1 | // Protocol Buffers - Google's data interchange format |
2 | // Copyright 2008 Google Inc. All rights reserved. |
3 | // https://developers.google.com/protocol-buffers/ |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | // Author: kenton@google.com (Kenton Varda) |
32 | // Based on original Protocol Buffers design by |
33 | // Sanjay Ghemawat, Jeff Dean, and others. |
34 | // |
35 | // This file contains the CodedInputStream and CodedOutputStream classes, |
36 | // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively, |
37 | // and allow you to read or write individual pieces of data in various |
38 | // formats. In particular, these implement the varint encoding for |
39 | // integers, a simple variable-length encoding in which smaller numbers |
40 | // take fewer bytes. |
41 | // |
42 | // Typically these classes will only be used internally by the protocol |
43 | // buffer library in order to encode and decode protocol buffers. Clients |
44 | // of the library only need to know about this class if they wish to write |
45 | // custom message parsing or serialization procedures. |
46 | // |
47 | // CodedOutputStream example: |
48 | // // Write some data to "myfile". First we write a 4-byte "magic number" |
49 | // // to identify the file type, then write a length-delimited string. The |
50 | // // string is composed of a varint giving the length followed by the raw |
51 | // // bytes. |
52 | // int fd = open("myfile", O_CREAT | O_WRONLY); |
53 | // ZeroCopyOutputStream* raw_output = new FileOutputStream(fd); |
54 | // CodedOutputStream* coded_output = new CodedOutputStream(raw_output); |
55 | // |
56 | // int magic_number = 1234; |
57 | // char text[] = "Hello world!"; |
58 | // coded_output->WriteLittleEndian32(magic_number); |
59 | // coded_output->WriteVarint32(strlen(text)); |
60 | // coded_output->WriteRaw(text, strlen(text)); |
61 | // |
62 | // delete coded_output; |
63 | // delete raw_output; |
64 | // close(fd); |
65 | // |
66 | // CodedInputStream example: |
67 | // // Read a file created by the above code. |
68 | // int fd = open("myfile", O_RDONLY); |
69 | // ZeroCopyInputStream* raw_input = new FileInputStream(fd); |
70 | // CodedInputStream* coded_input = new CodedInputStream(raw_input); |
71 | // |
72 | // coded_input->ReadLittleEndian32(&magic_number); |
73 | // if (magic_number != 1234) { |
74 | // cerr << "File not in expected format." << endl; |
75 | // return; |
76 | // } |
77 | // |
78 | // uint32 size; |
79 | // coded_input->ReadVarint32(&size); |
80 | // |
81 | // char* text = new char[size + 1]; |
82 | // coded_input->ReadRaw(buffer, size); |
83 | // text[size] = '\0'; |
84 | // |
85 | // delete coded_input; |
86 | // delete raw_input; |
87 | // close(fd); |
88 | // |
89 | // cout << "Text is: " << text << endl; |
90 | // delete [] text; |
91 | // |
92 | // For those who are interested, varint encoding is defined as follows: |
93 | // |
94 | // The encoding operates on unsigned integers of up to 64 bits in length. |
95 | // Each byte of the encoded value has the format: |
96 | // * bits 0-6: Seven bits of the number being encoded. |
97 | // * bit 7: Zero if this is the last byte in the encoding (in which |
98 | // case all remaining bits of the number are zero) or 1 if |
99 | // more bytes follow. |
100 | // The first byte contains the least-significant 7 bits of the number, the |
101 | // second byte (if present) contains the next-least-significant 7 bits, |
102 | // and so on. So, the binary number 1011000101011 would be encoded in two |
103 | // bytes as "10101011 00101100". |
104 | // |
105 | // In theory, varint could be used to encode integers of any length. |
106 | // However, for practicality we set a limit at 64 bits. The maximum encoded |
107 | // length of a number is thus 10 bytes. |
108 | |
109 | #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ |
110 | #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ |
111 | |
112 | |
113 | #include <assert.h> |
114 | |
115 | #include <atomic> |
116 | #include <climits> |
117 | #include <cstddef> |
118 | #include <cstring> |
119 | #include <string> |
120 | #include <type_traits> |
121 | #include <utility> |
122 | |
123 | #ifdef _MSC_VER |
124 | // Assuming windows is always little-endian. |
125 | #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
126 | #define PROTOBUF_LITTLE_ENDIAN 1 |
127 | #endif |
128 | #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) |
129 | // If MSVC has "/RTCc" set, it will complain about truncating casts at |
130 | // runtime. This file contains some intentional truncating casts. |
131 | #pragma runtime_checks("c", off) |
132 | #endif |
133 | #else |
134 | #include <sys/param.h> // __BYTE_ORDER |
135 | #if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) || \ |
136 | (defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \ |
137 | !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) |
138 | #define PROTOBUF_LITTLE_ENDIAN 1 |
139 | #endif |
140 | #endif |
141 | #include <google/protobuf/stubs/common.h> |
142 | #include <google/protobuf/stubs/logging.h> |
143 | #include <google/protobuf/stubs/strutil.h> |
144 | #include <google/protobuf/port.h> |
145 | #include <google/protobuf/stubs/port.h> |
146 | |
147 | |
148 | #include <google/protobuf/port_def.inc> |
149 | |
150 | namespace google { |
151 | namespace protobuf { |
152 | |
153 | class DescriptorPool; |
154 | class MessageFactory; |
155 | class ZeroCopyCodedInputStream; |
156 | |
157 | namespace internal { |
158 | void MapTestForceDeterministic(); |
159 | class EpsCopyByteStream; |
160 | } // namespace internal |
161 | |
162 | namespace io { |
163 | |
164 | // Defined in this file. |
165 | class CodedInputStream; |
166 | class CodedOutputStream; |
167 | |
168 | // Defined in other files. |
169 | class ZeroCopyInputStream; // zero_copy_stream.h |
170 | class ZeroCopyOutputStream; // zero_copy_stream.h |
171 | |
172 | // Class which reads and decodes binary data which is composed of varint- |
173 | // encoded integers and fixed-width pieces. Wraps a ZeroCopyInputStream. |
174 | // Most users will not need to deal with CodedInputStream. |
175 | // |
176 | // Most methods of CodedInputStream that return a bool return false if an |
177 | // underlying I/O error occurs or if the data is malformed. Once such a |
178 | // failure occurs, the CodedInputStream is broken and is no longer useful. |
179 | // After a failure, callers also should assume writes to "out" args may have |
180 | // occurred, though nothing useful can be determined from those writes. |
181 | class PROTOBUF_EXPORT CodedInputStream { |
182 | public: |
183 | // Create a CodedInputStream that reads from the given ZeroCopyInputStream. |
184 | explicit CodedInputStream(ZeroCopyInputStream* input); |
185 | |
186 | // Create a CodedInputStream that reads from the given flat array. This is |
187 | // faster than using an ArrayInputStream. PushLimit(size) is implied by |
188 | // this constructor. |
189 | explicit CodedInputStream(const uint8* buffer, int size); |
190 | |
191 | // Destroy the CodedInputStream and position the underlying |
192 | // ZeroCopyInputStream at the first unread byte. If an error occurred while |
193 | // reading (causing a method to return false), then the exact position of |
194 | // the input stream may be anywhere between the last value that was read |
195 | // successfully and the stream's byte limit. |
196 | ~CodedInputStream(); |
197 | |
198 | // Return true if this CodedInputStream reads from a flat array instead of |
199 | // a ZeroCopyInputStream. |
200 | inline bool IsFlat() const; |
201 | |
202 | // Skips a number of bytes. Returns false if an underlying read error |
203 | // occurs. |
204 | inline bool Skip(int count); |
205 | |
206 | // Sets *data to point directly at the unread part of the CodedInputStream's |
207 | // underlying buffer, and *size to the size of that buffer, but does not |
208 | // advance the stream's current position. This will always either produce |
209 | // a non-empty buffer or return false. If the caller consumes any of |
210 | // this data, it should then call Skip() to skip over the consumed bytes. |
211 | // This may be useful for implementing external fast parsing routines for |
212 | // types of data not covered by the CodedInputStream interface. |
213 | bool GetDirectBufferPointer(const void** data, int* size); |
214 | |
215 | // Like GetDirectBufferPointer, but this method is inlined, and does not |
216 | // attempt to Refresh() if the buffer is currently empty. |
217 | PROTOBUF_ALWAYS_INLINE |
218 | void GetDirectBufferPointerInline(const void** data, int* size); |
219 | |
220 | // Read raw bytes, copying them into the given buffer. |
221 | bool ReadRaw(void* buffer, int size); |
222 | |
223 | // Like ReadRaw, but reads into a string. |
224 | bool ReadString(std::string* buffer, int size); |
225 | |
226 | |
227 | // Read a 32-bit little-endian integer. |
228 | bool ReadLittleEndian32(uint32* value); |
229 | // Read a 64-bit little-endian integer. |
230 | bool ReadLittleEndian64(uint64* value); |
231 | |
232 | // These methods read from an externally provided buffer. The caller is |
233 | // responsible for ensuring that the buffer has sufficient space. |
234 | // Read a 32-bit little-endian integer. |
235 | static const uint8* ReadLittleEndian32FromArray(const uint8* buffer, |
236 | uint32* value); |
237 | // Read a 64-bit little-endian integer. |
238 | static const uint8* ReadLittleEndian64FromArray(const uint8* buffer, |
239 | uint64* value); |
240 | |
