 435 | llvm::SmallVector<mlir::Value> indices; |
| 436 | mlir::Type idxTy = builder.getIndexType(); |
| 437 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 438 | for (auto [oneBased, lb] : llvm::zip(oneBasedIndices, lbounds)) { |
| 439 | auto lbIdx = builder.createConvert(loc, idxTy, lb); |
| 440 | auto oneBasedIdx = builder.createConvert(loc, idxTy, oneBased); |
| 441 | auto shift = builder.create<mlir::arith::SubIOp>(loc, lbIdx, one); |
| 442 | mlir::Value index = |
| 443 | builder.create<mlir::arith::AddIOp>(loc, oneBasedIdx, shift); |
| 444 | indices.push_back(index); |
| 445 | } |
| 446 | designate = builder.create<hlfir::DesignateOp>(loc, resultType, entity, |
| 447 | indices, lenParams); |
| 448 | } else { |
| 449 | designate = builder.create<hlfir::DesignateOp>(loc, resultType, entity, |
| 450 | oneBasedIndices, lenParams); |
| 451 | } |
| 452 | return mlir::cast<fir::FortranVariableOpInterface>(designate.getOperation()); |
| 453 | } |
| 454 | |
| 455 | static mlir::Value genUBound(mlir::Location loc, fir::FirOpBuilder &builder, |
| 456 | mlir::Value lb, mlir::Value extent, |
| 457 | mlir::Value one) { |
| 458 | if (auto constantLb = fir::getIntIfConstant(lb)) |
| 459 | if (*constantLb == 1) |
| 460 | return extent; |
| 461 | extent = builder.createConvert(loc, one.getType(), extent); |
| 462 | lb = builder.createConvert(loc, one.getType(), lb); |
| 463 | auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent); |
| 464 | return builder.create<mlir::arith::SubIOp>(loc, add, one); |
| 465 | } |
| 466 | |
| 467 | llvm::SmallVector<std::pair<mlir::Value, mlir::Value>> |
| 468 | hlfir::genBounds(mlir::Location loc, fir::FirOpBuilder &builder, |
| 469 | Entity entity) { |
| 470 | if (mlir::isa<hlfir::ExprType>(entity.getType())) |
| 471 | TODO(loc, "bounds of expressions in hlfir" ); |
| 472 | auto [exv, cleanup] = translateToExtendedValue(loc, builder, entity); |
| 473 | assert(!cleanup && "translation of entity should not yield cleanup" ); |
| 474 | if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>()) |
| 475 | exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox); |
| 476 | mlir::Type idxTy = builder.getIndexType(); |
| 477 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 478 | llvm::SmallVector<std::pair<mlir::Value, mlir::Value>> result; |
| 479 | for (unsigned dim = 0; dim < exv.rank(); ++dim) { |
| 480 | mlir::Value extent = fir::factory::readExtent(builder, loc, exv, dim); |
| 481 | mlir::Value lb = fir::factory::readLowerBound(builder, loc, exv, dim, one); |
| 482 | mlir::Value ub = genUBound(loc, builder, lb, extent, one); |
| 483 | result.push_back({lb, ub}); |
| 484 | } |
| 485 | return result; |
| 486 | } |
| 487 | |
| 488 | llvm::SmallVector<std::pair<mlir::Value, mlir::Value>> |
| 489 | hlfir::genBounds(mlir::Location loc, fir::FirOpBuilder &builder, |
| 490 | mlir::Value shape) { |
| 491 | assert((mlir::isa<fir::ShapeShiftType>(shape.getType()) || |
| 492 | mlir::isa<fir::ShapeType>(shape.getType())) && |
| 493 | "shape must contain extents" ); |
| 494 | auto extents = hlfir::getExplicitExtentsFromShape(shape, builder); |
| 495 | auto lowers = getExplicitLboundsFromShape(shape); |
| 496 | assert(lowers.empty() || lowers.size() == extents.size()); |
| 497 | mlir::Type idxTy = builder.getIndexType(); |
| 498 | mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); |
| 499 | llvm::SmallVector<std::pair<mlir::Value, mlir::Value>> result; |
| 500 | for (auto extent : llvm::enumerate(extents)) { |
| 501 | mlir::Value lb = lowers.empty() ? one : lowers[extent.index()]; |
| 502 | mlir::Value ub = lowers.empty() |
| 503 | ? extent.value() |
| 504 | : genUBound(loc, builder, lb, extent.value(), one); |
| 505 | result.push_back({lb, ub}); |
| 506 | } |
| 507 | return result; |
| 508 | } |
| 509 | |
| 510 | llvm::SmallVector<mlir::Value> hlfir::genLowerbounds(mlir::Location loc, |
| 511 | fir::FirOpBuilder &builder, |
| 512 | mlir::Value shape, |
| 513 | unsigned rank) { |
| 514 | llvm::SmallVector<mlir::Value> lbounds; |
| 515 | if (shape) |
| 516 | lbounds = getExplicitLboundsFromShape(shape); |
| 517 | if (!lbounds.empty()) |
| 518 | return lbounds; |
| 519 | mlir::Value one = |
| 520 | builder.createIntegerConstant(loc, builder.getIndexType(), 1); |
| 521 | return llvm::SmallVector<mlir::Value>(rank, one); |
| 522 | } |
| 523 | |
| 524 | static hlfir::Entity followShapeInducingSource(hlfir::Entity entity) { |
| 525 | while (true) { |
| 526 | if (auto reassoc = entity.getDefiningOp<hlfir::NoReassocOp>()) { |
| 527 | entity = hlfir::Entity{reassoc.getVal()}; |
| 528 | continue; |
| 529 | } |
| 530 | if (auto asExpr = entity.getDefiningOp<hlfir::AsExprOp>()) { |
| 531 | entity = hlfir::Entity{asExpr.getVar()}; |
| 532 | continue; |
| 533 | } |
| 534 | break; |
| 535 | } |
| 536 | return entity; |
| 537 | } |
| 538 | |
| 539 | static mlir::Value computeVariableExtent(mlir::Location loc, |
| 540 | fir::FirOpBuilder &builder, |
| 541 | hlfir::Entity variable, |
| 542 | fir::SequenceType seqTy, |
| 543 | unsigned dim) { |
| 544 | mlir::Type idxTy = builder.getIndexType(); |
| 545 | if (seqTy.getShape().size() > dim) { |
| 546 | fir::SequenceType::Extent typeExtent = seqTy.getShape()[dim]; |
| 547 | if (typeExtent != fir::SequenceType::getUnknownExtent()) |
| 548 | return builder.createIntegerConstant(loc, idxTy, typeExtent); |
| 549 | } |
| 550 | assert(mlir::isa<fir::BaseBoxType>(variable.getType()) && |
| 551 | "array variable with dynamic extent must be boxed" ); |
| 552 | mlir::Value dimVal = builder.createIntegerConstant(loc, idxTy, dim); |
| 553 | auto dimInfo = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, |
| 554 | variable, dimVal); |
| 555 | return dimInfo.getExtent(); |
| 556 | } |
| 557 | llvm::SmallVector<mlir::Value> getVariableExtents(mlir::Location loc, |
| 558 | fir::FirOpBuilder &builder, |
| 559 | hlfir::Entity variable) { |
| 560 | llvm::SmallVector<mlir::Value> extents; |
| 561 | if (fir::FortranVariableOpInterface varIface = |
| 562 | variable.getIfVariableInterface()) { |
| 563 | extents = getExplicitExtents(varIface, builder); |
| 564 | if (!extents.empty()) |
| 565 | return extents; |
| 566 | } |
| 567 | |
| 568 | if (variable.isMutableBox()) |
| 569 | variable = hlfir::derefPointersAndAllocatables(loc, builder, variable); |
| 570 | // Use the type shape information, and/or the fir.box/fir.class shape |
| 571 | // information if any extents are not static. |
| 572 | fir::SequenceType seqTy = mlir::cast<fir::SequenceType>( |
| 573 | hlfir::getFortranElementOrSequenceType(variable.getType())); |
| 574 | unsigned rank = seqTy.getShape().size(); |
| 575 | for (unsigned dim = 0; dim < rank; ++dim) |
| 576 | extents.push_back( |
| 577 | computeVariableExtent(loc, builder, variable, seqTy, dim)); |
| 578 | return extents; |
| 579 | } |
| 580 | |
| 581 | static mlir::Value tryRetrievingShapeOrShift(hlfir::Entity entity) { |
| 582 | if (mlir::isa<hlfir::ExprType>(entity.getType())) { |
| 583 | if (auto elemental = entity.getDefiningOp<hlfir::ElementalOp>()) |
| 584 | return elemental.getShape(); |
| 585 | if (auto evalInMem = entity.getDefiningOp<hlfir::EvaluateInMemoryOp>()) |
| 586 | return evalInMem.getShape(); |
| 587 | return mlir::Value{}; |
| 588 | } |
| 589 | if (auto varIface = entity.getIfVariableInterface()) |
| 590 | return varIface.getShape(); |
| 591 | return {}; |
| 592 | } |
| 593 | |
