1 | //===-- PolymorphicOpConversion.cpp ---------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "flang/Lower/BuiltinModules.h" |
10 | #include "flang/Optimizer/Builder/Todo.h" |
11 | #include "flang/Optimizer/Dialect/FIRDialect.h" |
12 | #include "flang/Optimizer/Dialect/FIROps.h" |
13 | #include "flang/Optimizer/Dialect/FIROpsSupport.h" |
14 | #include "flang/Optimizer/Dialect/FIRType.h" |
15 | #include "flang/Optimizer/Dialect/Support/FIRContext.h" |
16 | #include "flang/Optimizer/Dialect/Support/KindMapping.h" |
17 | #include "flang/Optimizer/Support/InternalNames.h" |
18 | #include "flang/Optimizer/Support/TypeCode.h" |
19 | #include "flang/Optimizer/Support/Utils.h" |
20 | #include "flang/Optimizer/Transforms/Passes.h" |
21 | #include "flang/Runtime/derived-api.h" |
22 | #include "flang/Semantics/runtime-type-info.h" |
23 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
24 | #include "mlir/Dialect/Arith/IR/Arith.h" |
25 | #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" |
26 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
27 | #include "mlir/IR/BuiltinOps.h" |
28 | #include "mlir/Pass/Pass.h" |
29 | #include "mlir/Transforms/DialectConversion.h" |
30 | #include "llvm/ADT/SmallSet.h" |
31 | #include "llvm/Support/CommandLine.h" |
32 | #include <mutex> |
33 | |
34 | namespace fir { |
35 | #define GEN_PASS_DEF_POLYMORPHICOPCONVERSION |
36 | #include "flang/Optimizer/Transforms/Passes.h.inc" |
37 | } // namespace fir |
38 | |
39 | using namespace fir; |
40 | using namespace mlir; |
41 | |
42 | namespace { |
43 | |
44 | /// SelectTypeOp converted to an if-then-else chain |
45 | /// |
46 | /// This lowers the test conditions to calls into the runtime. |
47 | class SelectTypeConv : public OpConversionPattern<fir::SelectTypeOp> { |
48 | public: |
49 | using OpConversionPattern<fir::SelectTypeOp>::OpConversionPattern; |
50 | |
51 | SelectTypeConv(mlir::MLIRContext *ctx, std::mutex *moduleMutex) |
52 | : mlir::OpConversionPattern<fir::SelectTypeOp>(ctx), |
53 | moduleMutex(moduleMutex) {} |
54 | |
55 | mlir::LogicalResult |
56 | matchAndRewrite(fir::SelectTypeOp selectType, OpAdaptor adaptor, |
57 | mlir::ConversionPatternRewriter &rewriter) const override; |
58 | |
59 | private: |
60 | // Generate comparison of type descriptor addresses. |
61 | mlir::Value genTypeDescCompare(mlir::Location loc, mlir::Value selector, |
62 | mlir::Type ty, mlir::ModuleOp mod, |
63 | mlir::PatternRewriter &rewriter) const; |
64 | |
65 | mlir::LogicalResult genTypeLadderStep(mlir::Location loc, |
66 | mlir::Value selector, |
67 | mlir::Attribute attr, mlir::Block *dest, |
68 | std::optional<mlir::ValueRange> destOps, |
69 | mlir::ModuleOp mod, |
70 | mlir::PatternRewriter &rewriter, |
71 | fir::KindMapping &kindMap) const; |
72 | |
73 | llvm::SmallSet<llvm::StringRef, 4> collectAncestors(fir::TypeInfoOp dt, |
74 | mlir::ModuleOp mod) const; |
75 | |
76 | // Mutex used to guard insertion of mlir::func::FuncOp in the module. |
77 | std::mutex *moduleMutex; |
78 | }; |
79 | |
80 | /// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch |
81 | /// table. |
82 | struct DispatchOpConv : public OpConversionPattern<fir::DispatchOp> { |
83 | using OpConversionPattern<fir::DispatchOp>::OpConversionPattern; |
84 | |
85 | DispatchOpConv(mlir::MLIRContext *ctx, const BindingTables &bindingTables) |
86 | : mlir::OpConversionPattern<fir::DispatchOp>(ctx), |
87 | bindingTables(bindingTables) {} |
88 | |
89 | mlir::LogicalResult |
90 | matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor, |
91 | mlir::ConversionPatternRewriter &rewriter) const override { |
92 | mlir::Location loc = dispatch.getLoc(); |
93 | |
94 | if (bindingTables.empty()) |