241 | // Read an unsigned integer with Varint encoding, truncating to 32 bits. |
242 | // Reading a 32-bit value is equivalent to reading a 64-bit one and casting |
243 | // it to uint32, but may be more efficient. |
244 | bool ReadVarint32(uint32* value); |
245 | // Read an unsigned integer with Varint encoding. |
246 | bool ReadVarint64(uint64* value); |
247 | |
248 | // Reads a varint off the wire into an "int". This should be used for reading |
249 | // sizes off the wire (sizes of strings, submessages, bytes fields, etc). |
250 | // |
251 | // The value from the wire is interpreted as unsigned. If its value exceeds |
252 | // the representable value of an integer on this platform, instead of |
253 | // truncating we return false. Truncating (as performed by ReadVarint32() |
254 | // above) is an acceptable approach for fields representing an integer, but |
255 | // when we are parsing a size from the wire, truncating the value would result |
256 | // in us misparsing the payload. |
257 | bool ReadVarintSizeAsInt(int* value); |
258 | |
259 | // Read a tag. This calls ReadVarint32() and returns the result, or returns |
260 | // zero (which is not a valid tag) if ReadVarint32() fails. Also, ReadTag |
261 | // (but not ReadTagNoLastTag) updates the last tag value, which can be checked |
262 | // with LastTagWas(). |
263 | // |
264 | // Always inline because this is only called in one place per parse loop |
265 | // but it is called for every iteration of said loop, so it should be fast. |
266 | // GCC doesn't want to inline this by default. |
267 | PROTOBUF_ALWAYS_INLINE uint32 ReadTag() { |
268 | return last_tag_ = ReadTagNoLastTag(); |
269 | } |
270 | |
271 | PROTOBUF_ALWAYS_INLINE uint32 ReadTagNoLastTag(); |
272 | |
273 | // This usually a faster alternative to ReadTag() when cutoff is a manifest |
274 | // constant. It does particularly well for cutoff >= 127. The first part |
275 | // of the return value is the tag that was read, though it can also be 0 in |
276 | // the cases where ReadTag() would return 0. If the second part is true |
277 | // then the tag is known to be in [0, cutoff]. If not, the tag either is |
278 | // above cutoff or is 0. (There's intentional wiggle room when tag is 0, |
279 | // because that can arise in several ways, and for best performance we want |
280 | // to avoid an extra "is tag == 0?" check here.) |
281 | PROTOBUF_ALWAYS_INLINE |
282 | std::pair<uint32, bool> ReadTagWithCutoff(uint32 cutoff) { |
283 | std::pair<uint32, bool> result = ReadTagWithCutoffNoLastTag(cutoff); |
284 | last_tag_ = result.first; |
285 | return result; |
286 | } |
287 | |
288 | PROTOBUF_ALWAYS_INLINE |
289 | std::pair<uint32, bool> ReadTagWithCutoffNoLastTag(uint32 cutoff); |
290 | |
291 | // Usually returns true if calling ReadVarint32() now would produce the given |
292 | // value. Will always return false if ReadVarint32() would not return the |
293 | // given value. If ExpectTag() returns true, it also advances past |
294 | // the varint. For best performance, use a compile-time constant as the |
295 | // parameter. |
296 | // Always inline because this collapses to a small number of instructions |
297 | // when given a constant parameter, but GCC doesn't want to inline by default. |
298 | PROTOBUF_ALWAYS_INLINE bool ExpectTag(uint32 expected); |
299 | |
300 | // Like above, except this reads from the specified buffer. The caller is |
301 | // responsible for ensuring that the buffer is large enough to read a varint |
302 | // of the expected size. For best performance, use a compile-time constant as |
303 | // the expected tag parameter. |
304 | // |
305 | // Returns a pointer beyond the expected tag if it was found, or NULL if it |
306 | // was not. |
307 | PROTOBUF_ALWAYS_INLINE |
308 | static const uint8* ExpectTagFromArray(const uint8* buffer, uint32 expected); |
309 | |
310 | // Usually returns true if no more bytes can be read. Always returns false |
311 | // if more bytes can be read. If ExpectAtEnd() returns true, a subsequent |
312 | // call to LastTagWas() will act as if ReadTag() had been called and returned |
313 | // zero, and ConsumedEntireMessage() will return true. |
314 | bool ExpectAtEnd(); |
315 | |
316 | // If the last call to ReadTag() or ReadTagWithCutoff() returned the given |
317 | // value, returns true. Otherwise, returns false. |
318 | // ReadTagNoLastTag/ReadTagWithCutoffNoLastTag do not preserve the last |
319 | // returned value. |
320 | // |
321 | // This is needed because parsers for some types of embedded messages |
322 | // (with field type TYPE_GROUP) don't actually know that they've reached the |
323 | // end of a message until they see an ENDGROUP tag, which was actually part |
324 | // of the enclosing message. The enclosing message would like to check that |
325 | // tag to make sure it had the right number, so it calls LastTagWas() on |
326 | // return from the embedded parser to check. |
327 | bool LastTagWas(uint32 expected); |
328 | void SetLastTag(uint32 tag) { last_tag_ = tag; } |
329 | |
330 | // When parsing message (but NOT a group), this method must be called |
331 | // immediately after MergeFromCodedStream() returns (if it returns true) |
332 | // to further verify that the message ended in a legitimate way. For |
333 | // example, this verifies that parsing did not end on an end-group tag. |
334 | // It also checks for some cases where, due to optimizations, |
335 | // MergeFromCodedStream() can incorrectly return true. |
336 | bool ConsumedEntireMessage(); |
337 | void SetConsumed() { legitimate_message_end_ = true; } |
338 | |
339 | // Limits ---------------------------------------------------------- |
340 | // Limits are used when parsing length-delimited embedded messages. |
341 | // After the message's length is read, PushLimit() is used to prevent |
342 | // the CodedInputStream from reading beyond that length. Once the |
343 | // embedded message has been parsed, PopLimit() is called to undo the |
344 | // limit. |
345 | |
346 | // Opaque type used with PushLimit() and PopLimit(). Do not modify |
347 | // values of this type yourself. The only reason that this isn't a |
348 | // struct with private internals is for efficiency. |
349 | typedef int Limit; |
350 | |
351 | // Places a limit on the number of bytes that the stream may read, |
352 | // starting from the current position. Once the stream hits this limit, |
353 | // it will act like the end of the input has been reached until PopLimit() |
354 | // is called. |
355 | // |
356 | // As the names imply, the stream conceptually has a stack of limits. The |
357 | // shortest limit on the stack is always enforced, even if it is not the |
358 | // top limit. |
359 | // |
360 | // The value returned by PushLimit() is opaque to the caller, and must |
361 | // be passed unchanged to the corresponding call to PopLimit(). |
362 | Limit PushLimit(int byte_limit); |
363 | |
364 | // Pops the last limit pushed by PushLimit(). The input must be the value |
365 | // returned by that call to PushLimit(). |
366 | void PopLimit(Limit limit); |
367 | |
368 | // Returns the number of bytes left until the nearest limit on the |
369 | // stack is hit, or -1 if no limits are in place. |
370 | int BytesUntilLimit() const; |
371 | |
372 | // Returns current position relative to the beginning of the input stream. |
373 | int CurrentPosition() const; |
374 | |
375 | // Total Bytes Limit ----------------------------------------------- |
376 | // To prevent malicious users from sending excessively large messages |
377 | // and causing memory exhaustion, CodedInputStream imposes a hard limit on |
378 | // the total number of bytes it will read. |
379 | |
380 | // Sets the maximum number of bytes that this CodedInputStream will read |
381 | // before refusing to continue. To prevent servers from allocating enormous |
382 | // amounts of memory to hold parsed messages, the maximum message length |
383 | // should be limited to the shortest length that will not harm usability. |
384 | // The default limit is INT_MAX (~2GB) and apps should set shorter limits |
385 | // if possible. An error will always be printed to stderr if the limit is |
386 | // reached. |
387 | // |
388 | // Note: setting a limit less than the current read position is interpreted |
389 | // as a limit on the current position. |
390 | // |
391 | // This is unrelated to PushLimit()/PopLimit(). |
392 | void SetTotalBytesLimit(int total_bytes_limit); |
393 | |
394 | PROTOBUF_DEPRECATED_MSG( |
395 | "Please use the single parameter version of SetTotalBytesLimit(). The " |
396 | "second parameter is ignored." ) |
397 | void SetTotalBytesLimit(int total_bytes_limit, int) { |
398 | SetTotalBytesLimit(total_bytes_limit); |
399 | } |
400 | |
401 | // The Total Bytes Limit minus the Current Position, or -1 if the total bytes |
402 | // limit is INT_MAX. |
403 | int BytesUntilTotalBytesLimit() const; |
404 | |
405 | // Recursion Limit ------------------------------------------------- |
406 | // To prevent corrupt or malicious messages from causing stack overflows, |
407 | // we must keep track of the depth of recursion when parsing embedded |
408 | // messages and groups. CodedInputStream keeps track of this because it |
409 | // is the only object that is passed down the stack during parsing. |
410 | |
411 | // Sets the maximum recursion depth. The default is 100. |
412 | void SetRecursionLimit(int limit); |
413 | int RecursionBudget() { return recursion_budget_; } |
414 | |
415 | static int GetDefaultRecursionLimit() { return default_recursion_limit_; } |
