| 1 | //===-- DebugTypeGenerator.cpp -- type conversion ---------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #define DEBUG_TYPE "flang-debug-type-generator" |
| 14 | |
| 15 | #include "DebugTypeGenerator.h" |
| 16 | #include "flang/Optimizer/CodeGen/DescriptorModel.h" |
| 17 | #include "flang/Optimizer/Support/InternalNames.h" |
| 18 | #include "flang/Optimizer/Support/Utils.h" |
| 19 | #include "mlir/Pass/Pass.h" |
| 20 | #include "llvm/ADT/ScopeExit.h" |
| 21 | #include "llvm/BinaryFormat/Dwarf.h" |
| 22 | #include "llvm/Support/Debug.h" |
| 23 | |
| 24 | namespace fir { |
| 25 | |
| 26 | /// Calculate offset of any field in the descriptor. |
| 27 | template <int DescriptorField> |
| 28 | std::uint64_t getComponentOffset(const mlir::DataLayout &dl, |
| 29 | mlir::MLIRContext *context, |
| 30 | mlir::Type llvmFieldType) { |
| 31 | static_assert(DescriptorField > 0 && DescriptorField < 10); |
| 32 | mlir::Type previousFieldType = |
| 33 | getDescFieldTypeModel<DescriptorField - 1>()(context); |
| 34 | std::uint64_t previousOffset = |
| 35 | getComponentOffset<DescriptorField - 1>(dl, context, previousFieldType); |
| 36 | std::uint64_t offset = previousOffset + dl.getTypeSize(previousFieldType); |
| 37 | std::uint64_t fieldAlignment = dl.getTypeABIAlignment(llvmFieldType); |
| 38 | return llvm::alignTo(offset, fieldAlignment); |
| 39 | } |
| 40 | template <> |
| 41 | std::uint64_t getComponentOffset<0>(const mlir::DataLayout &dl, |
| 42 | mlir::MLIRContext *context, |
| 43 | mlir::Type llvmFieldType) { |
| 44 | return 0; |
| 45 | } |
| 46 | |
| 47 | DebugTypeGenerator::DebugTypeGenerator(mlir::ModuleOp m, |
| 48 | mlir::SymbolTable *symbolTable_, |
| 49 | const mlir::DataLayout &dl) |
| 50 | : module(m), symbolTable(symbolTable_), dataLayout{&dl}, |
| 51 | kindMapping(getKindMapping(m)), llvmTypeConverter(m, false, false, dl), |
| 52 | derivedTypeDepth(0) { |
| 53 | LLVM_DEBUG(llvm::dbgs() << "DITypeAttr generator\n" ); |
| 54 | |
| 55 | mlir::MLIRContext *context = module.getContext(); |
| 56 | |
| 57 | // The debug information requires the offset of certain fields in the |
| 58 | // descriptors like lower_bound and extent for each dimension. |
| 59 | mlir::Type llvmDimsType = getDescFieldTypeModel<kDimsPosInBox>()(context); |
| 60 | mlir::Type llvmPtrType = getDescFieldTypeModel<kAddrPosInBox>()(context); |
| 61 | mlir::Type llvmLenType = getDescFieldTypeModel<kElemLenPosInBox>()(context); |
| 62 | mlir::Type llvmRankType = getDescFieldTypeModel<kRankPosInBox>()(context); |
| 63 | |
| 64 | dimsOffset = |
| 65 | getComponentOffset<kDimsPosInBox>(*dataLayout, context, llvmDimsType); |
| 66 | dimsSize = dataLayout->getTypeSize(llvmDimsType); |
| 67 | ptrSize = dataLayout->getTypeSize(llvmPtrType); |
| 68 | rankSize = dataLayout->getTypeSize(llvmRankType); |
| 69 | lenOffset = |
| 70 | getComponentOffset<kElemLenPosInBox>(*dataLayout, context, llvmLenType); |
| 71 | rankOffset = |
| 72 | getComponentOffset<kRankPosInBox>(*dataLayout, context, llvmRankType); |
| 73 | } |
| 74 | |
| 75 | static mlir::LLVM::DITypeAttr genBasicType(mlir::MLIRContext *context, |
| 76 | mlir::StringAttr name, |
| 77 | unsigned bitSize, |
| 78 | unsigned decoding) { |
| 79 | return mlir::LLVM::DIBasicTypeAttr::get( |
| 80 | context, llvm::dwarf::DW_TAG_base_type, name, bitSize, decoding); |
| 81 | } |
| 82 | |
| 83 | static mlir::LLVM::DITypeAttr genPlaceholderType(mlir::MLIRContext *context) { |
| 84 | return genBasicType(context, mlir::StringAttr::get(context, "integer" ), |
| 85 | /*bitSize=*/32, llvm::dwarf::DW_ATE_signed); |
| 86 | } |
| 87 | |
| 88 | // Helper function to create DILocalVariableAttr and DbgValueOp when information |
| 89 | // about the size or dimension of a variable etc lives in an mlir::Value. |
| 90 | mlir::LLVM::DILocalVariableAttr DebugTypeGenerator::generateArtificialVariable( |
| 91 | mlir::MLIRContext *context, mlir::Value val, |
| 92 | mlir::LLVM::DIFileAttr fileAttr, mlir::LLVM::DIScopeAttr scope, |
| 93 | fir::cg::XDeclareOp declOp) { |
| 94 | // There can be multiple artificial variable for a single declOp. To help |
| 95 | // distinguish them, we pad the name with a counter. The counter is the |
| 96 | // position of 'val' in the operands of declOp. |
| 97 | auto varID = std::distance( |
| 98 | declOp.getOperands().begin(), |
| 99 | std::find(declOp.getOperands().begin(), declOp.getOperands().end(), val)); |
| 100 | mlir::OpBuilder builder(context); |
| 101 | auto name = mlir::StringAttr::get(context, "." + declOp.getUniqName().str() + |
| 102 | std::to_string(varID)); |
| 103 | builder.setInsertionPoint(declOp); |