| 594 | mlir::Value hlfir::genShape(mlir::Location loc, fir::FirOpBuilder &builder, |
| 595 | hlfir::Entity entity) { |
| 596 | assert(entity.isArray() && "entity must be an array" ); |
| 597 | entity = followShapeInducingSource(entity); |
| 598 | assert(entity && "what?" ); |
| 599 | if (auto shape = tryRetrievingShapeOrShift(entity)) { |
| 600 | if (mlir::isa<fir::ShapeType>(shape.getType())) |
| 601 | return shape; |
| 602 | if (mlir::isa<fir::ShapeShiftType>(shape.getType())) |
| 603 | if (auto s = shape.getDefiningOp<fir::ShapeShiftOp>()) |
| 604 | return builder.create<fir::ShapeOp>(loc, s.getExtents()); |
| 605 | } |
| 606 | if (mlir::isa<hlfir::ExprType>(entity.getType())) |
| 607 | return builder.create<hlfir::ShapeOfOp>(loc, entity.getBase()); |
| 608 | // There is no shape lying around for this entity. Retrieve the extents and |
| 609 | // build a new fir.shape. |
| 610 | return builder.create<fir::ShapeOp>(loc, |
| 611 | getVariableExtents(loc, builder, entity)); |
| 612 | } |
| 613 | |
| 614 | llvm::SmallVector<mlir::Value> |
| 615 | hlfir::getIndexExtents(mlir::Location loc, fir::FirOpBuilder &builder, |
| 616 | mlir::Value shape) { |
| 617 | llvm::SmallVector<mlir::Value> extents = |
| 618 | hlfir::getExplicitExtentsFromShape(shape, builder); |
| 619 | mlir::Type indexType = builder.getIndexType(); |
| 620 | for (auto &extent : extents) |
| 621 | extent = builder.createConvert(loc, indexType, extent); |
| 622 | return extents; |
| 623 | } |
| 624 | |
| 625 | mlir::Value hlfir::genExtent(mlir::Location loc, fir::FirOpBuilder &builder, |
| 626 | hlfir::Entity entity, unsigned dim) { |
| 627 | entity = followShapeInducingSource(entity); |
| 628 | if (auto shape = tryRetrievingShapeOrShift(entity)) { |
| 629 | auto extents = hlfir::getExplicitExtentsFromShape(shape, builder); |
| 630 | if (!extents.empty()) { |
| 631 | assert(extents.size() > dim && "bad inquiry" ); |
| 632 | return extents[dim]; |
| 633 | } |
| 634 | } |
| 635 | if (entity.isVariable()) { |
| 636 | if (entity.isMutableBox()) |
| 637 | entity = hlfir::derefPointersAndAllocatables(loc, builder, entity); |
| 638 | // Use the type shape information, and/or the fir.box/fir.class shape |
| 639 | // information if any extents are not static. |
| 640 | fir::SequenceType seqTy = mlir::cast<fir::SequenceType>( |
| 641 | hlfir::getFortranElementOrSequenceType(entity.getType())); |
| 642 | return computeVariableExtent(loc, builder, entity, seqTy, dim); |
| 643 | } |
| 644 | TODO(loc, "get extent from HLFIR expr without producer holding the shape" ); |
| 645 | } |
| 646 | |
| 647 | mlir::Value hlfir::genLBound(mlir::Location loc, fir::FirOpBuilder &builder, |
| 648 | hlfir::Entity entity, unsigned dim) { |
| 649 | if (!entity.mayHaveNonDefaultLowerBounds()) |
| 650 | return builder.createIntegerConstant(loc, builder.getIndexType(), 1); |
| 651 | if (auto shape = tryRetrievingShapeOrShift(entity)) { |
| 652 | auto lbounds = getExplicitLboundsFromShape(shape); |
| 653 | if (!lbounds.empty()) { |
| 654 | assert(lbounds.size() > dim && "bad inquiry" ); |
| 655 | return lbounds[dim]; |
| 656 | } |
| 657 | } |
| 658 | if (entity.isMutableBox()) |
| 659 | entity = hlfir::derefPointersAndAllocatables(loc, builder, entity); |
| 660 | assert(mlir::isa<fir::BaseBoxType>(entity.getType()) && "must be a box" ); |
| 661 | mlir::Type idxTy = builder.getIndexType(); |
| 662 | mlir::Value dimVal = builder.createIntegerConstant(loc, idxTy, dim); |
| 663 | auto dimInfo = |
| 664 | builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, entity, dimVal); |
| 665 | return dimInfo.getLowerBound(); |
| 666 | } |
| 667 | |
| 668 | void hlfir::genLengthParameters(mlir::Location loc, fir::FirOpBuilder &builder, |
| 669 | Entity entity, |
| 670 | llvm::SmallVectorImpl<mlir::Value> &result) { |
| 671 | if (!entity.hasLengthParameters()) |
| 672 | return; |
| 673 | if (mlir::isa<hlfir::ExprType>(entity.getType())) { |
| 674 | mlir::Value expr = entity; |
| 675 | if (auto reassoc = expr.getDefiningOp<hlfir::NoReassocOp>()) |
| 676 | expr = reassoc.getVal(); |
| 677 | // Going through fir::ExtendedValue would create a temp, |
| 678 | // which is not desired for an inquiry. |
| 679 | // TODO: make this an interface when adding further character producing ops. |
| 680 | if (auto concat = expr.getDefiningOp<hlfir::ConcatOp>()) { |
| 681 | result.push_back(concat.getLength()); |
| 682 | return; |
| 683 | } else if (auto concat = expr.getDefiningOp<hlfir::SetLengthOp>()) { |
| 684 | result.push_back(concat.getLength()); |
| 685 | return; |
| 686 | } else if (auto asExpr = expr.getDefiningOp<hlfir::AsExprOp>()) { |
| 687 | hlfir::genLengthParameters(loc, builder, hlfir::Entity{asExpr.getVar()}, |
| 688 | result); |
| 689 | return; |
| 690 | } else if (auto elemental = expr.getDefiningOp<hlfir::ElementalOp>()) { |
| 691 | result.append(elemental.getTypeparams().begin(), |
| 692 | elemental.getTypeparams().end()); |
| 693 | return; |
| 694 | } else if (auto evalInMem = |
| 695 | expr.getDefiningOp<hlfir::EvaluateInMemoryOp>()) { |
| 696 | result.append(evalInMem.getTypeparams().begin(), |
| 697 | evalInMem.getTypeparams().end()); |
| 698 | return; |
| 699 | } else if (auto apply = expr.getDefiningOp<hlfir::ApplyOp>()) { |
| 700 | result.append(apply.getTypeparams().begin(), apply.getTypeparams().end()); |
| 701 | return; |
| 702 | } |
| 703 | if (entity.isCharacter()) { |
| 704 | result.push_back(builder.create<hlfir::GetLengthOp>(loc, expr)); |
| 705 | return; |
| 706 | } |
| 707 | TODO(loc, "inquire PDTs length parameters of hlfir.expr" ); |
| 708 | } |
| 709 | |
| 710 | if (entity.isCharacter()) { |
| 711 | result.push_back(genCharacterVariableLength(loc, builder, entity)); |
| 712 | return; |
| 713 | } |
| 714 | TODO(loc, "inquire PDTs length parameters in HLFIR" ); |
| 715 | } |
| 716 | |
| 717 | mlir::Value hlfir::genCharLength(mlir::Location loc, fir::FirOpBuilder &builder, |
| 718 | hlfir::Entity entity) { |
| 719 | llvm::SmallVector<mlir::Value, 1> lenParams; |
| 720 | genLengthParameters(loc, builder, entity, lenParams); |
| 721 | assert(lenParams.size() == 1 && "characters must have one length parameters" ); |
| 722 | return lenParams[0]; |
| 723 | } |
| 724 | |
| 725 | mlir::Value hlfir::genRank(mlir::Location loc, fir::FirOpBuilder &builder, |
| 726 | hlfir::Entity entity, mlir::Type resultType) { |
| 727 | if (!entity.isAssumedRank()) |
| 728 | return builder.createIntegerConstant(loc, resultType, entity.getRank()); |
| 729 | assert(entity.isBoxAddressOrValue() && |
| 730 | "assumed-ranks are box addresses or values" ); |
| 731 | return builder.create<fir::BoxRankOp>(loc, resultType, entity); |
| 732 | } |
| 733 | |
| 734 | // Return a "shape" that can be used in fir.embox/fir.rebox with \p exv base. |
| 735 | static mlir::Value asEmboxShape(mlir::Location loc, fir::FirOpBuilder &builder, |
| 736 | const fir::ExtendedValue &exv, |
| 737 | mlir::Value shape) { |
| 738 | if (!shape) |
| 739 | return shape; |
| 740 | // fir.rebox does not need and does not accept extents (fir.shape or |
| 741 | // fir.shape_shift) since this information is already in the input fir.box, |
| 742 | // it only accepts fir.shift because local lower bounds may not be reflected |
| 743 | // in the fir.box. |
| 744 | if (mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType()) && |
| 745 | !mlir::isa<fir::ShiftType>(shape.getType())) |
| 746 | return builder.createShape(loc, exv); |