95 | return emitError(loc) << "no binding tables found" ; |
96 | |
97 | // Get derived type information. |
98 | mlir::Type declaredType = |
99 | fir::getDerivedType(dispatch.getObject().getType().getEleTy()); |
100 | assert(declaredType.isa<fir::RecordType>() && "expecting fir.type" ); |
101 | auto recordType = declaredType.dyn_cast<fir::RecordType>(); |
102 | |
103 | // Lookup for the binding table. |
104 | auto bindingsIter = bindingTables.find(recordType.getName()); |
105 | if (bindingsIter == bindingTables.end()) |
106 | return emitError(loc) |
107 | << "cannot find binding table for " << recordType.getName(); |
108 | |
109 | // Lookup for the binding. |
110 | const BindingTable &bindingTable = bindingsIter->second; |
111 | auto bindingIter = bindingTable.find(dispatch.getMethod()); |
112 | if (bindingIter == bindingTable.end()) |
113 | return emitError(loc) |
114 | << "cannot find binding for " << dispatch.getMethod(); |
115 | unsigned bindingIdx = bindingIter->second; |
116 | |
117 | mlir::Value passedObject = dispatch.getObject(); |
118 | |
119 | auto module = dispatch.getOperation()->getParentOfType<mlir::ModuleOp>(); |
120 | Type typeDescTy; |
121 | std::string typeDescName = |
122 | NameUniquer::getTypeDescriptorName(recordType.getName()); |
123 | if (auto global = module.lookupSymbol<fir::GlobalOp>(typeDescName)) { |
124 | typeDescTy = global.getType(); |
125 | } |
126 | |
127 | // clang-format off |
128 | // Before: |
129 | // fir.dispatch "proc1"(%11 : |
130 | // !fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>) |
131 | |
132 | // After: |
133 | // %12 = fir.box_tdesc %11 : (!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>) -> !fir.tdesc<none> |
134 | // %13 = fir.convert %12 : (!fir.tdesc<none>) -> !fir.ref<!fir.type<_QM__fortran_type_infoTderivedtype>> |
135 | // %14 = fir.field_index binding, !fir.type<_QM__fortran_type_infoTderivedtype> |
136 | // %15 = fir.coordinate_of %13, %14 : (!fir.ref<!fir.type<_QM__fortran_type_infoTderivedtype>>, !fir.field) -> !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>> |
137 | // %bindings = fir.load %15 : !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>> |
138 | // %16 = fir.box_addr %bindings : (!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>) -> !fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>> |
139 | // %17 = fir.coordinate_of %16, %c0 : (!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>, index) -> !fir.ref<!fir.type<_QM__fortran_type_infoTbinding>> |
140 | // %18 = fir.field_index proc, !fir.type<_QM__fortran_type_infoTbinding> |
141 | // %19 = fir.coordinate_of %17, %18 : (!fir.ref<!fir.type<_QM__fortran_type_infoTbinding>>, !fir.field) -> !fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_c_funptr>> |
142 | // %20 = fir.field_index __address, !fir.type<_QM__fortran_builtinsT__builtin_c_funptr> |
143 | // %21 = fir.coordinate_of %19, %20 : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_c_funptr>>, !fir.field) -> !fir.ref<i64> |
144 | // %22 = fir.load %21 : !fir.ref<i64> |
145 | // %23 = fir.convert %22 : (i64) -> (() -> ()) |
146 | // fir.call %23() : () -> () |
147 | // clang-format on |
148 | |
149 | // Load the descriptor. |
150 | mlir::Type fieldTy = fir::FieldType::get(rewriter.getContext()); |
151 | mlir::Type tdescType = |
152 | fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext())); |
153 | mlir::Value boxDesc = |
154 | rewriter.create<fir::BoxTypeDescOp>(loc, tdescType, passedObject); |
155 | boxDesc = rewriter.create<fir::ConvertOp>( |
156 | loc, fir::ReferenceType::get(typeDescTy), boxDesc); |
157 | |
158 | // Load the bindings descriptor. |
159 | auto bindingsCompName = Fortran::semantics::bindingDescCompName; |
