| 1 | //===- LowerHLFIROrderedAssignments.cpp - Lower HLFIR ordered assignments -===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // This file defines a pass to lower HLFIR ordered assignments. |
| 9 | // Ordered assignments are all the operations with the |
| 10 | // OrderedAssignmentTreeOpInterface that implements user defined assignments, |
| 11 | // assignment to vector subscripted entities, and assignments inside forall and |
| 12 | // where. |
| 13 | // The pass lowers these operations to regular hlfir.assign, loops and, if |
| 14 | // needed, introduces temporary storage to fulfill Fortran semantics. |
| 15 | // |
| 16 | // For each rewrite, an analysis builds an evaluation schedule, and then the |
| 17 | // new code is generated by following the evaluation schedule. |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | |
| 20 | #include "ScheduleOrderedAssignments.h" |
| 21 | #include "flang/Optimizer/Builder/FIRBuilder.h" |
| 22 | #include "flang/Optimizer/Builder/HLFIRTools.h" |
| 23 | #include "flang/Optimizer/Builder/TemporaryStorage.h" |
| 24 | #include "flang/Optimizer/Builder/Todo.h" |
| 25 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
| 26 | #include "flang/Optimizer/HLFIR/Passes.h" |
| 27 | #include "mlir/Analysis/Liveness.h" |
| 28 | #include "mlir/IR/Dominance.h" |
| 29 | #include "mlir/IR/IRMapping.h" |
| 30 | #include "mlir/Transforms/DialectConversion.h" |
| 31 | #include "mlir/Transforms/RegionUtils.h" |
| 32 | #include "llvm/ADT/SmallSet.h" |
| 33 | #include "llvm/ADT/TypeSwitch.h" |
| 34 | #include "llvm/Support/Debug.h" |
| 35 | #include <unordered_set> |
| 36 | |
| 37 | namespace hlfir { |
| 38 | #define GEN_PASS_DEF_LOWERHLFIRORDEREDASSIGNMENTS |
| 39 | #include "flang/Optimizer/HLFIR/Passes.h.inc" |
| 40 | } // namespace hlfir |
| 41 | |
| 42 | #define DEBUG_TYPE "flang-ordered-assignment" |
| 43 | |
| 44 | // Test option only to test the scheduling part only (operations are erased |
| 45 | // without codegen). The only goal is to allow printing and testing the debug |
| 46 | // info. |
| 47 | static llvm::cl::opt<bool> dbgScheduleOnly( |
| 48 | "flang-dbg-order-assignment-schedule-only" , |
| 49 | llvm::cl::desc("Only run ordered assignment scheduling with no codegen" ), |
| 50 | llvm::cl::init(false)); |
| 51 | |
| 52 | namespace { |
| 53 | |
| 54 | /// Structure that represents a masked expression being lowered. Masked |
| 55 | /// expressions are any expressions inside an hlfir.where. As described in |
| 56 | /// Fortran 2018 section 10.2.3.2, the evaluation of the elemental parts of such |
| 57 | /// expressions must be masked, while the evaluation of none elemental parts |
| 58 | /// must not be masked. This structure analyzes the region evaluating the |
| 59 | /// expression and allows splitting the generation of the none elemental part |
| 60 | /// from the elemental part. |
| 61 | struct MaskedArrayExpr { |
| 62 | MaskedArrayExpr(mlir::Location loc, mlir::Region ®ion, |
| 63 | bool isOuterMaskExpr); |
| 64 | |
| 65 | /// Generate the none elemental part. Must be called outside of the |
| 66 | /// loops created for the WHERE construct. |
| 67 | void generateNoneElementalPart(fir::FirOpBuilder &builder, |
| 68 | mlir::IRMapping &mapper); |
| 69 | |
| 70 | /// Methods below can only be called once generateNoneElementalPart has been |
| 71 | /// called. |
| 72 | |
| 73 | /// Return the shape of the expression. |
| 74 | mlir::Value generateShape(fir::FirOpBuilder &builder, |
| 75 | mlir::IRMapping &mapper); |
| 76 | /// Return the value of an element value for this expression given the current |
| 77 | /// where loop indices. |
| 78 | mlir::Value generateElementalParts(fir::FirOpBuilder &builder, |
| 79 | mlir::ValueRange oneBasedIndices, |
| 80 | mlir::IRMapping &mapper); |
| 81 | /// Generate the cleanup for the none elemental parts, if any. This must be |
| 82 | /// called after the loops created for the WHERE construct. |
| 83 | void generateNoneElementalCleanupIfAny(fir::FirOpBuilder &builder, |
| 84 | mlir::IRMapping &mapper); |
| 85 | |
| 86 | /// Helper to clone the clean-ups of the masked expr region terminator. |
| 87 | /// This is called outside of the loops for the initial mask, and inside |
| 88 | /// the loops for the other masked expressions. |
| 89 | mlir::Operation *generateMaskedExprCleanUps(fir::FirOpBuilder &builder, |
| 90 | mlir::IRMapping &mapper); |
| 91 | |
| 92 | mlir::Location loc; |
| 93 | mlir::Region ®ion; |
| 94 | /// Set of operations that form the elemental parts of the |
| 95 | /// expression evaluation. These are the hlfir.elemental and |
| 96 | /// hlfir.elemental_addr that form the elemental tree producing |
| 97 | /// the expression value. hlfir.elemental that produce values |
| 98 | /// used inside transformational operations are not part of this set. |
| 99 | llvm::SmallSet<mlir::Operation *, 4> elementalParts{}; |
| 100 | /// Was generateNoneElementalPart called? |
| 101 | bool noneElementalPartWasGenerated = false; |
| 102 | /// Is this expression the mask expression of the outer where statement? |
| 103 | /// It is special because its evaluation is not masked by anything yet. |
| 104 | bool isOuterMaskExpr = false; |
| 105 | }; |
| 106 | } // namespace |
| 107 | |
| 108 | namespace { |
| 109 | /// Structure that visits an ordered assignment tree and generates code for |
| 110 | /// it according to a schedule. |
| 111 | class OrderedAssignmentRewriter { |
| 112 | public: |
| 113 | OrderedAssignmentRewriter(fir::FirOpBuilder &builder, |
| 114 | hlfir::OrderedAssignmentTreeOpInterface root) |
| 115 | : builder{builder}, root{root} {} |
| 116 | |
| 117 | /// Generate code for the current run of the schedule. |
| 118 | void lowerRun(hlfir::Run &run) { |
| 119 | currentRun = &run; |
| 120 | walk(root); |
| 121 | currentRun = nullptr; |
| 122 | assert(constructStack.empty() && "must exit constructs after a run" ); |
| 123 | mapper.clear(); |
| 124 | savedInCurrentRunBeforeUse.clear(); |
| 125 | } |
| 126 | |
| 127 | /// After all run have been lowered, clean-up all the temporary |
| 128 | /// storage that were created (do not call final routines). |
| 129 | void cleanupSavedEntities() { |
| 130 | for (auto &temp : savedEntities) |
| 131 | temp.second.destroy(root.getLoc(), builder); |
| 132 | } |
| 133 | |
| 134 | /// Lowered value for an expression, and the original hlfir.yield if any |
| 135 | /// clean-up needs to be cloned after usage. |
| 136 | using ValueAndCleanUp = std::pair<mlir::Value, std::optional<hlfir::YieldOp>>; |
| 137 | |
| 138 | private: |
| 139 | /// Walk the part of an order assignment tree node that needs |
| 140 | /// to be evaluated in the current run. |
| 141 | void walk(hlfir::OrderedAssignmentTreeOpInterface node); |
| 142 | |
| 143 | /// Generate code when entering a given ordered assignment node. |
| 144 | void pre(hlfir::ForallOp forallOp); |
| 145 | void pre(hlfir::ForallIndexOp); |
| 146 | void pre(hlfir::ForallMaskOp); |
| 147 | void pre(hlfir::WhereOp whereOp); |
| 148 | void pre(hlfir::ElseWhereOp elseWhereOp); |
| 149 | void pre(hlfir::RegionAssignOp); |
| 150 | |
| 151 | /// Generate code when leaving a given ordered assignment node. |
| 152 | void post(hlfir::ForallOp); |
| 153 | void post(hlfir::ForallMaskOp); |
| 154 | void post(hlfir::WhereOp); |
| 155 | void post(hlfir::ElseWhereOp); |
| 156 | /// Enter (and maybe create) the fir.if else block of an ElseWhereOp, |
| 157 | /// but do not generate the elswhere mask or the new fir.if. |
| 158 | void enterElsewhere(hlfir::ElseWhereOp); |
| 159 | |
| 160 | /// Are there any leaf region in the node that must be saved in the current |
| 161 | /// run? |
| 162 | bool mustSaveRegionIn( |
| 163 | hlfir::OrderedAssignmentTreeOpInterface node, |
| 164 | llvm::SmallVectorImpl<hlfir::SaveEntity> &saveEntities) const; |
| 165 | /// Should this node be evaluated in the current run? Saving a region in a |
| 166 | /// node does not imply the node needs to be evaluated. |
| 167 | bool |
| 168 | isRequiredInCurrentRun(hlfir::OrderedAssignmentTreeOpInterface node) const; |
| 169 | |
| 170 | /// Generate a scalar value yielded by an ordered assignment tree region. |
| 171 | /// If the value was not saved in a previous run, this clone the region |
| 172 | /// code, except the final yield, at the current execution point. |
| 173 | /// If the value was saved in a previous run, this fetches the saved value |
| 174 | /// from the temporary storage and returns the value. |
| 175 | /// Inside Forall, the value will be hoisted outside of the forall loops if |
| 176 | /// it does not depend on the forall indices. |
| 177 | /// An optional type can be provided to get a value from a specific type |
| 178 | /// (the cast will be hoisted if the computation is hoisted). |
| 179 | mlir::Value generateYieldedScalarValue( |
| 180 | mlir::Region ®ion, |
| 181 | std::optional<mlir::Type> castToType = std::nullopt); |
| 182 | |
| 183 | /// Generate an entity yielded by an ordered assignment tree region, and |
| 184 | /// optionally return the (uncloned) yield if there is any clean-up that |
| 185 | /// should be done after using the entity. Like, generateYieldedScalarValue, |
| 186 | /// this will return the saved value if the region was saved in a previous |
| 187 | /// run. |
| 188 | ValueAndCleanUp |
| 189 | generateYieldedEntity(mlir::Region ®ion, |
| 190 | std::optional<mlir::Type> castToType = std::nullopt); |
| 191 | |
| 192 | struct LhsValueAndCleanUp { |
| 193 | mlir::Value lhs; |
| 194 | std::optional<hlfir::YieldOp> elementalCleanup; |
| 195 | mlir::Region *nonElementalCleanup = nullptr; |
| 196 | std::optional<hlfir::LoopNest> vectorSubscriptLoopNest; |
| 197 | std::optional<mlir::Value> vectorSubscriptShape; |
| 198 | }; |
| 199 | |
| 200 | /// Generate the left-hand side. If the left-hand side is vector |
| 201 | /// subscripted (hlfir.elemental_addr), this will create a loop nest |
| 202 | /// (unless it was already created by a WHERE mask) and return the |
| 203 | /// element address. |
| 204 | LhsValueAndCleanUp |
| 205 | generateYieldedLHS(mlir::Location loc, mlir::Region &lhsRegion, |