| 747 | return shape; |
| 748 | } |
| 749 | |
| 750 | std::pair<mlir::Value, mlir::Value> hlfir::genVariableFirBaseShapeAndParams( |
| 751 | mlir::Location loc, fir::FirOpBuilder &builder, Entity entity, |
| 752 | llvm::SmallVectorImpl<mlir::Value> &typeParams) { |
| 753 | auto [exv, cleanup] = translateToExtendedValue(loc, builder, entity); |
| 754 | assert(!cleanup && "variable to Exv should not produce cleanup" ); |
| 755 | if (entity.hasLengthParameters()) { |
| 756 | auto params = fir::getTypeParams(exv); |
| 757 | typeParams.append(params.begin(), params.end()); |
| 758 | } |
| 759 | if (entity.isScalar()) |
| 760 | return {fir::getBase(exv), mlir::Value{}}; |
| 761 | |
| 762 | // Contiguous variables that are represented with a box |
| 763 | // may require the shape to be extracted from the box (i.e. evx), |
| 764 | // because they itself may not have shape specified. |
| 765 | // This happens during late propagationg of contiguous |
| 766 | // attribute, e.g.: |
| 767 | // %9:2 = hlfir.declare %6 |
| 768 | // {fortran_attrs = #fir.var_attrs<contiguous>} : |
| 769 | // (!fir.box<!fir.array<?x?x...>>) -> |
| 770 | // (!fir.box<!fir.array<?x?x...>>, !fir.box<!fir.array<?x?x...>>) |
| 771 | // The extended value is an ArrayBoxValue with base being |
| 772 | // the raw address of the array. |
| 773 | if (auto variableInterface = entity.getIfVariableInterface()) { |
| 774 | mlir::Value shape = variableInterface.getShape(); |
| 775 | if (mlir::isa<fir::BaseBoxType>(fir::getBase(exv).getType()) || |
| 776 | !mlir::isa<fir::BaseBoxType>(entity.getType()) || |
| 777 | // Still use the variable's shape if it is present. |
| 778 | // If it only specifies a shift, then we have to create |
| 779 | // a shape from the exv. |
| 780 | (shape && (shape.getDefiningOp<fir::ShapeShiftOp>() || |
| 781 | shape.getDefiningOp<fir::ShapeOp>()))) |
| 782 | return {fir::getBase(exv), |
| 783 | asEmboxShape(loc, builder, exv, variableInterface.getShape())}; |
| 784 | } |
| 785 | return {fir::getBase(exv), builder.createShape(loc, exv)}; |
| 786 | } |
| 787 | |
| 788 | hlfir::Entity hlfir::derefPointersAndAllocatables(mlir::Location loc, |
| 789 | fir::FirOpBuilder &builder, |
| 790 | Entity entity) { |
| 791 | if (entity.isMutableBox()) { |
| 792 | hlfir::Entity boxLoad{builder.create<fir::LoadOp>(loc, entity)}; |
| 793 | if (entity.isScalar()) { |
| 794 | if (!entity.isPolymorphic() && !entity.hasLengthParameters()) |
| 795 | return hlfir::Entity{builder.create<fir::BoxAddrOp>(loc, boxLoad)}; |
| 796 | mlir::Type elementType = boxLoad.getFortranElementType(); |
| 797 | if (auto charType = mlir::dyn_cast<fir::CharacterType>(elementType)) { |
| 798 | mlir::Value base = builder.create<fir::BoxAddrOp>(loc, boxLoad); |
| 799 | if (charType.hasConstantLen()) |
| 800 | return hlfir::Entity{base}; |
| 801 | mlir::Value len = genCharacterVariableLength(loc, builder, entity); |
| 802 | auto boxCharType = |
| 803 | fir::BoxCharType::get(builder.getContext(), charType.getFKind()); |
| 804 | return hlfir::Entity{ |
| 805 | builder.create<fir::EmboxCharOp>(loc, boxCharType, base, len) |
| 806 | .getResult()}; |
| 807 | } |
| 808 | } |
| 809 | // Otherwise, the entity is either an array, a polymorphic entity, or a |
| 810 | // derived type with length parameters. All these entities require a fir.box |
| 811 | // or fir.class to hold bounds, dynamic type or length parameter |
| 812 | // information. Keep them boxed. |
| 813 | return boxLoad; |
| 814 | } else if (entity.isProcedurePointer()) { |
| 815 | return hlfir::Entity{builder.create<fir::LoadOp>(loc, entity)}; |
| 816 | } |
| 817 | return entity; |
| 818 | } |
| 819 | |
| 820 | mlir::Type hlfir::getVariableElementType(hlfir::Entity variable) { |
| 821 | assert(variable.isVariable() && "entity must be a variable" ); |
| 822 | if (variable.isScalar()) |
| 823 | return variable.getType(); |
| 824 | mlir::Type eleTy = variable.getFortranElementType(); |
| 825 | const bool isVolatile = fir::isa_volatile_type(variable.getType()); |
| 826 | if (variable.isPolymorphic()) |
| 827 | return fir::ClassType::get(eleTy, isVolatile); |
| 828 | if (auto charType = mlir::dyn_cast<fir::CharacterType>(eleTy)) { |
| 829 | if (charType.hasDynamicLen()) |
| 830 | return fir::BoxCharType::get(charType.getContext(), charType.getFKind()); |
| 831 | } else if (fir::isRecordWithTypeParameters(eleTy)) { |
| 832 | return fir::BoxType::get(eleTy, isVolatile); |
| 833 | } |
| 834 | return fir::ReferenceType::get(eleTy, isVolatile); |
| 835 | } |
| 836 | |
| 837 | mlir::Type hlfir::getEntityElementType(hlfir::Entity entity) { |
| 838 | if (entity.isVariable()) |
| 839 | return getVariableElementType(entity); |
| 840 | if (entity.isScalar()) |
| 841 | return entity.getType(); |
| 842 | auto exprType = mlir::dyn_cast<hlfir::ExprType>(entity.getType()); |
| 843 | assert(exprType && "array value must be an hlfir.expr" ); |
| 844 | return exprType.getElementExprType(); |
| 845 | } |
| 846 | |
| 847 | static hlfir::ExprType getArrayExprType(mlir::Type elementType, |
| 848 | mlir::Value shape, bool isPolymorphic) { |
| 849 | unsigned rank = mlir::cast<fir::ShapeType>(shape.getType()).getRank(); |
| 850 | hlfir::ExprType::Shape typeShape(rank, hlfir::ExprType::getUnknownExtent()); |
| 851 | if (auto shapeOp = shape.getDefiningOp<fir::ShapeOp>()) |
| 852 | for (auto extent : llvm::enumerate(shapeOp.getExtents())) |
| 853 | if (auto cstExtent = fir::getIntIfConstant(extent.value())) |
| 854 | typeShape[extent.index()] = *cstExtent; |
| 855 | return hlfir::ExprType::get(elementType.getContext(), typeShape, elementType, |
| 856 | isPolymorphic); |
| 857 | } |
| 858 | |
| 859 | hlfir::ElementalOp hlfir::genElementalOp( |
| 860 | mlir::Location loc, fir::FirOpBuilder &builder, mlir::Type elementType, |
| 861 | mlir::Value shape, mlir::ValueRange typeParams, |
| 862 | const ElementalKernelGenerator &genKernel, bool isUnordered, |
| 863 | mlir::Value polymorphicMold, mlir::Type exprType) { |
| 864 | if (!exprType) |
| 865 | exprType = getArrayExprType(elementType, shape, !!polymorphicMold); |
| 866 | auto elementalOp = builder.create<hlfir::ElementalOp>( |
| 867 | loc, exprType, shape, polymorphicMold, typeParams, isUnordered); |
| 868 | auto insertPt = builder.saveInsertionPoint(); |
| 869 | builder.setInsertionPointToStart(elementalOp.getBody()); |
| 870 | mlir::Value elementResult = genKernel(loc, builder, elementalOp.getIndices()); |
| 871 | // Numerical and logical scalars may be lowered to another type than the |
| 872 | // Fortran expression type (e.g i1 instead of fir.logical). Array expression |
| 873 | // values are typed according to their Fortran type. Insert a cast if needed |
| 874 | // here. |
| 875 | if (fir::isa_trivial(elementResult.getType())) |
| 876 | elementResult = builder.createConvert(loc, elementType, elementResult); |
| 877 | builder.create<hlfir::YieldElementOp>(loc, elementResult); |
| 878 | builder.restoreInsertionPoint(insertPt); |
| 879 | return elementalOp; |
| 880 | } |
| 881 | |
| 882 | // TODO: we do not actually need to clone the YieldElementOp, |
| 883 | // because returning its getElementValue() operand should be enough |
| 884 | // for all callers of this function. |
| 885 | hlfir::YieldElementOp |
| 886 | hlfir::inlineElementalOp(mlir::Location loc, fir::FirOpBuilder &builder, |
| 887 | hlfir::ElementalOp elemental, |