| 104 | mlir::Type type = val.getType(); |
| 105 | if (!mlir::isa<mlir::IntegerType>(type) || !type.isSignlessInteger()) { |
| 106 | type = builder.getIntegerType(64); |
| 107 | val = builder.create<fir::ConvertOp>(declOp.getLoc(), type, val); |
| 108 | } |
| 109 | mlir::LLVM::DITypeAttr Ty = convertType(type, fileAttr, scope, declOp); |
| 110 | auto lvAttr = mlir::LLVM::DILocalVariableAttr::get( |
| 111 | context, scope, name, fileAttr, /*line=*/0, /*argNo=*/0, |
| 112 | /*alignInBits=*/0, Ty, mlir::LLVM::DIFlags::Artificial); |
| 113 | builder.create<mlir::LLVM::DbgValueOp>(declOp.getLoc(), val, lvAttr, nullptr); |
| 114 | return lvAttr; |
| 115 | } |
| 116 | |
| 117 | mlir::LLVM::DITypeAttr DebugTypeGenerator::convertBoxedSequenceType( |
| 118 | fir::SequenceType seqTy, mlir::LLVM::DIFileAttr fileAttr, |
| 119 | mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp, |
| 120 | bool genAllocated, bool genAssociated) { |
| 121 | |
| 122 | mlir::MLIRContext *context = module.getContext(); |
| 123 | llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; |
| 124 | llvm::SmallVector<mlir::LLVM::DIExpressionElemAttr> ops; |
| 125 | auto addOp = [&](unsigned opc, llvm::ArrayRef<uint64_t> vals) { |
| 126 | ops.push_back(mlir::LLVM::DIExpressionElemAttr::get(context, opc, vals)); |
| 127 | }; |
| 128 | |
| 129 | addOp(llvm::dwarf::DW_OP_push_object_address, {}); |
| 130 | addOp(llvm::dwarf::DW_OP_deref, {}); |
| 131 | |
| 132 | // dataLocation = *base_addr |
| 133 | mlir::LLVM::DIExpressionAttr dataLocation = |
| 134 | mlir::LLVM::DIExpressionAttr::get(context, ops); |
| 135 | ops.clear(); |
| 136 | |
| 137 | mlir::LLVM::DITypeAttr elemTy = |
| 138 | convertType(seqTy.getEleTy(), fileAttr, scope, declOp); |
| 139 | |
| 140 | // Assumed-rank arrays |
| 141 | if (seqTy.hasUnknownShape()) { |
| 142 | addOp(llvm::dwarf::DW_OP_push_object_address, {}); |
| 143 | addOp(llvm::dwarf::DW_OP_plus_uconst, {rankOffset}); |
| 144 | addOp(llvm::dwarf::DW_OP_deref_size, {rankSize}); |
| 145 | mlir::LLVM::DIExpressionAttr rank = |
| 146 | mlir::LLVM::DIExpressionAttr::get(context, ops); |
| 147 | ops.clear(); |
| 148 | |
| 149 | auto genSubrangeOp = [&](unsigned field) -> mlir::LLVM::DIExpressionAttr { |
| 150 | // The dwarf expression for generic subrange assumes that dimension for |
| 151 | // which it is being generated is already pushed on the stack. Here is the |
| 152 | // formula we will use to calculate count for example. |
| 153 | // *(base_addr + offset_count_0 + (dimsSize x dimension_number)). |
| 154 | // where offset_count_0 is offset of the count field for the 0th dimension |
| 155 | addOp(llvm::dwarf::DW_OP_push_object_address, {}); |
| 156 | addOp(llvm::dwarf::DW_OP_over, {}); |
| 157 | addOp(llvm::dwarf::DW_OP_constu, {dimsSize}); |
| 158 | addOp(llvm::dwarf::DW_OP_mul, {}); |
| 159 | addOp(llvm::dwarf::DW_OP_plus_uconst, |
| 160 | {dimsOffset + ((dimsSize / 3) * field)}); |
| 161 | addOp(llvm::dwarf::DW_OP_plus, {}); |
| 162 | addOp(llvm::dwarf::DW_OP_deref, {}); |
| 163 | mlir::LLVM::DIExpressionAttr attr = |
| 164 | mlir::LLVM::DIExpressionAttr::get(context, ops); |
| 165 | ops.clear(); |
| 166 | return attr; |
| 167 | }; |
| 168 | |
| 169 | mlir::LLVM::DIExpressionAttr lowerAttr = genSubrangeOp(kDimLowerBoundPos); |
| 170 | mlir::LLVM::DIExpressionAttr countAttr = genSubrangeOp(kDimExtentPos); |
| 171 | mlir::LLVM::DIExpressionAttr strideAttr = genSubrangeOp(kDimStridePos); |
| 172 | |
| 173 | auto subrangeTy = mlir::LLVM::DIGenericSubrangeAttr::get( |
| 174 | context, countAttr, lowerAttr, /*upperBound=*/nullptr, strideAttr); |
| 175 | elements.push_back(subrangeTy); |
| 176 | |
| 177 | return mlir::LLVM::DICompositeTypeAttr::get( |
| 178 | context, llvm::dwarf::DW_TAG_array_type, /*name=*/nullptr, |
| 179 | /*file=*/nullptr, /*line=*/0, /*scope=*/nullptr, elemTy, |
| 180 | mlir::LLVM::DIFlags::Zero, /*sizeInBits=*/0, /*alignInBits=*/0, |
| 181 | elements, dataLocation, rank, /*allocated=*/nullptr, |
| 182 | /*associated=*/nullptr); |
| 183 | } |
| 184 | |
| 185 | addOp(llvm::dwarf::DW_OP_push_object_address, {}); |
| 186 | addOp(llvm::dwarf::DW_OP_deref, {}); |
| 187 | addOp(llvm::dwarf::DW_OP_lit0, {}); |
| 188 | addOp(llvm::dwarf::DW_OP_ne, {}); |
| 189 | |
| 190 | // allocated = associated = (*base_addr != 0) |
| 191 | mlir::LLVM::DIExpressionAttr valid = |
| 192 | mlir::LLVM::DIExpressionAttr::get(context, ops); |
| 193 | mlir::LLVM::DIExpressionAttr allocated = genAllocated ? valid : nullptr; |
| 194 | mlir::LLVM::DIExpressionAttr associated = genAssociated ? valid : nullptr; |
| 195 | ops.clear(); |
| 196 | |
| 197 | unsigned offset = dimsOffset; |