| 206 | std::optional<hlfir::Entity> loweredRhs = std::nullopt); |
| 207 | |
| 208 | /// If \p maybeYield is present and has a clean-up, generate the clean-up |
| 209 | /// at the current insertion point (by cloning). |
| 210 | void generateCleanupIfAny(std::optional<hlfir::YieldOp> maybeYield); |
| 211 | void generateCleanupIfAny(mlir::Region *cleanupRegion); |
| 212 | |
| 213 | /// Generate a masked entity. This can only be called when whereLoopNest was |
| 214 | /// set (When an hlfir.where is being visited). |
| 215 | /// This method returns the scalar element (that may have been previously |
| 216 | /// saved) for the current indices inside the where loop. |
| 217 | mlir::Value generateMaskedEntity(mlir::Location loc, mlir::Region ®ion) { |
| 218 | MaskedArrayExpr maskedExpr(loc, region, /*isOuterMaskExpr=*/!whereLoopNest); |
| 219 | return generateMaskedEntity(maskedExpr); |
| 220 | } |
| 221 | mlir::Value generateMaskedEntity(MaskedArrayExpr &maskedExpr); |
| 222 | |
| 223 | /// Create a fir.if at the current position inside the where loop nest |
| 224 | /// given the element value of a mask. |
| 225 | void generateMaskIfOp(mlir::Value cdt); |
| 226 | |
| 227 | /// Save a value for subsequent runs. |
| 228 | void generateSaveEntity(hlfir::SaveEntity savedEntity, |
| 229 | bool willUseSavedEntityInSameRun); |
| 230 | /// Save a variable address instead of its value. |
| 231 | void saveNonVectorSubscriptedAddress(hlfir::SaveEntity savedEntity); |
| 232 | /// Save a LHS variable address instead of its value, handling the cases |
| 233 | /// where the LHS is vector subscripted. |
| 234 | void saveLeftHandSide(hlfir::SaveEntity savedEntity, |
| 235 | hlfir::RegionAssignOp regionAssignOp); |
| 236 | |
| 237 | /// Get a value if it was saved in this run or a previous run. Returns |
| 238 | /// nullopt if it has not been saved. |
| 239 | std::optional<ValueAndCleanUp> getIfSaved(mlir::Region ®ion); |
| 240 | |
| 241 | /// Generate code before the loop nest for the current run, if any. |
| 242 | void doBeforeLoopNest(const std::function<void()> &callback) { |
| 243 | if (constructStack.empty()) { |
| 244 | callback(); |
| 245 | return; |
| 246 | } |
| 247 | auto insertionPoint = builder.saveInsertionPoint(); |
| 248 | builder.setInsertionPoint(constructStack[0]); |
| 249 | callback(); |
| 250 | builder.restoreInsertionPoint(insertionPoint); |
| 251 | } |
| 252 | |
| 253 | /// Can the current loop nest iteration number be computed? For simplicity, |
| 254 | /// this is true if and only if all the bounds and steps of the fir.do_loop |
| 255 | /// nest dominates the outer loop. The argument is filled with the current |
| 256 | /// loop nest on success. |
| 257 | bool currentLoopNestIterationNumberCanBeComputed( |
| 258 | llvm::SmallVectorImpl<fir::DoLoopOp> &loopNest); |
| 259 | |
| 260 | template <typename T> |
| 261 | fir::factory::TemporaryStorage *insertSavedEntity(mlir::Region ®ion, |
| 262 | T &&temp) { |
| 263 | auto inserted = |
| 264 | savedEntities.insert(std::make_pair(®ion, std::forward<T>(temp))); |
| 265 | assert(inserted.second && "temp must have been emplaced" ); |
| 266 | return &inserted.first->second; |
| 267 | } |
| 268 | |
| 269 | /// Given a top-level hlfir.where, look for hlfir.exactly_once operations |
| 270 | /// inside it and see if any of the values live into hlfir.exactly_once |
| 271 | /// do not dominate hlfir.where. This may happen due to CSE reusing |
| 272 | /// results of operations from the region parent to hlfir.exactly_once. |
| 273 | /// Since we are going to clone the body of hlfir.exactly_once before |
| 274 | /// the top-level hlfir.where, such def-use will cause problems. |
| 275 | /// There are options how to resolve this in a different way, |
| 276 | /// e.g. making hlfir.exactly_once IsolatedFromAbove or making |
| 277 | /// it a region of hlfir.where and wiring the result(s) through |
| 278 | /// the block arguments. For the time being, this canonicalization |
| 279 | /// tries to undo the effects of CSE. |
| 280 | void canonicalizeExactlyOnceInsideWhere(hlfir::WhereOp whereOp); |
| 281 | |
| 282 | fir::FirOpBuilder &builder; |
| 283 | |
| 284 | /// Map containing the mapping between the original order assignment tree |
| 285 | /// operations and the operations that have been cloned in the current run. |
| 286 | /// It is reset between two runs. |
| 287 | mlir::IRMapping mapper; |
| 288 | /// Dominance info is used to determine if inner loop bounds are all computed |
| 289 | /// before outer loop for the current loop. It does not need to be reset |
| 290 | /// between runs. |
| 291 | mlir::DominanceInfo dominanceInfo; |
| 292 | /// Construct stack in the current run. This allows setting back the insertion |
| 293 | /// point correctly when leaving a node that requires a fir.do_loop or fir.if |
| 294 | /// operation. |
| 295 | llvm::SmallVector<mlir::Operation *> constructStack; |
| 296 | /// Current where loop nest, if any. |
| 297 | std::optional<hlfir::LoopNest> whereLoopNest; |
| 298 | |
| 299 | /// Map of temporary storage to keep track of saved entity once the run |
| 300 | /// that saves them has been lowered. It is kept in-between runs. |
| 301 | /// llvm::MapVector is used to guarantee deterministic order |
| 302 | /// of iterating through savedEntities (e.g. for generating |
| 303 | /// destruction code for the temporary storages). |
| 304 | llvm::MapVector<mlir::Region *, fir::factory::TemporaryStorage> savedEntities; |
| 305 | /// Map holding the values that were saved in the current run and that also |
| 306 | /// need to be used (because their construct will be visited). It is reset |
| 307 | /// after each run. It avoids having to store and fetch in the temporary |
| 308 | /// during the same run, which would require the temporary to have different |
| 309 | /// fetching and storing counters. |
| 310 | llvm::DenseMap<mlir::Region *, ValueAndCleanUp> savedInCurrentRunBeforeUse; |
| 311 | |
| 312 | /// Root of the order assignment tree being lowered. |
| 313 | hlfir::OrderedAssignmentTreeOpInterface root; |
| 314 | /// Pointer to the current run of the schedule being lowered. |
| 315 | hlfir::Run *currentRun = nullptr; |
| 316 | |
| 317 | /// When allocating temporary storage inlined, indicate if the storage should |
| 318 | /// be heap or stack allocated. Temporary allocated with the runtime are heap |
| 319 | /// allocated by the runtime. |
| 320 | bool allocateOnHeap = true; |
| 321 | }; |
| 322 | } // namespace |
| 323 | |
| 324 | void OrderedAssignmentRewriter::walk( |
| 325 | hlfir::OrderedAssignmentTreeOpInterface node) { |
| 326 | bool mustVisit = |
| 327 | isRequiredInCurrentRun(node) || mlir::isa<hlfir::ForallIndexOp>(node); |
| 328 | llvm::SmallVector<hlfir::SaveEntity> saveEntities; |
| 329 | mlir::Operation *nodeOp = node.getOperation(); |
| 330 | if (mustSaveRegionIn(node, saveEntities)) { |
| 331 | mlir::IRRewriter::InsertPoint insertionPoint; |
| 332 | if (auto elseWhereOp = mlir::dyn_cast<hlfir::ElseWhereOp>(nodeOp)) { |
| 333 | // ElseWhere mask to save must be evaluated inside the fir.if else |
| 334 | // for the previous where/elsewehere (its evaluation must be |
| 335 | // masked by the "pending control mask"). |
| 336 | insertionPoint = builder.saveInsertionPoint(); |
| 337 | enterElsewhere(elseWhereOp); |
| 338 | } |
| 339 | for (hlfir::SaveEntity saveEntity : saveEntities) |
| 340 | generateSaveEntity(savedEntity: saveEntity, willUseSavedEntityInSameRun: mustVisit); |
| 341 | if (insertionPoint.isSet()) |
| 342 | builder.restoreInsertionPoint(insertionPoint); |
| 343 | } |
| 344 | if (mustVisit) { |
| 345 | llvm::TypeSwitch<mlir::Operation *, void>(nodeOp) |
| 346 | .Case<hlfir::ForallOp, hlfir::ForallIndexOp, hlfir::ForallMaskOp, |
| 347 | hlfir::RegionAssignOp, hlfir::WhereOp, hlfir::ElseWhereOp>( |
| 348 | [&](auto concreteOp) { pre(concreteOp); }) |
| 349 | .Default([](auto) {}); |
| 350 | if (auto *body = node.getSubTreeRegion()) { |
| 351 | for (mlir::Operation &op : body->getOps()) |
| 352 | if (auto subNode = |
| 353 | mlir::dyn_cast<hlfir::OrderedAssignmentTreeOpInterface>(op)) |
| 354 | walk(subNode); |
| 355 | llvm::TypeSwitch<mlir::Operation *, void>(nodeOp) |
| 356 | .Case<hlfir::ForallOp, hlfir::ForallMaskOp, hlfir::WhereOp, |
| 357 | hlfir::ElseWhereOp>([&](auto concreteOp) { post(concreteOp); }) |
| 358 | .Default([](auto) {}); |
| 359 | } |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | void OrderedAssignmentRewriter::pre(hlfir::ForallOp forallOp) { |
| 364 | /// Create a fir.do_loop given the hlfir.forall control values. |
| 365 | mlir::Type idxTy = builder.getIndexType(); |
| 366 | mlir::Location loc = forallOp.getLoc(); |
| 367 | mlir::Value lb = generateYieldedScalarValue(forallOp.getLbRegion(), idxTy); |
| 368 | mlir::Value ub = generateYieldedScalarValue(forallOp.getUbRegion(), idxTy); |
| 369 | mlir::Value step; |
| 370 | if (forallOp.getStepRegion().empty()) { |
| 371 | auto insertionPoint = builder.saveInsertionPoint(); |
| 372 | if (!constructStack.empty()) |
| 373 | builder.setInsertionPoint(constructStack[0]); |
| 374 | step = builder.createIntegerConstant(loc, idxTy, 1); |
| 375 | if (!constructStack.empty()) |
| 376 | builder.restoreInsertionPoint(insertionPoint); |
| 377 | } else { |
| 378 | step = generateYieldedScalarValue(forallOp.getStepRegion(), idxTy); |
| 379 | } |
| 380 | auto doLoop = builder.create<fir::DoLoopOp>(loc, lb, ub, step); |
| 381 | builder.setInsertionPointToStart(doLoop.getBody()); |
| 382 | mlir::Value oldIndex = forallOp.getForallIndexValue(); |
| 383 | mlir::Value newIndex = |
| 384 | builder.createConvert(loc, oldIndex.getType(), doLoop.getInductionVar()); |
| 385 | mapper.map(oldIndex, newIndex); |
| 386 | constructStack.push_back(doLoop); |
| 387 | } |
| 388 | |
| 389 | void OrderedAssignmentRewriter::post(hlfir::ForallOp) { |
| 390 | assert(!constructStack.empty() && "must contain a loop" ); |
| 391 | builder.setInsertionPointAfter(constructStack.pop_back_val()); |
| 392 | } |
| 393 | |
| 394 | void OrderedAssignmentRewriter::pre(hlfir::ForallIndexOp forallIndexOp) { |