| 888 | mlir::ValueRange oneBasedIndices) { |
| 889 | // hlfir.elemental region is a SizedRegion<1>. |
| 890 | assert(elemental.getRegion().hasOneBlock() && |
| 891 | "expect elemental region to have one block" ); |
| 892 | mlir::IRMapping mapper; |
| 893 | mapper.map(elemental.getIndices(), oneBasedIndices); |
| 894 | mlir::Operation *newOp; |
| 895 | for (auto &op : elemental.getRegion().back().getOperations()) |
| 896 | newOp = builder.clone(op, mapper); |
| 897 | auto yield = mlir::dyn_cast_or_null<hlfir::YieldElementOp>(newOp); |
| 898 | assert(yield && "last ElementalOp operation must be am hlfir.yield_element" ); |
| 899 | return yield; |
| 900 | } |
| 901 | |
| 902 | mlir::Value hlfir::inlineElementalOp( |
| 903 | mlir::Location loc, fir::FirOpBuilder &builder, |
| 904 | hlfir::ElementalOpInterface elemental, mlir::ValueRange oneBasedIndices, |
| 905 | mlir::IRMapping &mapper, |
| 906 | const std::function<bool(hlfir::ElementalOp)> &mustRecursivelyInline) { |
| 907 | mlir::Region ®ion = elemental.getElementalRegion(); |
| 908 | // hlfir.elemental region is a SizedRegion<1>. |
| 909 | assert(region.hasOneBlock() && "elemental region must have one block" ); |
| 910 | mapper.map(elemental.getIndices(), oneBasedIndices); |
| 911 | for (auto &op : region.front().without_terminator()) { |
| 912 | if (auto apply = mlir::dyn_cast<hlfir::ApplyOp>(op)) |
| 913 | if (auto appliedElemental = |
| 914 | apply.getExpr().getDefiningOp<hlfir::ElementalOp>()) |
| 915 | if (mustRecursivelyInline(appliedElemental)) { |
| 916 | llvm::SmallVector<mlir::Value> clonedApplyIndices; |
| 917 | for (auto indice : apply.getIndices()) |
| 918 | clonedApplyIndices.push_back(mapper.lookupOrDefault(indice)); |
| 919 | hlfir::ElementalOpInterface elementalIface = |
| 920 | mlir::cast<hlfir::ElementalOpInterface>( |
| 921 | appliedElemental.getOperation()); |
| 922 | mlir::Value inlined = inlineElementalOp(loc, builder, elementalIface, |
| 923 | clonedApplyIndices, mapper, |
| 924 | mustRecursivelyInline); |
| 925 | mapper.map(apply.getResult(), inlined); |
| 926 | continue; |
| 927 | } |
| 928 | (void)builder.clone(op, mapper); |
| 929 | } |
| 930 | return mapper.lookupOrDefault(elemental.getElementEntity()); |
| 931 | } |
| 932 | |
| 933 | hlfir::LoopNest hlfir::genLoopNest(mlir::Location loc, |
| 934 | fir::FirOpBuilder &builder, |
| 935 | mlir::ValueRange extents, bool isUnordered, |
| 936 | bool emitWorkshareLoop, |
| 937 | bool couldVectorize) { |
| 938 | emitWorkshareLoop = emitWorkshareLoop && isUnordered; |
| 939 | hlfir::LoopNest loopNest; |
| 940 | assert(!extents.empty() && "must have at least one extent" ); |
| 941 | mlir::OpBuilder::InsertionGuard guard(builder); |
| 942 | loopNest.oneBasedIndices.assign(extents.size(), mlir::Value{}); |
| 943 | // Build loop nest from column to row. |
| 944 | auto one = builder.create<mlir::arith::ConstantIndexOp>(loc, 1); |
| 945 | mlir::Type indexType = builder.getIndexType(); |
| 946 | if (emitWorkshareLoop) { |
| 947 | auto wslw = builder.create<mlir::omp::WorkshareLoopWrapperOp>(loc); |
| 948 | loopNest.outerOp = wslw; |
| 949 | builder.createBlock(&wslw.getRegion()); |
| 950 | mlir::omp::LoopNestOperands lnops; |
| 951 | lnops.loopInclusive = builder.getUnitAttr(); |
| 952 | for (auto extent : llvm::reverse(extents)) { |
| 953 | lnops.loopLowerBounds.push_back(one); |
| 954 | lnops.loopUpperBounds.push_back(extent); |
| 955 | lnops.loopSteps.push_back(one); |
| 956 | } |
| 957 | auto lnOp = builder.create<mlir::omp::LoopNestOp>(loc, lnops); |
| 958 | mlir::Block *block = builder.createBlock(&lnOp.getRegion()); |
| 959 | for (auto extent : llvm::reverse(extents)) |
| 960 | block->addArgument(extent.getType(), extent.getLoc()); |
| 961 | loopNest.body = block; |
| 962 | builder.create<mlir::omp::YieldOp>(loc); |
| 963 | for (unsigned dim = 0; dim < extents.size(); dim++) |
| 964 | loopNest.oneBasedIndices[extents.size() - dim - 1] = |
| 965 | lnOp.getRegion().front().getArgument(dim); |
| 966 | } else { |
| 967 | unsigned dim = extents.size() - 1; |
| 968 | for (auto extent : llvm::reverse(extents)) { |
| 969 | auto ub = builder.createConvert(loc, indexType, extent); |
| 970 | auto doLoop = |
| 971 | builder.create<fir::DoLoopOp>(loc, one, ub, one, isUnordered); |
| 972 | if (!couldVectorize) { |
| 973 | mlir::LLVM::LoopVectorizeAttr va{mlir::LLVM::LoopVectorizeAttr::get( |
| 974 | builder.getContext(), |
| 975 | /*disable=*/builder.getBoolAttr(true), {}, {}, {}, {}, {}, {})}; |
| 976 | mlir::LLVM::LoopAnnotationAttr la = mlir::LLVM::LoopAnnotationAttr::get( |
| 977 | builder.getContext(), {}, /*vectorize=*/va, {}, /*unroll*/ {}, |
| 978 | /*unroll_and_jam*/ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}); |
| 979 | doLoop.setLoopAnnotationAttr(la); |
| 980 | } |
| 981 | loopNest.body = doLoop.getBody(); |
| 982 | builder.setInsertionPointToStart(loopNest.body); |
| 983 | // Reverse the indices so they are in column-major order. |
| 984 | loopNest.oneBasedIndices[dim--] = doLoop.getInductionVar(); |
| 985 | if (!loopNest.outerOp) |
| 986 | loopNest.outerOp = doLoop; |
| 987 | } |
| 988 | } |
| 989 | return loopNest; |
| 990 | } |
| 991 | |
| 992 | llvm::SmallVector<mlir::Value> hlfir::genLoopNestWithReductions( |
| 993 | mlir::Location loc, fir::FirOpBuilder &builder, mlir::ValueRange extents, |
| 994 | mlir::ValueRange reductionInits, const ReductionLoopBodyGenerator &genBody, |
| 995 | bool isUnordered) { |
| 996 | assert(!extents.empty() && "must have at least one extent" ); |
| 997 | // Build loop nest from column to row. |
| 998 | auto one = builder.create<mlir::arith::ConstantIndexOp>(loc, 1); |
| 999 | mlir::Type indexType = builder.getIndexType(); |
| 1000 | unsigned dim = extents.size() - 1; |
| 1001 | fir::DoLoopOp outerLoop = nullptr; |
| 1002 | fir::DoLoopOp parentLoop = nullptr; |
| 1003 | llvm::SmallVector<mlir::Value> oneBasedIndices; |
| 1004 | oneBasedIndices.resize(dim + 1); |
| 1005 | for (auto extent : llvm::reverse(extents)) { |
| 1006 | auto ub = builder.createConvert(loc, indexType, extent); |
| 1007 | |
| 1008 | // The outermost loop takes reductionInits as the initial |
| 1009 | // values of its iter-args. |
| 1010 | // A child loop takes its iter-args from the region iter-args |
| 1011 | // of its parent loop. |
| 1012 | fir::DoLoopOp doLoop; |
| 1013 | if (!parentLoop) { |
| 1014 | doLoop = builder.create<fir::DoLoopOp>(loc, one, ub, one, isUnordered, |
| 1015 | /*finalCountValue=*/false, |
| 1016 | reductionInits); |
| 1017 | } else { |
| 1018 | doLoop = builder.create<fir::DoLoopOp>(loc, one, ub, one, isUnordered, |
| 1019 | /*finalCountValue=*/false, |
| 1020 | parentLoop.getRegionIterArgs()); |
| 1021 | if (!reductionInits.empty()) { |
| 1022 | // Return the results of the child loop from its parent loop. |
| 1023 | builder.create<fir::ResultOp>(loc, doLoop.getResults()); |
| 1024 | } |
| 1025 | } |
| 1026 | |
| 1027 | builder.setInsertionPointToStart(doLoop.getBody()); |
| 1028 | // Reverse the indices so they are in column-major order. |
| 1029 | oneBasedIndices[dim--] = doLoop.getInductionVar(); |
| 1030 | if (!outerLoop) |
| 1031 | outerLoop = doLoop; |
| 1032 | parentLoop = doLoop; |
| 1033 | } |
| 1034 | |
| 1035 | llvm::SmallVector<mlir::Value> reductionValues; |
| 1036 | reductionValues = |
| 1037 | genBody(loc, builder, oneBasedIndices, parentLoop.getRegionIterArgs()); |
| 1038 | builder.setInsertionPointToEnd(parentLoop.getBody()); |