416 | |
417 | // Increments the current recursion depth. Returns true if the depth is |
418 | // under the limit, false if it has gone over. |
419 | bool IncrementRecursionDepth(); |
420 | |
421 | // Decrements the recursion depth if possible. |
422 | void DecrementRecursionDepth(); |
423 | |
424 | // Decrements the recursion depth blindly. This is faster than |
425 | // DecrementRecursionDepth(). It should be used only if all previous |
426 | // increments to recursion depth were successful. |
427 | void UnsafeDecrementRecursionDepth(); |
428 | |
429 | // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_). |
430 | // Using this can reduce code size and complexity in some cases. The caller |
431 | // is expected to check that the second part of the result is non-negative (to |
432 | // bail out if the depth of recursion is too high) and, if all is well, to |
433 | // later pass the first part of the result to PopLimit() or similar. |
434 | std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit( |
435 | int byte_limit); |
436 | |
437 | // Shorthand for PushLimit(ReadVarint32(&length) ? length : 0). |
438 | Limit ReadLengthAndPushLimit(); |
439 | |
440 | // Helper that is equivalent to: { |
441 | // bool result = ConsumedEntireMessage(); |
442 | // PopLimit(limit); |
443 | // UnsafeDecrementRecursionDepth(); |
444 | // return result; } |
445 | // Using this can reduce code size and complexity in some cases. |
446 | // Do not use unless the current recursion depth is greater than zero. |
447 | bool DecrementRecursionDepthAndPopLimit(Limit limit); |
448 | |
449 | // Helper that is equivalent to: { |
450 | // bool result = ConsumedEntireMessage(); |
451 | // PopLimit(limit); |
452 | // return result; } |
453 | // Using this can reduce code size and complexity in some cases. |
454 | bool CheckEntireMessageConsumedAndPopLimit(Limit limit); |
455 | |
456 | // Extension Registry ---------------------------------------------- |
457 | // ADVANCED USAGE: 99.9% of people can ignore this section. |
458 | // |
459 | // By default, when parsing extensions, the parser looks for extension |
460 | // definitions in the pool which owns the outer message's Descriptor. |
461 | // However, you may call SetExtensionRegistry() to provide an alternative |
462 | // pool instead. This makes it possible, for example, to parse a message |
463 | // using a generated class, but represent some extensions using |
464 | // DynamicMessage. |
465 | |
466 | // Set the pool used to look up extensions. Most users do not need to call |
467 | // this as the correct pool will be chosen automatically. |
468 | // |
469 | // WARNING: It is very easy to misuse this. Carefully read the requirements |
470 | // below. Do not use this unless you are sure you need it. Almost no one |
471 | // does. |
472 | // |
473 | // Let's say you are parsing a message into message object m, and you want |
474 | // to take advantage of SetExtensionRegistry(). You must follow these |
475 | // requirements: |
476 | // |
477 | // The given DescriptorPool must contain m->GetDescriptor(). It is not |
478 | // sufficient for it to simply contain a descriptor that has the same name |
479 | // and content -- it must be the *exact object*. In other words: |
480 | // assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) == |
481 | // m->GetDescriptor()); |
482 | // There are two ways to satisfy this requirement: |
483 | // 1) Use m->GetDescriptor()->pool() as the pool. This is generally useless |
484 | // because this is the pool that would be used anyway if you didn't call |
485 | // SetExtensionRegistry() at all. |
486 | // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an |
487 | // "underlay". Read the documentation for DescriptorPool for more |
488 | // information about underlays. |
489 | // |
490 | // You must also provide a MessageFactory. This factory will be used to |
491 | // construct Message objects representing extensions. The factory's |
492 | // GetPrototype() MUST return non-NULL for any Descriptor which can be found |
493 | // through the provided pool. |
494 | // |
495 | // If the provided factory might return instances of protocol-compiler- |
496 | // generated (i.e. compiled-in) types, or if the outer message object m is |
497 | // a generated type, then the given factory MUST have this property: If |
498 | // GetPrototype() is given a Descriptor which resides in |
499 | // DescriptorPool::generated_pool(), the factory MUST return the same |
500 | // prototype which MessageFactory::generated_factory() would return. That |
501 | // is, given a descriptor for a generated type, the factory must return an |
502 | // instance of the generated class (NOT DynamicMessage). However, when |
503 | // given a descriptor for a type that is NOT in generated_pool, the factory |
504 | // is free to return any implementation. |
505 | // |
506 | // The reason for this requirement is that generated sub-objects may be |
507 | // accessed via the standard (non-reflection) extension accessor methods, |
508 | // and these methods will down-cast the object to the generated class type. |
509 | // If the object is not actually of that type, the results would be undefined. |
510 | // On the other hand, if an extension is not compiled in, then there is no |
511 | // way the code could end up accessing it via the standard accessors -- the |
512 | // only way to access the extension is via reflection. When using reflection, |
513 | // DynamicMessage and generated messages are indistinguishable, so it's fine |
514 | // if these objects are represented using DynamicMessage. |
515 | // |
516 | // Using DynamicMessageFactory on which you have called |
517 | // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the |
518 | // above requirement. |
519 | // |
520 | // If either pool or factory is NULL, both must be NULL. |
521 | // |
522 | // Note that this feature is ignored when parsing "lite" messages as they do |
523 | // not have descriptors. |
524 | void SetExtensionRegistry(const DescriptorPool* pool, |
525 | MessageFactory* factory); |
526 | |
527 | // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool |
528 | // has been provided. |
529 | const DescriptorPool* GetExtensionPool(); |
530 | |
531 | // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no |
532 | // factory has been provided. |
533 | MessageFactory* GetExtensionFactory(); |
534 | |
535 | private: |
536 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream); |
537 | |
538 | const uint8* buffer_; |
539 | const uint8* buffer_end_; // pointer to the end of the buffer. |
540 | ZeroCopyInputStream* input_; |
541 | int total_bytes_read_; // total bytes read from input_, including |
542 | // the current buffer |
543 | |
544 | // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here |
545 | // so that we can BackUp() on destruction. |
546 | int overflow_bytes_; |
547 | |
548 | // LastTagWas() stuff. |
549 | uint32 last_tag_; // result of last ReadTag() or ReadTagWithCutoff(). |
550 | |
551 | // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly |
552 | // at EOF, or by ExpectAtEnd() when it returns true. This happens when we |
553 | // reach the end of a message and attempt to read another tag. |
554 | bool legitimate_message_end_; |
555 | |
556 | // See EnableAliasing(). |
557 | bool aliasing_enabled_; |
558 | |
559 | // Limits |
560 | Limit current_limit_; // if position = -1, no limit is applied |
561 | |
562 | // For simplicity, if the current buffer crosses a limit (either a normal |
563 | // limit created by PushLimit() or the total bytes limit), buffer_size_ |
564 | // only tracks the number of bytes before that limit. This field |
565 | // contains the number of bytes after it. Note that this implies that if |
566 | // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've |
567 | // hit a limit. However, if both are zero, it doesn't necessarily mean |
568 | // we aren't at a limit -- the buffer may have ended exactly at the limit. |
569 | int buffer_size_after_limit_; |
570 | |
571 | // Maximum number of bytes to read, period. This is unrelated to |
572 | // current_limit_. Set using SetTotalBytesLimit(). |
573 | int total_bytes_limit_; |
574 | |
575 | // Current recursion budget, controlled by IncrementRecursionDepth() and |
576 | // similar. Starts at recursion_limit_ and goes down: if this reaches |
577 | // -1 we are over budget. |
578 | int recursion_budget_; |
579 | // Recursion depth limit, set by SetRecursionLimit(). |
580 | int recursion_limit_; |
581 | |
582 | // See SetExtensionRegistry(). |
583 | const DescriptorPool* extension_pool_; |
584 | MessageFactory* extension_factory_; |
585 | |
586 | // Private member functions. |
587 | |
588 | // Fallback when Skip() goes past the end of the current buffer. |
589 | bool SkipFallback(int count, int original_buffer_size); |
590 | |
591 | // Advance the buffer by a given number of bytes. |
592 | void Advance(int amount); |
593 | |
594 | // Back up input_ to the current buffer position. |
595 | void BackUpInputToCurrentPosition(); |
596 | |
597 | // Recomputes the value of buffer_size_after_limit_. Must be called after |
598 | // current_limit_ or total_bytes_limit_ changes. |
599 | void RecomputeBufferLimits(); |
600 | |
601 | // Writes an error message saying that we hit total_bytes_limit_. |
602 | void PrintTotalBytesLimitError(); |
603 | |
604 | // Called when the buffer runs out to request more data. Implies an |
605 | // Advance(BufferSize()). |
606 | bool Refresh(); |