| 395 | mlir::Location loc = forallIndexOp.getLoc(); |
| 396 | mlir::Type intTy = fir::unwrapRefType(forallIndexOp.getType()); |
| 397 | mlir::Value indexVar = |
| 398 | builder.createTemporary(loc, intTy, forallIndexOp.getName()); |
| 399 | mlir::Value newVal = mapper.lookupOrDefault(forallIndexOp.getIndex()); |
| 400 | builder.createStoreWithConvert(loc, newVal, indexVar); |
| 401 | mapper.map(forallIndexOp, indexVar); |
| 402 | } |
| 403 | |
| 404 | void OrderedAssignmentRewriter::pre(hlfir::ForallMaskOp forallMaskOp) { |
| 405 | mlir::Location loc = forallMaskOp.getLoc(); |
| 406 | mlir::Value mask = generateYieldedScalarValue(forallMaskOp.getMaskRegion(), |
| 407 | builder.getI1Type()); |
| 408 | auto ifOp = builder.create<fir::IfOp>(loc, std::nullopt, mask, false); |
| 409 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 410 | constructStack.push_back(ifOp); |
| 411 | } |
| 412 | |
| 413 | void OrderedAssignmentRewriter::post(hlfir::ForallMaskOp forallMaskOp) { |
| 414 | assert(!constructStack.empty() && "must contain an ifop" ); |
| 415 | builder.setInsertionPointAfter(constructStack.pop_back_val()); |
| 416 | } |
| 417 | |
| 418 | /// Convert an entity to the type of a given mold. |
| 419 | /// This is intended to help with cases where hlfir entity is a value while |
| 420 | /// it must be used as a variable or vice-versa. These mismatches may occur |
| 421 | /// between the type of user defined assignment block arguments and the actual |
| 422 | /// argument that was lowered for them. The actual may be an in-memory copy |
| 423 | /// while the block argument expects an hlfir.expr. |
| 424 | static hlfir::Entity |
| 425 | convertToMoldType(mlir::Location loc, fir::FirOpBuilder &builder, |
| 426 | hlfir::Entity input, hlfir::Entity mold, |
| 427 | llvm::SmallVectorImpl<hlfir::CleanupFunction> &cleanups) { |
| 428 | if (input.getType() == mold.getType()) |
| 429 | return input; |
| 430 | fir::FirOpBuilder *b = &builder; |
| 431 | if (input.isVariable() && mold.isValue()) { |
| 432 | if (fir::isa_trivial(mold.getType())) { |
| 433 | // fir.ref<T> to T. |
| 434 | mlir::Value load = builder.create<fir::LoadOp>(loc, input); |
| 435 | return hlfir::Entity{builder.createConvert(loc, mold.getType(), load)}; |
| 436 | } |
| 437 | // fir.ref<T> to hlfir.expr<T>. |
| 438 | mlir::Value asExpr = builder.create<hlfir::AsExprOp>(loc, input); |
| 439 | if (asExpr.getType() != mold.getType()) |
| 440 | TODO(loc, "hlfir.expr conversion" ); |
| 441 | cleanups.emplace_back([=]() { b->create<hlfir::DestroyOp>(loc, asExpr); }); |
| 442 | return hlfir::Entity{asExpr}; |
| 443 | } |
| 444 | if (input.isValue() && mold.isVariable()) { |
| 445 | // T to fir.ref<T>, or hlfir.expr<T> to fir.ref<T>. |
| 446 | hlfir::AssociateOp associate = hlfir::genAssociateExpr( |
| 447 | loc, builder, input, mold.getFortranElementType(), ".tmp.val2ref" ); |
| 448 | cleanups.emplace_back( |
| 449 | [=]() { b->create<hlfir::EndAssociateOp>(loc, associate); }); |
| 450 | return hlfir::Entity{associate.getBase()}; |
| 451 | } |
| 452 | // Variable to Variable mismatch (e.g., fir.heap<T> vs fir.ref<T>), or value |
| 453 | // to Value mismatch (e.g. i1 vs fir.logical<4>). |
| 454 | if (mlir::isa<fir::BaseBoxType>(mold.getType()) && |
| 455 | !mlir::isa<fir::BaseBoxType>(input.getType())) { |
| 456 | // An entity may have have been saved without descriptor while the original |
| 457 | // value had a descriptor (e.g., it was not contiguous). |
| 458 | auto emboxed = hlfir::convertToBox(loc, builder, input, mold.getType()); |
| 459 | assert(!emboxed.second && "temp should already be in memory" ); |
| 460 | input = hlfir::Entity{fir::getBase(emboxed.first)}; |
| 461 | } |
| 462 | return hlfir::Entity{builder.createConvert(loc, mold.getType(), input)}; |
| 463 | } |
| 464 | |
| 465 | void OrderedAssignmentRewriter::pre(hlfir::RegionAssignOp regionAssignOp) { |
| 466 | mlir::Location loc = regionAssignOp.getLoc(); |
| 467 | if (regionAssignOp.isPointerAssignment()) { |
| 468 | auto [lhsValue, oldLhsYield] = |
| 469 | generateYieldedEntity(regionAssignOp.getLhsRegion()); |
| 470 | auto [rhsValue, oldRhsYield] = |
| 471 | generateYieldedEntity(regionAssignOp.getRhsRegion()); |
| 472 | builder.createStoreWithConvert(loc, rhsValue, lhsValue); |
| 473 | generateCleanupIfAny(oldLhsYield); |
| 474 | generateCleanupIfAny(oldRhsYield); |
| 475 | return; |
| 476 | } |
| 477 | auto [rhsValue, oldRhsYield] = |
| 478 | generateYieldedEntity(regionAssignOp.getRhsRegion()); |
| 479 | hlfir::Entity rhsEntity{rhsValue}; |
| 480 | LhsValueAndCleanUp loweredLhs = |
| 481 | generateYieldedLHS(loc, regionAssignOp.getLhsRegion(), rhsEntity); |
| 482 | hlfir::Entity lhsEntity{loweredLhs.lhs}; |
| 483 | if (loweredLhs.vectorSubscriptLoopNest) |
| 484 | rhsEntity = hlfir::getElementAt( |
| 485 | loc, builder, rhsEntity, |
| 486 | loweredLhs.vectorSubscriptLoopNest->oneBasedIndices); |
| 487 | if (!regionAssignOp.getUserDefinedAssignment().empty()) { |
| 488 | hlfir::Entity userAssignLhs{regionAssignOp.getUserAssignmentLhs()}; |
| 489 | hlfir::Entity userAssignRhs{regionAssignOp.getUserAssignmentRhs()}; |
| 490 | std::optional<hlfir::LoopNest> elementalLoopNest; |
| 491 | if (lhsEntity.isArray() && userAssignLhs.isScalar()) { |
| 492 | // Elemental assignment with array argument (the RHS cannot be an array |
| 493 | // if the LHS is not). |
| 494 | mlir::Value shape = hlfir::genShape(loc, builder, lhsEntity); |
| 495 | elementalLoopNest = hlfir::genLoopNest(loc, builder, shape); |
| 496 | builder.setInsertionPointToStart(elementalLoopNest->body); |
| 497 | lhsEntity = hlfir::getElementAt(loc, builder, lhsEntity, |
| 498 | elementalLoopNest->oneBasedIndices); |
| 499 | rhsEntity = hlfir::getElementAt(loc, builder, rhsEntity, |
| 500 | elementalLoopNest->oneBasedIndices); |
| 501 | } |
| 502 | |
| 503 | llvm::SmallVector<hlfir::CleanupFunction, 2> argConversionCleanups; |
| 504 | lhsEntity = convertToMoldType(loc, builder, lhsEntity, userAssignLhs, |
| 505 | argConversionCleanups); |
| 506 | rhsEntity = convertToMoldType(loc, builder, rhsEntity, userAssignRhs, |
| 507 | argConversionCleanups); |
| 508 | mapper.map(userAssignLhs, lhsEntity); |
| 509 | mapper.map(userAssignRhs, rhsEntity); |
| 510 | for (auto &op : |
| 511 | regionAssignOp.getUserDefinedAssignment().front().without_terminator()) |
| 512 | (void)builder.clone(op, mapper); |
| 513 | for (auto &cleanupConversion : argConversionCleanups) |
| 514 | cleanupConversion(); |
| 515 | if (elementalLoopNest) |
| 516 | builder.setInsertionPointAfter(elementalLoopNest->outerOp); |
| 517 | } else { |
| 518 | // TODO: preserve allocatable assignment aspects for forall once |
| 519 | // they are conveyed in hlfir.region_assign. |
| 520 | builder.create<hlfir::AssignOp>(loc, rhsEntity, lhsEntity); |
| 521 | } |
| 522 | generateCleanupIfAny(loweredLhs.elementalCleanup); |
| 523 | if (loweredLhs.vectorSubscriptLoopNest) |
| 524 | builder.setInsertionPointAfter(loweredLhs.vectorSubscriptLoopNest->outerOp); |
| 525 | generateCleanupIfAny(oldRhsYield); |
| 526 | generateCleanupIfAny(loweredLhs.nonElementalCleanup); |
| 527 | } |
| 528 | |
| 529 | void OrderedAssignmentRewriter::generateMaskIfOp(mlir::Value cdt) { |
| 530 | mlir::Location loc = cdt.getLoc(); |
| 531 | cdt = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{cdt}); |
| 532 | cdt = builder.createConvert(loc, builder.getI1Type(), cdt); |
| 533 | auto ifOp = builder.create<fir::IfOp>(cdt.getLoc(), std::nullopt, cdt, |
| 534 | /*withElseRegion=*/false); |
| 535 | constructStack.push_back(ifOp.getOperation()); |
| 536 | builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); |
| 537 | } |
| 538 | |
| 539 | void OrderedAssignmentRewriter::pre(hlfir::WhereOp whereOp) { |
| 540 | mlir::Location loc = whereOp.getLoc(); |
| 541 | if (!whereLoopNest) { |
| 542 | // Make sure liveness information is valid for the inner hlfir.exactly_once |
| 543 | // operations, and their bodies can be cloned before the top-level |
| 544 | // hlfir.where. |
| 545 | canonicalizeExactlyOnceInsideWhere(whereOp); |
| 546 | // This is the top-level WHERE. Start a loop nest iterating on the shape of |
| 547 | // the where mask. |
| 548 | if (auto maybeSaved = getIfSaved(whereOp.getMaskRegion())) { |
| 549 | // Use the saved value to get the shape and condition element. |
| 550 | hlfir::Entity savedMask{maybeSaved->first}; |
| 551 | mlir::Value shape = hlfir::genShape(loc, builder, savedMask); |
| 552 | whereLoopNest = hlfir::genLoopNest(loc, builder, shape); |
| 553 | constructStack.push_back(whereLoopNest->outerOp); |
| 554 | builder.setInsertionPointToStart(whereLoopNest->body); |
| 555 | mlir::Value cdt = hlfir::getElementAt(loc, builder, savedMask, |
| 556 | whereLoopNest->oneBasedIndices); |
| 557 | generateMaskIfOp(cdt); |
| 558 | if (maybeSaved->second) { |
| 559 | // If this is the same run as the one that saved the value, the clean-up |
| 560 | // was left-over to be done now. |
| 561 | auto insertionPoint = builder.saveInsertionPoint(); |
| 562 | builder.setInsertionPointAfter(whereLoopNest->outerOp); |
| 563 | generateCleanupIfAny(maybeSaved->second); |
| 564 | builder.restoreInsertionPoint(insertionPoint); |
| 565 | } |
| 566 | return; |
| 567 | } |
| 568 | // The mask was not evaluated yet or can be safely re-evaluated. |
| 569 | MaskedArrayExpr mask(loc, whereOp.getMaskRegion(), |
| 570 | /*isOuterMaskExpr=*/true); |
| 571 | mask.generateNoneElementalPart(builder, mapper); |
| 572 | mlir::Value shape = mask.generateShape(builder, mapper); |
| 573 | whereLoopNest = hlfir::genLoopNest(loc, builder, shape); |
| 574 | constructStack.push_back(whereLoopNest->outerOp); |
| 575 | builder.setInsertionPointToStart(whereLoopNest->body); |
| 576 | mlir::Value cdt = generateMaskedEntity(mask); |
| 577 | generateMaskIfOp(cdt); |
| 578 | return; |
| 579 | } |
| 580 | // Where Loops have been already created by a parent WHERE. |
| 581 | // Generate a fir.if with the value of the current element of the mask |
| 582 | // inside the loops. The case where the mask was saved is handled in the |