| 1039 | if (!reductionValues.empty()) |
| 1040 | builder.create<fir::ResultOp>(loc, reductionValues); |
| 1041 | builder.setInsertionPointAfter(outerLoop); |
| 1042 | return outerLoop->getResults(); |
| 1043 | } |
| 1044 | |
| 1045 | template <typename Lambda> |
| 1046 | static fir::ExtendedValue |
| 1047 | conditionallyEvaluate(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1048 | mlir::Value condition, const Lambda &genIfTrue) { |
| 1049 | mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint(); |
| 1050 | |
| 1051 | // Evaluate in some region that will be moved into the actual ifOp (the actual |
| 1052 | // ifOp can only be created when the result types are known). |
| 1053 | auto badIfOp = builder.create<fir::IfOp>(loc, condition.getType(), condition, |
| 1054 | /*withElseRegion=*/false); |
| 1055 | mlir::Block *preparationBlock = &badIfOp.getThenRegion().front(); |
| 1056 | builder.setInsertionPointToStart(preparationBlock); |
| 1057 | fir::ExtendedValue result = genIfTrue(); |
| 1058 | fir::ResultOp resultOp = result.match( |
| 1059 | [&](const fir::CharBoxValue &box) -> fir::ResultOp { |
| 1060 | return builder.create<fir::ResultOp>( |
| 1061 | loc, mlir::ValueRange{box.getAddr(), box.getLen()}); |
| 1062 | }, |
| 1063 | [&](const mlir::Value &addr) -> fir::ResultOp { |
| 1064 | return builder.create<fir::ResultOp>(loc, addr); |
| 1065 | }, |
| 1066 | [&](const auto &) -> fir::ResultOp { |
| 1067 | TODO(loc, "unboxing non scalar optional fir.box" ); |
| 1068 | }); |
| 1069 | builder.restoreInsertionPoint(insertPt); |
| 1070 | |
| 1071 | // Create actual fir.if operation. |
| 1072 | auto ifOp = |
| 1073 | builder.create<fir::IfOp>(loc, resultOp->getOperandTypes(), condition, |
| 1074 | /*withElseRegion=*/true); |
| 1075 | // Move evaluation into Then block, |
| 1076 | preparationBlock->moveBefore(&ifOp.getThenRegion().back()); |
| 1077 | ifOp.getThenRegion().back().erase(); |
| 1078 | // Create absent result in the Else block. |
| 1079 | builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); |
| 1080 | llvm::SmallVector<mlir::Value> absentValues; |
| 1081 | for (mlir::Type resTy : ifOp->getResultTypes()) { |
| 1082 | if (fir::isa_ref_type(resTy) || fir::isa_box_type(resTy)) |
| 1083 | absentValues.emplace_back(builder.create<fir::AbsentOp>(loc, resTy)); |
| 1084 | else |
| 1085 | absentValues.emplace_back(builder.create<fir::ZeroOp>(loc, resTy)); |
| 1086 | } |
| 1087 | builder.create<fir::ResultOp>(loc, absentValues); |
| 1088 | badIfOp->erase(); |
| 1089 | |
| 1090 | // Build fir::ExtendedValue from the result values. |
| 1091 | builder.setInsertionPointAfter(ifOp); |
| 1092 | return result.match( |
| 1093 | [&](const fir::CharBoxValue &box) -> fir::ExtendedValue { |
| 1094 | return fir::CharBoxValue{ifOp.getResult(0), ifOp.getResult(1)}; |
| 1095 | }, |
| 1096 | [&](const mlir::Value &) -> fir::ExtendedValue { |
| 1097 | return ifOp.getResult(0); |
| 1098 | }, |
| 1099 | [&](const auto &) -> fir::ExtendedValue { |
| 1100 | TODO(loc, "unboxing non scalar optional fir.box" ); |
| 1101 | }); |
| 1102 | } |
| 1103 | |
| 1104 | static fir::ExtendedValue translateVariableToExtendedValue( |
| 1105 | mlir::Location loc, fir::FirOpBuilder &builder, hlfir::Entity variable, |
| 1106 | bool forceHlfirBase = false, bool contiguousHint = false, |
| 1107 | bool keepScalarOptionalBoxed = false) { |
| 1108 | assert(variable.isVariable() && "must be a variable" ); |
| 1109 | // When going towards FIR, use the original base value to avoid |
| 1110 | // introducing descriptors at runtime when they are not required. |
| 1111 | // This is not done for assumed-rank since the fir::ExtendedValue cannot |
| 1112 | // held the related lower bounds in an vector. The lower bounds of the |
| 1113 | // descriptor must always be used instead. |
| 1114 | |
| 1115 | mlir::Value base = (forceHlfirBase || variable.isAssumedRank()) |
| 1116 | ? variable.getBase() |
| 1117 | : variable.getFirBase(); |
| 1118 | if (variable.isMutableBox()) |
| 1119 | return fir::MutableBoxValue(base, getExplicitTypeParams(variable), |
| 1120 | fir::MutableProperties{}); |
| 1121 | |
| 1122 | if (mlir::isa<fir::BaseBoxType>(base.getType())) { |
| 1123 | const bool contiguous = variable.isSimplyContiguous() || contiguousHint; |
| 1124 | const bool isAssumedRank = variable.isAssumedRank(); |
| 1125 | if (!contiguous || variable.isPolymorphic() || |
| 1126 | variable.isDerivedWithLengthParameters() || isAssumedRank) { |
| 1127 | llvm::SmallVector<mlir::Value> nonDefaultLbounds; |
| 1128 | if (!isAssumedRank) |
| 1129 | nonDefaultLbounds = getNonDefaultLowerBounds(loc, builder, variable); |
| 1130 | return fir::BoxValue(base, nonDefaultLbounds, |
| 1131 | getExplicitTypeParams(variable)); |
| 1132 | } |
| 1133 | if (variable.mayBeOptional()) { |
| 1134 | if (!keepScalarOptionalBoxed && variable.isScalar()) { |
| 1135 | mlir::Value isPresent = builder.create<fir::IsPresentOp>( |
| 1136 | loc, builder.getI1Type(), variable); |
| 1137 | return conditionallyEvaluate( |
| 1138 | loc, builder, isPresent, [&]() -> fir::ExtendedValue { |
| 1139 | mlir::Value base = genVariableRawAddress(loc, builder, variable); |
| 1140 | if (variable.isCharacter()) { |
| 1141 | mlir::Value len = |
| 1142 | genCharacterVariableLength(loc, builder, variable); |
| 1143 | return fir::CharBoxValue{base, len}; |
| 1144 | } |
| 1145 | return base; |
| 1146 | }); |
| 1147 | } |
| 1148 | llvm::SmallVector<mlir::Value> nonDefaultLbounds = |
| 1149 | getNonDefaultLowerBounds(loc, builder, variable); |
| 1150 | return fir::BoxValue(base, nonDefaultLbounds, |
| 1151 | getExplicitTypeParams(variable)); |
| 1152 | } |
| 1153 | // Otherwise, the variable can be represented in a fir::ExtendedValue |
| 1154 | // without the overhead of a fir.box. |
| 1155 | base = genVariableRawAddress(loc, builder, variable); |
| 1156 | } |
| 1157 | |
| 1158 | if (variable.isScalar()) { |
| 1159 | if (variable.isCharacter()) { |
| 1160 | if (mlir::isa<fir::BoxCharType>(base.getType())) |
| 1161 | return genUnboxChar(loc, builder, base); |
| 1162 | mlir::Value len = genCharacterVariableLength(loc, builder, variable); |
| 1163 | return fir::CharBoxValue{base, len}; |
| 1164 | } |
| 1165 | return base; |
| 1166 | } |
| 1167 | llvm::SmallVector<mlir::Value> extents; |
| 1168 | llvm::SmallVector<mlir::Value> nonDefaultLbounds; |
| 1169 | if (mlir::isa<fir::BaseBoxType>(variable.getType()) && |
| 1170 | !variable.getIfVariableInterface() && |
| 1171 | variable.mayHaveNonDefaultLowerBounds()) { |
| 1172 | // This special case avoids generating two sets of identical |
| 1173 | // fir.box_dim to get both the lower bounds and extents. |
| 1174 | fir::factory::genDimInfoFromBox(builder, loc, variable, &nonDefaultLbounds, |
| 1175 | &extents, /*strides=*/nullptr); |
| 1176 | } else { |
| 1177 | extents = getVariableExtents(loc, builder, variable); |
| 1178 | nonDefaultLbounds = getNonDefaultLowerBounds(loc, builder, variable); |
| 1179 | } |
| 1180 | if (variable.isCharacter()) |
| 1181 | return fir::CharArrayBoxValue{ |
| 1182 | base, genCharacterVariableLength(loc, builder, variable), extents, |
| 1183 | nonDefaultLbounds}; |
| 1184 | return fir::ArrayBoxValue{base, extents, nonDefaultLbounds}; |
| 1185 | } |
| 1186 | |
| 1187 | fir::ExtendedValue |
| 1188 | hlfir::translateToExtendedValue(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1189 | fir::FortranVariableOpInterface var, |