607 | |
608 | // When parsing varints, we optimize for the common case of small values, and |
609 | // then optimize for the case when the varint fits within the current buffer |
610 | // piece. The Fallback method is used when we can't use the one-byte |
611 | // optimization. The Slow method is yet another fallback when the buffer is |
612 | // not large enough. Making the slow path out-of-line speeds up the common |
613 | // case by 10-15%. The slow path is fairly uncommon: it only triggers when a |
614 | // message crosses multiple buffers. Note: ReadVarint32Fallback() and |
615 | // ReadVarint64Fallback() are called frequently and generally not inlined, so |
616 | // they have been optimized to avoid "out" parameters. The former returns -1 |
617 | // if it fails and the uint32 it read otherwise. The latter has a bool |
618 | // indicating success or failure as part of its return type. |
619 | int64 ReadVarint32Fallback(uint32 first_byte_or_zero); |
620 | int ReadVarintSizeAsIntFallback(); |
621 | std::pair<uint64, bool> ReadVarint64Fallback(); |
622 | bool ReadVarint32Slow(uint32* value); |
623 | bool ReadVarint64Slow(uint64* value); |
624 | int ReadVarintSizeAsIntSlow(); |
625 | bool ReadLittleEndian32Fallback(uint32* value); |
626 | bool ReadLittleEndian64Fallback(uint64* value); |
627 | |
628 | // Fallback/slow methods for reading tags. These do not update last_tag_, |
629 | // but will set legitimate_message_end_ if we are at the end of the input |
630 | // stream. |
631 | uint32 ReadTagFallback(uint32 first_byte_or_zero); |
632 | uint32 ReadTagSlow(); |
633 | bool ReadStringFallback(std::string* buffer, int size); |
634 | |
635 | // Return the size of the buffer. |
636 | int BufferSize() const; |
637 | |
638 | static const int kDefaultTotalBytesLimit = INT_MAX; |
639 | |
640 | static int default_recursion_limit_; // 100 by default. |
641 | |
642 | friend class google::protobuf::ZeroCopyCodedInputStream; |
643 | friend class google::protobuf::internal::EpsCopyByteStream; |
644 | }; |
645 | |
646 | // EpsCopyOutputStream wraps a ZeroCopyOutputStream and exposes a new stream, |
647 | // which has the property you can write kSlopBytes (16 bytes) from the current |
648 | // position without bounds checks. The cursor into the stream is managed by |
649 | // the user of the class and is an explicit parameter in the methods. Careful |
650 | // use of this class, ie. keep ptr a local variable, eliminates the need to |
651 | // for the compiler to sync the ptr value between register and memory. |
652 | class PROTOBUF_EXPORT EpsCopyOutputStream { |
653 | public: |
654 | enum { kSlopBytes = 16 }; |
655 | |
656 | // Initialize from a stream. |
657 | EpsCopyOutputStream(ZeroCopyOutputStream* stream, bool deterministic, |
658 | uint8** pp) |
659 | : end_(buffer_), |
660 | stream_(stream), |
661 | is_serialization_deterministic_(deterministic) { |
662 | *pp = buffer_; |
663 | } |
664 | |
665 | // Only for array serialization. No overflow protection, end_ will be the |
666 | // pointed to the end of the array. When using this the total size is already |
667 | // known, so no need to maintain the slop region. |
668 | EpsCopyOutputStream(void* data, int size, bool deterministic) |
669 | : end_(static_cast<uint8*>(data) + size), |
670 | buffer_end_(nullptr), |
671 | stream_(nullptr), |
672 | is_serialization_deterministic_(deterministic) {} |
673 | |
674 | // Initialize from stream but with the first buffer already given (eager). |
675 | EpsCopyOutputStream(void* data, int size, ZeroCopyOutputStream* stream, |
676 | bool deterministic, uint8** pp) |
677 | : stream_(stream), is_serialization_deterministic_(deterministic) { |
678 | *pp = SetInitialBuffer(data, size); |
679 | } |
680 | |
681 | // Flush everything that's written into the underlying ZeroCopyOutputStream |
682 | // and trims the underlying stream to the location of ptr. |
683 | uint8* Trim(uint8* ptr); |
684 | |
685 | // After this it's guaranteed you can safely write kSlopBytes to ptr. This |
686 | // will never fail! The underlying stream can produce an error. Use HadError |
687 | // to check for errors. |
688 | PROTOBUF_MUST_USE_RESULT uint8* EnsureSpace(uint8* ptr) { |
689 | if (PROTOBUF_PREDICT_FALSE(ptr >= end_)) { |
690 | return EnsureSpaceFallback(ptr); |
691 | } |
692 | return ptr; |
693 | } |
694 | |
695 | uint8* WriteRaw(const void* data, int size, uint8* ptr) { |
696 | if (PROTOBUF_PREDICT_FALSE(end_ - ptr < size)) { |
697 | return WriteRawFallback(data, size, ptr); |
698 | } |
699 | std::memcpy(dest: ptr, src: data, n: size); |
700 | return ptr + size; |
701 | } |
702 | // Writes the buffer specified by data, size to the stream. Possibly by |
703 | // aliasing the buffer (ie. not copying the data). The caller is responsible |
704 | // to make sure the buffer is alive for the duration of the |
705 | // ZeroCopyOutputStream. |
706 | uint8* WriteRawMaybeAliased(const void* data, int size, uint8* ptr) { |
707 | if (aliasing_enabled_) { |
708 | return WriteAliasedRaw(data, size, ptr); |
709 | } else { |
710 | return WriteRaw(data, size, ptr); |
711 | } |
712 | } |
713 | |
714 | |
715 | uint8* WriteStringMaybeAliased(uint32 num, const std::string& s, uint8* ptr) { |
716 | std::ptrdiff_t size = s.size(); |
717 | if (PROTOBUF_PREDICT_FALSE( |
718 | size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) { |
719 | return WriteStringMaybeAliasedOutline(num, s, ptr); |
720 | } |
721 | ptr = UnsafeVarint(value: (num << 3) | 2, ptr); |
722 | *ptr++ = static_cast<uint8>(size); |
723 | std::memcpy(dest: ptr, src: s.data(), n: size); |
724 | return ptr + size; |
725 | } |
726 | uint8* WriteBytesMaybeAliased(uint32 num, const std::string& s, uint8* ptr) { |
727 | return WriteStringMaybeAliased(num, s, ptr); |
728 | } |
729 | |
730 | template <typename T> |
731 | PROTOBUF_ALWAYS_INLINE uint8* WriteString(uint32 num, const T& s, |
732 | uint8* ptr) { |
733 | std::ptrdiff_t size = s.size(); |
734 | if (PROTOBUF_PREDICT_FALSE( |
735 | size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) { |
736 | return WriteStringOutline(num, s, ptr); |
737 | } |
738 | ptr = UnsafeVarint(value: (num << 3) | 2, ptr); |
739 | *ptr++ = static_cast<uint8>(size); |
740 | std::memcpy(dest: ptr, src: s.data(), n: size); |
741 | return ptr + size; |
742 | } |
743 | template <typename T> |
744 | uint8* WriteBytes(uint32 num, const T& s, uint8* ptr) { |
745 | return WriteString(num, s, ptr); |
746 | } |
747 | |
748 | template <typename T> |
749 | PROTOBUF_ALWAYS_INLINE uint8* WriteInt32Packed(int num, const T& r, int size, |
750 | uint8* ptr) { |
751 | return WriteVarintPacked(num, r, size, ptr, Encode64); |
752 | } |
753 | template <typename T> |
754 | PROTOBUF_ALWAYS_INLINE uint8* WriteUInt32Packed(int num, const T& r, int size, |
755 | uint8* ptr) { |
756 | return WriteVarintPacked(num, r, size, ptr, Encode32); |
757 | } |
758 | template <typename T> |
759 | PROTOBUF_ALWAYS_INLINE uint8* WriteSInt32Packed(int num, const T& r, int size, |
760 | uint8* ptr) { |
761 | return WriteVarintPacked(num, r, size, ptr, ZigZagEncode32); |
762 | } |
763 | template <typename T> |
764 | PROTOBUF_ALWAYS_INLINE uint8* WriteInt64Packed(int num, const T& r, int size, |
765 | uint8* ptr) { |
766 | return WriteVarintPacked(num, r, size, ptr, Encode64); |
767 | } |
768 | template <typename T> |
769 | PROTOBUF_ALWAYS_INLINE uint8* WriteUInt64Packed(int num, const T& r, int size, |
770 | uint8* ptr) { |
771 | return WriteVarintPacked(num, r, size, ptr, Encode64); |
772 | } |
773 | template <typename T> |
774 | PROTOBUF_ALWAYS_INLINE uint8* WriteSInt64Packed(int num, const T& r, int size, |
775 | uint8* ptr) { |
776 | return WriteVarintPacked(num, r, size, ptr, ZigZagEncode64); |
777 | } |
778 | template <typename T> |
779 | PROTOBUF_ALWAYS_INLINE uint8* WriteEnumPacked(int num, const T& r, int size, |
780 | uint8* ptr) { |
781 | return WriteVarintPacked(num, r, size, ptr, Encode64); |
782 | } |
783 | |
784 | template <typename T> |
785 | PROTOBUF_ALWAYS_INLINE uint8* WriteFixedPacked(int num, const T& r, |
786 | uint8* ptr) { |
787 | ptr = EnsureSpace(ptr); |
788 | constexpr auto element_size = sizeof(typename T::value_type); |
789 | auto size = r.size() * element_size; |
790 | ptr = WriteLengthDelim(num, size, ptr); |
791 | return WriteRawLittleEndian<element_size>(r.data(), static_cast<int>(size), |
792 | ptr); |
793 | } |
794 | |
795 | // Returns true if there was an underlying I/O error since this object was |
796 | // created. |
797 | bool HadError() const { return had_error_; } |
798 | |
799 | // Instructs the EpsCopyOutputStream to allow the underlying |
800 | // ZeroCopyOutputStream to hold pointers to the original structure instead of |
801 | // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the |
802 | // underlying stream does not support aliasing, then enabling it has no |
803 | // affect. For now, this only affects the behavior of |
804 | // WriteRawMaybeAliased(). |
805 | // |
806 | // NOTE: It is caller's responsibility to ensure that the chunk of memory |
807 | // remains live until all of the data has been consumed from the stream. |
808 | void EnableAliasing(bool enabled); |
809 | |
810 | // See documentation on CodedOutputStream::SetSerializationDeterministic. |
811 | void SetSerializationDeterministic(bool value) { |
812 | is_serialization_deterministic_ = value; |
813 | } |
814 | |
815 | // See documentation on CodedOutputStream::IsSerializationDeterministic. |
816 | bool IsSerializationDeterministic() const { |
817 | return is_serialization_deterministic_; |