160 | fir::RecordType typeDescRecTy = typeDescTy.cast<fir::RecordType>(); |
161 | mlir::Value field = rewriter.create<fir::FieldIndexOp>( |
162 | loc, fieldTy, bindingsCompName, typeDescRecTy, mlir::ValueRange{}); |
163 | mlir::Type coorTy = |
164 | fir::ReferenceType::get(typeDescRecTy.getType(bindingsCompName)); |
165 | mlir::Value bindingBoxAddr = |
166 | rewriter.create<fir::CoordinateOp>(loc, coorTy, boxDesc, field); |
167 | mlir::Value bindingBox = rewriter.create<fir::LoadOp>(loc, bindingBoxAddr); |
168 | |
169 | // Load the correct binding. |
170 | mlir::Value bindings = rewriter.create<fir::BoxAddrOp>(loc, bindingBox); |
171 | fir::RecordType bindingTy = |
172 | fir::unwrapIfDerived(bindingBox.getType().cast<fir::BaseBoxType>()); |
173 | mlir::Type bindingAddrTy = fir::ReferenceType::get(bindingTy); |
174 | mlir::Value bindingIdxVal = rewriter.create<mlir::arith::ConstantOp>( |
175 | loc, rewriter.getIndexType(), rewriter.getIndexAttr(bindingIdx)); |
176 | mlir::Value bindingAddr = rewriter.create<fir::CoordinateOp>( |
177 | loc, bindingAddrTy, bindings, bindingIdxVal); |
178 | |
179 | // Get the function pointer. |
180 | auto procCompName = Fortran::semantics::procCompName; |
181 | mlir::Value procField = rewriter.create<fir::FieldIndexOp>( |
182 | loc, fieldTy, procCompName, bindingTy, mlir::ValueRange{}); |
183 | fir::RecordType procTy = |
184 | bindingTy.getType(procCompName).cast<fir::RecordType>(); |
185 | mlir::Type procRefTy = fir::ReferenceType::get(procTy); |
186 | mlir::Value procRef = rewriter.create<fir::CoordinateOp>( |
187 | loc, procRefTy, bindingAddr, procField); |
188 | |
189 | auto addressFieldName = Fortran::lower::builtin::cptrFieldName; |
190 | mlir::Value addressField = rewriter.create<fir::FieldIndexOp>( |
191 | loc, fieldTy, addressFieldName, procTy, mlir::ValueRange{}); |
192 | mlir::Type addressTy = procTy.getType(addressFieldName); |
193 | mlir::Type addressRefTy = fir::ReferenceType::get(addressTy); |
194 | mlir::Value addressRef = rewriter.create<fir::CoordinateOp>( |
195 | loc, addressRefTy, procRef, addressField); |
196 | mlir::Value address = rewriter.create<fir::LoadOp>(loc, addressRef); |
197 | |
198 | // Get the function type. |
199 | llvm::SmallVector<mlir::Type> argTypes; |
200 | for (mlir::Value operand : dispatch.getArgs()) |
201 | argTypes.push_back(operand.getType()); |
202 | llvm::SmallVector<mlir::Type> resTypes; |
203 | if (!dispatch.getResults().empty()) |
204 | resTypes.push_back(dispatch.getResults()[0].getType()); |
205 | |
206 | mlir::Type funTy = |
207 | mlir::FunctionType::get(rewriter.getContext(), argTypes, resTypes); |
208 | mlir::Value funcPtr = rewriter.create<fir::ConvertOp>(loc, funTy, address); |
209 | |
210 | // Make the call. |
211 | llvm::SmallVector<mlir::Value> args{funcPtr}; |
212 | args.append(dispatch.getArgs().begin(), dispatch.getArgs().end()); |
213 | rewriter.replaceOpWithNewOp<fir::CallOp>(dispatch, resTypes, nullptr, args); |
214 | return mlir::success(); |
215 | } |
216 | |
217 | private: |
218 | BindingTables bindingTables; |
219 | }; |
220 | |
221 | /// Convert FIR structured control flow ops to CFG ops. |
222 | class PolymorphicOpConversion |
223 | : public fir::impl::PolymorphicOpConversionBase<PolymorphicOpConversion> { |
224 | public: |
225 | mlir::LogicalResult initialize(mlir::MLIRContext *ctx) override { |
226 | moduleMutex = new std::mutex(); |
227 | return mlir::success(); |
228 | } |
229 | |
230 | void runOnOperation() override { |
231 | auto *context = &getContext(); |
232 | auto mod = getOperation()->getParentOfType<ModuleOp>(); |
233 | mlir::RewritePatternSet patterns(context); |
234 | |
235 | BindingTables bindingTables; |
236 | buildBindingTables(bindingTables, mod); |
237 | |