| 1190 | bool forceHlfirBase) { |
| 1191 | return translateVariableToExtendedValue(loc, builder, var, forceHlfirBase); |
| 1192 | } |
| 1193 | |
| 1194 | std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>> |
| 1195 | hlfir::translateToExtendedValue(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1196 | hlfir::Entity entity, bool contiguousHint, |
| 1197 | bool keepScalarOptionalBoxed) { |
| 1198 | if (entity.isVariable()) |
| 1199 | return {translateVariableToExtendedValue(loc, builder, entity, false, |
| 1200 | contiguousHint, |
| 1201 | keepScalarOptionalBoxed), |
| 1202 | std::nullopt}; |
| 1203 | |
| 1204 | if (entity.isProcedure()) { |
| 1205 | if (fir::isCharacterProcedureTuple(entity.getType())) { |
| 1206 | auto [boxProc, len] = fir::factory::extractCharacterProcedureTuple( |
| 1207 | builder, loc, entity, /*openBoxProc=*/false); |
| 1208 | return {fir::CharBoxValue{boxProc, len}, std::nullopt}; |
| 1209 | } |
| 1210 | return {static_cast<mlir::Value>(entity), std::nullopt}; |
| 1211 | } |
| 1212 | |
| 1213 | if (mlir::isa<hlfir::ExprType>(entity.getType())) { |
| 1214 | mlir::NamedAttribute byRefAttr = fir::getAdaptToByRefAttr(builder); |
| 1215 | hlfir::AssociateOp associate = hlfir::genAssociateExpr( |
| 1216 | loc, builder, entity, entity.getType(), "" , byRefAttr); |
| 1217 | auto *bldr = &builder; |
| 1218 | hlfir::CleanupFunction cleanup = [bldr, loc, associate]() -> void { |
| 1219 | bldr->create<hlfir::EndAssociateOp>(loc, associate); |
| 1220 | }; |
| 1221 | hlfir::Entity temp{associate.getBase()}; |
| 1222 | return {translateToExtendedValue(loc, builder, temp).first, cleanup}; |
| 1223 | } |
| 1224 | return {{static_cast<mlir::Value>(entity)}, {}}; |
| 1225 | } |
| 1226 | |
| 1227 | std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>> |
| 1228 | hlfir::convertToValue(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1229 | hlfir::Entity entity) { |
| 1230 | // Load scalar references to integer, logical, real, or complex value |
| 1231 | // to an mlir value, dereference allocatable and pointers, and get rid |
| 1232 | // of fir.box that are not needed or create a copy into contiguous memory. |
| 1233 | auto derefedAndLoadedEntity = loadTrivialScalar(loc, builder, entity); |
| 1234 | return translateToExtendedValue(loc, builder, derefedAndLoadedEntity); |
| 1235 | } |
| 1236 | |
| 1237 | static fir::ExtendedValue placeTrivialInMemory(mlir::Location loc, |
| 1238 | fir::FirOpBuilder &builder, |
| 1239 | mlir::Value val, |
| 1240 | mlir::Type targetType) { |
| 1241 | auto temp = builder.createTemporary(loc, targetType); |
| 1242 | if (targetType != val.getType()) |
| 1243 | builder.createStoreWithConvert(loc, val, temp); |
| 1244 | else |
| 1245 | builder.create<fir::StoreOp>(loc, val, temp); |
| 1246 | return temp; |
| 1247 | } |
| 1248 | |
| 1249 | std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>> |
| 1250 | hlfir::convertToBox(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1251 | hlfir::Entity entity, mlir::Type targetType) { |
| 1252 | // fir::factory::createBoxValue is not meant to deal with procedures. |
| 1253 | // Dereference procedure pointers here. |
| 1254 | if (entity.isProcedurePointer()) |
| 1255 | entity = hlfir::derefPointersAndAllocatables(loc, builder, entity); |
| 1256 | |
| 1257 | auto [exv, cleanup] = |
| 1258 | translateToExtendedValue(loc, builder, entity, /*contiguousHint=*/false, |
| 1259 | /*keepScalarOptionalBoxed=*/true); |
| 1260 | // Procedure entities should not go through createBoxValue that embox |
| 1261 | // object entities. Return the fir.boxproc directly. |
| 1262 | if (entity.isProcedure()) |
| 1263 | return {exv, cleanup}; |
| 1264 | mlir::Value base = fir::getBase(exv); |
| 1265 | if (fir::isa_trivial(base.getType())) |
| 1266 | exv = placeTrivialInMemory(loc, builder, base, targetType); |
| 1267 | fir::BoxValue box = fir::factory::createBoxValue(builder, loc, exv); |
| 1268 | return {box, cleanup}; |
| 1269 | } |
| 1270 | |
| 1271 | std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>> |
| 1272 | hlfir::convertToAddress(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1273 | hlfir::Entity entity, mlir::Type targetType) { |
| 1274 | hlfir::Entity derefedEntity = |
| 1275 | hlfir::derefPointersAndAllocatables(loc, builder, entity); |
| 1276 | auto [exv, cleanup] = |
| 1277 | hlfir::translateToExtendedValue(loc, builder, derefedEntity); |
| 1278 | mlir::Value base = fir::getBase(exv); |
| 1279 | if (fir::isa_trivial(base.getType())) |
| 1280 | exv = placeTrivialInMemory(loc, builder, base, targetType); |
| 1281 | return {exv, cleanup}; |
| 1282 | } |
| 1283 | |
| 1284 | /// Clone: |
| 1285 | /// ``` |
| 1286 | /// hlfir.elemental_addr %shape : !fir.shape<1> { |
| 1287 | /// ^bb0(%i : index) |
| 1288 | /// ..... |
| 1289 | /// %hlfir.yield %scalarAddress : fir.ref<T> |
| 1290 | /// } |
| 1291 | /// ``` |
| 1292 | // |
| 1293 | /// into |
| 1294 | /// |
| 1295 | /// ``` |
| 1296 | /// %expr = hlfir.elemental %shape : (!fir.shape<1>) -> hlfir.expr<?xT> { |
| 1297 | /// ^bb0(%i : index) |
| 1298 | /// ..... |
| 1299 | /// %value = fir.load %scalarAddress : fir.ref<T> |
| 1300 | /// %hlfir.yield_element %value : T |
| 1301 | /// } |
| 1302 | /// ``` |
| 1303 | hlfir::ElementalOp |
| 1304 | hlfir::cloneToElementalOp(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1305 | hlfir::ElementalAddrOp elementalAddrOp) { |
| 1306 | hlfir::Entity scalarAddress = |
| 1307 | hlfir::Entity{mlir::cast<hlfir::YieldOp>( |
| 1308 | elementalAddrOp.getBody().back().getTerminator()) |
| 1309 | .getEntity()}; |
| 1310 | llvm::SmallVector<mlir::Value, 1> typeParams; |
| 1311 | hlfir::genLengthParameters(loc, builder, scalarAddress, typeParams); |
| 1312 | |
| 1313 | builder.setInsertionPointAfter(elementalAddrOp); |
| 1314 | auto genKernel = [&](mlir::Location l, fir::FirOpBuilder &b, |
| 1315 | mlir::ValueRange oneBasedIndices) -> hlfir::Entity { |
| 1316 | mlir::IRMapping mapper; |
| 1317 | mapper.map(elementalAddrOp.getIndices(), oneBasedIndices); |
| 1318 | mlir::Operation *newOp = nullptr; |
| 1319 | for (auto &op : elementalAddrOp.getBody().back().getOperations()) |
| 1320 | newOp = b.clone(op, mapper); |
| 1321 | auto newYielOp = mlir::dyn_cast_or_null<hlfir::YieldOp>(newOp); |
| 1322 | assert(newYielOp && "hlfir.elemental_addr is ill formed" ); |
| 1323 | hlfir::Entity newAddr{newYielOp.getEntity()}; |
| 1324 | newYielOp->erase(); |
| 1325 | return hlfir::loadTrivialScalar(l, b, newAddr); |
| 1326 | }; |
| 1327 | mlir::Type elementType = scalarAddress.getFortranElementType(); |
| 1328 | return hlfir::genElementalOp( |
| 1329 | loc, builder, elementType, elementalAddrOp.getShape(), typeParams, |
| 1330 | genKernel, !elementalAddrOp.isOrdered(), elementalAddrOp.getMold()); |
| 1331 | } |
| 1332 | |
| 1333 | bool hlfir::elementalOpMustProduceTemp(hlfir::ElementalOp elemental) { |
| 1334 | for (mlir::Operation *useOp : elemental->getUsers()) |
| 1335 | if (auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(useOp)) |
| 1336 | if (destroy.mustFinalizeExpr()) |
| 1337 | return true; |
| 1338 | |
| 1339 | return false; |
| 1340 | } |
| 1341 | |
| 1342 | std::pair<hlfir::Entity, mlir::Value> |
| 1343 | hlfir::createTempFromMold(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1344 | hlfir::Entity mold) { |
| 1345 | assert(!mold.isAssumedRank() && |