| 198 | unsigned index = 0; |
| 199 | mlir::IntegerType intTy = mlir::IntegerType::get(context, 64); |
| 200 | const unsigned indexSize = dimsSize / 3; |
| 201 | for ([[maybe_unused]] auto _ : seqTy.getShape()) { |
| 202 | // For each dimension, find the offset of count, lower bound and stride in |
| 203 | // the descriptor and generate the dwarf expression to extract it. |
| 204 | mlir::Attribute lowerAttr = nullptr; |
| 205 | // If declaration has a lower bound, use it. |
| 206 | if (declOp && declOp.getShift().size() > index) { |
| 207 | if (std::optional<std::int64_t> optint = |
| 208 | getIntIfConstant(declOp.getShift()[index])) |
| 209 | lowerAttr = mlir::IntegerAttr::get(intTy, llvm::APInt(64, *optint)); |
| 210 | else |
| 211 | lowerAttr = generateArtificialVariable( |
| 212 | context, declOp.getShift()[index], fileAttr, scope, declOp); |
| 213 | } |
| 214 | // FIXME: If `indexSize` happens to be bigger than address size on the |
| 215 | // system then we may have to change 'DW_OP_deref' here. |
| 216 | addOp(llvm::dwarf::DW_OP_push_object_address, {}); |
| 217 | addOp(llvm::dwarf::DW_OP_plus_uconst, |
| 218 | {offset + (indexSize * kDimExtentPos)}); |
| 219 | addOp(llvm::dwarf::DW_OP_deref, {}); |
| 220 | // count[i] = *(base_addr + offset + (indexSize * kDimExtentPos)) |
| 221 | // where 'offset' is dimsOffset + (i * dimsSize) |
| 222 | mlir::LLVM::DIExpressionAttr countAttr = |
| 223 | mlir::LLVM::DIExpressionAttr::get(context, ops); |
| 224 | ops.clear(); |
| 225 | |
| 226 | // If a lower bound was not found in the declOp, then we will get them from |
| 227 | // descriptor only for pointer and allocatable case. DWARF assumes lower |
| 228 | // bound of 1 when this attribute is missing. |
| 229 | if (!lowerAttr && (genAllocated || genAssociated)) { |
| 230 | addOp(llvm::dwarf::DW_OP_push_object_address, {}); |
| 231 | addOp(llvm::dwarf::DW_OP_plus_uconst, |
| 232 | {offset + (indexSize * kDimLowerBoundPos)}); |
| 233 | addOp(llvm::dwarf::DW_OP_deref, {}); |
| 234 | // lower_bound[i] = *(base_addr + offset + (indexSize * |
| 235 | // kDimLowerBoundPos)) |
| 236 | lowerAttr = mlir::LLVM::DIExpressionAttr::get(context, ops); |
| 237 | ops.clear(); |
| 238 | } |
| 239 | |
| 240 | addOp(llvm::dwarf::DW_OP_push_object_address, {}); |
| 241 | addOp(llvm::dwarf::DW_OP_plus_uconst, |
| 242 | {offset + (indexSize * kDimStridePos)}); |
| 243 | addOp(llvm::dwarf::DW_OP_deref, {}); |
| 244 | // stride[i] = *(base_addr + offset + (indexSize * kDimStridePos)) |
| 245 | mlir::LLVM::DIExpressionAttr strideAttr = |
| 246 | mlir::LLVM::DIExpressionAttr::get(context, ops); |
| 247 | ops.clear(); |
| 248 | |
| 249 | offset += dimsSize; |
| 250 | mlir::LLVM::DISubrangeAttr subrangeTy = mlir::LLVM::DISubrangeAttr::get( |
| 251 | context, countAttr, lowerAttr, /*upperBound=*/nullptr, strideAttr); |
| 252 | elements.push_back(subrangeTy); |
| 253 | ++index; |
| 254 | } |
| 255 | return mlir::LLVM::DICompositeTypeAttr::get( |
| 256 | context, llvm::dwarf::DW_TAG_array_type, /*name=*/nullptr, |
| 257 | /*file=*/nullptr, /*line=*/0, /*scope=*/nullptr, elemTy, |
| 258 | mlir::LLVM::DIFlags::Zero, /*sizeInBits=*/0, /*alignInBits=*/0, elements, |
| 259 | dataLocation, /*rank=*/nullptr, allocated, associated); |
| 260 | } |
| 261 | |
| 262 | std::pair<std::uint64_t, unsigned short> |
| 263 | DebugTypeGenerator::getFieldSizeAndAlign(mlir::Type fieldTy) { |
| 264 | mlir::Type llvmTy; |
| 265 | if (auto boxTy = mlir::dyn_cast_if_present<fir::BaseBoxType>(fieldTy)) |
| 266 | llvmTy = llvmTypeConverter.convertBoxTypeAsStruct(boxTy, getBoxRank(boxTy)); |
| 267 | else |
| 268 | llvmTy = llvmTypeConverter.convertType(fieldTy); |
| 269 | |
| 270 | uint64_t byteSize = dataLayout->getTypeSize(llvmTy); |
| 271 | unsigned short byteAlign = dataLayout->getTypeABIAlignment(llvmTy); |
| 272 | return std::pair{byteSize, byteAlign}; |
| 273 | } |
| 274 | |
| 275 | mlir::LLVM::DITypeAttr DebugTypeGenerator::convertRecordType( |
| 276 | fir::RecordType Ty, mlir::LLVM::DIFileAttr fileAttr, |
| 277 | mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp) { |
| 278 | // Check if this type has already been converted. |
| 279 | auto iter = typeCache.find(Ty); |
| 280 | if (iter != typeCache.end()) |
| 281 | return iter->second; |
| 282 | |
| 283 | bool canCacheThisType = true; |
| 284 | llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; |
| 285 | mlir::MLIRContext *context = module.getContext(); |
| 286 | auto recId = mlir::DistinctAttr::create(mlir::UnitAttr::get(context)); |
| 287 | // Generate a place holder TypeAttr which will be used if a member |
