1 | // Protocol Buffers - Google's data interchange format |
2 | // Copyright 2008 Google Inc. All rights reserved. |
3 | // https://developers.google.com/protocol-buffers/ |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | // This file defines the map container and its helpers to support protobuf maps. |
32 | // |
33 | // The Map and MapIterator types are provided by this header file. |
34 | // Please avoid using other types defined here, unless they are public |
35 | // types within Map or MapIterator, such as Map::value_type. |
36 | |
37 | #ifndef GOOGLE_PROTOBUF_MAP_H__ |
38 | #define GOOGLE_PROTOBUF_MAP_H__ |
39 | |
40 | #include <initializer_list> |
41 | #include <iterator> |
42 | #include <limits> // To support Visual Studio 2008 |
43 | #include <set> |
44 | #include <type_traits> |
45 | #include <utility> |
46 | |
47 | #include <google/protobuf/stubs/common.h> |
48 | #include <google/protobuf/arena.h> |
49 | #include <google/protobuf/generated_enum_util.h> |
50 | #include <google/protobuf/map_type_handler.h> |
51 | #include <google/protobuf/stubs/hash.h> |
52 | |
53 | #ifdef SWIG |
54 | #error "You cannot SWIG proto headers" |
55 | #endif |
56 | |
57 | #include <google/protobuf/port_def.inc> |
58 | |
59 | namespace google { |
60 | namespace protobuf { |
61 | |
62 | template <typename Key, typename T> |
63 | class Map; |
64 | |
65 | class MapIterator; |
66 | |
67 | template <typename Enum> |
68 | struct is_proto_enum; |
69 | |
70 | namespace internal { |
71 | template <typename Derived, typename Key, typename T, |
72 | WireFormatLite::FieldType key_wire_type, |
73 | WireFormatLite::FieldType value_wire_type, int default_enum_value> |
74 | class MapFieldLite; |
75 | |
76 | template <typename Derived, typename Key, typename T, |
77 | WireFormatLite::FieldType key_wire_type, |
78 | WireFormatLite::FieldType value_wire_type, int default_enum_value> |
79 | class MapField; |
80 | |
81 | template <typename Key, typename T> |
82 | class TypeDefinedMapFieldBase; |
83 | |
84 | class DynamicMapField; |
85 | |
86 | class GeneratedMessageReflection; |
87 | |
88 | // re-implement std::allocator to use arena allocator for memory allocation. |
89 | // Used for Map implementation. Users should not use this class |
90 | // directly. |
91 | template <typename U> |
92 | class MapAllocator { |
93 | public: |
94 | using value_type = U; |
95 | using pointer = value_type*; |
96 | using const_pointer = const value_type*; |
97 | using reference = value_type&; |
98 | using const_reference = const value_type&; |
99 | using size_type = size_t; |
100 | using difference_type = ptrdiff_t; |
101 | |
102 | MapAllocator() : arena_(nullptr) {} |
103 | explicit MapAllocator(Arena* arena) : arena_(arena) {} |
104 | template <typename X> |
105 | MapAllocator(const MapAllocator<X>& allocator) // NOLINT(runtime/explicit) |
106 | : arena_(allocator.arena()) {} |
107 | |
108 | pointer allocate(size_type n, const void* /* hint */ = nullptr) { |
109 | // If arena is not given, malloc needs to be called which doesn't |
110 | // construct element object. |
111 | if (arena_ == nullptr) { |
112 | return static_cast<pointer>(::operator new(n * sizeof(value_type))); |
113 | } else { |
114 | return reinterpret_cast<pointer>( |
115 | Arena::CreateArray<uint8>(arena: arena_, num_elements: n * sizeof(value_type))); |
116 | } |
117 | } |
118 | |
119 | void deallocate(pointer p, size_type n) { |
120 | if (arena_ == nullptr) { |
121 | #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation) |
122 | ::operator delete(p, n * sizeof(value_type)); |
123 | #else |
124 | (void)n; |
125 | ::operator delete(p); |
126 | #endif |
127 | } |
128 | } |
129 | |
130 | #if __cplusplus >= 201103L && !defined(GOOGLE_PROTOBUF_OS_APPLE) && \ |
131 | !defined(GOOGLE_PROTOBUF_OS_NACL) && \ |
132 | !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN) |
133 | template <class NodeType, class... Args> |
134 | void construct(NodeType* p, Args&&... args) { |
135 | // Clang 3.6 doesn't compile static casting to void* directly. (Issue |