| 583 | // generateYieldedScalarValue call. |
| 584 | mlir::Value cdt = generateYieldedScalarValue(whereOp.getMaskRegion()); |
| 585 | generateMaskIfOp(cdt); |
| 586 | } |
| 587 | |
| 588 | void OrderedAssignmentRewriter::post(hlfir::WhereOp whereOp) { |
| 589 | assert(!constructStack.empty() && "must contain a fir.if" ); |
| 590 | builder.setInsertionPointAfter(constructStack.pop_back_val()); |
| 591 | // If all where/elsewhere fir.if have been popped, this is the outer whereOp, |
| 592 | // and the where loop must be exited. |
| 593 | assert(!constructStack.empty() && "must contain a fir.do_loop or fir.if" ); |
| 594 | if (mlir::isa<fir::DoLoopOp>(constructStack.back())) { |
| 595 | builder.setInsertionPointAfter(constructStack.pop_back_val()); |
| 596 | whereLoopNest.reset(); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | void OrderedAssignmentRewriter::enterElsewhere(hlfir::ElseWhereOp elseWhereOp) { |
| 601 | // Create an "else" region for the current where/elsewhere fir.if. |
| 602 | auto ifOp = mlir::dyn_cast<fir::IfOp>(constructStack.back()); |
| 603 | assert(ifOp && "must be an if" ); |
| 604 | if (ifOp.getElseRegion().empty()) { |
| 605 | mlir::Location loc = elseWhereOp.getLoc(); |
| 606 | builder.createBlock(&ifOp.getElseRegion()); |
| 607 | auto end = builder.create<fir::ResultOp>(loc); |
| 608 | builder.setInsertionPoint(end); |
| 609 | } else { |
| 610 | builder.setInsertionPoint(&ifOp.getElseRegion().back().back()); |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | void OrderedAssignmentRewriter::pre(hlfir::ElseWhereOp elseWhereOp) { |
| 615 | enterElsewhere(elseWhereOp); |
| 616 | if (elseWhereOp.getMaskRegion().empty()) |
| 617 | return; |
| 618 | // Create new nested fir.if with elsewhere mask if any. |
| 619 | mlir::Value cdt = generateYieldedScalarValue(elseWhereOp.getMaskRegion()); |
| 620 | generateMaskIfOp(cdt); |
| 621 | } |
| 622 | |
| 623 | void OrderedAssignmentRewriter::post(hlfir::ElseWhereOp elseWhereOp) { |
| 624 | // Exit ifOp that was created for the elseWhereOp mask, if any. |
| 625 | if (elseWhereOp.getMaskRegion().empty()) |
| 626 | return; |
| 627 | assert(!constructStack.empty() && "must contain a fir.if" ); |
| 628 | builder.setInsertionPointAfter(constructStack.pop_back_val()); |
| 629 | } |
| 630 | |
| 631 | /// Is this value a Forall index? |
| 632 | /// Forall index are block arguments of hlfir.forall body, or the result |
| 633 | /// of hlfir.forall_index. |
| 634 | static bool isForallIndex(mlir::Value value) { |
| 635 | if (auto blockArg = mlir::dyn_cast<mlir::BlockArgument>(value)) { |
| 636 | if (mlir::Block *block = blockArg.getOwner()) |
| 637 | return block->isEntryBlock() && |
| 638 | mlir::isa_and_nonnull<hlfir::ForallOp>(block->getParentOp()); |
| 639 | return false; |
| 640 | } |
| 641 | return value.getDefiningOp<hlfir::ForallIndexOp>(); |
| 642 | } |
| 643 | |
| 644 | static OrderedAssignmentRewriter::ValueAndCleanUp |
| 645 | castIfNeeded(mlir::Location loc, fir::FirOpBuilder &builder, |
| 646 | OrderedAssignmentRewriter::ValueAndCleanUp valueAndCleanUp, |
| 647 | std::optional<mlir::Type> castToType) { |
| 648 | if (!castToType.has_value()) |
| 649 | return valueAndCleanUp; |
| 650 | mlir::Value cast = |
| 651 | builder.createConvert(loc, *castToType, valueAndCleanUp.first); |
| 652 | return {cast, valueAndCleanUp.second}; |
| 653 | } |
| 654 | |
| 655 | std::optional<OrderedAssignmentRewriter::ValueAndCleanUp> |
| 656 | OrderedAssignmentRewriter::getIfSaved(mlir::Region ®ion) { |
| 657 | mlir::Location loc = region.getParentOp()->getLoc(); |
| 658 | // If the region was saved in the same run, use the value that was evaluated |
| 659 | // instead of fetching the temp, and do clean-up, if any, that were delayed. |
| 660 | // This is done to avoid requiring the temporary stack to have different |
| 661 | // fetching and storing counters, and also because it produces slightly better |
| 662 | // code. |
| 663 | if (auto savedInSameRun = savedInCurrentRunBeforeUse.find(®ion); |
| 664 | savedInSameRun != savedInCurrentRunBeforeUse.end()) |
| 665 | return savedInSameRun->second; |
| 666 | // If the region was saved in a previous run, fetch the saved value. |
| 667 | if (auto temp = savedEntities.find(®ion); temp != savedEntities.end()) { |
| 668 | doBeforeLoopNest(callback: [&]() { temp->second.resetFetchPosition(loc, builder); }); |
| 669 | return ValueAndCleanUp{temp->second.fetch(loc, builder), std::nullopt}; |
| 670 | } |
| 671 | return std::nullopt; |
| 672 | } |
| 673 | |
| 674 | static hlfir::YieldOp getYield(mlir::Region ®ion) { |
| 675 | auto yield = mlir::dyn_cast_or_null<hlfir::YieldOp>( |
| 676 | region.back().getOperations().back()); |
| 677 | assert(yield && "region computing entities must end with a YieldOp" ); |
| 678 | return yield; |
| 679 | } |
| 680 | |
| 681 | OrderedAssignmentRewriter::ValueAndCleanUp |
| 682 | OrderedAssignmentRewriter::generateYieldedEntity( |
| 683 | mlir::Region ®ion, std::optional<mlir::Type> castToType) { |
| 684 | mlir::Location loc = region.getParentOp()->getLoc(); |
| 685 | if (auto maybeValueAndCleanUp = getIfSaved(region)) |
| 686 | return castIfNeeded(loc, builder, *maybeValueAndCleanUp, castToType); |
| 687 | // Otherwise, evaluate the region now. |
| 688 | |
| 689 | // Masked expression must not evaluate the elemental parts that are masked, |
| 690 | // they have custom code generation. |
| 691 | if (whereLoopNest.has_value()) { |
| 692 | mlir::Value maskedValue = generateMaskedEntity(loc, region); |
| 693 | return castIfNeeded(loc, builder, {maskedValue, std::nullopt}, castToType); |
| 694 | } |
| 695 | |
| 696 | auto oldYield = getYield(region); |
| 697 | // Inside Forall, scalars that do not depend on forall indices can be hoisted |
| 698 | // here because their evaluation is required to only call pure procedures, and |
| 699 | // if they depend on a variable previously assigned to in a forall assignment, |
| 700 | // this assignment must have been scheduled in a previous run. Hoisting of |
| 701 | // scalars is done here to help creating simple temporary storage if needed. |
| 702 | // Inner forall bounds can often be hoisted, and this allows computing the |
| 703 | // total number of iterations to create temporary storages. |
| 704 | bool hoistComputation = false; |
| 705 | if (fir::isa_trivial(oldYield.getEntity().getType()) && |
| 706 | !constructStack.empty()) { |
| 707 | mlir::WalkResult walkResult = |
| 708 | region.walk([&](mlir::Operation *op) -> mlir::WalkResult { |
| 709 | if (llvm::any_of(op->getOperands(), [](mlir::Value value) { |
| 710 | return isForallIndex(value); |
| 711 | })) |
| 712 | return mlir::WalkResult::interrupt(); |
| 713 | return mlir::WalkResult::advance(); |
| 714 | }); |
| 715 | hoistComputation = !walkResult.wasInterrupted(); |
| 716 | } |
| 717 | auto insertionPoint = builder.saveInsertionPoint(); |
| 718 | if (hoistComputation) |
| 719 | builder.setInsertionPoint(constructStack[0]); |
| 720 | |
| 721 | // Clone all operations except the final hlfir.yield. |
| 722 | assert(region.hasOneBlock() && "region must contain one block" ); |
| 723 | for (auto &op : region.back().without_terminator()) |
| 724 | (void)builder.clone(op, mapper); |
| 725 | // Get the value for the yielded entity, it may be the result of an operation |
| 726 | // that was cloned, or it may be the same as the previous value if the yield |
| 727 | // operand was created before the ordered assignment tree. |
| 728 | mlir::Value newEntity = mapper.lookupOrDefault(oldYield.getEntity()); |
| 729 | if (castToType.has_value()) |
| 730 | newEntity = |
| 731 | builder.createConvert(newEntity.getLoc(), *castToType, newEntity); |
| 732 | |
| 733 | if (hoistComputation) { |
| 734 | // Hoisted trivial scalars clean-up can be done right away, the value is |
| 735 | // in registers. |
| 736 | generateCleanupIfAny(oldYield); |
| 737 | builder.restoreInsertionPoint(insertionPoint); |
| 738 | return {newEntity, std::nullopt}; |
| 739 | } |
| 740 | if (oldYield.getCleanup().empty()) |
| 741 | return {newEntity, std::nullopt}; |
| 742 | return {newEntity, oldYield}; |
| 743 | } |
| 744 | |
| 745 | mlir::Value OrderedAssignmentRewriter::generateYieldedScalarValue( |
| 746 | mlir::Region ®ion, std::optional<mlir::Type> castToType) { |
| 747 | mlir::Location loc = region.getParentOp()->getLoc(); |
| 748 | auto [value, maybeYield] = generateYieldedEntity(region, castToType); |
| 749 | value = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{value}); |
| 750 | assert(fir::isa_trivial(value.getType()) && "not a trivial scalar value" ); |
| 751 | generateCleanupIfAny(maybeYield); |
| 752 | return value; |
| 753 | } |
| 754 | |
| 755 | OrderedAssignmentRewriter::LhsValueAndCleanUp |
| 756 | OrderedAssignmentRewriter::generateYieldedLHS( |
| 757 | mlir::Location loc, mlir::Region &lhsRegion, |
| 758 | std::optional<hlfir::Entity> loweredRhs) { |
| 759 | LhsValueAndCleanUp loweredLhs; |
| 760 | hlfir::ElementalAddrOp elementalAddrLhs = |
| 761 | mlir::dyn_cast<hlfir::ElementalAddrOp>(lhsRegion.back().back()); |
| 762 | if (auto temp = savedEntities.find(&lhsRegion); temp != savedEntities.end()) { |
| 763 | // The LHS address was computed and saved in a previous run. Fetch it. |
| 764 | doBeforeLoopNest(callback: [&]() { temp->second.resetFetchPosition(loc, builder); }); |
| 765 | if (elementalAddrLhs && !whereLoopNest) { |
| 766 | // Vector subscripted designator address are saved element by element. |
| 767 | // If no "elemental" loops have been created yet, the shape of the |
| 768 | // RHS, if it is an array can be used, or the shape of the vector |
| 769 | // subscripted designator must be retrieved to generate the "elemental" |
| 770 | // loop nest. |
| 771 | if (loweredRhs && loweredRhs->isArray()) { |
| 772 | // The RHS shape can be used to create the elemental loops and avoid |
| 773 | // saving the LHS shape. |
| 774 | loweredLhs.vectorSubscriptShape = |
| 775 | hlfir::genShape(loc, builder, *loweredRhs); |
| 776 | } else { |
| 777 | // If the shape cannot be retrieved from the RHS, it must have been |