| 288 | // references the parent type. |
| 289 | auto comAttr = mlir::LLVM::DICompositeTypeAttr::get( |
| 290 | context, recId, /*isRecSelf=*/true, llvm::dwarf::DW_TAG_structure_type, |
| 291 | mlir::StringAttr::get(context, "" ), fileAttr, /*line=*/0, scope, |
| 292 | /*baseType=*/nullptr, mlir::LLVM::DIFlags::Zero, /*sizeInBits=*/0, |
| 293 | /*alignInBits=*/0, elements, /*dataLocation=*/nullptr, /*rank=*/nullptr, |
| 294 | /*allocated=*/nullptr, /*associated=*/nullptr); |
| 295 | typeCache[Ty] = comAttr; |
| 296 | |
| 297 | auto result = fir::NameUniquer::deconstruct(Ty.getName()); |
| 298 | if (result.first != fir::NameUniquer::NameKind::DERIVED_TYPE) |
| 299 | return genPlaceholderType(context); |
| 300 | |
| 301 | fir::TypeInfoOp tiOp = symbolTable->lookup<fir::TypeInfoOp>(Ty.getName()); |
| 302 | unsigned line = (tiOp) ? getLineFromLoc(tiOp.getLoc()) : 1; |
| 303 | |
| 304 | mlir::OpBuilder builder(context); |
| 305 | mlir::IntegerType intTy = mlir::IntegerType::get(context, 64); |
| 306 | std::uint64_t offset = 0; |
| 307 | for (auto [fieldName, fieldTy] : Ty.getTypeList()) { |
| 308 | auto [byteSize, byteAlign] = getFieldSizeAndAlign(fieldTy); |
| 309 | std::optional<llvm::ArrayRef<int64_t>> lowerBounds = |
| 310 | fir::getComponentLowerBoundsIfNonDefault(Ty, fieldName, module, |
| 311 | symbolTable); |
| 312 | auto seqTy = mlir::dyn_cast_if_present<fir::SequenceType>(fieldTy); |
| 313 | |
| 314 | // For members of the derived types, the information about the shift in |
| 315 | // lower bounds is not part of the declOp but has to be extracted from the |
| 316 | // TypeInfoOp (using getComponentLowerBoundsIfNonDefault). |
| 317 | mlir::LLVM::DITypeAttr elemTy; |
| 318 | if (lowerBounds && seqTy && |
| 319 | lowerBounds->size() == seqTy.getShape().size()) { |
| 320 | llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; |
| 321 | for (auto [bound, dim] : |
| 322 | llvm::zip_equal(*lowerBounds, seqTy.getShape())) { |
| 323 | auto countAttr = mlir::IntegerAttr::get(intTy, llvm::APInt(64, dim)); |
| 324 | auto lowerAttr = mlir::IntegerAttr::get(intTy, llvm::APInt(64, bound)); |
| 325 | auto subrangeTy = mlir::LLVM::DISubrangeAttr::get( |
| 326 | context, countAttr, lowerAttr, /*upperBound=*/nullptr, |
| 327 | /*stride=*/nullptr); |
| 328 | elements.push_back(subrangeTy); |
| 329 | } |
| 330 | elemTy = mlir::LLVM::DICompositeTypeAttr::get( |
| 331 | context, llvm::dwarf::DW_TAG_array_type, /*name=*/nullptr, |
| 332 | /*file=*/nullptr, /*line=*/0, /*scope=*/nullptr, |
| 333 | convertType(seqTy.getEleTy(), fileAttr, scope, declOp), |
| 334 | mlir::LLVM::DIFlags::Zero, /*sizeInBits=*/0, /*alignInBits=*/0, |
| 335 | elements, /*dataLocation=*/nullptr, /*rank=*/nullptr, |
| 336 | /*allocated=*/nullptr, /*associated=*/nullptr); |
| 337 | } else |
| 338 | elemTy = convertType(fieldTy, fileAttr, scope, /*declOp=*/nullptr); |
| 339 | offset = llvm::alignTo(offset, byteAlign); |
| 340 | mlir::LLVM::DIDerivedTypeAttr tyAttr = mlir::LLVM::DIDerivedTypeAttr::get( |
| 341 | context, llvm::dwarf::DW_TAG_member, |
| 342 | mlir::StringAttr::get(context, fieldName), elemTy, byteSize * 8, |
| 343 | byteAlign * 8, offset * 8, /*optional<address space>=*/std::nullopt, |
| 344 | /*extra data=*/nullptr); |
| 345 | elements.push_back(tyAttr); |
| 346 | offset += llvm::alignTo(byteSize, byteAlign); |
| 347 | |
| 348 | // Currently, the handling of recursive debug type in mlir has some |
| 349 | // limitations that were discussed at the end of the thread for following |
| 350 | // PR. |
| 351 | // https://github.com/llvm/llvm-project/pull/106571 |
| 352 | // |
| 353 | // Problem could be explained with the following example code: |
| 354 | // type t2 |
| 355 | // type(t1), pointer :: p1 |
| 356 | // end type |
| 357 | // type t1 |
| 358 | // type(t2), pointer :: p2 |
| 359 | // end type |
| 360 | // In the description below, type_self means a temporary type that is |
| 361 | // generated |
| 362 | // as a place holder while the members of that type are being processed. |
| 363 | // |
| 364 | // If we process t1 first then we will have the following structure after |
| 365 | // it has been processed. |
| 366 | // t1 -> t2 -> t1_self |
| 367 | // This is because when we started processing t2, we did not have the |
| 368 | // complete t1 but its place holder t1_self. |
| 369 | // Now if some entity requires t2, we will already have that in cache and |
| 370 | // will return it. But this t2 refers to t1_self and not to t1. In mlir |
| 371 | // handling, only those types are allowed to have _self reference which are |
| 372 | // wrapped by entity whose reference it is. So t1 -> t2 -> t1_self is ok |