238 | patterns.insert<SelectTypeConv>(context, moduleMutex); |
239 | patterns.insert<DispatchOpConv>(context, bindingTables); |
240 | mlir::ConversionTarget target(*context); |
241 | target.addLegalDialect<mlir::affine::AffineDialect, |
242 | mlir::cf::ControlFlowDialect, FIROpsDialect, |
243 | mlir::func::FuncDialect>(); |
244 | |
245 | // apply the patterns |
246 | target.addIllegalOp<SelectTypeOp>(); |
247 | target.addIllegalOp<DispatchOp>(); |
248 | target.markUnknownOpDynamicallyLegal([](Operation *) { return true; }); |
249 | if (mlir::failed(mlir::applyPartialConversion(getOperation(), target, |
250 | std::move(patterns)))) { |
251 | mlir::emitError(mlir::UnknownLoc::get(context), |
252 | "error in converting to CFG\n" ); |
253 | signalPassFailure(); |
254 | } |
255 | } |
256 | |
257 | private: |
258 | std::mutex *moduleMutex; |
259 | }; |
260 | } // namespace |
261 | |
262 | mlir::LogicalResult SelectTypeConv::matchAndRewrite( |
263 | fir::SelectTypeOp selectType, OpAdaptor adaptor, |
264 | mlir::ConversionPatternRewriter &rewriter) const { |
265 | auto operands = adaptor.getOperands(); |
266 | auto typeGuards = selectType.getCases(); |
267 | unsigned typeGuardNum = typeGuards.size(); |
268 | auto selector = selectType.getSelector(); |
269 | auto loc = selectType.getLoc(); |
270 | auto mod = selectType.getOperation()->getParentOfType<mlir::ModuleOp>(); |
271 | fir::KindMapping kindMap = fir::getKindMapping(mod); |
272 | |
273 | // Order type guards so the condition and branches are done to respect the |
274 | // Execution of SELECT TYPE construct as described in the Fortran 2018 |
275 | // standard 11.1.11.2 point 4. |
276 | // 1. If a TYPE IS type guard statement matches the selector, the block |
277 | // following that statement is executed. |
278 | // 2. Otherwise, if exactly one CLASS IS type guard statement matches the |
279 | // selector, the block following that statement is executed. |
280 | // 3. Otherwise, if several CLASS IS type guard statements match the |
281 | // selector, one of these statements will inevitably specify a type that |
282 | // is an extension of all the types specified in the others; the block |
283 | // following that statement is executed. |
284 | // 4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block |
285 | // following that statement is executed. |
286 | // 5. Otherwise, no block is executed. |
287 | |
288 | llvm::SmallVector<unsigned> orderedTypeGuards; |
289 | llvm::SmallVector<unsigned> orderedClassIsGuards; |
290 | unsigned defaultGuard = typeGuardNum - 1; |
291 | |
292 | // The following loop go through the type guards in the fir.select_type |
293 | // operation and sort them into two lists. |
294 | // - All the TYPE IS type guard are added in order to the orderedTypeGuards |
295 | // list. This list is used at the end to generate the if-then-else ladder. |
296 | // - CLASS IS type guard are added in a separate list. If a CLASS IS type |
297 | // guard type extends a type already present, the type guard is inserted |
298 | // before in the list to respect point 3. above. Otherwise it is just |
299 | // added in order at the end. |
300 | for (unsigned t = 0; t < typeGuardNum; ++t) { |
301 | if (auto a = typeGuards[t].dyn_cast<fir::ExactTypeAttr>()) { |
302 | orderedTypeGuards.push_back(Elt: t); |
303 | continue; |
304 | } |
305 | |
306 | if (auto a = typeGuards[t].dyn_cast<fir::SubclassAttr>()) { |
307 | if (auto recTy = a.getType().dyn_cast<fir::RecordType>()) { |
308 | auto dt = mod.lookupSymbol<fir::TypeInfoOp>(recTy.getName()); |
309 | assert(dt && "dispatch table not found" ); |
310 | llvm::SmallSet<llvm::StringRef, 4> ancestors = |
311 | collectAncestors(dt, mod); |
312 | if (!ancestors.empty()) { |