| 778 | // saved. Get it from the temporary. |
| 779 | auto &vectorTmp = |
| 780 | temp->second.cast<fir::factory::AnyVectorSubscriptStack>(); |
| 781 | loweredLhs.vectorSubscriptShape = vectorTmp.fetchShape(loc, builder); |
| 782 | } |
| 783 | loweredLhs.vectorSubscriptLoopNest = hlfir::genLoopNest( |
| 784 | loc, builder, loweredLhs.vectorSubscriptShape.value()); |
| 785 | builder.setInsertionPointToStart( |
| 786 | loweredLhs.vectorSubscriptLoopNest->body); |
| 787 | } |
| 788 | loweredLhs.lhs = temp->second.fetch(loc, builder); |
| 789 | return loweredLhs; |
| 790 | } |
| 791 | // The LHS has not yet been evaluated and saved. Evaluate it now. |
| 792 | if (elementalAddrLhs && !whereLoopNest) { |
| 793 | // This is a vector subscripted entity. The address of elements must |
| 794 | // be returned. If no "elemental" loops have been created for a WHERE, |
| 795 | // create them now based on the vector subscripted designator shape. |
| 796 | for (auto &op : lhsRegion.front().without_terminator()) |
| 797 | (void)builder.clone(op, mapper); |
| 798 | loweredLhs.vectorSubscriptShape = |
| 799 | mapper.lookupOrDefault(elementalAddrLhs.getShape()); |
| 800 | loweredLhs.vectorSubscriptLoopNest = |
| 801 | hlfir::genLoopNest(loc, builder, *loweredLhs.vectorSubscriptShape, |
| 802 | !elementalAddrLhs.isOrdered()); |
| 803 | builder.setInsertionPointToStart(loweredLhs.vectorSubscriptLoopNest->body); |
| 804 | mapper.map(elementalAddrLhs.getIndices(), |
| 805 | loweredLhs.vectorSubscriptLoopNest->oneBasedIndices); |
| 806 | for (auto &op : elementalAddrLhs.getBody().front().without_terminator()) |
| 807 | (void)builder.clone(op, mapper); |
| 808 | loweredLhs.elementalCleanup = elementalAddrLhs.getYieldOp(); |
| 809 | loweredLhs.lhs = |
| 810 | mapper.lookupOrDefault(loweredLhs.elementalCleanup->getEntity()); |
| 811 | } else { |
| 812 | // This is a designator without vector subscripts. Generate it as |
| 813 | // it is done for other entities. |
| 814 | auto [lhs, yield] = generateYieldedEntity(lhsRegion); |
| 815 | loweredLhs.lhs = lhs; |
| 816 | if (yield && !yield->getCleanup().empty()) |
| 817 | loweredLhs.nonElementalCleanup = &yield->getCleanup(); |
| 818 | } |
| 819 | return loweredLhs; |
| 820 | } |
| 821 | |
| 822 | mlir::Value |
| 823 | OrderedAssignmentRewriter::generateMaskedEntity(MaskedArrayExpr &maskedExpr) { |
| 824 | assert(whereLoopNest.has_value() && "must be inside WHERE loop nest" ); |
| 825 | auto insertionPoint = builder.saveInsertionPoint(); |
| 826 | if (!maskedExpr.noneElementalPartWasGenerated) { |
| 827 | // Generate none elemental part before the where loops (but inside the |
| 828 | // current forall loops if any). |
| 829 | builder.setInsertionPoint(whereLoopNest->outerOp); |
| 830 | maskedExpr.generateNoneElementalPart(builder, mapper); |
| 831 | } |
| 832 | // Generate the none elemental part cleanup after the where loops. |
| 833 | builder.setInsertionPointAfter(whereLoopNest->outerOp); |
| 834 | maskedExpr.generateNoneElementalCleanupIfAny(builder, mapper); |
| 835 | // Generate the value of the current element for the masked expression |
| 836 | // at the current insertion point (inside the where loops, and any fir.if |
| 837 | // generated for previous masks). |
| 838 | builder.restoreInsertionPoint(insertionPoint); |
| 839 | mlir::Value scalar = maskedExpr.generateElementalParts( |
| 840 | builder, whereLoopNest->oneBasedIndices, mapper); |
| 841 | /// Generate cleanups for the elemental parts inside the loops (setting the |
| 842 | /// location so that the assignment will be generated before the cleanups). |
| 843 | if (!maskedExpr.isOuterMaskExpr) |
| 844 | if (mlir::Operation *firstCleanup = |
| 845 | maskedExpr.generateMaskedExprCleanUps(builder, mapper)) |
| 846 | builder.setInsertionPoint(firstCleanup); |
| 847 | return scalar; |
| 848 | } |
| 849 | |
| 850 | void OrderedAssignmentRewriter::generateCleanupIfAny( |
| 851 | std::optional<hlfir::YieldOp> maybeYield) { |
| 852 | if (maybeYield.has_value()) |
| 853 | generateCleanupIfAny(&maybeYield->getCleanup()); |
| 854 | } |
| 855 | void OrderedAssignmentRewriter::generateCleanupIfAny( |
| 856 | mlir::Region *cleanupRegion) { |
| 857 | if (cleanupRegion && !cleanupRegion->empty()) { |
| 858 | assert(cleanupRegion->hasOneBlock() && "region must contain one block" ); |
| 859 | for (auto &op : cleanupRegion->back().without_terminator()) |
| 860 | builder.clone(op, mapper); |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | bool OrderedAssignmentRewriter::mustSaveRegionIn( |
| 865 | hlfir::OrderedAssignmentTreeOpInterface node, |
| 866 | llvm::SmallVectorImpl<hlfir::SaveEntity> &saveEntities) const { |
| 867 | for (auto &action : currentRun->actions) |
| 868 | if (hlfir::SaveEntity *savedEntity = |
| 869 | std::get_if<hlfir::SaveEntity>(&action)) |
| 870 | if (node.getOperation() == savedEntity->yieldRegion->getParentOp()) |
| 871 | saveEntities.push_back(*savedEntity); |
| 872 | return !saveEntities.empty(); |
| 873 | } |
| 874 | |
| 875 | bool OrderedAssignmentRewriter::isRequiredInCurrentRun( |
| 876 | hlfir::OrderedAssignmentTreeOpInterface node) const { |
| 877 | // hlfir.forall_index do not contain saved regions/assignments, |
| 878 | // but if their hlfir.forall parent was required, they are |
| 879 | // required (the forall indices needs to be mapped). |
| 880 | if (mlir::isa<hlfir::ForallIndexOp>(node)) |
| 881 | return true; |
| 882 | for (auto &action : currentRun->actions) |
| 883 | if (hlfir::SaveEntity *savedEntity = |
| 884 | std::get_if<hlfir::SaveEntity>(&action)) { |
| 885 | // A SaveEntity action does not require evaluating the node that contains |
| 886 | // it, but it requires to evaluate all the parents of the nodes that |
| 887 | // contains it. For instance, an saving a bound in hlfir.forall B does not |
| 888 | // require creating the loops for B, but it requires creating the loops |
| 889 | // for any forall parent A of the forall B. |
| 890 | if (node->isProperAncestor(savedEntity->yieldRegion->getParentOp())) |
| 891 | return true; |
| 892 | } else { |
| 893 | auto assign = std::get<hlfir::RegionAssignOp>(action); |
| 894 | if (node->isAncestor(assign.getOperation())) |
| 895 | return true; |
| 896 | } |
| 897 | return false; |
| 898 | } |
| 899 | |
| 900 | /// Is the apply using all the elemental indices in order? |
| 901 | static bool isInOrderApply(hlfir::ApplyOp apply, |
| 902 | hlfir::ElementalOpInterface elemental) { |
| 903 | mlir::Region::BlockArgListType elementalIndices = elemental.getIndices(); |
| 904 | if (elementalIndices.size() != apply.getIndices().size()) |
| 905 | return false; |
| 906 | for (auto [elementalIdx, applyIdx] : |
| 907 | llvm::zip(elementalIndices, apply.getIndices())) |
| 908 | if (elementalIdx != applyIdx) |
| 909 | return false; |
| 910 | return true; |
| 911 | } |
| 912 | |
| 913 | /// Gather the tree of hlfir::ElementalOpInterface use-def, if any, starting |
| 914 | /// from \p elemental, which may be a nullptr. |
| 915 | static void |
| 916 | gatherElementalTree(hlfir::ElementalOpInterface elemental, |
| 917 | llvm::SmallPtrSetImpl<mlir::Operation *> &elementalOps, |
| 918 | bool isOutOfOrder) { |
| 919 | if (elemental) { |
| 920 | // Only inline an applied elemental that must be executed in order if the |
| 921 | // applying indices are in order. An hlfir::Elemental may have been created |
| 922 | // for a transformational like transpose, and Fortran 2018 standard |
| 923 | // section 10.2.3.2, point 10 imply that impure elemental sub-expression |
| 924 | // evaluations should not be masked if they are the arguments of |
| 925 | // transformational expressions. |
| 926 | if (isOutOfOrder && elemental.isOrdered()) |
| 927 | return; |
| 928 | elementalOps.insert(elemental.getOperation()); |
| 929 | for (mlir::Operation &op : elemental.getElementalRegion().getOps()) |
| 930 | if (auto apply = mlir::dyn_cast<hlfir::ApplyOp>(op)) { |
| 931 | bool isUnorderedApply = |
| 932 | isOutOfOrder || !isInOrderApply(apply, elemental); |
| 933 | auto maybeElemental = |
| 934 | mlir::dyn_cast_or_null<hlfir::ElementalOpInterface>( |
| 935 | apply.getExpr().getDefiningOp()); |
| 936 | gatherElementalTree(maybeElemental, elementalOps, isUnorderedApply); |
| 937 | } |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | MaskedArrayExpr::MaskedArrayExpr(mlir::Location loc, mlir::Region ®ion, |
| 942 | bool isOuterMaskExpr) |
| 943 | : loc{loc}, region{region}, isOuterMaskExpr{isOuterMaskExpr} { |
| 944 | mlir::Operation &terminator = region.back().back(); |
| 945 | if (auto elementalAddr = |
| 946 | mlir::dyn_cast<hlfir::ElementalOpInterface>(terminator)) { |
| 947 | // Vector subscripted designator (hlfir.elemental_addr terminator). |
| 948 | gatherElementalTree(elementalAddr, elementalParts, /*isOutOfOrder=*/false); |
| 949 | return; |
| 950 | } |
| 951 | // Try if elemental expression. |
| 952 | mlir::Value entity = mlir::cast<hlfir::YieldOp>(terminator).getEntity(); |
| 953 | auto maybeElemental = mlir::dyn_cast_or_null<hlfir::ElementalOpInterface>( |
| 954 | entity.getDefiningOp()); |
| 955 | gatherElementalTree(maybeElemental, elementalParts, /*isOutOfOrder=*/false); |
| 956 | } |
| 957 | |
| 958 | void MaskedArrayExpr::generateNoneElementalPart(fir::FirOpBuilder &builder, |
| 959 | mlir::IRMapping &mapper) { |
| 960 | assert(!noneElementalPartWasGenerated && |
| 961 | "none elemental parts already generated" ); |
| 962 | if (isOuterMaskExpr) { |
| 963 | // The outer mask expression is actually not masked, it is dealt as |
| 964 | // such so that its elemental part, if any, can be inlined in the WHERE |
| 965 | // loops. But all of the operations outside of hlfir.elemental/ |
| 966 | // hlfir.elemental_addr must be emitted now because their value may be |
| 967 | // required to deduce the mask shape and the WHERE loop bounds. |
| 968 | for (mlir::Operation &op : region.back().without_terminator()) |
| 969 | if (!elementalParts.contains(&op)) |
| 970 | (void)builder.clone(op, mapper); |
| 971 | } else { |
| 972 | // For actual masked expressions, Fortran requires elemental expressions, |