| 373 | // because the t1_self reference can be resolved by the outer t1. But |
| 374 | // standalone t2 is not because there will be no way to resolve it. Until |
| 375 | // this is fixed in mlir, we avoid caching such types. Please see |
| 376 | // DebugTranslation::translateRecursive for details on how mlir handles |
| 377 | // recursive types. |
| 378 | // The code below checks for situation where it will be unsafe to cache |
| 379 | // a type to avoid this problem. We do that in 2 situations. |
| 380 | // 1. If a member is record type, then its type would have been processed |
| 381 | // before reaching here. If it is not in the cache, it means that it was |
| 382 | // found to be unsafe to cache. So any type containing it will also not |
| 383 | // be cached |
| 384 | // 2. The type of the member is found in the cache but it is a place holder. |
| 385 | // In this case, its recID should match the recID of the type we are |
| 386 | // processing. This helps us to cache the following type. |
| 387 | // type t |
| 388 | // type(t), allocatable :: p |
| 389 | // end type |
| 390 | mlir::Type baseTy = getDerivedType(fieldTy); |
| 391 | if (auto recTy = mlir::dyn_cast<fir::RecordType>(baseTy)) { |
| 392 | auto iter = typeCache.find(recTy); |
| 393 | if (iter == typeCache.end()) |
| 394 | canCacheThisType = false; |
| 395 | else { |
| 396 | if (auto tyAttr = |
| 397 | mlir::dyn_cast<mlir::LLVM::DICompositeTypeAttr>(iter->second)) { |
| 398 | if (tyAttr.getIsRecSelf() && tyAttr.getRecId() != recId) |
| 399 | canCacheThisType = false; |
| 400 | } |
| 401 | } |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | auto finalAttr = mlir::LLVM::DICompositeTypeAttr::get( |
| 406 | context, recId, /*isRecSelf=*/false, llvm::dwarf::DW_TAG_structure_type, |
| 407 | mlir::StringAttr::get(context, result.second.name), fileAttr, line, scope, |
| 408 | /*baseType=*/nullptr, mlir::LLVM::DIFlags::Zero, offset * 8, |
| 409 | /*alignInBits=*/0, elements, /*dataLocation=*/nullptr, /*rank=*/nullptr, |
| 410 | /*allocated=*/nullptr, /*associated=*/nullptr); |
| 411 | |
| 412 | // derivedTypeDepth == 1 means that it is a top level type which is safe to |
| 413 | // cache. |
| 414 | if (canCacheThisType || derivedTypeDepth == 1) { |
| 415 | typeCache[Ty] = finalAttr; |
| 416 | } else { |
| 417 | auto iter = typeCache.find(Ty); |
| 418 | if (iter != typeCache.end()) |
| 419 | typeCache.erase(iter); |
| 420 | } |
| 421 | return finalAttr; |
| 422 | } |
| 423 | |
| 424 | mlir::LLVM::DITypeAttr DebugTypeGenerator::convertTupleType( |
| 425 | mlir::TupleType Ty, mlir::LLVM::DIFileAttr fileAttr, |
| 426 | mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp) { |
| 427 | // Check if this type has already been converted. |
| 428 | auto iter = typeCache.find(Ty); |
| 429 | if (iter != typeCache.end()) |
| 430 | return iter->second; |
| 431 | |
| 432 | llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; |
| 433 | mlir::MLIRContext *context = module.getContext(); |
| 434 | |
| 435 | std::uint64_t offset = 0; |
| 436 | for (auto fieldTy : Ty.getTypes()) { |
| 437 | auto [byteSize, byteAlign] = getFieldSizeAndAlign(fieldTy); |
| 438 | mlir::LLVM::DITypeAttr elemTy = |
| 439 | convertType(fieldTy, fileAttr, scope, /*declOp=*/nullptr); |
| 440 | offset = llvm::alignTo(offset, byteAlign); |
| 441 | mlir::LLVM::DIDerivedTypeAttr tyAttr = mlir::LLVM::DIDerivedTypeAttr::get( |
| 442 | context, llvm::dwarf::DW_TAG_member, mlir::StringAttr::get(context, "" ), |
| 443 | elemTy, byteSize * 8, byteAlign * 8, offset * 8, |
| 444 | /*optional<address space>=*/std::nullopt, |
| 445 | /*extra data=*/nullptr); |
| 446 | elements.push_back(tyAttr); |
| 447 | offset += llvm::alignTo(byteSize, byteAlign); |
| 448 | } |
| 449 | |
| 450 | auto typeAttr = mlir::LLVM::DICompositeTypeAttr::get( |
| 451 | context, llvm::dwarf::DW_TAG_structure_type, |
| 452 | mlir::StringAttr::get(context, "" ), fileAttr, /*line=*/0, scope, |
| 453 | /*baseType=*/nullptr, mlir::LLVM::DIFlags::Zero, offset * 8, |
| 454 | /*alignInBits=*/0, elements, /*dataLocation=*/nullptr, /*rank=*/nullptr, |
| 455 | /*allocated=*/nullptr, /*associated=*/nullptr); |
| 456 | typeCache[Ty] = typeAttr; |
| 457 | return typeAttr; |
| 458 | } |
| 459 | |
| 460 | mlir::LLVM::DITypeAttr DebugTypeGenerator::convertSequenceType( |
| 461 | fir::SequenceType seqTy, mlir::LLVM::DIFileAttr fileAttr, |
| 462 | mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp) { |
| 463 | mlir::MLIRContext *context = module.getContext(); |
| 464 | |
| 465 | llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; |