818 | } |
819 | |
820 | // The number of bytes written to the stream at position ptr, relative to the |
821 | // stream's overall position. |
822 | int64 ByteCount(uint8* ptr) const; |
823 | |
824 | |
825 | private: |
826 | uint8* end_; |
827 | uint8* buffer_end_ = buffer_; |
828 | uint8 buffer_[2 * kSlopBytes]; |
829 | ZeroCopyOutputStream* stream_; |
830 | bool had_error_ = false; |
831 | bool aliasing_enabled_ = false; // See EnableAliasing(). |
832 | bool is_serialization_deterministic_; |
833 | |
834 | uint8* EnsureSpaceFallback(uint8* ptr); |
835 | inline uint8* Next(); |
836 | int Flush(uint8* ptr); |
837 | std::ptrdiff_t GetSize(uint8* ptr) const { |
838 | GOOGLE_DCHECK(ptr <= end_ + kSlopBytes); // NOLINT |
839 | return end_ + kSlopBytes - ptr; |
840 | } |
841 | |
842 | uint8* Error() { |
843 | had_error_ = true; |
844 | // We use the patch buffer to always guarantee space to write to. |
845 | end_ = buffer_ + kSlopBytes; |
846 | return buffer_; |
847 | } |
848 | |
849 | static constexpr int TagSize(uint32 tag) { |
850 | return (tag < (1 << 7)) |
851 | ? 1 |
852 | : (tag < (1 << 14)) |
853 | ? 2 |
854 | : (tag < (1 << 21)) ? 3 : (tag < (1 << 28)) ? 4 : 5; |
855 | } |
856 | |
857 | PROTOBUF_ALWAYS_INLINE uint8* WriteTag(uint32 num, uint32 wt, uint8* ptr) { |
858 | GOOGLE_DCHECK(ptr < end_); // NOLINT |
859 | return UnsafeVarint(value: (num << 3) | wt, ptr); |
860 | } |
861 | |
862 | PROTOBUF_ALWAYS_INLINE uint8* WriteLengthDelim(int num, uint32 size, |
863 | uint8* ptr) { |
864 | ptr = WriteTag(num, wt: 2, ptr); |
865 | return UnsafeWriteSize(value: size, ptr); |
866 | } |
867 | |
868 | uint8* WriteRawFallback(const void* data, int size, uint8* ptr); |
869 | |
870 | uint8* WriteAliasedRaw(const void* data, int size, uint8* ptr); |
871 | |
872 | uint8* WriteStringMaybeAliasedOutline(uint32 num, const std::string& s, |
873 | uint8* ptr); |
874 | uint8* WriteStringOutline(uint32 num, const std::string& s, uint8* ptr); |
875 | |
876 | template <typename T, typename E> |
877 | PROTOBUF_ALWAYS_INLINE uint8* WriteVarintPacked(int num, const T& r, int size, |
878 | uint8* ptr, const E& encode) { |
879 | ptr = EnsureSpace(ptr); |
880 | ptr = WriteLengthDelim(num, size, ptr); |
881 | auto it = r.data(); |
882 | auto end = it + r.size(); |
883 | do { |
884 | ptr = EnsureSpace(ptr); |
885 | ptr = UnsafeVarint(encode(*it++), ptr); |
886 | } while (it < end); |
887 | return ptr; |
888 | } |
889 | |
890 | static uint32 Encode32(uint32 v) { return v; } |
891 | static uint64 Encode64(uint64 v) { return v; } |
892 | static uint32 ZigZagEncode32(int32 v) { |
893 | return (static_cast<uint32>(v) << 1) ^ static_cast<uint32>(v >> 31); |
894 | } |
895 | static uint64 ZigZagEncode64(int64 v) { |
896 | return (static_cast<uint64>(v) << 1) ^ static_cast<uint64>(v >> 63); |
897 | } |
898 | |
899 | template <typename T> |
900 | PROTOBUF_ALWAYS_INLINE static uint8* UnsafeVarint(T value, uint8* ptr) { |
901 | static_assert(std::is_unsigned<T>::value, |
902 | "Varint serialization must be unsigned" ); |
903 | if (value < 0x80) { |
904 | ptr[0] = static_cast<uint8>(value); |
905 | return ptr + 1; |
906 | } |
907 | ptr[0] = static_cast<uint8>(value | 0x80); |
908 | value >>= 7; |
909 | if (value < 0x80) { |
910 | ptr[1] = static_cast<uint8>(value); |
911 | return ptr + 2; |
912 | } |
913 | ptr++; |
914 | do { |
915 | *ptr = static_cast<uint8>(value | 0x80); |
916 | value >>= 7; |
917 | ++ptr; |
918 | } while (PROTOBUF_PREDICT_FALSE(value >= 0x80)); |
919 | *ptr++ = static_cast<uint8>(value); |
920 | return ptr; |
921 | } |
922 | |
923 | PROTOBUF_ALWAYS_INLINE static uint8* UnsafeWriteSize(uint32 value, |
924 | uint8* ptr) { |
925 | while (PROTOBUF_PREDICT_FALSE(value >= 0x80)) { |
926 | *ptr = static_cast<uint8>(value | 0x80); |
927 | value >>= 7; |
928 | ++ptr; |
929 | } |
930 | *ptr++ = static_cast<uint8>(value); |
931 | return ptr; |
932 | } |
933 | |
934 | template <int S> |
935 | uint8* WriteRawLittleEndian(const void* data, int size, uint8* ptr); |
936 | #ifndef PROTOBUF_LITTLE_ENDIAN |
937 | uint8* WriteRawLittleEndian32(const void* data, int size, uint8* ptr); |
938 | uint8* WriteRawLittleEndian64(const void* data, int size, uint8* ptr); |
939 | #endif |
940 | |
941 | // These methods are for CodedOutputStream. Ideally they should be private |
942 | // but to match current behavior of CodedOutputStream as close as possible |
943 | // we allow it some functionality. |
944 | public: |
945 | uint8* SetInitialBuffer(void* data, int size) { |
946 | auto ptr = static_cast<uint8*>(data); |
947 | if (size > kSlopBytes) { |
948 | end_ = ptr + size - kSlopBytes; |
949 | buffer_end_ = nullptr; |
950 | return ptr; |
951 | } else { |
952 | end_ = buffer_ + size; |
953 | buffer_end_ = ptr; |
954 | return buffer_; |
955 | } |
956 | } |
957 | |
958 | private: |
959 | // Needed by CodedOutputStream HadError. HadError needs to flush the patch |
960 | // buffers to ensure there is no error as of yet. |
961 | uint8* FlushAndResetBuffer(uint8*); |
962 | |
963 | // The following functions mimick the old CodedOutputStream behavior as close |
964 | // as possible. They flush the current state to the stream, behave as |
965 | // the old CodedOutputStream and then return to normal operation. |
966 | bool Skip(int count, uint8** pp); |
967 | bool GetDirectBufferPointer(void** data, int* size, uint8** pp); |
968 | uint8* GetDirectBufferForNBytesAndAdvance(int size, uint8** pp); |
969 | |
970 | friend class CodedOutputStream; |
971 | }; |
972 | |
973 | template <> |
974 | inline uint8* EpsCopyOutputStream::WriteRawLittleEndian<1>(const void* data, |
975 | int size, |
976 | uint8* ptr) { |
977 | return WriteRaw(data, size, ptr); |
978 | } |
979 | template <> |
980 | inline uint8* EpsCopyOutputStream::WriteRawLittleEndian<4>(const void* data, |
981 | int size, |
982 | uint8* ptr) { |
983 | #ifdef PROTOBUF_LITTLE_ENDIAN |
984 | return WriteRaw(data, size, ptr); |
985 | #else |
986 | return WriteRawLittleEndian32(data, size, ptr); |
987 | #endif |
988 | } |
989 | template <> |
990 | inline uint8* EpsCopyOutputStream::WriteRawLittleEndian<8>(const void* data, |
991 | int size, |
992 | uint8* ptr) { |
993 | #ifdef PROTOBUF_LITTLE_ENDIAN |
994 | return WriteRaw(data, size, ptr); |
995 | #else |
996 | return WriteRawLittleEndian64(data, size, ptr); |
997 | #endif |
998 | } |
999 | |
1000 | // Class which encodes and writes binary data which is composed of varint- |
1001 | // encoded integers and fixed-width pieces. Wraps a ZeroCopyOutputStream. |
1002 | // Most users will not need to deal with CodedOutputStream. |
1003 | // |
1004 | // Most methods of CodedOutputStream which return a bool return false if an |
1005 | // underlying I/O error occurs. Once such a failure occurs, the |
1006 | // CodedOutputStream is broken and is no longer useful. The Write* methods do |
1007 | // not return the stream status, but will invalidate the stream if an error |
1008 | // occurs. The client can probe HadError() to determine the status. |
1009 | // |
1010 | // Note that every method of CodedOutputStream which writes some data has |
1011 | // a corresponding static "ToArray" version. These versions write directly |
1012 | // to the provided buffer, returning a pointer past the last written byte. |
1013 | // They require that the buffer has sufficient capacity for the encoded data. |
1014 | // This allows an optimization where we check if an output stream has enough |
1015 | // space for an entire message before we start writing and, if there is, we |
1016 | // call only the ToArray methods to avoid doing bound checks for each |
1017 | // individual value. |
1018 | // i.e., in the example above: |
1019 | // |
1020 | // CodedOutputStream* coded_output = new CodedOutputStream(raw_output); |
1021 | // int magic_number = 1234; |
1022 | // char text[] = "Hello world!"; |
1023 | // |
1024 | // int coded_size = sizeof(magic_number) + |
1025 | // CodedOutputStream::VarintSize32(strlen(text)) + |
1026 | // strlen(text); |
1027 | // |
1028 | // uint8* buffer = |
1029 | // coded_output->GetDirectBufferForNBytesAndAdvance(coded_size); |
1030 | // if (buffer != nullptr) { |
1031 | // // The output stream has enough space in the buffer: write directly to |
1032 | // // the array. |
1033 | // buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number, |
1034 | // buffer); |
1035 | // buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer); |
1036 | // buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer); |
1037 | // } else { |
1038 | // // Make bound-checked writes, which will ask the underlying stream for |
1039 | // // more space as needed. |
1040 | // coded_output->WriteLittleEndian32(magic_number); |
1041 | // coded_output->WriteVarint32(strlen(text)); |
1042 | // coded_output->WriteRaw(text, strlen(text)); |
1043 | // } |
1044 | // |
1045 | // delete coded_output; |
1046 | class PROTOBUF_EXPORT CodedOutputStream { |
1047 | public: |
1048 | // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream. |
1049 | explicit CodedOutputStream(ZeroCopyOutputStream* stream) |
1050 | : CodedOutputStream(stream, true) {} |
1051 | CodedOutputStream(ZeroCopyOutputStream* stream, bool do_eager_refresh); |
1052 | |
1053 | // Destroy the CodedOutputStream and position the underlying |
1054 | // ZeroCopyOutputStream immediately after the last byte written. |
1055 | ~CodedOutputStream(); |
1056 | |
1057 | // Returns true if there was an underlying I/O error since this object was |
1058 | // created. On should call Trim before this function in order to catch all |