| 1346 | "cannot create temporary from assumed-rank mold" ); |
| 1347 | llvm::SmallVector<mlir::Value> lenParams; |
| 1348 | hlfir::genLengthParameters(loc, builder, mold, lenParams); |
| 1349 | llvm::StringRef tmpName{".tmp" }; |
| 1350 | |
| 1351 | mlir::Value shape{}; |
| 1352 | llvm::SmallVector<mlir::Value> extents; |
| 1353 | if (mold.isArray()) { |
| 1354 | shape = hlfir::genShape(loc, builder, mold); |
| 1355 | extents = hlfir::getExplicitExtentsFromShape(shape, builder); |
| 1356 | } |
| 1357 | |
| 1358 | bool useStack = !mold.isArray() && !mold.isPolymorphic(); |
| 1359 | auto genTempDeclareOp = |
| 1360 | [](fir::FirOpBuilder &builder, mlir::Location loc, mlir::Value memref, |
| 1361 | llvm::StringRef name, mlir::Value shape, |
| 1362 | llvm::ArrayRef<mlir::Value> typeParams, |
| 1363 | fir::FortranVariableFlagsAttr attrs) -> mlir::Value { |
| 1364 | auto declareOp = |
| 1365 | builder.create<hlfir::DeclareOp>(loc, memref, name, shape, typeParams, |
| 1366 | /*dummy_scope=*/nullptr, attrs); |
| 1367 | return declareOp.getBase(); |
| 1368 | }; |
| 1369 | |
| 1370 | auto [base, isHeapAlloc] = builder.createAndDeclareTemp( |
| 1371 | loc, mold.getElementOrSequenceType(), shape, extents, lenParams, |
| 1372 | genTempDeclareOp, mold.isPolymorphic() ? mold.getBase() : nullptr, |
| 1373 | useStack, tmpName); |
| 1374 | return {hlfir::Entity{base}, builder.createBool(loc, isHeapAlloc)}; |
| 1375 | } |
| 1376 | |
| 1377 | hlfir::Entity hlfir::createStackTempFromMold(mlir::Location loc, |
| 1378 | fir::FirOpBuilder &builder, |
| 1379 | hlfir::Entity mold) { |
| 1380 | llvm::SmallVector<mlir::Value> lenParams; |
| 1381 | hlfir::genLengthParameters(loc, builder, mold, lenParams); |
| 1382 | llvm::StringRef tmpName{".tmp" }; |
| 1383 | mlir::Value alloc; |
| 1384 | mlir::Value shape{}; |
| 1385 | fir::FortranVariableFlagsAttr declAttrs; |
| 1386 | |
| 1387 | if (mold.isPolymorphic()) { |
| 1388 | // genAllocatableApplyMold does heap allocation |
| 1389 | TODO(loc, "createStackTempFromMold for polymorphic type" ); |
| 1390 | } else if (mold.isArray()) { |
| 1391 | mlir::Type sequenceType = |
| 1392 | hlfir::getFortranElementOrSequenceType(mold.getType()); |
| 1393 | shape = hlfir::genShape(loc, builder, mold); |
| 1394 | auto extents = hlfir::getIndexExtents(loc, builder, shape); |
| 1395 | alloc = |
| 1396 | builder.createTemporary(loc, sequenceType, tmpName, extents, lenParams); |
| 1397 | } else { |
| 1398 | alloc = builder.createTemporary(loc, mold.getFortranElementType(), tmpName, |
| 1399 | /*shape=*/std::nullopt, lenParams); |
| 1400 | } |
| 1401 | auto declareOp = |
| 1402 | builder.create<hlfir::DeclareOp>(loc, alloc, tmpName, shape, lenParams, |
| 1403 | /*dummy_scope=*/nullptr, declAttrs); |
| 1404 | return hlfir::Entity{declareOp.getBase()}; |
| 1405 | } |
| 1406 | |
| 1407 | hlfir::EntityWithAttributes |
| 1408 | hlfir::convertCharacterKind(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1409 | hlfir::Entity scalarChar, int toKind) { |
| 1410 | auto src = hlfir::convertToAddress(loc, builder, scalarChar, |
| 1411 | scalarChar.getFortranElementType()); |
| 1412 | assert(src.first.getCharBox() && "must be scalar character" ); |
| 1413 | fir::CharBoxValue res = fir::factory::convertCharacterKind( |
| 1414 | builder, loc, *src.first.getCharBox(), toKind); |
| 1415 | if (src.second.has_value()) |
| 1416 | src.second.value()(); |
| 1417 | |
| 1418 | return hlfir::EntityWithAttributes{builder.create<hlfir::DeclareOp>( |
| 1419 | loc, res.getAddr(), ".temp.kindconvert" , /*shape=*/nullptr, |
| 1420 | /*typeparams=*/mlir::ValueRange{res.getLen()}, |
| 1421 | /*dummy_scope=*/nullptr, fir::FortranVariableFlagsAttr{})}; |
| 1422 | } |
| 1423 | |
| 1424 | std::pair<hlfir::Entity, std::optional<hlfir::CleanupFunction>> |
| 1425 | hlfir::genTypeAndKindConvert(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1426 | hlfir::Entity source, mlir::Type toType, |
| 1427 | bool preserveLowerBounds) { |
| 1428 | mlir::Type fromType = source.getFortranElementType(); |
| 1429 | toType = hlfir::getFortranElementType(toType); |
| 1430 | if (!toType || fromType == toType || |
| 1431 | !(fir::isa_trivial(toType) || mlir::isa<fir::CharacterType>(toType))) |
| 1432 | return {source, std::nullopt}; |
| 1433 | |
| 1434 | std::optional<int> toKindCharConvert; |
| 1435 | if (auto toCharTy = mlir::dyn_cast<fir::CharacterType>(toType)) { |
| 1436 | if (auto fromCharTy = mlir::dyn_cast<fir::CharacterType>(fromType)) |
| 1437 | if (toCharTy.getFKind() != fromCharTy.getFKind()) { |
| 1438 | toKindCharConvert = toCharTy.getFKind(); |
| 1439 | // Preserve source length (padding/truncation will occur in assignment |
| 1440 | // if needed). |
| 1441 | toType = fir::CharacterType::get( |
| 1442 | fromType.getContext(), toCharTy.getFKind(), fromCharTy.getLen()); |
| 1443 | } |
| 1444 | // Do not convert in case of character length mismatch only, hlfir.assign |
| 1445 | // deals with it. |
| 1446 | if (!toKindCharConvert) |
| 1447 | return {source, std::nullopt}; |
| 1448 | } |
| 1449 | |
| 1450 | if (source.getRank() == 0) { |
| 1451 | mlir::Value cast = toKindCharConvert |
| 1452 | ? mlir::Value{hlfir::convertCharacterKind( |
| 1453 | loc, builder, source, *toKindCharConvert)} |
| 1454 | : builder.convertWithSemantics(loc, toType, source); |
| 1455 | return {hlfir::Entity{cast}, std::nullopt}; |
| 1456 | } |
| 1457 | |
| 1458 | mlir::Value shape = hlfir::genShape(loc, builder, source); |
| 1459 | auto genKernel = [source, toType, toKindCharConvert]( |
| 1460 | mlir::Location loc, fir::FirOpBuilder &builder, |
| 1461 | mlir::ValueRange oneBasedIndices) -> hlfir::Entity { |
| 1462 | auto elementPtr = |
| 1463 | hlfir::getElementAt(loc, builder, source, oneBasedIndices); |
| 1464 | auto val = hlfir::loadTrivialScalar(loc, builder, elementPtr); |
| 1465 | if (toKindCharConvert) |
| 1466 | return hlfir::convertCharacterKind(loc, builder, val, *toKindCharConvert); |
| 1467 | return hlfir::EntityWithAttributes{ |
| 1468 | builder.convertWithSemantics(loc, toType, val)}; |
| 1469 | }; |
| 1470 | llvm::SmallVector<mlir::Value, 1> lenParams; |
| 1471 | hlfir::genLengthParameters(loc, builder, source, lenParams); |
| 1472 | mlir::Value convertedRhs = |
| 1473 | hlfir::genElementalOp(loc, builder, toType, shape, lenParams, genKernel, |
| 1474 | /*isUnordered=*/true); |
| 1475 | |
| 1476 | if (preserveLowerBounds && source.mayHaveNonDefaultLowerBounds()) { |
| 1477 | hlfir::AssociateOp associate = |
| 1478 | genAssociateExpr(loc, builder, hlfir::Entity{convertedRhs}, |
| 1479 | convertedRhs.getType(), ".tmp.keeplbounds" ); |
| 1480 | fir::ShapeOp shapeOp = associate.getShape().getDefiningOp<fir::ShapeOp>(); |
| 1481 | assert(shapeOp && "associate shape must be a fir.shape" ); |
| 1482 | const unsigned rank = shapeOp.getExtents().size(); |
| 1483 | llvm::SmallVector<mlir::Value> lbAndExtents; |
| 1484 | for (unsigned dim = 0; dim < rank; ++dim) { |
| 1485 | lbAndExtents.push_back(hlfir::genLBound(loc, builder, source, dim)); |
| 1486 | lbAndExtents.push_back(shapeOp.getExtents()[dim]); |
| 1487 | } |
| 1488 | auto shapeShiftType = fir::ShapeShiftType::get(builder.getContext(), rank); |
| 1489 | mlir::Value shapeShift = |
| 1490 | builder.create<fir::ShapeShiftOp>(loc, shapeShiftType, lbAndExtents); |
| 1491 | auto declareOp = builder.create<hlfir::DeclareOp>( |
| 1492 | loc, associate.getFirBase(), *associate.getUniqName(), shapeShift, |