| 466 | mlir::LLVM::DITypeAttr elemTy = |
| 467 | convertType(seqTy.getEleTy(), fileAttr, scope, declOp); |
| 468 | |
| 469 | unsigned index = 0; |
| 470 | auto intTy = mlir::IntegerType::get(context, 64); |
| 471 | for (fir::SequenceType::Extent dim : seqTy.getShape()) { |
| 472 | mlir::Attribute lowerAttr = nullptr; |
| 473 | mlir::Attribute countAttr = nullptr; |
| 474 | // If declOp is present, we use the shift in it to get the lower bound of |
| 475 | // the array. If it is constant, that is used. If it is not constant, we |
| 476 | // create a variable that represents its location and use that as lower |
| 477 | // bound. As an optimization, we don't create a lower bound when shift is a |
| 478 | // constant 1 as that is the default. |
| 479 | if (declOp && declOp.getShift().size() > index) { |
| 480 | if (std::optional<std::int64_t> optint = |
| 481 | getIntIfConstant(declOp.getShift()[index])) { |
| 482 | if (*optint != 1) |
| 483 | lowerAttr = mlir::IntegerAttr::get(intTy, llvm::APInt(64, *optint)); |
| 484 | } else |
| 485 | lowerAttr = generateArtificialVariable( |
| 486 | context, declOp.getShift()[index], fileAttr, scope, declOp); |
| 487 | } |
| 488 | |
| 489 | if (dim == seqTy.getUnknownExtent()) { |
| 490 | // This path is taken for both assumed size array or when the size of the |
| 491 | // array is variable. In the case of variable size, we create a variable |
| 492 | // to use as countAttr. Note that fir has a constant size of -1 for |
| 493 | // assumed size array. So !optint check makes sure we don't generate |
| 494 | // variable in that case. |
| 495 | if (declOp && declOp.getShape().size() > index) { |
| 496 | std::optional<std::int64_t> optint = |
| 497 | getIntIfConstant(declOp.getShape()[index]); |
| 498 | if (!optint) |
| 499 | countAttr = generateArtificialVariable( |
| 500 | context, declOp.getShape()[index], fileAttr, scope, declOp); |
| 501 | } |
| 502 | } else |
| 503 | countAttr = mlir::IntegerAttr::get(intTy, llvm::APInt(64, dim)); |
| 504 | |
| 505 | auto subrangeTy = mlir::LLVM::DISubrangeAttr::get( |
| 506 | context, countAttr, lowerAttr, /*upperBound=*/nullptr, |
| 507 | /*stride=*/nullptr); |
| 508 | elements.push_back(subrangeTy); |
| 509 | ++index; |
| 510 | } |
| 511 | // Apart from arrays, the `DICompositeTypeAttr` is used for other things like |
| 512 | // structure types. Many of its fields which are not applicable to arrays |
| 513 | // have been set to some valid default values. |
| 514 | |
| 515 | return mlir::LLVM::DICompositeTypeAttr::get( |
| 516 | context, llvm::dwarf::DW_TAG_array_type, /*name=*/nullptr, |
| 517 | /*file=*/nullptr, /*line=*/0, /*scope=*/nullptr, elemTy, |
| 518 | mlir::LLVM::DIFlags::Zero, /*sizeInBits=*/0, /*alignInBits=*/0, elements, |
| 519 | /*dataLocation=*/nullptr, /*rank=*/nullptr, /*allocated=*/nullptr, |
| 520 | /*associated=*/nullptr); |
| 521 | } |
| 522 | |
| 523 | mlir::LLVM::DITypeAttr DebugTypeGenerator::convertVectorType( |
| 524 | fir::VectorType vecTy, mlir::LLVM::DIFileAttr fileAttr, |
| 525 | mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp) { |
| 526 | mlir::MLIRContext *context = module.getContext(); |
| 527 | |
| 528 | llvm::SmallVector<mlir::LLVM::DINodeAttr> elements; |
| 529 | mlir::LLVM::DITypeAttr elemTy = |
| 530 | convertType(vecTy.getEleTy(), fileAttr, scope, declOp); |
| 531 | auto intTy = mlir::IntegerType::get(context, 64); |
| 532 | auto countAttr = |
| 533 | mlir::IntegerAttr::get(intTy, llvm::APInt(64, vecTy.getLen())); |
| 534 | auto subrangeTy = mlir::LLVM::DISubrangeAttr::get( |
| 535 | context, countAttr, /*lowerBound=*/nullptr, /*upperBound=*/nullptr, |
| 536 | /*stride=*/nullptr); |
| 537 | elements.push_back(subrangeTy); |
| 538 | mlir::Type llvmTy = llvmTypeConverter.convertType(vecTy.getEleTy()); |
| 539 | uint64_t sizeInBits = dataLayout->getTypeSize(llvmTy) * vecTy.getLen() * 8; |
| 540 | std::string name("vector" ); |
| 541 | // The element type of the vector must be integer or real so it will be a |
| 542 | // DIBasicTypeAttr. |
| 543 | if (auto ty = mlir::dyn_cast_if_present<mlir::LLVM::DIBasicTypeAttr>(elemTy)) |
| 544 | name += " " + ty.getName().str(); |
| 545 | |
| 546 | name += " (" + std::to_string(vecTy.getLen()) + ")" ; |
| 547 | return mlir::LLVM::DICompositeTypeAttr::get( |
| 548 | context, llvm::dwarf::DW_TAG_array_type, |
| 549 | mlir::StringAttr::get(context, name), |
| 550 | /*file=*/nullptr, /*line=*/0, /*scope=*/nullptr, elemTy, |
| 551 | mlir::LLVM::DIFlags::Vector, sizeInBits, /*alignInBits=*/0, elements, |
| 552 | /*dataLocation=*/nullptr, /*rank=*/nullptr, /*allocated=*/nullptr, |