1059 | // errors. |
1060 | bool HadError() { |
1061 | cur_ = impl_.FlushAndResetBuffer(cur_); |
1062 | GOOGLE_DCHECK(cur_); |
1063 | return impl_.HadError(); |
1064 | } |
1065 | |
1066 | // Trims any unused space in the underlying buffer so that its size matches |
1067 | // the number of bytes written by this stream. The underlying buffer will |
1068 | // automatically be trimmed when this stream is destroyed; this call is only |
1069 | // necessary if the underlying buffer is accessed *before* the stream is |
1070 | // destroyed. |
1071 | void Trim() { cur_ = impl_.Trim(ptr: cur_); } |
1072 | |
1073 | // Skips a number of bytes, leaving the bytes unmodified in the underlying |
1074 | // buffer. Returns false if an underlying write error occurs. This is |
1075 | // mainly useful with GetDirectBufferPointer(). |
1076 | // Note of caution, the skipped bytes may contain uninitialized data. The |
1077 | // caller must make sure that the skipped bytes are properly initialized, |
1078 | // otherwise you might leak bytes from your heap. |
1079 | bool Skip(int count) { return impl_.Skip(count, pp: &cur_); } |
1080 | |
1081 | // Sets *data to point directly at the unwritten part of the |
1082 | // CodedOutputStream's underlying buffer, and *size to the size of that |
1083 | // buffer, but does not advance the stream's current position. This will |
1084 | // always either produce a non-empty buffer or return false. If the caller |
1085 | // writes any data to this buffer, it should then call Skip() to skip over |
1086 | // the consumed bytes. This may be useful for implementing external fast |
1087 | // serialization routines for types of data not covered by the |
1088 | // CodedOutputStream interface. |
1089 | bool GetDirectBufferPointer(void** data, int* size) { |
1090 | return impl_.GetDirectBufferPointer(data, size, pp: &cur_); |
1091 | } |
1092 | |
1093 | // If there are at least "size" bytes available in the current buffer, |
1094 | // returns a pointer directly into the buffer and advances over these bytes. |
1095 | // The caller may then write directly into this buffer (e.g. using the |
1096 | // *ToArray static methods) rather than go through CodedOutputStream. If |
1097 | // there are not enough bytes available, returns NULL. The return pointer is |
1098 | // invalidated as soon as any other non-const method of CodedOutputStream |
1099 | // is called. |
1100 | inline uint8* GetDirectBufferForNBytesAndAdvance(int size) { |
1101 | return impl_.GetDirectBufferForNBytesAndAdvance(size, pp: &cur_); |
1102 | } |
1103 | |
1104 | // Write raw bytes, copying them from the given buffer. |
1105 | void WriteRaw(const void* buffer, int size) { |
1106 | cur_ = impl_.WriteRaw(data: buffer, size, ptr: cur_); |
1107 | } |
1108 | // Like WriteRaw() but will try to write aliased data if aliasing is |
1109 | // turned on. |
1110 | void WriteRawMaybeAliased(const void* data, int size); |
1111 | // Like WriteRaw() but writing directly to the target array. |
1112 | // This is _not_ inlined, as the compiler often optimizes memcpy into inline |
1113 | // copy loops. Since this gets called by every field with string or bytes |
1114 | // type, inlining may lead to a significant amount of code bloat, with only a |
1115 | // minor performance gain. |
1116 | static uint8* WriteRawToArray(const void* buffer, int size, uint8* target); |
1117 | |
1118 | // Equivalent to WriteRaw(str.data(), str.size()). |
1119 | void WriteString(const std::string& str); |
1120 | // Like WriteString() but writing directly to the target array. |
1121 | static uint8* WriteStringToArray(const std::string& str, uint8* target); |
1122 | // Write the varint-encoded size of str followed by str. |
1123 | static uint8* WriteStringWithSizeToArray(const std::string& str, |
1124 | uint8* target); |
1125 | |
1126 | |
1127 | // Write a 32-bit little-endian integer. |
1128 | void WriteLittleEndian32(uint32 value) { |
1129 | cur_ = impl_.EnsureSpace(ptr: cur_); |
1130 | SetCur(WriteLittleEndian32ToArray(value, target: Cur())); |
1131 | } |
1132 | // Like WriteLittleEndian32() but writing directly to the target array. |
1133 | static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target); |
1134 | // Write a 64-bit little-endian integer. |
1135 | void WriteLittleEndian64(uint64 value) { |
1136 | cur_ = impl_.EnsureSpace(ptr: cur_); |
1137 | SetCur(WriteLittleEndian64ToArray(value, target: Cur())); |
1138 | } |
1139 | // Like WriteLittleEndian64() but writing directly to the target array. |
1140 | static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target); |
1141 | |
1142 | // Write an unsigned integer with Varint encoding. Writing a 32-bit value |
1143 | // is equivalent to casting it to uint64 and writing it as a 64-bit value, |
1144 | // but may be more efficient. |
1145 | void WriteVarint32(uint32 value); |
1146 | // Like WriteVarint32() but writing directly to the target array. |
1147 | static uint8* WriteVarint32ToArray(uint32 value, uint8* target); |
1148 | // Write an unsigned integer with Varint encoding. |
1149 | void WriteVarint64(uint64 value); |
1150 | // Like WriteVarint64() but writing directly to the target array. |
1151 | static uint8* WriteVarint64ToArray(uint64 value, uint8* target); |
1152 | |
1153 | // Equivalent to WriteVarint32() except when the value is negative, |
1154 | // in which case it must be sign-extended to a full 10 bytes. |
1155 | void WriteVarint32SignExtended(int32 value); |
1156 | // Like WriteVarint32SignExtended() but writing directly to the target array. |
1157 | static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target); |
1158 | |
1159 | // This is identical to WriteVarint32(), but optimized for writing tags. |
1160 | // In particular, if the input is a compile-time constant, this method |
1161 | // compiles down to a couple instructions. |
1162 | // Always inline because otherwise the aformentioned optimization can't work, |
1163 | // but GCC by default doesn't want to inline this. |
1164 | void WriteTag(uint32 value); |
1165 | // Like WriteTag() but writing directly to the target array. |
1166 | PROTOBUF_ALWAYS_INLINE |
1167 | static uint8* WriteTagToArray(uint32 value, uint8* target); |
1168 | |
1169 | // Returns the number of bytes needed to encode the given value as a varint. |
1170 | static size_t VarintSize32(uint32 value); |
1171 | // Returns the number of bytes needed to encode the given value as a varint. |
1172 | static size_t VarintSize64(uint64 value); |
1173 | |
1174 | // If negative, 10 bytes. Otherwise, same as VarintSize32(). |
1175 | static size_t VarintSize32SignExtended(int32 value); |
1176 | |
1177 | // Compile-time equivalent of VarintSize32(). |
1178 | template <uint32 Value> |
1179 | struct StaticVarintSize32 { |
1180 | static const size_t value = |
1181 | (Value < (1 << 7)) |
1182 | ? 1 |
1183 | : (Value < (1 << 14)) |
1184 | ? 2 |
1185 | : (Value < (1 << 21)) ? 3 : (Value < (1 << 28)) ? 4 : 5; |
1186 | }; |
1187 | |
1188 | // Returns the total number of bytes written since this object was created. |
1189 | int ByteCount() const { |
1190 | return static_cast<int>(impl_.ByteCount(ptr: cur_) - start_count_); |
1191 | } |
1192 | |
1193 | // Instructs the CodedOutputStream to allow the underlying |
1194 | // ZeroCopyOutputStream to hold pointers to the original structure instead of |
1195 | // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the |
1196 | // underlying stream does not support aliasing, then enabling it has no |
1197 | // affect. For now, this only affects the behavior of |
1198 | // WriteRawMaybeAliased(). |
1199 | // |
1200 | // NOTE: It is caller's responsibility to ensure that the chunk of memory |
1201 | // remains live until all of the data has been consumed from the stream. |
1202 | void EnableAliasing(bool enabled) { impl_.EnableAliasing(enabled); } |
1203 | |
1204 | // Indicate to the serializer whether the user wants derministic |
1205 | // serialization. The default when this is not called comes from the global |
1206 | // default, controlled by SetDefaultSerializationDeterministic. |
1207 | // |
1208 | // What deterministic serialization means is entirely up to the driver of the |
1209 | // serialization process (i.e. the caller of methods like WriteVarint32). In |
1210 | // the case of serializing a proto buffer message using one of the methods of |
1211 | // MessageLite, this means that for a given binary equal messages will always |
1212 | // be serialized to the same bytes. This implies: |
1213 | // |
1214 | // * Repeated serialization of a message will return the same bytes. |
1215 | // |
1216 | // * Different processes running the same binary (including on different |
1217 | // machines) will serialize equal messages to the same bytes. |
1218 | // |
1219 | // Note that this is *not* canonical across languages. It is also unstable |
1220 | // across different builds with intervening message definition changes, due to |
1221 | // unknown fields. Users who need canonical serialization (e.g. persistent |
1222 | // storage in a canonical form, fingerprinting) should define their own |
1223 | // canonicalization specification and implement the serializer using |
1224 | // reflection APIs rather than relying on this API. |
1225 | void SetSerializationDeterministic(bool value) { |
1226 | impl_.SetSerializationDeterministic(value); |
1227 | } |
1228 | |
1229 | // Return whether the user wants deterministic serialization. See above. |
1230 | bool IsSerializationDeterministic() const { |
1231 | return impl_.IsSerializationDeterministic(); |