| 1493 | associate.getTypeparams(), /*dummy_scope=*/nullptr, |
| 1494 | /*flags=*/fir::FortranVariableFlagsAttr{}); |
| 1495 | hlfir::Entity castWithLbounds = |
| 1496 | mlir::cast<fir::FortranVariableOpInterface>(declareOp.getOperation()); |
| 1497 | fir::FirOpBuilder *bldr = &builder; |
| 1498 | auto cleanup = [loc, bldr, convertedRhs, associate]() { |
| 1499 | bldr->create<hlfir::EndAssociateOp>(loc, associate); |
| 1500 | bldr->create<hlfir::DestroyOp>(loc, convertedRhs); |
| 1501 | }; |
| 1502 | return {castWithLbounds, cleanup}; |
| 1503 | } |
| 1504 | |
| 1505 | fir::FirOpBuilder *bldr = &builder; |
| 1506 | auto cleanup = [loc, bldr, convertedRhs]() { |
| 1507 | bldr->create<hlfir::DestroyOp>(loc, convertedRhs); |
| 1508 | }; |
| 1509 | return {hlfir::Entity{convertedRhs}, cleanup}; |
| 1510 | } |
| 1511 | |
| 1512 | std::pair<hlfir::Entity, bool> hlfir::computeEvaluateOpInNewTemp( |
| 1513 | mlir::Location loc, fir::FirOpBuilder &builder, |
| 1514 | hlfir::EvaluateInMemoryOp evalInMem, mlir::Value shape, |
| 1515 | mlir::ValueRange typeParams) { |
| 1516 | llvm::StringRef tmpName{".tmp.expr_result" }; |
| 1517 | llvm::SmallVector<mlir::Value> extents = |
| 1518 | hlfir::getIndexExtents(loc, builder, shape); |
| 1519 | mlir::Type baseType = |
| 1520 | hlfir::getFortranElementOrSequenceType(evalInMem.getType()); |
| 1521 | bool heapAllocated = fir::hasDynamicSize(baseType); |
| 1522 | // Note: temporaries are stack allocated here when possible (do not require |
| 1523 | // stack save/restore) because flang has always stack allocated function |
| 1524 | // results. |
| 1525 | mlir::Value temp = heapAllocated |
| 1526 | ? builder.createHeapTemporary(loc, baseType, tmpName, |
| 1527 | extents, typeParams) |
| 1528 | : builder.createTemporary(loc, baseType, tmpName, |
| 1529 | extents, typeParams); |
| 1530 | mlir::Value innerMemory = evalInMem.getMemory(); |
| 1531 | temp = builder.createConvert(loc, innerMemory.getType(), temp); |
| 1532 | auto declareOp = builder.create<hlfir::DeclareOp>( |
| 1533 | loc, temp, tmpName, shape, typeParams, |
| 1534 | /*dummy_scope=*/nullptr, fir::FortranVariableFlagsAttr{}); |
| 1535 | computeEvaluateOpIn(loc, builder, evalInMem, declareOp.getOriginalBase()); |
| 1536 | return {hlfir::Entity{declareOp.getBase()}, /*heapAllocated=*/heapAllocated}; |
| 1537 | } |
| 1538 | |
| 1539 | void hlfir::computeEvaluateOpIn(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1540 | hlfir::EvaluateInMemoryOp evalInMem, |
| 1541 | mlir::Value storage) { |
| 1542 | mlir::Value innerMemory = evalInMem.getMemory(); |
| 1543 | mlir::Value storageCast = |
| 1544 | builder.createConvert(loc, innerMemory.getType(), storage); |
| 1545 | mlir::IRMapping mapper; |
| 1546 | mapper.map(innerMemory, storageCast); |
| 1547 | for (auto &op : evalInMem.getBody().front().without_terminator()) |
| 1548 | builder.clone(op, mapper); |
| 1549 | return; |
| 1550 | } |
| 1551 | |
| 1552 | hlfir::Entity hlfir::loadElementAt(mlir::Location loc, |
| 1553 | fir::FirOpBuilder &builder, |
| 1554 | hlfir::Entity entity, |
| 1555 | mlir::ValueRange oneBasedIndices) { |
| 1556 | return loadTrivialScalar(loc, builder, |
| 1557 | getElementAt(loc, builder, entity, oneBasedIndices)); |
| 1558 | } |
| 1559 | |
| 1560 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> |
| 1561 | hlfir::genExtentsVector(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1562 | hlfir::Entity entity) { |
| 1563 | entity = hlfir::derefPointersAndAllocatables(loc, builder, entity); |
| 1564 | mlir::Value shape = hlfir::genShape(loc, builder, entity); |
| 1565 | llvm::SmallVector<mlir::Value, Fortran::common::maxRank> extents = |
| 1566 | hlfir::getExplicitExtentsFromShape(shape, builder); |
| 1567 | if (shape.getUses().empty()) |
| 1568 | shape.getDefiningOp()->erase(); |
| 1569 | return extents; |
| 1570 | } |
| 1571 | |
| 1572 | hlfir::Entity hlfir::gen1DSection(mlir::Location loc, |
| 1573 | fir::FirOpBuilder &builder, |
| 1574 | hlfir::Entity array, int64_t dim, |
| 1575 | mlir::ArrayRef<mlir::Value> lbounds, |
| 1576 | mlir::ArrayRef<mlir::Value> extents, |
| 1577 | mlir::ValueRange oneBasedIndices, |
| 1578 | mlir::ArrayRef<mlir::Value> typeParams) { |
| 1579 | assert(array.isVariable() && "array must be a variable" ); |
| 1580 | assert(dim > 0 && dim <= array.getRank() && "invalid dim number" ); |
| 1581 | mlir::Value one = |
| 1582 | builder.createIntegerConstant(loc, builder.getIndexType(), 1); |
| 1583 | hlfir::DesignateOp::Subscripts subscripts; |
| 1584 | unsigned indexId = 0; |
| 1585 | for (int i = 0; i < array.getRank(); ++i) { |
| 1586 | if (i == dim - 1) { |
| 1587 | mlir::Value ubound = genUBound(loc, builder, lbounds[i], extents[i], one); |
| 1588 | subscripts.emplace_back( |
| 1589 | hlfir::DesignateOp::Triplet{lbounds[i], ubound, one}); |
| 1590 | } else { |
| 1591 | mlir::Value index = |
| 1592 | genUBound(loc, builder, lbounds[i], oneBasedIndices[indexId++], one); |
| 1593 | subscripts.emplace_back(index); |
| 1594 | } |
| 1595 | } |
| 1596 | mlir::Value sectionShape = |
| 1597 | builder.create<fir::ShapeOp>(loc, extents[dim - 1]); |
| 1598 | |
| 1599 | // The result type is one of: |
| 1600 | // !fir.box/class<!fir.array<NxT>> |
| 1601 | // !fir.box/class<!fir.array<?xT>> |
| 1602 | // |
| 1603 | // We could use !fir.ref<!fir.array<NxT>> when the whole dimension's |
| 1604 | // size is known and it is the leading dimension, but let it be simple |
| 1605 | // for the time being. |
| 1606 | auto seqType = |
| 1607 | mlir::cast<fir::SequenceType>(array.getElementOrSequenceType()); |
| 1608 | int64_t dimExtent = seqType.getShape()[dim - 1]; |
| 1609 | mlir::Type sectionType = |
| 1610 | fir::SequenceType::get({dimExtent}, seqType.getEleTy()); |
| 1611 | sectionType = fir::wrapInClassOrBoxType(sectionType, array.isPolymorphic()); |
| 1612 | |
| 1613 | auto designate = builder.create<hlfir::DesignateOp>( |
| 1614 | loc, sectionType, array, /*component=*/"" , /*componentShape=*/nullptr, |
| 1615 | subscripts, |
| 1616 | /*substring=*/mlir::ValueRange{}, /*complexPartAttr=*/std::nullopt, |
| 1617 | sectionShape, typeParams); |
| 1618 | return hlfir::Entity{designate.getResult()}; |
| 1619 | } |
| 1620 | |
| 1621 | bool hlfir::designatePreservesContinuity(hlfir::DesignateOp op) { |
| 1622 | if (op.getComponent() || op.getComplexPart() || !op.getSubstring().empty()) |
| 1623 | return false; |
| 1624 | auto subscripts = op.getIndices(); |
| 1625 | unsigned i = 0; |
| 1626 | for (auto isTriplet : llvm::enumerate(op.getIsTriplet())) { |
| 1627 | // TODO: we should allow any number of leading triplets |
| 1628 | // that describe a whole dimension slice, then one optional |
| 1629 | // triplet describing potentially partial dimension slice, |
| 1630 | // then any number of non-triplet subscripts. |
| 1631 | // For the time being just allow a single leading |
| 1632 | // triplet and then any number of non-triplet subscripts. |
| 1633 | if (isTriplet.value()) { |
| 1634 | if (isTriplet.index() != 0) { |
| 1635 | return false; |
| 1636 | } else { |
| 1637 | i += 2; |
| 1638 | mlir::Value step = subscripts[i++]; |
| 1639 | auto constantStep = fir::getIntIfConstant(step); |
| 1640 | if (!constantStep || *constantStep != 1) |
| 1641 | return false; |
| 1642 | } |
| 1643 | } else { |
| 1644 | ++i; |
| 1645 | } |
| 1646 | } |
| 1647 | return true; |
| 1648 | } |
| 1649 | |