| 973 | // even the scalar ones that are not encoded with hlfir.elemental, to be |
| 974 | // evaluated only when the mask is true. Blindly hoisting all scalar SSA |
| 975 | // tree could be wrong if the scalar computation has side effects and |
| 976 | // would never have been evaluated (e.g. division by zero) if the mask |
| 977 | // is fully false. See F'2023 10.2.3.2 point 10. |
| 978 | // Clone only the bodies of all hlfir.exactly_once operations, which contain |
| 979 | // the evaluation of sub-expression tree whose root was a non elemental |
| 980 | // function call at the Fortran level (the call itself may have been inlined |
| 981 | // since). These must be evaluated only once as per F'2023 10.2.3.2 point 9. |
| 982 | for (mlir::Operation &op : region.back().without_terminator()) |
| 983 | if (auto exactlyOnce = mlir::dyn_cast<hlfir::ExactlyOnceOp>(op)) { |
| 984 | for (mlir::Operation &subOp : |
| 985 | exactlyOnce.getBody().back().without_terminator()) |
| 986 | (void)builder.clone(subOp, mapper); |
| 987 | mlir::Value oldYield = getYield(exactlyOnce.getBody()).getEntity(); |
| 988 | auto newYield = mapper.lookupOrDefault(oldYield); |
| 989 | mapper.map(exactlyOnce.getResult(), newYield); |
| 990 | } |
| 991 | } |
| 992 | noneElementalPartWasGenerated = true; |
| 993 | } |
| 994 | |
| 995 | mlir::Value MaskedArrayExpr::generateShape(fir::FirOpBuilder &builder, |
| 996 | mlir::IRMapping &mapper) { |
| 997 | assert(noneElementalPartWasGenerated && |
| 998 | "non elemental part must have been generated" ); |
| 999 | mlir::Operation &terminator = region.back().back(); |
| 1000 | // If the operation that produced the yielded entity is elemental, it was not |
| 1001 | // cloned, but it holds a shape argument that was cloned. Return the cloned |
| 1002 | // shape. |
| 1003 | if (auto elementalAddrOp = mlir::dyn_cast<hlfir::ElementalAddrOp>(terminator)) |
| 1004 | return mapper.lookupOrDefault(elementalAddrOp.getShape()); |
| 1005 | mlir::Value entity = mlir::cast<hlfir::YieldOp>(terminator).getEntity(); |
| 1006 | if (auto elemental = entity.getDefiningOp<hlfir::ElementalOp>()) |
| 1007 | return mapper.lookupOrDefault(elemental.getShape()); |
| 1008 | // Otherwise, the whole entity was cloned, and the shape can be generated |
| 1009 | // from it. |
| 1010 | hlfir::Entity clonedEntity{mapper.lookupOrDefault(entity)}; |
| 1011 | return hlfir::genShape(loc, builder, hlfir::Entity{clonedEntity}); |
| 1012 | } |
| 1013 | |
| 1014 | mlir::Value |
| 1015 | MaskedArrayExpr::generateElementalParts(fir::FirOpBuilder &builder, |
| 1016 | mlir::ValueRange oneBasedIndices, |
| 1017 | mlir::IRMapping &mapper) { |
| 1018 | assert(noneElementalPartWasGenerated && |
| 1019 | "non elemental part must have been generated" ); |
| 1020 | if (!isOuterMaskExpr) { |
| 1021 | // Clone all operations that are not hlfir.exactly_once and that are not |
| 1022 | // hlfir.elemental/hlfir.elemental_addr. |
| 1023 | for (mlir::Operation &op : region.back().without_terminator()) |
| 1024 | if (!mlir::isa<hlfir::ExactlyOnceOp>(op) && !elementalParts.contains(&op)) |
| 1025 | (void)builder.clone(op, mapper); |
| 1026 | // For the outer mask, this was already done outside of the loop. |
| 1027 | } |
| 1028 | // Clone and "index" bodies of hlfir.elemental/hlfir.elemental_addr. |
| 1029 | mlir::Operation &terminator = region.back().back(); |
| 1030 | hlfir::ElementalOpInterface elemental = |
| 1031 | mlir::dyn_cast<hlfir::ElementalAddrOp>(terminator); |
| 1032 | if (!elemental) { |
| 1033 | // If the terminator is not an hlfir.elemental_addr, try if the yielded |
| 1034 | // entity was produced by an hlfir.elemental. |
| 1035 | mlir::Value entity = mlir::cast<hlfir::YieldOp>(terminator).getEntity(); |
| 1036 | elemental = entity.getDefiningOp<hlfir::ElementalOp>(); |
| 1037 | if (!elemental) { |
| 1038 | // The yielded entity was not produced by an elemental operation, |
| 1039 | // get its clone in the non elemental part evaluation and address it. |
| 1040 | hlfir::Entity clonedEntity{mapper.lookupOrDefault(entity)}; |
| 1041 | return hlfir::getElementAt(loc, builder, clonedEntity, oneBasedIndices); |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | auto mustRecursivelyInline = |
| 1046 | [&](hlfir::ElementalOp appliedElemental) -> bool { |
| 1047 | return elementalParts.contains(appliedElemental.getOperation()); |
| 1048 | }; |
| 1049 | return inlineElementalOp(loc, builder, elemental, oneBasedIndices, mapper, |
| 1050 | mustRecursivelyInline); |
| 1051 | } |
| 1052 | |
| 1053 | mlir::Operation * |
| 1054 | MaskedArrayExpr::generateMaskedExprCleanUps(fir::FirOpBuilder &builder, |
| 1055 | mlir::IRMapping &mapper) { |
| 1056 | // Clone the clean-ups from the region itself, except for the destroy |
| 1057 | // of the hlfir.elemental that have been inlined. |
| 1058 | mlir::Operation &terminator = region.back().back(); |
| 1059 | mlir::Region *cleanupRegion = nullptr; |
| 1060 | if (auto elementalAddr = mlir::dyn_cast<hlfir::ElementalAddrOp>(terminator)) { |
| 1061 | cleanupRegion = &elementalAddr.getCleanup(); |
| 1062 | } else { |
| 1063 | auto yieldOp = mlir::cast<hlfir::YieldOp>(terminator); |
| 1064 | cleanupRegion = &yieldOp.getCleanup(); |
| 1065 | } |
| 1066 | if (cleanupRegion->empty()) |
| 1067 | return nullptr; |
| 1068 | mlir::Operation *firstNewCleanup = nullptr; |
| 1069 | for (mlir::Operation &op : cleanupRegion->front().without_terminator()) { |
| 1070 | if (auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(op)) |
| 1071 | if (elementalParts.contains(destroy.getExpr().getDefiningOp())) |
| 1072 | continue; |
| 1073 | mlir::Operation *cleanup = builder.clone(op, mapper); |
| 1074 | if (!firstNewCleanup) |
| 1075 | firstNewCleanup = cleanup; |
| 1076 | } |
| 1077 | return firstNewCleanup; |
| 1078 | } |
| 1079 | |
| 1080 | void MaskedArrayExpr::generateNoneElementalCleanupIfAny( |
| 1081 | fir::FirOpBuilder &builder, mlir::IRMapping &mapper) { |
| 1082 | if (!isOuterMaskExpr) { |
| 1083 | // Clone clean-ups of hlfir.exactly_once operations (in reverse order |
| 1084 | // to properly deal with stack restores). |
| 1085 | for (mlir::Operation &op : |
| 1086 | llvm::reverse(region.back().without_terminator())) |
| 1087 | if (auto exactlyOnce = mlir::dyn_cast<hlfir::ExactlyOnceOp>(op)) { |
| 1088 | mlir::Region &cleanupRegion = |
| 1089 | getYield(exactlyOnce.getBody()).getCleanup(); |
| 1090 | if (!cleanupRegion.empty()) |
| 1091 | for (mlir::Operation &cleanupOp : |
| 1092 | cleanupRegion.front().without_terminator()) |
| 1093 | (void)builder.clone(cleanupOp, mapper); |
| 1094 | } |
| 1095 | } else { |
| 1096 | // For the outer mask, the region clean-ups must be generated |
| 1097 | // outside of the loops since the mask non hlfir.elemental part |
| 1098 | // is generated before the loops. |
| 1099 | generateMaskedExprCleanUps(builder, mapper); |
| 1100 | } |
| 1101 | } |
| 1102 | |
| 1103 | static hlfir::RegionAssignOp |
| 1104 | getAssignIfLeftHandSideRegion(mlir::Region ®ion) { |
| 1105 | auto assign = mlir::dyn_cast<hlfir::RegionAssignOp>(region.getParentOp()); |
| 1106 | if (assign && (&assign.getLhsRegion() == ®ion)) |
| 1107 | return assign; |
| 1108 | return nullptr; |
| 1109 | } |
| 1110 | |
| 1111 | static bool isPointerAssignmentRHS(mlir::Region ®ion) { |
| 1112 | auto assign = mlir::dyn_cast<hlfir::RegionAssignOp>(region.getParentOp()); |
| 1113 | return assign && assign.isPointerAssignment() && |
| 1114 | (&assign.getRhsRegion() == ®ion); |
| 1115 | } |
| 1116 | |
| 1117 | bool OrderedAssignmentRewriter::currentLoopNestIterationNumberCanBeComputed( |
| 1118 | llvm::SmallVectorImpl<fir::DoLoopOp> &loopNest) { |
| 1119 | if (constructStack.empty()) |
| 1120 | return true; |
| 1121 | mlir::Operation *outerLoop = constructStack[0]; |
| 1122 | mlir::Operation *currentConstruct = constructStack.back(); |
| 1123 | // Loop through the loops until the outer construct is met, and test if the |
| 1124 | // loop operands dominate the outer construct. |
| 1125 | while (currentConstruct) { |
| 1126 | if (auto doLoop = mlir::dyn_cast<fir::DoLoopOp>(currentConstruct)) { |
| 1127 | if (llvm::any_of(doLoop->getOperands(), [&](mlir::Value value) { |
| 1128 | return !dominanceInfo.properlyDominates(value, outerLoop); |
| 1129 | })) { |
| 1130 | return false; |
| 1131 | } |
| 1132 | loopNest.push_back(doLoop); |
| 1133 | } |
| 1134 | if (currentConstruct == outerLoop) |
| 1135 | currentConstruct = nullptr; |
| 1136 | else |
| 1137 | currentConstruct = currentConstruct->getParentOp(); |
| 1138 | } |
| 1139 | return true; |
| 1140 | } |
| 1141 | |
| 1142 | static mlir::Value |
| 1143 | computeLoopNestIterationNumber(mlir::Location loc, fir::FirOpBuilder &builder, |
| 1144 | llvm::ArrayRef<fir::DoLoopOp> loopNest) { |
| 1145 | mlir::Value loopExtent; |
| 1146 | for (fir::DoLoopOp doLoop : loopNest) { |
| 1147 | mlir::Value extent = builder.genExtentFromTriplet( |
| 1148 | loc, doLoop.getLowerBound(), doLoop.getUpperBound(), doLoop.getStep(), |
| 1149 | builder.getIndexType()); |
| 1150 | if (!loopExtent) |
| 1151 | loopExtent = extent; |
| 1152 | else |
| 1153 | loopExtent = builder.create<mlir::arith::MulIOp>(loc, loopExtent, extent); |
| 1154 | } |
| 1155 | assert(loopExtent && "loopNest must not be empty" ); |
| 1156 | return loopExtent; |
| 1157 | } |
| 1158 | |
| 1159 | /// Return a name for temporary storage that indicates in which context |
| 1160 | /// the temporary storage was created. |
| 1161 | static llvm::StringRef |
| 1162 | getTempName(hlfir::OrderedAssignmentTreeOpInterface root) { |
| 1163 | if (mlir::isa<hlfir::ForallOp>(root.getOperation())) |
| 1164 | return ".tmp.forall" ; |
| 1165 | if (mlir::isa<hlfir::WhereOp>(root.getOperation())) |
| 1166 | return ".tmp.where" ; |
| 1167 | return ".tmp.assign" ; |
| 1168 | } |
| 1169 | |
| 1170 | void OrderedAssignmentRewriter::generateSaveEntity( |
| 1171 | hlfir::SaveEntity savedEntity, bool willUseSavedEntityInSameRun) { |
| 1172 | mlir::Region ®ion = *savedEntity.yieldRegion; |
| 1173 | |
| 1174 | if (hlfir::RegionAssignOp regionAssignOp = |
| 1175 | getAssignIfLeftHandSideRegion(region)) { |