1232 | } |
1233 | |
1234 | static bool IsDefaultSerializationDeterministic() { |
1235 | return default_serialization_deterministic_.load( |
1236 | m: std::memory_order_relaxed) != 0; |
1237 | } |
1238 | |
1239 | template <typename Func> |
1240 | void Serialize(const Func& func); |
1241 | |
1242 | uint8* Cur() const { return cur_; } |
1243 | void SetCur(uint8* ptr) { cur_ = ptr; } |
1244 | EpsCopyOutputStream* EpsCopy() { return &impl_; } |
1245 | |
1246 | private: |
1247 | EpsCopyOutputStream impl_; |
1248 | uint8* cur_; |
1249 | int64 start_count_; |
1250 | static std::atomic<bool> default_serialization_deterministic_; |
1251 | |
1252 | // See above. Other projects may use "friend" to allow them to call this. |
1253 | // After SetDefaultSerializationDeterministic() completes, all protocol |
1254 | // buffer serializations will be deterministic by default. Thread safe. |
1255 | // However, the meaning of "after" is subtle here: to be safe, each thread |
1256 | // that wants deterministic serialization by default needs to call |
1257 | // SetDefaultSerializationDeterministic() or ensure on its own that another |
1258 | // thread has done so. |
1259 | friend void internal::MapTestForceDeterministic(); |
1260 | static void SetDefaultSerializationDeterministic() { |
1261 | default_serialization_deterministic_.store(i: true, m: std::memory_order_relaxed); |
1262 | } |
1263 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream); |
1264 | }; |
1265 | |
1266 | // inline methods ==================================================== |
1267 | // The vast majority of varints are only one byte. These inline |
1268 | // methods optimize for that case. |
1269 | |
1270 | inline bool CodedInputStream::ReadVarint32(uint32* value) { |
1271 | uint32 v = 0; |
1272 | if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) { |
1273 | v = *buffer_; |
1274 | if (v < 0x80) { |
1275 | *value = v; |
1276 | Advance(amount: 1); |
1277 | return true; |
1278 | } |
1279 | } |
1280 | int64 result = ReadVarint32Fallback(first_byte_or_zero: v); |
1281 | *value = static_cast<uint32>(result); |
1282 | return result >= 0; |
1283 | } |
1284 | |
1285 | inline bool CodedInputStream::ReadVarint64(uint64* value) { |
1286 | if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) { |
1287 | *value = *buffer_; |
1288 | Advance(amount: 1); |
1289 | return true; |
1290 | } |
1291 | std::pair<uint64, bool> p = ReadVarint64Fallback(); |
1292 | *value = p.first; |
1293 | return p.second; |
1294 | } |
1295 | |
1296 | inline bool CodedInputStream::ReadVarintSizeAsInt(int* value) { |
1297 | if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) { |
1298 | int v = *buffer_; |
1299 | if (v < 0x80) { |
1300 | *value = v; |
1301 | Advance(amount: 1); |
1302 | return true; |
1303 | } |
1304 | } |
1305 | *value = ReadVarintSizeAsIntFallback(); |
1306 | return *value >= 0; |
1307 | } |
1308 | |
1309 | // static |
1310 | inline const uint8* CodedInputStream::ReadLittleEndian32FromArray( |
1311 | const uint8* buffer, uint32* value) { |
1312 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
1313 | memcpy(dest: value, src: buffer, n: sizeof(*value)); |
1314 | return buffer + sizeof(*value); |
1315 | #else |
1316 | *value = (static_cast<uint32>(buffer[0])) | |
1317 | (static_cast<uint32>(buffer[1]) << 8) | |
1318 | (static_cast<uint32>(buffer[2]) << 16) | |
1319 | (static_cast<uint32>(buffer[3]) << 24); |
1320 | return buffer + sizeof(*value); |
1321 | #endif |
1322 | } |
1323 | // static |
1324 | inline const uint8* CodedInputStream::ReadLittleEndian64FromArray( |
1325 | const uint8* buffer, uint64* value) { |
1326 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
1327 | memcpy(dest: value, src: buffer, n: sizeof(*value)); |
1328 | return buffer + sizeof(*value); |
1329 | #else |
1330 | uint32 part0 = (static_cast<uint32>(buffer[0])) | |
1331 | (static_cast<uint32>(buffer[1]) << 8) | |
1332 | (static_cast<uint32>(buffer[2]) << 16) | |
1333 | (static_cast<uint32>(buffer[3]) << 24); |
1334 | uint32 part1 = (static_cast<uint32>(buffer[4])) | |
1335 | (static_cast<uint32>(buffer[5]) << 8) | |
1336 | (static_cast<uint32>(buffer[6]) << 16) | |
1337 | (static_cast<uint32>(buffer[7]) << 24); |
1338 | *value = static_cast<uint64>(part0) | (static_cast<uint64>(part1) << 32); |
1339 | return buffer + sizeof(*value); |
1340 | #endif |
1341 | } |
1342 | |
1343 | inline bool CodedInputStream::ReadLittleEndian32(uint32* value) { |
1344 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
1345 | if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) { |
1346 | buffer_ = ReadLittleEndian32FromArray(buffer: buffer_, value); |
1347 | return true; |
1348 | } else { |
1349 | return ReadLittleEndian32Fallback(value); |
1350 | } |
1351 | #else |
1352 | return ReadLittleEndian32Fallback(value); |
1353 | #endif |
1354 | } |
1355 | |
1356 | inline bool CodedInputStream::ReadLittleEndian64(uint64* value) { |
1357 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
1358 | if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) { |
1359 | buffer_ = ReadLittleEndian64FromArray(buffer: buffer_, value); |
1360 | return true; |
1361 | } else { |
1362 | return ReadLittleEndian64Fallback(value); |
1363 | } |
1364 | #else |
1365 | return ReadLittleEndian64Fallback(value); |
1366 | #endif |
1367 | } |
1368 | |
1369 | inline uint32 CodedInputStream::ReadTagNoLastTag() { |
1370 | uint32 v = 0; |
1371 | if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) { |
1372 | v = *buffer_; |
1373 | if (v < 0x80) { |
1374 | Advance(amount: 1); |
1375 | return v; |
1376 | } |
1377 | } |
1378 | v = ReadTagFallback(first_byte_or_zero: v); |
1379 | return v; |
1380 | } |
1381 | |
1382 | inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoffNoLastTag( |
1383 | uint32 cutoff) { |
1384 | // In performance-sensitive code we can expect cutoff to be a compile-time |
1385 | // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at |
1386 | // compile time. |
1387 | uint32 first_byte_or_zero = 0; |
1388 | if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) { |
1389 | // Hot case: buffer_ non_empty, buffer_[0] in [1, 128). |
1390 | // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields |
1391 | // is large enough then is it better to check for the two-byte case first? |
1392 | first_byte_or_zero = buffer_[0]; |
1393 | if (static_cast<int8>(buffer_[0]) > 0) { |
1394 | const uint32 kMax1ByteVarint = 0x7f; |
1395 | uint32 tag = buffer_[0]; |
1396 | Advance(amount: 1); |
1397 | return std::make_pair(x&: tag, y: cutoff >= kMax1ByteVarint || tag <= cutoff); |
1398 | } |
1399 | // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available, |
1400 | // and tag is two bytes. The latter is tested by bitwise-and-not of the |
1401 | // first byte and the second byte. |
1402 | if (cutoff >= 0x80 && PROTOBUF_PREDICT_TRUE(buffer_ + 1 < buffer_end_) && |
1403 | PROTOBUF_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) { |
1404 | const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f; |
1405 | uint32 tag = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80); |
1406 | Advance(amount: 2); |
1407 | // It might make sense to test for tag == 0 now, but it is so rare that |
1408 | // that we don't bother. A varint-encoded 0 should be one byte unless |
1409 | // the encoder lost its mind. The second part of the return value of |
1410 | // this function is allowed to be either true or false if the tag is 0, |
1411 | // so we don't have to check for tag == 0. We may need to check whether |
1412 | // it exceeds cutoff. |
1413 | bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff; |
1414 | return std::make_pair(x&: tag, y&: at_or_below_cutoff); |
1415 | } |
1416 | } |
1417 | // Slow path |
1418 | const uint32 tag = ReadTagFallback(first_byte_or_zero); |
1419 | return std::make_pair(x: tag, y: static_cast<uint32>(tag - 1) < cutoff); |
1420 | } |
1421 | |
1422 | inline bool CodedInputStream::LastTagWas(uint32 expected) { |
1423 | return last_tag_ == expected; |
1424 | } |
1425 | |
1426 | inline bool CodedInputStream::ConsumedEntireMessage() { |
1427 | return legitimate_message_end_; |
1428 | } |
1429 | |
1430 | inline bool CodedInputStream::ExpectTag(uint32 expected) { |
1431 | if (expected < (1 << 7)) { |
1432 | if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) && |
1433 | buffer_[0] == expected) { |
1434 | Advance(amount: 1); |
1435 | return true; |
1436 | } else { |
1437 | return false; |
1438 | } |
1439 | } else if (expected < (1 << 14)) { |
1440 | if (PROTOBUF_PREDICT_TRUE(BufferSize() >= 2) && |
1441 | buffer_[0] == static_cast<uint8>(expected | 0x80) && |
1442 | buffer_[1] == static_cast<uint8>(expected >> 7)) { |
1443 | Advance(amount: 2); |
1444 | return true; |
1445 | } else { |
1446 | return false; |
1447 | } |
1448 | } else { |
1449 | // Don't bother optimizing for larger values. |
1450 | return false; |
1451 | } |
1452 | } |
1453 | |
1454 | inline const uint8* CodedInputStream::ExpectTagFromArray(const uint8* buffer, |
1455 | uint32 expected) { |
1456 | if (expected < (1 << 7)) { |
1457 | if (buffer[0] == expected) { |
1458 | return buffer + 1; |
1459 | } |
1460 | } else if (expected < (1 << 14)) { |
1461 | if (buffer[0] == static_cast<uint8>(expected | 0x80) && |
1462 | buffer[1] == static_cast<uint8>(expected >> 7)) { |
1463 | return buffer + 2; |
1464 | } |
1465 | } |
1466 | return nullptr; |
1467 | } |
1468 | |
1469 | inline void CodedInputStream::GetDirectBufferPointerInline(const void** data, |
1470 | int* size) { |
1471 | *data = buffer_; |