| 553 | /*associated=*/nullptr); |
| 554 | } |
| 555 | |
| 556 | mlir::LLVM::DITypeAttr DebugTypeGenerator::convertCharacterType( |
| 557 | fir::CharacterType charTy, mlir::LLVM::DIFileAttr fileAttr, |
| 558 | mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp, |
| 559 | bool hasDescriptor) { |
| 560 | mlir::MLIRContext *context = module.getContext(); |
| 561 | |
| 562 | // DWARF 5 says the following about the character encoding in 5.1.1.2. |
| 563 | // "DW_ATE_ASCII and DW_ATE_UCS specify encodings for the Fortran 2003 |
| 564 | // string kinds ASCII (ISO/IEC 646:1991) and ISO_10646 (UCS-4 in ISO/IEC |
| 565 | // 10646:2000)." |
| 566 | unsigned encoding = llvm::dwarf::DW_ATE_ASCII; |
| 567 | if (charTy.getFKind() != 1) |
| 568 | encoding = llvm::dwarf::DW_ATE_UCS; |
| 569 | |
| 570 | uint64_t sizeInBits = 0; |
| 571 | mlir::LLVM::DIExpressionAttr lenExpr = nullptr; |
| 572 | mlir::LLVM::DIExpressionAttr locExpr = nullptr; |
| 573 | mlir::LLVM::DIVariableAttr varAttr = nullptr; |
| 574 | |
| 575 | if (hasDescriptor) { |
| 576 | llvm::SmallVector<mlir::LLVM::DIExpressionElemAttr> ops; |
| 577 | auto addOp = [&](unsigned opc, llvm::ArrayRef<uint64_t> vals) { |
| 578 | ops.push_back(mlir::LLVM::DIExpressionElemAttr::get(context, opc, vals)); |
| 579 | }; |
| 580 | addOp(llvm::dwarf::DW_OP_push_object_address, {}); |
| 581 | addOp(llvm::dwarf::DW_OP_plus_uconst, {lenOffset}); |
| 582 | lenExpr = mlir::LLVM::DIExpressionAttr::get(context, ops); |
| 583 | ops.clear(); |
| 584 | |
| 585 | addOp(llvm::dwarf::DW_OP_push_object_address, {}); |
| 586 | addOp(llvm::dwarf::DW_OP_deref, {}); |
| 587 | locExpr = mlir::LLVM::DIExpressionAttr::get(context, ops); |
| 588 | } else if (charTy.hasConstantLen()) { |
| 589 | sizeInBits = |
| 590 | charTy.getLen() * kindMapping.getCharacterBitsize(charTy.getFKind()); |
| 591 | } else { |
| 592 | // In assumed length string, the len of the character is not part of the |
| 593 | // type but can be found at the runtime. Here we create an artificial |
| 594 | // variable that will contain that length. This variable is used as |
| 595 | // 'stringLength' in DIStringTypeAttr. |
| 596 | if (declOp && !declOp.getTypeparams().empty()) { |
| 597 | mlir::LLVM::DILocalVariableAttr lvAttr = generateArtificialVariable( |
| 598 | context, declOp.getTypeparams()[0], fileAttr, scope, declOp); |
| 599 | varAttr = mlir::cast<mlir::LLVM::DIVariableAttr>(lvAttr); |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | // FIXME: Currently the DIStringType in llvm does not have the option to set |
| 604 | // type of the underlying character. This restricts out ability to represent |
| 605 | // string with non-default characters. Please see issue #95440 for more |
| 606 | // details. |
| 607 | return mlir::LLVM::DIStringTypeAttr::get( |
| 608 | context, llvm::dwarf::DW_TAG_string_type, |
| 609 | mlir::StringAttr::get(context, "" ), sizeInBits, /*alignInBits=*/0, |
| 610 | /*stringLength=*/varAttr, lenExpr, locExpr, encoding); |
| 611 | } |
| 612 | |
| 613 | mlir::LLVM::DITypeAttr DebugTypeGenerator::convertPointerLikeType( |
| 614 | mlir::Type elTy, mlir::LLVM::DIFileAttr fileAttr, |
| 615 | mlir::LLVM::DIScopeAttr scope, fir::cg::XDeclareOp declOp, |
| 616 | bool genAllocated, bool genAssociated) { |
| 617 | mlir::MLIRContext *context = module.getContext(); |
| 618 | |
| 619 | // Arrays and character need different treatment because DWARF have special |
| 620 | // constructs for them to get the location from the descriptor. Rest of |
| 621 | // types are handled like pointer to underlying type. |
| 622 | if (auto seqTy = mlir::dyn_cast_if_present<fir::SequenceType>(elTy)) |
| 623 | return convertBoxedSequenceType(seqTy, fileAttr, scope, declOp, |
| 624 | genAllocated, genAssociated); |
| 625 | if (auto charTy = mlir::dyn_cast_if_present<fir::CharacterType>(elTy)) |
| 626 | return convertCharacterType(charTy, fileAttr, scope, declOp, |
| 627 | /*hasDescriptor=*/true); |
| 628 | |
| 629 | // If elTy is null or none then generate a void* |
| 630 | mlir::LLVM::DITypeAttr elTyAttr; |
| 631 | if (!elTy || mlir::isa<mlir::NoneType>(elTy)) |
| 632 | elTyAttr = mlir::LLVM::DINullTypeAttr::get(context); |
| 633 | else |
| 634 | elTyAttr = convertType(elTy, fileAttr, scope, declOp); |
| 635 | |
| 636 | return mlir::LLVM::DIDerivedTypeAttr::get( |
| 637 | context, llvm::dwarf::DW_TAG_pointer_type, |
| 638 | mlir::StringAttr::get(context, "" ), elTyAttr, /*sizeInBits=*/ptrSize * 8, |
| 639 | /*alignInBits=*/0, /*offset=*/0, |
| 640 | /*optional<address space>=*/std::nullopt, /*extra data=*/nullptr); |
| 641 | } |
| 642 | |