313 | auto it = orderedClassIsGuards.begin(); |
314 | while (it != orderedClassIsGuards.end()) { |
315 | fir::SubclassAttr sAttr = |
316 | typeGuards[*it].dyn_cast<fir::SubclassAttr>(); |
317 | if (auto ty = sAttr.getType().dyn_cast<fir::RecordType>()) { |
318 | if (ancestors.contains(V: ty.getName())) |
319 | break; |
320 | } |
321 | ++it; |
322 | } |
323 | if (it != orderedClassIsGuards.end()) { |
324 | // Parent type is present so place it before. |
325 | orderedClassIsGuards.insert(I: it, Elt: t); |
326 | continue; |
327 | } |
328 | } |
329 | } |
330 | orderedClassIsGuards.push_back(Elt: t); |
331 | } |
332 | } |
333 | orderedTypeGuards.append(RHS: orderedClassIsGuards); |
334 | orderedTypeGuards.push_back(Elt: defaultGuard); |
335 | assert(orderedTypeGuards.size() == typeGuardNum && |
336 | "ordered type guard size doesn't match number of type guards" ); |
337 | |
338 | for (unsigned idx : orderedTypeGuards) { |
339 | auto *dest = selectType.getSuccessor(idx); |
340 | std::optional<mlir::ValueRange> destOps = |
341 | selectType.getSuccessorOperands(operands, idx); |
342 | if (typeGuards[idx].dyn_cast<mlir::UnitAttr>()) |
343 | rewriter.replaceOpWithNewOp<mlir::cf::BranchOp>( |
344 | selectType, dest, destOps.value_or(mlir::ValueRange{})); |
345 | else if (mlir::failed(genTypeLadderStep(loc, selector, typeGuards[idx], |
346 | dest, destOps, mod, rewriter, |
347 | kindMap))) |
348 | return mlir::failure(); |
349 | } |
350 | return mlir::success(); |
351 | } |
352 | |
353 | mlir::LogicalResult SelectTypeConv::genTypeLadderStep( |
354 | mlir::Location loc, mlir::Value selector, mlir::Attribute attr, |
355 | mlir::Block *dest, std::optional<mlir::ValueRange> destOps, |
356 | mlir::ModuleOp mod, mlir::PatternRewriter &rewriter, |
357 | fir::KindMapping &kindMap) const { |
358 | mlir::Value cmp; |
359 | // TYPE IS type guard comparison are all done inlined. |
360 | if (auto a = attr.dyn_cast<fir::ExactTypeAttr>()) { |
361 | if (fir::isa_trivial(a.getType()) || |
362 | a.getType().isa<fir::CharacterType>()) { |
363 | // For type guard statement with Intrinsic type spec the type code of |
364 | // the descriptor is compared. |
365 | int code = fir::getTypeCode(a.getType(), kindMap); |
366 | if (code == 0) |
367 | return mlir::emitError(loc) |
368 | << "type code unavailable for " << a.getType(); |
369 | mlir::Value typeCode = rewriter.create<mlir::arith::ConstantOp>( |
370 | loc, rewriter.getI8IntegerAttr(code)); |
371 | mlir::Value selectorTypeCode = rewriter.create<fir::BoxTypeCodeOp>( |
372 | loc, rewriter.getI8Type(), selector); |
373 | cmp = rewriter.create<mlir::arith::CmpIOp>( |
374 | loc, mlir::arith::CmpIPredicate::eq, selectorTypeCode, typeCode); |
375 | } else { |
376 | // Flang inline the kind parameter in the type descriptor so we can |
377 | // directly check if the type descriptor addresses are identical for |
378 | // the TYPE IS type guard statement. |
379 | mlir::Value res = |
380 | genTypeDescCompare(loc, selector, a.getType(), mod, rewriter); |
381 | if (!res) |
382 | return mlir::failure(); |
383 | cmp = res; |
384 | } |
385 | // CLASS IS type guard statement is done with a runtime call. |
386 | } else if (auto a = attr.dyn_cast<fir::SubclassAttr>()) { |
387 | // Retrieve the type descriptor from the type guard statement record type. |
388 | assert(a.getType().isa<fir::RecordType>() && "expect fir.record type" ); |
389 | fir::RecordType recTy = a.getType().dyn_cast<fir::RecordType>(); |
390 | std::string typeDescName = |
391 | fir::NameUniquer::getTypeDescriptorName(recTy.getName()); |
392 | auto typeDescGlobal = mod.lookupSymbol<fir::GlobalOp>(typeDescName); |
393 | auto typeDescAddr = rewriter.create<fir::AddrOfOp>( |
394 | loc, fir::ReferenceType::get(typeDescGlobal.getType()), |