136 | // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall |
137 | // not cast away constness". So first the maybe const pointer is casted to |
138 | // const void* and after the const void* is const casted. |
139 | new (const_cast<void*>(static_cast<const void*>(p))) |
140 | NodeType(std::forward<Args>(args)...); |
141 | } |
142 | |
143 | template <class NodeType> |
144 | void destroy(NodeType* p) { |
145 | p->~NodeType(); |
146 | } |
147 | #else |
148 | void construct(pointer p, const_reference t) { new (p) value_type(t); } |
149 | |
150 | void destroy(pointer p) { p->~value_type(); } |
151 | #endif |
152 | |
153 | template <typename X> |
154 | struct rebind { |
155 | using other = MapAllocator<X>; |
156 | }; |
157 | |
158 | template <typename X> |
159 | bool operator==(const MapAllocator<X>& other) const { |
160 | return arena_ == other.arena_; |
161 | } |
162 | |
163 | template <typename X> |
164 | bool operator!=(const MapAllocator<X>& other) const { |
165 | return arena_ != other.arena_; |
166 | } |
167 | |
168 | // To support Visual Studio 2008 |
169 | size_type max_size() const { |
170 | // parentheses around (std::...:max) prevents macro warning of max() |
171 | return (std::numeric_limits<size_type>::max)(); |
172 | } |
173 | |
174 | // To support gcc-4.4, which does not properly |
175 | // support templated friend classes |
176 | Arena* arena() const { return arena_; } |
177 | |
178 | private: |
179 | using DestructorSkippable_ = void; |
180 | Arena* const arena_; |
181 | }; |
182 | |
183 | template <typename Key> |
184 | struct DerefCompare { |
185 | bool operator()(const Key* n0, const Key* n1) const { return *n0 < *n1; } |
186 | }; |
187 | |
188 | // This class is used to get trivially destructible views of std::string and |
189 | // MapKey, which are the only non-trivially destructible allowed key types. |
190 | template <typename Key> |
191 | class KeyView { |
192 | public: |
193 | KeyView(const Key& key) : key_(&key) {} // NOLINT(runtime/explicit) |
194 | |
195 | const Key& get() const { return *key_; } |
196 | // Allows implicit conversions to `const Key&`, which allows us to use the |
197 | // hasher defined for Key. |
198 | operator const Key&() const { return get(); } // NOLINT(runtime/explicit) |
199 | |
200 | bool operator==(const KeyView& other) const { return get() == other.get(); } |
201 | bool operator==(const Key& other) const { return get() == other; } |
202 | bool operator<(const KeyView& other) const { return get() < other.get(); } |
203 | bool operator<(const Key& other) const { return get() < other; } |
204 | |
205 | private: |
206 | const Key* key_; |
207 | }; |
208 | |
209 | // Allows the InnerMap type to support skippable destruction. |
210 | template <typename Key> |
211 | struct GetTrivialKey { |
212 | using type = |
213 | typename std::conditional<std::is_trivially_destructible<Key>::value, Key, |
214 | KeyView<Key>>::type; |
215 | }; |
216 | |
217 | } // namespace internal |
218 | |
219 | // This is the class for Map's internal value_type. Instead of using |
220 | // std::pair as value_type, we use this class which provides us more control of |
221 | // its process of construction and destruction. |
222 | template <typename Key, typename T> |
223 | struct MapPair { |
224 | using first_type = const Key; |
225 | using second_type = T; |
226 | |
227 | MapPair(const Key& other_first, const T& other_second) |
228 | : first(other_first), second(other_second) {} |
229 | explicit MapPair(const Key& other_first) : first(other_first), second() {} |
230 | MapPair(const MapPair& other) : first(other.first), second(other.second) {} |
231 | |
232 | ~MapPair() {} |
233 | |
234 | // Implicitly convertible to std::pair of compatible types. |
235 | template <typename T1, typename T2> |
236 | operator std::pair<T1, T2>() const { // NOLINT(runtime/explicit) |
237 | return std::pair<T1, T2>(first, second); |
238 | } |
239 | |
240 | const Key first; |
241 | T second; |
242 | |
243 | private: |