| 1176 | // Need to save the address, not the values. |
| 1177 | assert(!willUseSavedEntityInSameRun && |
| 1178 | "lhs cannot be used in the loop nest where it is saved" ); |
| 1179 | return saveLeftHandSide(savedEntity, regionAssignOp); |
| 1180 | } |
| 1181 | if (isPointerAssignmentRHS(region)) { |
| 1182 | assert(!willUseSavedEntityInSameRun && |
| 1183 | "rhs cannot be used in the loop nest where it is saved" ); |
| 1184 | return saveNonVectorSubscriptedAddress(savedEntity); |
| 1185 | } |
| 1186 | |
| 1187 | mlir::Location loc = region.getParentOp()->getLoc(); |
| 1188 | // Evaluate the region inside the loop nest (if any). |
| 1189 | auto [clonedValue, oldYield] = generateYieldedEntity(region); |
| 1190 | hlfir::Entity entity{clonedValue}; |
| 1191 | entity = hlfir::loadTrivialScalar(loc, builder, entity); |
| 1192 | mlir::Type entityType = entity.getType(); |
| 1193 | |
| 1194 | llvm::StringRef tempName = getTempName(root); |
| 1195 | fir::factory::TemporaryStorage *temp = nullptr; |
| 1196 | if (constructStack.empty()) { |
| 1197 | // Value evaluated outside of any loops (this may be the first MASK of a |
| 1198 | // WHERE construct, or an LHS/RHS temp of hlfir.region_assign outside of |
| 1199 | // WHERE/FORALL). |
| 1200 | temp = insertSavedEntity( |
| 1201 | region, fir::factory::SimpleCopy(loc, builder, entity, tempName)); |
| 1202 | } else { |
| 1203 | // Need to create a temporary for values computed inside loops. |
| 1204 | // Create temporary storage outside of the loop nest given the entity |
| 1205 | // type (and the loop context). |
| 1206 | llvm::SmallVector<fir::DoLoopOp> loopNest; |
| 1207 | bool loopShapeCanBePreComputed = |
| 1208 | currentLoopNestIterationNumberCanBeComputed(loopNest); |
| 1209 | doBeforeLoopNest(callback: [&] { |
| 1210 | /// For simple scalars inside loops whose total iteration number can be |
| 1211 | /// pre-computed, create a rank-1 array outside of the loops. It will be |
| 1212 | /// assigned/fetched inside the loops like a normal Fortran array given |
| 1213 | /// the iteration count. |
| 1214 | if (loopShapeCanBePreComputed && fir::isa_trivial(entityType)) { |
| 1215 | mlir::Value loopExtent = |
| 1216 | computeLoopNestIterationNumber(loc, builder, loopNest); |
| 1217 | auto sequenceType = |
| 1218 | mlir::cast<fir::SequenceType>(builder.getVarLenSeqTy(entityType)); |
| 1219 | temp = insertSavedEntity(region, |
| 1220 | fir::factory::HomogeneousScalarStack{ |
| 1221 | loc, builder, sequenceType, loopExtent, |
| 1222 | /*lenParams=*/{}, allocateOnHeap, |
| 1223 | /*stackThroughLoops=*/true, tempName}); |
| 1224 | |
| 1225 | } else { |
| 1226 | // If the number of iteration is not known, or if the values at each |
| 1227 | // iterations are values that may have different shape, type parameters |
| 1228 | // or dynamic type, use the runtime to create and manage a stack-like |
| 1229 | // temporary. |
| 1230 | temp = insertSavedEntity( |
| 1231 | region, fir::factory::AnyValueStack{loc, builder, entityType}); |
| 1232 | } |
| 1233 | }); |
| 1234 | // Inside the loop nest (and any fir.if if there are active masks), copy |
| 1235 | // the value to the temp and do clean-ups for the value if any. |
| 1236 | temp->pushValue(loc, builder, entity); |
| 1237 | } |
| 1238 | |
| 1239 | // Delay the clean-up if the entity will be used in the same run (i.e., the |
| 1240 | // parent construct will be visited and needs to be lowered). When possible, |
| 1241 | // this is not done for hlfir.expr because this use would prevent the |
| 1242 | // hlfir.expr storage from being moved when creating the temporary in |
| 1243 | // bufferization, and that would lead to an extra copy. |
| 1244 | if (willUseSavedEntityInSameRun && |
| 1245 | (!temp->canBeFetchedAfterPush() || |
| 1246 | !mlir::isa<hlfir::ExprType>(entity.getType()))) { |
| 1247 | auto inserted = |
| 1248 | savedInCurrentRunBeforeUse.try_emplace(®ion, entity, oldYield); |
| 1249 | assert(inserted.second && "entity must have been emplaced" ); |
| 1250 | (void)inserted; |
| 1251 | } else { |
| 1252 | if (constructStack.empty() && |
| 1253 | mlir::isa<hlfir::RegionAssignOp>(region.getParentOp())) { |
| 1254 | // Here the clean-up code is inserted after the original |
| 1255 | // RegionAssignOp, so that the assignment code happens |
| 1256 | // before the cleanup. We do this only for standalone |
| 1257 | // operations, because the clean-up is handled specially |
| 1258 | // during lowering of the parent constructs if any |
| 1259 | // (e.g. see generateNoneElementalCleanupIfAny for |
| 1260 | // WhereOp). |
| 1261 | auto insertionPoint = builder.saveInsertionPoint(); |
| 1262 | builder.setInsertionPointAfter(region.getParentOp()); |
| 1263 | generateCleanupIfAny(oldYield); |
| 1264 | builder.restoreInsertionPoint(insertionPoint); |
| 1265 | } else { |
| 1266 | generateCleanupIfAny(oldYield); |
| 1267 | } |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | static bool rhsIsArray(hlfir::RegionAssignOp regionAssignOp) { |
| 1272 | auto yieldOp = mlir::dyn_cast<hlfir::YieldOp>( |
| 1273 | regionAssignOp.getRhsRegion().back().back()); |
| 1274 | return yieldOp && hlfir::Entity{yieldOp.getEntity()}.isArray(); |
| 1275 | } |
| 1276 | |
| 1277 | static bool isVectorSubscripted(mlir::Region ®ion) { |
| 1278 | return llvm::isa<hlfir::ElementalAddrOp>(region.back().back()); |
| 1279 | } |
| 1280 | |
| 1281 | void OrderedAssignmentRewriter::saveNonVectorSubscriptedAddress( |
| 1282 | hlfir::SaveEntity savedEntity) { |
| 1283 | mlir::Region ®ion = *savedEntity.yieldRegion; |
| 1284 | mlir::Location loc = region.getParentOp()->getLoc(); |
| 1285 | assert(!isVectorSubscripted(region) && |
| 1286 | "expected variable without vector subscripts" ); |
| 1287 | ValueAndCleanUp varAndCleanup = generateYieldedEntity(region); |
| 1288 | hlfir::Entity var{varAndCleanup.first}; |
| 1289 | fir::factory::TemporaryStorage *temp = nullptr; |
| 1290 | // If the address dominates the constructs, its SSA value can simply be |
| 1291 | // tracked and there is no need to save the address in memory. Otherwise, |
| 1292 | // the addresses are stored at each iteration in memory with a descriptor |
| 1293 | // stack. |
| 1294 | if (constructStack.empty() || |
| 1295 | dominanceInfo.properlyDominates(var, constructStack[0])) |
| 1296 | doBeforeLoopNest( |
| 1297 | callback: [&] { temp = insertSavedEntity(region, fir::factory::SSARegister{}); }); |
| 1298 | else |
| 1299 | doBeforeLoopNest(callback: [&] { |
| 1300 | if (var.isMutableBox() || var.isProcedure() || var.isProcedurePointer()) |
| 1301 | // Store single C pointer to entity. |
| 1302 | temp = insertSavedEntity( |
| 1303 | region, fir::factory::AnyAddressStack{loc, builder, var.getType()}); |
| 1304 | else |
| 1305 | // Store the base address and dynamic shape/length/type information |
| 1306 | // as descriptor. |
| 1307 | temp = insertSavedEntity(region, fir::factory::AnyVariableStack{ |
| 1308 | loc, builder, var.getType()}); |
| 1309 | }); |
| 1310 | temp->pushValue(loc, builder, var); |
| 1311 | generateCleanupIfAny(varAndCleanup.second); |
| 1312 | } |
| 1313 | |
| 1314 | void OrderedAssignmentRewriter::saveLeftHandSide( |
| 1315 | hlfir::SaveEntity savedEntity, hlfir::RegionAssignOp regionAssignOp) { |
| 1316 | mlir::Region ®ion = *savedEntity.yieldRegion; |
| 1317 | if (!isVectorSubscripted(region)) { |
| 1318 | saveNonVectorSubscriptedAddress(savedEntity); |
| 1319 | return; |
| 1320 | } |
| 1321 | // Save vector subscripted LHS address. |
| 1322 | mlir::Location loc = region.getParentOp()->getLoc(); |
| 1323 | LhsValueAndCleanUp loweredLhs = generateYieldedLHS(loc, region); |
| 1324 | // loweredLhs.vectorSubscriptLoopNest is empty inside a WHERE because the |
| 1325 | // WHERE loops are already indexing the vector subscripted designator. |
| 1326 | if (loweredLhs.vectorSubscriptLoopNest) |
| 1327 | constructStack.push_back(loweredLhs.vectorSubscriptLoopNest->outerOp); |
| 1328 | fir::factory::TemporaryStorage *temp = nullptr; |
| 1329 | if (loweredLhs.vectorSubscriptLoopNest && !rhsIsArray(regionAssignOp)) { |
| 1330 | // Vector subscripted entity for which the shape must also be saved on top |
| 1331 | // of the element addresses (e.g. the shape may change in each forall |
| 1332 | // iteration and is needed to create the elemental loops). |
| 1333 | mlir::Value shape = loweredLhs.vectorSubscriptShape.value(); |
| 1334 | int rank = mlir::cast<fir::ShapeType>(shape.getType()).getRank(); |
| 1335 | const bool shapeIsInvariant = |
| 1336 | constructStack.empty() || |
| 1337 | dominanceInfo.properlyDominates(shape, constructStack[0]); |
| 1338 | doBeforeLoopNest(callback: [&] { |
| 1339 | // Outside of any forall/where/elemental loops, create a temporary that |
| 1340 | // will both be able to save the vector subscripted designator shape(s) |
| 1341 | // and element addresses. |
| 1342 | temp = |
| 1343 | insertSavedEntity(region, fir::factory::AnyVectorSubscriptStack{ |
| 1344 | loc, builder, loweredLhs.lhs.getType(), |
| 1345 | shapeIsInvariant, rank}); |
| 1346 | }); |
| 1347 | // Save shape before the elemental loop nest created by the vector |
| 1348 | // subscripted LHS. |
| 1349 | auto &vectorTmp = temp->cast<fir::factory::AnyVectorSubscriptStack>(); |
| 1350 | auto insertionPoint = builder.saveInsertionPoint(); |
| 1351 | builder.setInsertionPoint(loweredLhs.vectorSubscriptLoopNest->outerOp); |
| 1352 | vectorTmp.pushShape(loc, builder, shape); |
| 1353 | builder.restoreInsertionPoint(insertionPoint); |
| 1354 | } else { |
| 1355 | // Only saving the scalar elements addresses. These addresses computation |
| 1356 | // depend on the inner loop indices generated for the vector subscripts |
| 1357 | // (no need to wast time checking dominance) and can only be save in a |
| 1358 | // variable stack so far. |
| 1359 | doBeforeLoopNest(callback: [&] { |
| 1360 | temp = insertSavedEntity( |
| 1361 | region, fir::factory::AnyVariableStack{loc, builder, |
| 1362 | loweredLhs.lhs.getType()}); |
| 1363 | }); |
| 1364 | } |
| 1365 | temp->pushValue(loc, builder, loweredLhs.lhs); |