| 643 | mlir::LLVM::DITypeAttr |
| 644 | DebugTypeGenerator::convertType(mlir::Type Ty, mlir::LLVM::DIFileAttr fileAttr, |
| 645 | mlir::LLVM::DIScopeAttr scope, |
| 646 | fir::cg::XDeclareOp declOp) { |
| 647 | mlir::MLIRContext *context = module.getContext(); |
| 648 | if (Ty.isInteger()) { |
| 649 | return genBasicType(context, mlir::StringAttr::get(context, "integer" ), |
| 650 | Ty.getIntOrFloatBitWidth(), llvm::dwarf::DW_ATE_signed); |
| 651 | } else if (mlir::isa<mlir::FloatType>(Ty)) { |
| 652 | return genBasicType(context, mlir::StringAttr::get(context, "real" ), |
| 653 | Ty.getIntOrFloatBitWidth(), llvm::dwarf::DW_ATE_float); |
| 654 | } else if (auto logTy = mlir::dyn_cast_if_present<fir::LogicalType>(Ty)) { |
| 655 | return genBasicType(context, |
| 656 | mlir::StringAttr::get(context, logTy.getMnemonic()), |
| 657 | kindMapping.getLogicalBitsize(logTy.getFKind()), |
| 658 | llvm::dwarf::DW_ATE_boolean); |
| 659 | } else if (auto cplxTy = mlir::dyn_cast_if_present<mlir::ComplexType>(Ty)) { |
| 660 | auto floatTy = mlir::cast<mlir::FloatType>(cplxTy.getElementType()); |
| 661 | unsigned bitWidth = floatTy.getWidth(); |
| 662 | return genBasicType(context, mlir::StringAttr::get(context, "complex" ), |
| 663 | bitWidth * 2, llvm::dwarf::DW_ATE_complex_float); |
| 664 | } else if (auto seqTy = mlir::dyn_cast_if_present<fir::SequenceType>(Ty)) { |
| 665 | return convertSequenceType(seqTy, fileAttr, scope, declOp); |
| 666 | } else if (auto charTy = mlir::dyn_cast_if_present<fir::CharacterType>(Ty)) { |
| 667 | return convertCharacterType(charTy, fileAttr, scope, declOp, |
| 668 | /*hasDescriptor=*/false); |
| 669 | } else if (auto recTy = mlir::dyn_cast_if_present<fir::RecordType>(Ty)) { |
| 670 | // For nested derived types like shown below, the call sequence of the |
| 671 | // convertRecordType will look something like as follows: |
| 672 | // convertRecordType (t1) |
| 673 | // convertRecordType (t2) |
| 674 | // convertRecordType (t3) |
| 675 | // We need to recognize when we are processing the top level type like t1 |
| 676 | // to make caching decision. The variable `derivedTypeDepth` is used for |
| 677 | // this purpose and maintains the current depth of derived type processing. |
| 678 | // type t1 |
| 679 | // type(t2), pointer :: p1 |
| 680 | // end type |
| 681 | // type t2 |
| 682 | // type(t3), pointer :: p2 |
| 683 | // end type |
| 684 | // type t2 |
| 685 | // integer a |
| 686 | // end type |
| 687 | derivedTypeDepth++; |
| 688 | auto result = convertRecordType(recTy, fileAttr, scope, declOp); |
| 689 | derivedTypeDepth--; |
| 690 | return result; |
| 691 | } else if (auto tupleTy = mlir::dyn_cast_if_present<mlir::TupleType>(Ty)) { |
| 692 | return convertTupleType(tupleTy, fileAttr, scope, declOp); |
| 693 | } else if (auto refTy = mlir::dyn_cast_if_present<fir::ReferenceType>(Ty)) { |
| 694 | auto elTy = refTy.getEleTy(); |
| 695 | return convertPointerLikeType(elTy, fileAttr, scope, declOp, |
| 696 | /*genAllocated=*/false, |
| 697 | /*genAssociated=*/false); |
| 698 | } else if (auto vecTy = mlir::dyn_cast_if_present<fir::VectorType>(Ty)) { |
| 699 | return convertVectorType(vecTy, fileAttr, scope, declOp); |
| 700 | } else if (mlir::isa<mlir::IndexType>(Ty)) { |
| 701 | return genBasicType(context, mlir::StringAttr::get(context, "integer" ), |
| 702 | llvmTypeConverter.getIndexTypeBitwidth(), |
| 703 | llvm::dwarf::DW_ATE_signed); |
| 704 | } else if (auto boxTy = mlir::dyn_cast_if_present<fir::BaseBoxType>(Ty)) { |
| 705 | auto elTy = boxTy.getEleTy(); |
| 706 | if (auto seqTy = mlir::dyn_cast_if_present<fir::SequenceType>(elTy)) |
| 707 | return convertBoxedSequenceType(seqTy, fileAttr, scope, declOp, false, |
| 708 | false); |
| 709 | if (auto heapTy = mlir::dyn_cast_if_present<fir::HeapType>(elTy)) |
| 710 | return convertPointerLikeType(heapTy.getElementType(), fileAttr, scope, |
| 711 | declOp, /*genAllocated=*/true, |
| 712 | /*genAssociated=*/false); |
| 713 | if (auto ptrTy = mlir::dyn_cast_if_present<fir::PointerType>(elTy)) |
| 714 | return convertPointerLikeType(ptrTy.getElementType(), fileAttr, scope, |
| 715 | declOp, /*genAllocated=*/false, |
| 716 | /*genAssociated=*/true); |
| 717 | return convertPointerLikeType(elTy, fileAttr, scope, declOp, |
| 718 | /*genAllocated=*/false, |
| 719 | /*genAssociated=*/false); |
| 720 | } else { |
| 721 | // FIXME: These types are currently unhandled. We are generating a |
| 722 | // placeholder type to allow us to test supported bits. |
| 723 | return genPlaceholderType(context); |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | } // namespace fir |
| 728 | |