244 | friend class Arena; |
245 | friend class Map<Key, T>; |
246 | }; |
247 | |
248 | // Map is an associative container type used to store protobuf map |
249 | // fields. Each Map instance may or may not use a different hash function, a |
250 | // different iteration order, and so on. E.g., please don't examine |
251 | // implementation details to decide if the following would work: |
252 | // Map<int, int> m0, m1; |
253 | // m0[0] = m1[0] = m0[1] = m1[1] = 0; |
254 | // assert(m0.begin()->first == m1.begin()->first); // Bug! |
255 | // |
256 | // Map's interface is similar to std::unordered_map, except that Map is not |
257 | // designed to play well with exceptions. |
258 | template <typename Key, typename T> |
259 | class Map { |
260 | public: |
261 | using key_type = Key; |
262 | using mapped_type = T; |
263 | using value_type = MapPair<Key, T>; |
264 | |
265 | using pointer = value_type*; |
266 | using const_pointer = const value_type*; |
267 | using reference = value_type&; |
268 | using const_reference = const value_type&; |
269 | |
270 | using size_type = size_t; |
271 | using hasher = hash<Key>; |
272 | |
273 | Map() : arena_(nullptr), default_enum_value_(0) { Init(); } |
274 | explicit Map(Arena* arena) : arena_(arena), default_enum_value_(0) { Init(); } |
275 | |
276 | Map(const Map& other) |
277 | : arena_(nullptr), default_enum_value_(other.default_enum_value_) { |
278 | Init(); |
279 | insert(other.begin(), other.end()); |
280 | } |
281 | |
282 | Map(Map&& other) noexcept : Map() { |
283 | if (other.arena_) { |
284 | *this = other; |
285 | } else { |
286 | swap(other); |
287 | } |
288 | } |
289 | Map& operator=(Map&& other) noexcept { |
290 | if (this != &other) { |
291 | if (arena_ != other.arena_) { |
292 | *this = other; |
293 | } else { |
294 | swap(other); |
295 | } |
296 | } |
297 | return *this; |
298 | } |
299 | |
300 | template <class InputIt> |
301 | Map(const InputIt& first, const InputIt& last) |
302 | : arena_(nullptr), default_enum_value_(0) { |
303 | Init(); |
304 | insert(first, last); |
305 | } |
306 | |
307 | ~Map() { |
308 | clear(); |
309 | if (arena_ == nullptr) { |
310 | delete elements_; |
311 | } |
312 | } |
313 | |
314 | private: |
315 | void Init() { elements_ = Arena::CreateMessage<InnerMap>(arena_, 0u); } |
316 | |
317 | // InnerMap's key type is TrivialKey and its value type is value_type*. We |
318 | // use a custom class here and for Node, below, to ensure that k_ is at offset |
319 | // 0, allowing safe conversion from pointer to Node to pointer to TrivialKey, |
320 | // and vice versa when appropriate. We use GetTrivialKey to adapt Key to |
321 | // be a trivially destructible view if Key is not already trivially |
322 | // destructible. This view points into the Key inside v_ once it's |
323 | // initialized. |
324 | using TrivialKey = typename internal::GetTrivialKey<Key>::type; |
325 | class KeyValuePair { |
326 | public: |
327 | KeyValuePair(const TrivialKey& k, value_type* v) : k_(k), v_(v) {} |
328 | |
329 | const TrivialKey& key() const { return k_; } |
330 | TrivialKey& key() { return k_; } |
331 | value_type* value() const { return v_; } |
332 | value_type*& value() { return v_; } |
333 | |
334 | private: |
335 | TrivialKey k_; |
336 | value_type* v_; |
337 | }; |
338 | |
339 | using Allocator = internal::MapAllocator<KeyValuePair>; |
340 | |
341 | // InnerMap is a generic hash-based map. It doesn't contain any |
342 | // protocol-buffer-specific logic. It is a chaining hash map with the |
343 | // additional feature that some buckets can be converted to use an ordered |
344 | // container. This ensures O(lg n) bounds on find, insert, and erase, while |
345 | // avoiding the overheads of ordered containers most of the time. |
346 | // |
347 | // The implementation doesn't need the full generality of unordered_map, |
348 | // and it doesn't have it. More bells and whistles can be added as needed. |
349 | // Some implementation details: |
350 | // 1. The hash function has type hasher and the equality function |