395 | typeDescGlobal.getSymbol()); |
396 | mlir::Type typeDescTy = ReferenceType::get(rewriter.getNoneType()); |
397 | mlir::Value typeDesc = |
398 | rewriter.create<ConvertOp>(loc, typeDescTy, typeDescAddr); |
399 | |
400 | // Prepare the selector descriptor for the runtime call. |
401 | mlir::Type descNoneTy = fir::BoxType::get(rewriter.getNoneType()); |
402 | mlir::Value descSelector = |
403 | rewriter.create<ConvertOp>(loc, descNoneTy, selector); |
404 | |
405 | // Generate runtime call. |
406 | llvm::StringRef fctName = RTNAME_STRING(ClassIs); |
407 | mlir::func::FuncOp callee; |
408 | { |
409 | // Since conversion is done in parallel for each fir.select_type |
410 | // operation, the runtime function insertion must be threadsafe. |
411 | std::lock_guard<std::mutex> lock(*moduleMutex); |
412 | callee = |
413 | fir::createFuncOp(rewriter.getUnknownLoc(), mod, fctName, |
414 | rewriter.getFunctionType({descNoneTy, typeDescTy}, |
415 | rewriter.getI1Type())); |
416 | } |
417 | cmp = rewriter |
418 | .create<fir::CallOp>(loc, callee, |
419 | mlir::ValueRange{descSelector, typeDesc}) |
420 | .getResult(0); |
421 | } |
422 | |
423 | auto *thisBlock = rewriter.getInsertionBlock(); |
424 | auto *newBlock = |
425 | rewriter.createBlock(dest->getParent(), mlir::Region::iterator(dest)); |
426 | rewriter.setInsertionPointToEnd(thisBlock); |
427 | if (destOps.has_value()) |
428 | rewriter.create<mlir::cf::CondBranchOp>(loc, cmp, dest, destOps.value(), |
429 | newBlock, std::nullopt); |
430 | else |
431 | rewriter.create<mlir::cf::CondBranchOp>(loc, cmp, dest, newBlock); |
432 | rewriter.setInsertionPointToEnd(newBlock); |
433 | return mlir::success(); |
434 | } |
435 | |
436 | // Generate comparison of type descriptor addresses. |
437 | mlir::Value |
438 | SelectTypeConv::genTypeDescCompare(mlir::Location loc, mlir::Value selector, |
439 | mlir::Type ty, mlir::ModuleOp mod, |
440 | mlir::PatternRewriter &rewriter) const { |
441 | assert(ty.isa<fir::RecordType>() && "expect fir.record type" ); |
442 | fir::RecordType recTy = ty.dyn_cast<fir::RecordType>(); |
443 | std::string typeDescName = |
444 | fir::NameUniquer::getTypeDescriptorName(recTy.getName()); |
445 | auto typeDescGlobal = mod.lookupSymbol<fir::GlobalOp>(typeDescName); |
446 | if (!typeDescGlobal) |
447 | return {}; |
448 | auto typeDescAddr = rewriter.create<fir::AddrOfOp>( |
449 | loc, fir::ReferenceType::get(typeDescGlobal.getType()), |
450 | typeDescGlobal.getSymbol()); |
451 | auto intPtrTy = rewriter.getIndexType(); |
452 | mlir::Type tdescType = |
453 | fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext())); |
454 | mlir::Value selectorTdescAddr = |
455 | rewriter.create<fir::BoxTypeDescOp>(loc, tdescType, selector); |
456 | auto typeDescInt = |
457 | rewriter.create<fir::ConvertOp>(loc, intPtrTy, typeDescAddr); |
458 | auto selectorTdescInt = |
459 | rewriter.create<fir::ConvertOp>(loc, intPtrTy, selectorTdescAddr); |
460 | return rewriter.create<mlir::arith::CmpIOp>( |
461 | loc, mlir::arith::CmpIPredicate::eq, typeDescInt, selectorTdescInt); |
462 | } |
463 | |
464 | llvm::SmallSet<llvm::StringRef, 4> |
465 | SelectTypeConv::collectAncestors(fir::TypeInfoOp dt, mlir::ModuleOp mod) const { |
466 | llvm::SmallSet<llvm::StringRef, 4> ancestors; |
467 | while (auto parentName = dt.getIfParentName()) { |
468 | ancestors.insert(*parentName); |
469 | dt = mod.lookupSymbol<fir::TypeInfoOp>(*parentName); |
470 | assert(dt && "parent type info not generated" ); |
471 | } |
472 | return ancestors; |
473 | } |
474 | |
475 | std::unique_ptr<mlir::Pass> fir::createPolymorphicOpConversionPass() { |
476 | return std::make_unique<PolymorphicOpConversion>(); |
477 | } |
478 | |