1472 | *size = static_cast<int>(buffer_end_ - buffer_); |
1473 | } |
1474 | |
1475 | inline bool CodedInputStream::ExpectAtEnd() { |
1476 | // If we are at a limit we know no more bytes can be read. Otherwise, it's |
1477 | // hard to say without calling Refresh(), and we'd rather not do that. |
1478 | |
1479 | if (buffer_ == buffer_end_ && ((buffer_size_after_limit_ != 0) || |
1480 | (total_bytes_read_ == current_limit_))) { |
1481 | last_tag_ = 0; // Pretend we called ReadTag()... |
1482 | legitimate_message_end_ = true; // ... and it hit EOF. |
1483 | return true; |
1484 | } else { |
1485 | return false; |
1486 | } |
1487 | } |
1488 | |
1489 | inline int CodedInputStream::CurrentPosition() const { |
1490 | return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_); |
1491 | } |
1492 | |
1493 | inline void CodedInputStream::Advance(int amount) { buffer_ += amount; } |
1494 | |
1495 | inline void CodedInputStream::SetRecursionLimit(int limit) { |
1496 | recursion_budget_ += limit - recursion_limit_; |
1497 | recursion_limit_ = limit; |
1498 | } |
1499 | |
1500 | inline bool CodedInputStream::IncrementRecursionDepth() { |
1501 | --recursion_budget_; |
1502 | return recursion_budget_ >= 0; |
1503 | } |
1504 | |
1505 | inline void CodedInputStream::DecrementRecursionDepth() { |
1506 | if (recursion_budget_ < recursion_limit_) ++recursion_budget_; |
1507 | } |
1508 | |
1509 | inline void CodedInputStream::UnsafeDecrementRecursionDepth() { |
1510 | assert(recursion_budget_ < recursion_limit_); |
1511 | ++recursion_budget_; |
1512 | } |
1513 | |
1514 | inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool, |
1515 | MessageFactory* factory) { |
1516 | extension_pool_ = pool; |
1517 | extension_factory_ = factory; |
1518 | } |
1519 | |
1520 | inline const DescriptorPool* CodedInputStream::GetExtensionPool() { |
1521 | return extension_pool_; |
1522 | } |
1523 | |
1524 | inline MessageFactory* CodedInputStream::GetExtensionFactory() { |
1525 | return extension_factory_; |
1526 | } |
1527 | |
1528 | inline int CodedInputStream::BufferSize() const { |
1529 | return static_cast<int>(buffer_end_ - buffer_); |
1530 | } |
1531 | |
1532 | inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input) |
1533 | : buffer_(nullptr), |
1534 | buffer_end_(nullptr), |
1535 | input_(input), |
1536 | total_bytes_read_(0), |
1537 | overflow_bytes_(0), |
1538 | last_tag_(0), |
1539 | legitimate_message_end_(false), |
1540 | aliasing_enabled_(false), |
1541 | current_limit_(kint32max), |
1542 | buffer_size_after_limit_(0), |
1543 | total_bytes_limit_(kDefaultTotalBytesLimit), |
1544 | recursion_budget_(default_recursion_limit_), |
1545 | recursion_limit_(default_recursion_limit_), |
1546 | extension_pool_(nullptr), |
1547 | extension_factory_(nullptr) { |
1548 | // Eagerly Refresh() so buffer space is immediately available. |
1549 | Refresh(); |
1550 | } |
1551 | |
1552 | inline CodedInputStream::CodedInputStream(const uint8* buffer, int size) |
1553 | : buffer_(buffer), |
1554 | buffer_end_(buffer + size), |
1555 | input_(nullptr), |
1556 | total_bytes_read_(size), |
1557 | overflow_bytes_(0), |
1558 | last_tag_(0), |
1559 | legitimate_message_end_(false), |
1560 | aliasing_enabled_(false), |
1561 | current_limit_(size), |
1562 | buffer_size_after_limit_(0), |
1563 | total_bytes_limit_(kDefaultTotalBytesLimit), |
1564 | recursion_budget_(default_recursion_limit_), |
1565 | recursion_limit_(default_recursion_limit_), |
1566 | extension_pool_(nullptr), |
1567 | extension_factory_(nullptr) { |
1568 | // Note that setting current_limit_ == size is important to prevent some |
1569 | // code paths from trying to access input_ and segfaulting. |
1570 | } |
1571 | |
1572 | inline bool CodedInputStream::IsFlat() const { return input_ == nullptr; } |
1573 | |
1574 | inline bool CodedInputStream::Skip(int count) { |
1575 | if (count < 0) return false; // security: count is often user-supplied |
1576 | |
1577 | const int original_buffer_size = BufferSize(); |
1578 | |
1579 | if (count <= original_buffer_size) { |
1580 | // Just skipping within the current buffer. Easy. |
1581 | Advance(amount: count); |
1582 | return true; |
1583 | } |
1584 | |
1585 | return SkipFallback(count, original_buffer_size); |
1586 | } |
1587 | |
1588 | inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value, |
1589 | uint8* target) { |
1590 | return EpsCopyOutputStream::UnsafeVarint(value, ptr: target); |
1591 | } |
1592 | |
1593 | inline uint8* CodedOutputStream::WriteVarint64ToArray(uint64 value, |
1594 | uint8* target) { |
1595 | return EpsCopyOutputStream::UnsafeVarint(value, ptr: target); |
1596 | } |
1597 | |
1598 | inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) { |
1599 | WriteVarint64(value: static_cast<uint64>(value)); |
1600 | } |
1601 | |
1602 | inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray( |
1603 | int32 value, uint8* target) { |
1604 | return WriteVarint64ToArray(value: static_cast<uint64>(value), target); |
1605 | } |
1606 | |
1607 | inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value, |
1608 | uint8* target) { |
1609 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
1610 | memcpy(dest: target, src: &value, n: sizeof(value)); |
1611 | #else |
1612 | target[0] = static_cast<uint8>(value); |
1613 | target[1] = static_cast<uint8>(value >> 8); |
1614 | target[2] = static_cast<uint8>(value >> 16); |
1615 | target[3] = static_cast<uint8>(value >> 24); |
1616 | #endif |
1617 | return target + sizeof(value); |
1618 | } |
1619 | |
1620 | inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value, |
1621 | uint8* target) { |
1622 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
1623 | memcpy(dest: target, src: &value, n: sizeof(value)); |
1624 | #else |
1625 | uint32 part0 = static_cast<uint32>(value); |
1626 | uint32 part1 = static_cast<uint32>(value >> 32); |
1627 | |
1628 | target[0] = static_cast<uint8>(part0); |
1629 | target[1] = static_cast<uint8>(part0 >> 8); |
1630 | target[2] = static_cast<uint8>(part0 >> 16); |
1631 | target[3] = static_cast<uint8>(part0 >> 24); |
1632 | target[4] = static_cast<uint8>(part1); |
1633 | target[5] = static_cast<uint8>(part1 >> 8); |
1634 | target[6] = static_cast<uint8>(part1 >> 16); |
1635 | target[7] = static_cast<uint8>(part1 >> 24); |
1636 | #endif |
1637 | return target + sizeof(value); |
1638 | } |
1639 | |
1640 | inline void CodedOutputStream::WriteVarint32(uint32 value) { |
1641 | cur_ = impl_.EnsureSpace(ptr: cur_); |
1642 | SetCur(WriteVarint32ToArray(value, target: Cur())); |
1643 | } |
1644 | |
1645 | inline void CodedOutputStream::WriteVarint64(uint64 value) { |
1646 | cur_ = impl_.EnsureSpace(ptr: cur_); |
1647 | SetCur(WriteVarint64ToArray(value, target: Cur())); |
1648 | } |
1649 | |
1650 | inline void CodedOutputStream::WriteTag(uint32 value) { WriteVarint32(value); } |
1651 | |
1652 | inline uint8* CodedOutputStream::WriteTagToArray(uint32 value, uint8* target) { |
1653 | return WriteVarint32ToArray(value, target); |
1654 | } |
1655 | |
1656 | inline size_t CodedOutputStream::VarintSize32(uint32 value) { |
1657 | // This computes value == 0 ? 1 : floor(log2(value)) / 7 + 1 |
1658 | // Use an explicit multiplication to implement the divide of |
1659 | // a number in the 1..31 range. |
1660 | // Explicit OR 0x1 to avoid calling Bits::Log2FloorNonZero(0), which is |
1661 | // undefined. |
1662 | uint32 log2value = Bits::Log2FloorNonZero(n: value | 0x1); |
1663 | return static_cast<size_t>((log2value * 9 + 73) / 64); |
1664 | } |
1665 | |
1666 | inline size_t CodedOutputStream::VarintSize64(uint64 value) { |
1667 | // This computes value == 0 ? 1 : floor(log2(value)) / 7 + 1 |
1668 | // Use an explicit multiplication to implement the divide of |
1669 | // a number in the 1..63 range. |
1670 | // Explicit OR 0x1 to avoid calling Bits::Log2FloorNonZero(0), which is |
1671 | // undefined. |
1672 | uint32 log2value = Bits::Log2FloorNonZero64(n: value | 0x1); |
1673 | return static_cast<size_t>((log2value * 9 + 73) / 64); |
1674 | } |
1675 | |
1676 | inline size_t CodedOutputStream::VarintSize32SignExtended(int32 value) { |
1677 | if (value < 0) { |
1678 | return 10; // TODO(kenton): Make this a symbolic constant. |
1679 | } else { |
1680 | return VarintSize32(value: static_cast<uint32>(value)); |
1681 | } |
1682 | } |
1683 | |
1684 | inline void CodedOutputStream::WriteString(const std::string& str) { |
1685 | WriteRaw(buffer: str.data(), size: static_cast<int>(str.size())); |
1686 | } |
1687 | |
1688 | inline void CodedOutputStream::WriteRawMaybeAliased(const void* data, |
1689 | int size) { |
1690 | cur_ = impl_.WriteRawMaybeAliased(data, size, ptr: cur_); |
1691 | } |
1692 | |
1693 | inline uint8* CodedOutputStream::WriteRawToArray(const void* data, int size, |
1694 | uint8* target) { |
1695 | memcpy(dest: target, src: data, n: size); |
1696 | return target + size; |
1697 | } |
1698 | |
1699 | inline uint8* CodedOutputStream::WriteStringToArray(const std::string& str, |
1700 | uint8* target) { |
1701 | return WriteRawToArray(data: str.data(), size: static_cast<int>(str.size()), target); |
1702 | } |
1703 | |
1704 | } // namespace io |
1705 | } // namespace protobuf |
1706 | } // namespace google |
1707 | |
1708 | #if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) |
1709 | #pragma runtime_checks("c", restore) |
1710 | #endif // _MSC_VER && !defined(__INTEL_COMPILER) |
1711 | |
1712 | #include <google/protobuf/port_undef.inc> |
1713 | |
1714 | #endif // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ |
1715 | |