351 | // equal_to<Key>. We inherit from hasher to save space |
352 | // (empty-base-class optimization). |
353 | // 2. The number of buckets is a power of two. |
354 | // 3. Buckets are converted to trees in pairs: if we convert bucket b then |
355 | // buckets b and b^1 will share a tree. Invariant: buckets b and b^1 have |
356 | // the same non-null value iff they are sharing a tree. (An alternative |
357 | // implementation strategy would be to have a tag bit per bucket.) |
358 | // 4. As is typical for hash_map and such, the Keys and Values are always |
359 | // stored in linked list nodes. Pointers to elements are never invalidated |
360 | // until the element is deleted. |
361 | // 5. The trees' payload type is pointer to linked-list node. Tree-converting |
362 | // a bucket doesn't copy Key-Value pairs. |
363 | // 6. Once we've tree-converted a bucket, it is never converted back. However, |
364 | // the items a tree contains may wind up assigned to trees or lists upon a |
365 | // rehash. |
366 | // 7. The code requires no C++ features from C++14 or later. |
367 | // 8. Mutations to a map do not invalidate the map's iterators, pointers to |
368 | // elements, or references to elements. |
369 | // 9. Except for erase(iterator), any non-const method can reorder iterators. |
370 | // 10. InnerMap's key is TrivialKey, which is either Key, if Key is trivially |
371 | // destructible, or a trivially destructible view of Key otherwise. This |
372 | // allows InnerMap's destructor to be skipped when InnerMap is |
373 | // arena-allocated. |
374 | class InnerMap : private hasher { |
375 | public: |
376 | using Value = value_type*; |
377 | |
378 | explicit InnerMap(size_type n) : InnerMap(nullptr, n) {} |
379 | InnerMap(Arena* arena, size_type n) |
380 | : hasher(), |
381 | num_elements_(0), |
382 | seed_(Seed()), |
383 | table_(nullptr), |
384 | alloc_(arena) { |
385 | n = TableSize(n); |
386 | table_ = CreateEmptyTable(n); |
387 | num_buckets_ = index_of_first_non_null_ = n; |
388 | static_assert( |
389 | std::is_trivially_destructible<KeyValuePair>::value, |
390 | "We require KeyValuePair to be trivially destructible so that we can " |
391 | "skip InnerMap's destructor when it's arena allocated." ); |
392 | } |
393 | |
394 | ~InnerMap() { |
395 | if (table_ != nullptr) { |
396 | clear(); |
397 | Dealloc<void*>(table_, num_buckets_); |
398 | } |
399 | } |
400 | |
401 | private: |
402 | enum { kMinTableSize = 8 }; |
403 | |
404 | // Linked-list nodes, as one would expect for a chaining hash table. |
405 | struct Node { |
406 | KeyValuePair kv; |
407 | Node* next; |
408 | }; |
409 | |
410 | // This is safe only if the given pointer is known to point to a Key that is |
411 | // part of a Node. |
412 | static Node* NodePtrFromKeyPtr(TrivialKey* k) { |
413 | return reinterpret_cast<Node*>(k); |
414 | } |
415 | |
416 | static TrivialKey* KeyPtrFromNodePtr(Node* node) { return &node->kv.key(); } |
417 | |
418 | // Trees. The payload type is pointer to Key, so that we can query the tree |
419 | // with Keys that are not in any particular data structure. When we insert, |
420 | // though, the pointer is always pointing to a Key that is inside a Node. |
421 | using KeyPtrAllocator = |
422 | typename Allocator::template rebind<TrivialKey*>::other; |
423 | using Tree = std::set<TrivialKey*, internal::DerefCompare<TrivialKey>, |
424 | KeyPtrAllocator>; |
425 | using TreeIterator = typename Tree::iterator; |
426 | |
427 | // iterator and const_iterator are instantiations of iterator_base. |
428 | template <typename KeyValueType> |
429 | class iterator_base { |
430 | public: |
431 | using reference = KeyValueType&; |
432 | using pointer = KeyValueType*; |
433 | |
434 | // Invariants: |
435 | // node_ is always correct. This is handy because the most common |
436 | // operations are operator* and operator-> and they only use node_. |
437 | // When node_ is set to a non-null value, all the other non-const fields |