| 1366 | generateCleanupIfAny(loweredLhs.elementalCleanup); |
| 1367 | if (loweredLhs.vectorSubscriptLoopNest) { |
| 1368 | constructStack.pop_back(); |
| 1369 | builder.setInsertionPointAfter(loweredLhs.vectorSubscriptLoopNest->outerOp); |
| 1370 | } |
| 1371 | } |
| 1372 | |
| 1373 | void OrderedAssignmentRewriter::canonicalizeExactlyOnceInsideWhere( |
| 1374 | hlfir::WhereOp whereOp) { |
| 1375 | auto getDefinition = [](mlir::Value v) { |
| 1376 | mlir::Operation *op = v.getDefiningOp(); |
| 1377 | bool isValid = true; |
| 1378 | if (!op) { |
| 1379 | LLVM_DEBUG( |
| 1380 | llvm::dbgs() |
| 1381 | << "Value live into hlfir.exactly_once has no defining operation: " |
| 1382 | << v << "\n" ); |
| 1383 | isValid = false; |
| 1384 | } |
| 1385 | if (op->getNumRegions() != 0) { |
| 1386 | LLVM_DEBUG( |
| 1387 | llvm::dbgs() |
| 1388 | << "Cannot pull an operation with regions into hlfir.exactly_once" |
| 1389 | << *op << "\n" ); |
| 1390 | isValid = false; |
| 1391 | } |
| 1392 | auto effects = mlir::getEffectsRecursively(op); |
| 1393 | if (!effects || !effects->empty()) { |
| 1394 | LLVM_DEBUG(llvm::dbgs() << "Side effects on operation with result live " |
| 1395 | "into hlfir.exactly_once" |
| 1396 | << *op << "\n" ); |
| 1397 | isValid = false; |
| 1398 | } |
| 1399 | assert(isValid && "invalid live-in" ); |
| 1400 | (void)isValid; |
| 1401 | return op; |
| 1402 | }; |
| 1403 | mlir::Liveness liveness(whereOp.getOperation()); |
| 1404 | whereOp->walk([&](hlfir::ExactlyOnceOp op) { |
| 1405 | std::unordered_set<mlir::Operation *> liveInSet; |
| 1406 | LLVM_DEBUG(llvm::dbgs() << "Canonicalizing:\n" << op << "\n" ); |
| 1407 | auto &liveIns = liveness.getLiveIn(&op.getBody().front()); |
| 1408 | if (liveIns.empty()) |
| 1409 | return; |
| 1410 | // Note that the liveIns set is not ordered. |
| 1411 | for (mlir::Value liveIn : liveIns) { |
| 1412 | if (!dominanceInfo.properlyDominates(liveIn, whereOp)) { |
| 1413 | LLVM_DEBUG(llvm::dbgs() |
| 1414 | << "Does not dominate top-level where: " << liveIn << "\n" ); |
| 1415 | liveInSet.insert(getDefinition(liveIn)); |
| 1416 | } |
| 1417 | } |
| 1418 | |
| 1419 | // Populate the set of operations that we need to pull into |
| 1420 | // hlfir.exactly_once, so that the only live-ins left are the ones |
| 1421 | // that dominate whereOp. |
| 1422 | std::unordered_set<mlir::Operation *> cloneSet(liveInSet); |
| 1423 | llvm::SmallVector<mlir::Operation *> workList(cloneSet.begin(), |
| 1424 | cloneSet.end()); |
| 1425 | while (!workList.empty()) { |
| 1426 | mlir::Operation *current = workList.pop_back_val(); |
| 1427 | for (mlir::Value operand : current->getOperands()) { |
| 1428 | if (dominanceInfo.properlyDominates(operand, whereOp)) |
| 1429 | continue; |
| 1430 | mlir::Operation *def = getDefinition(operand); |
| 1431 | if (cloneSet.count(def)) |
| 1432 | continue; |
| 1433 | cloneSet.insert(def); |
| 1434 | workList.push_back(def); |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | // Sort the operations by dominance. This preserves their order |
| 1439 | // after the cloning, and also guarantees stable IR generation. |
| 1440 | llvm::SmallVector<mlir::Operation *> cloneList(cloneSet.begin(), |
| 1441 | cloneSet.end()); |
| 1442 | llvm::sort(cloneList, [&](mlir::Operation *L, mlir::Operation *R) { |
| 1443 | return dominanceInfo.properlyDominates(L, R); |
| 1444 | }); |
| 1445 | |
| 1446 | // Clone the operations. |
| 1447 | mlir::IRMapping mapper; |
| 1448 | mlir::Operation::CloneOptions options; |
| 1449 | options.cloneOperands(); |
| 1450 | mlir::OpBuilder::InsertionGuard guard(builder); |
| 1451 | builder.setInsertionPointToStart(&op.getBody().front()); |
| 1452 | |
| 1453 | for (auto *toClone : cloneList) { |
| 1454 | LLVM_DEBUG(llvm::dbgs() << "Cloning: " << *toClone << "\n" ); |
| 1455 | builder.insert(toClone->clone(mapper, options)); |
| 1456 | } |
| 1457 | for (mlir::Operation *oldOps : liveInSet) |
| 1458 | for (mlir::Value oldVal : oldOps->getResults()) { |
| 1459 | mlir::Value newVal = mapper.lookup(oldVal); |
| 1460 | if (!newVal) { |
| 1461 | LLVM_DEBUG(llvm::dbgs() << "No clone found for: " << oldVal << "\n" ); |
| 1462 | assert(false && "missing clone" ); |
| 1463 | } |
| 1464 | mlir::replaceAllUsesInRegionWith(oldVal, newVal, op.getBody()); |
| 1465 | } |
| 1466 | |
| 1467 | LLVM_DEBUG(llvm::dbgs() << "Finished canonicalization\n" ); |
| 1468 | if (!liveInSet.empty()) |
| 1469 | LLVM_DEBUG(llvm::dbgs() << op << "\n" ); |
| 1470 | }); |
| 1471 | } |
| 1472 | |
| 1473 | /// Lower an ordered assignment tree to fir.do_loop and hlfir.assign given |
| 1474 | /// a schedule. |
| 1475 | static void lower(hlfir::OrderedAssignmentTreeOpInterface root, |
| 1476 | mlir::PatternRewriter &rewriter, hlfir::Schedule &schedule) { |
| 1477 | auto module = root->getParentOfType<mlir::ModuleOp>(); |
| 1478 | fir::FirOpBuilder builder(rewriter, module); |
| 1479 | OrderedAssignmentRewriter assignmentRewriter(builder, root); |
| 1480 | for (auto &run : schedule) |
| 1481 | assignmentRewriter.lowerRun(run); |
| 1482 | assignmentRewriter.cleanupSavedEntities(); |
| 1483 | } |
| 1484 | |
| 1485 | /// Shared rewrite entry point for all the ordered assignment tree root |
| 1486 | /// operations. It calls the scheduler and then apply the schedule. |
| 1487 | static llvm::LogicalResult rewrite(hlfir::OrderedAssignmentTreeOpInterface root, |
| 1488 | bool tryFusingAssignments, |
| 1489 | mlir::PatternRewriter &rewriter) { |
| 1490 | hlfir::Schedule schedule = |
| 1491 | hlfir::buildEvaluationSchedule(root, tryFusingAssignments); |
| 1492 | |
| 1493 | LLVM_DEBUG( |
| 1494 | /// Debug option to print the scheduling debug info without doing |
| 1495 | /// any code generation. The operations are simply erased to avoid |
| 1496 | /// failing and calling the rewrite patterns on nested operations. |
| 1497 | /// The only purpose of this is to help testing scheduling without |
| 1498 | /// having to test generated code. |
| 1499 | if (dbgScheduleOnly) { |
| 1500 | rewriter.eraseOp(root); |
| 1501 | return mlir::success(); |
| 1502 | }); |
| 1503 | lower(root, rewriter, schedule); |
| 1504 | rewriter.eraseOp(root); |
| 1505 | return mlir::success(); |
| 1506 | } |
| 1507 | |
| 1508 | namespace { |
| 1509 | |
| 1510 | class ForallOpConversion : public mlir::OpRewritePattern<hlfir::ForallOp> { |
| 1511 | public: |
| 1512 | explicit ForallOpConversion(mlir::MLIRContext *ctx, bool tryFusingAssignments) |
| 1513 | : OpRewritePattern{ctx}, tryFusingAssignments{tryFusingAssignments} {} |
| 1514 | |
| 1515 | llvm::LogicalResult |
| 1516 | matchAndRewrite(hlfir::ForallOp forallOp, |
| 1517 | mlir::PatternRewriter &rewriter) const override { |
| 1518 | auto root = mlir::cast<hlfir::OrderedAssignmentTreeOpInterface>( |
| 1519 | forallOp.getOperation()); |
| 1520 | if (mlir::failed(::rewrite(root, tryFusingAssignments, rewriter))) |
| 1521 | TODO(forallOp.getLoc(), "FORALL construct or statement in HLFIR" ); |
| 1522 | return mlir::success(); |
| 1523 | } |
| 1524 | const bool tryFusingAssignments; |
| 1525 | }; |
| 1526 | |
| 1527 | class WhereOpConversion : public mlir::OpRewritePattern<hlfir::WhereOp> { |
| 1528 | public: |
| 1529 | explicit WhereOpConversion(mlir::MLIRContext *ctx, bool tryFusingAssignments) |
| 1530 | : OpRewritePattern{ctx}, tryFusingAssignments{tryFusingAssignments} {} |
| 1531 | |
| 1532 | llvm::LogicalResult |
| 1533 | matchAndRewrite(hlfir::WhereOp whereOp, |
| 1534 | mlir::PatternRewriter &rewriter) const override { |
| 1535 | auto root = mlir::cast<hlfir::OrderedAssignmentTreeOpInterface>( |
| 1536 | whereOp.getOperation()); |
| 1537 | return ::rewrite(root, tryFusingAssignments, rewriter); |
| 1538 | } |
| 1539 | const bool tryFusingAssignments; |
| 1540 | }; |
| 1541 | |
| 1542 | class RegionAssignConversion |
| 1543 | : public mlir::OpRewritePattern<hlfir::RegionAssignOp> { |
| 1544 | public: |
| 1545 | explicit RegionAssignConversion(mlir::MLIRContext *ctx) |
| 1546 | : OpRewritePattern{ctx} {} |
| 1547 | |
| 1548 | llvm::LogicalResult |
| 1549 | matchAndRewrite(hlfir::RegionAssignOp regionAssignOp, |
| 1550 | mlir::PatternRewriter &rewriter) const override { |
| 1551 | auto root = mlir::cast<hlfir::OrderedAssignmentTreeOpInterface>( |
| 1552 | regionAssignOp.getOperation()); |
| 1553 | return ::rewrite(root, /*tryFusingAssignments=*/false, rewriter); |
| 1554 | } |
| 1555 | }; |
| 1556 | |
| 1557 | class LowerHLFIROrderedAssignments |
| 1558 | : public hlfir::impl::LowerHLFIROrderedAssignmentsBase< |
| 1559 | LowerHLFIROrderedAssignments> { |
| 1560 | public: |
| 1561 | using LowerHLFIROrderedAssignmentsBase< |
| 1562 | LowerHLFIROrderedAssignments>::LowerHLFIROrderedAssignmentsBase; |
| 1563 | |
| 1564 | void runOnOperation() override { |
| 1565 | // Running on a ModuleOp because this pass may generate FuncOp declaration |
| 1566 | // for runtime calls. This could be a FuncOp pass otherwise. |
| 1567 | auto module = this->getOperation(); |
| 1568 | auto *context = &getContext(); |
| 1569 | mlir::RewritePatternSet patterns(context); |
| 1570 | // Patterns are only defined for the OrderedAssignmentTreeOpInterface |
| 1571 | // operations that can be the root of ordered assignments. The other |
| 1572 | // operations will be taken care of while rewriting these trees (they |
| 1573 | // cannot exist outside of these operations given their verifiers/traits). |
| 1574 | patterns.insert<ForallOpConversion, WhereOpConversion>( |
| 1575 | context, this->tryFusingAssignments.getValue()); |
| 1576 | patterns.insert<RegionAssignConversion>(context); |
| 1577 | mlir::ConversionTarget target(*context); |
| 1578 | target.markUnknownOpDynamicallyLegal([](mlir::Operation *op) { |
| 1579 | return !mlir::isa<hlfir::OrderedAssignmentTreeOpInterface>(op); |
| 1580 | }); |
| 1581 | if (mlir::failed(mlir::applyPartialConversion(module, target, |
| 1582 | std::move(patterns)))) { |
| 1583 | mlir::emitError(mlir::UnknownLoc::get(context), |
| 1584 | "failure in HLFIR ordered assignments lowering pass" ); |
| 1585 | signalPassFailure(); |
| 1586 | } |
| 1587 | } |
| 1588 | }; |
| 1589 | } // namespace |
| 1590 | |