438 | // are updated to be correct also, but those fields can become stale |
439 | // if the underlying map is modified. When those fields are needed they |
440 | // are rechecked, and updated if necessary. |
441 | iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {} |
442 | |
443 | explicit iterator_base(const InnerMap* m) : m_(m) { |
444 | SearchFrom(start_bucket: m->index_of_first_non_null_); |
445 | } |
446 | |
447 | // Any iterator_base can convert to any other. This is overkill, and we |
448 | // rely on the enclosing class to use it wisely. The standard "iterator |
449 | // can convert to const_iterator" is OK but the reverse direction is not. |
450 | template <typename U> |
451 | explicit iterator_base(const iterator_base<U>& it) |
452 | : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {} |
453 | |
454 | iterator_base(Node* n, const InnerMap* m, size_type index) |
455 | : node_(n), m_(m), bucket_index_(index) {} |
456 | |
457 | iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index) |
458 | : node_(NodePtrFromKeyPtr(k: *tree_it)), m_(m), bucket_index_(index) { |
459 | // Invariant: iterators that use buckets with trees have an even |
460 | // bucket_index_. |
461 | GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u); |
462 | } |
463 | |
464 | // Advance through buckets, looking for the first that isn't empty. |
465 | // If nothing non-empty is found then leave node_ == nullptr. |
466 | void SearchFrom(size_type start_bucket) { |
467 | GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ || |
468 | m_->table_[m_->index_of_first_non_null_] != nullptr); |
469 | node_ = nullptr; |
470 | for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_; |
471 | bucket_index_++) { |
472 | if (m_->TableEntryIsNonEmptyList(bucket_index_)) { |
473 | node_ = static_cast<Node*>(m_->table_[bucket_index_]); |
474 | break; |
475 | } else if (m_->TableEntryIsTree(bucket_index_)) { |
476 | Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]); |
477 | GOOGLE_DCHECK(!tree->empty()); |
478 | node_ = NodePtrFromKeyPtr(k: *tree->begin()); |
479 | break; |
480 | } |
481 | } |
482 | } |
483 | |
484 | reference operator*() const { return node_->kv; } |
485 | pointer operator->() const { return &(operator*()); } |
486 | |
487 | friend bool operator==(const iterator_base& a, const iterator_base& b) { |
488 | return a.node_ == b.node_; |
489 | } |
490 | friend bool operator!=(const iterator_base& a, const iterator_base& b) { |
491 | return a.node_ != b.node_; |
492 | } |
493 | |
494 | iterator_base& operator++() { |
495 | if (node_->next == nullptr) { |
496 | TreeIterator tree_it; |
497 | const bool is_list = revalidate_if_necessary(it: &tree_it); |
498 | if (is_list) { |
499 | SearchFrom(start_bucket: bucket_index_ + 1); |
500 | } else { |
501 | GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u); |
502 | Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]); |
503 | if (++tree_it == tree->end()) { |
504 | SearchFrom(start_bucket: bucket_index_ + 2); |
505 | } else { |
506 | node_ = NodePtrFromKeyPtr(k: *tree_it); |
507 | } |
508 | } |
509 | } else { |
510 | node_ = node_->next; |
511 | } |
512 | return *this; |
513 | } |
514 | |
515 | iterator_base operator++(int /* unused */) { |
516 | iterator_base tmp = *this; |
517 | ++*this; |
518 | return tmp; |
519 | } |
520 | |
521 | // Assumes node_ and m_ are correct and non-null, but other fields may be |
522 | // stale. Fix them as needed. Then return true iff node_ points to a |
523 | // Node in a list. If false is returned then *it is modified to be |
524 | // a valid iterator for node_. |
525 | bool revalidate_if_necessary(TreeIterator* it) { |
526 | GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr); |
527 | // Force bucket_index_ to be in range. |
528 | bucket_index_ &= (m_->num_buckets_ - 1); |
529 | // Common case: the bucket we think is relevant points to node_. |
530 | if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true; |
531 | // Less common: the bucket is a linked list with node_ somewhere in it, |
532 | // but not at the head. |
533 | if (m_->TableEntryIsNonEmptyList(bucket_index_)) { |
534 | Node* l = static_cast<Node*>(m_->table_[bucket_index_]); |
535 | while ((l = l->next) != nullptr) { |
536 | if (l == node_) { |
537 | return true; |
538 | } |
539 | } |
540 | } |
541 | // Well, bucket_index_ still might be correct, but probably |
542 | // not. Revalidate just to be sure. This case is rare enough that we |
543 | // don't worry about potential optimizations, such as having a custom |
544 | // find-like method that compares Node* instead of TrivialKey. |
545 | iterator_base i(m_->find(*KeyPtrFromNodePtr(node: node_), it)); |
546 | bucket_index_ = i.bucket_index_; |
547 | return m_->TableEntryIsList(bucket_index_); |
548 | } |
549 | |
550 | Node* node_; |
551 | const InnerMap* m_; |
552 | size_type bucket_index_; |
553 | }; |
554 | |
555 | public: |
556 | using iterator = iterator_base<KeyValuePair>; |
557 | using const_iterator = iterator_base<const KeyValuePair>; |
558 | |
559 | iterator begin() { return iterator(this); } |
560 | iterator end() { return iterator(); } |
561 | const_iterator begin() const { return const_iterator(this); } |
562 | const_iterator end() const { return const_iterator(); } |
563 | |
564 | void clear() { |
565 | for (size_type b = 0; b < num_buckets_; b++) { |
566 | if (TableEntryIsNonEmptyList(b)) { |
567 | Node* node = static_cast<Node*>(table_[b]); |
568 | table_[b] = nullptr; |
569 | do { |
570 | Node* next = node->next; |
571 | DestroyNode(node); |
572 | node = next; |
573 | } while (node != nullptr); |
574 | } else if (TableEntryIsTree(b)) { |
575 | Tree* tree = static_cast<Tree*>(table_[b]); |
576 | GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0); |
577 | table_[b] = table_[b + 1] = nullptr; |
578 | typename Tree::iterator tree_it = tree->begin(); |
579 | do { |
580 | Node* node = NodePtrFromKeyPtr(k: *tree_it); |
581 | typename Tree::iterator next = tree_it; |
582 | ++next; |
583 | tree->erase(tree_it); |
584 | DestroyNode(node); |
585 | tree_it = next; |
586 | } while (tree_it != tree->end()); |
587 | DestroyTree(tree); |
588 | b++; |
589 | } |
590 | } |
591 | num_elements_ = 0; |
592 | index_of_first_non_null_ = num_buckets_; |
593 | } |
594 | |
595 | const hasher& hash_function() const { return *this; } |
596 | |
597 | static size_type max_size() { |
598 | return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28); |
599 | } |
600 | size_type size() const { return num_elements_; } |
601 | bool empty() const { return size() == 0; } |
602 | |
603 | iterator find(const TrivialKey& k) { return iterator(FindHelper(k).first); } |
604 | const_iterator find(const TrivialKey& k) const { return find(k, nullptr); } |
605 | bool contains(const TrivialKey& k) const { return find(k) != end(); } |
606 | |
607 | // In traditional C++ style, this performs "insert if not present." |
608 | std::pair<iterator, bool> insert(const KeyValuePair& kv) { |
609 | std::pair<const_iterator, size_type> p = FindHelper(kv.key()); |
610 | // Case 1: key was already present. |
611 | if (p.first.node_ != nullptr) |
612 | return std::make_pair(iterator(p.first), false); |
613 | // Case 2: insert. |
614 | if (ResizeIfLoadIsOutOfRange(new_size: num_elements_ + 1)) { |
615 | p = FindHelper(kv.key()); |
616 | } |
617 | const size_type b = p.second; // bucket number |
618 | Node* node = Alloc<Node>(1); |
619 | alloc_.construct(&node->kv, kv); |
620 | iterator result = InsertUnique(b, node); |
621 | ++num_elements_; |
622 | return std::make_pair(result, true); |
623 | } |
624 | |
625 | // The same, but if an insertion is necessary then the value portion of the |
626 | // inserted key-value pair is left uninitialized. |
627 | std::pair<iterator, bool> insert(const TrivialKey& k) { |
628 | std::pair<const_iterator, size_type> p = FindHelper(k); |
629 | // Case 1: key was already present. |
630 | if (p.first.node_ != nullptr) |
631 | return std::make_pair(iterator(p.first), false); |
632 | // Case 2: insert. |
633 | if (ResizeIfLoadIsOutOfRange(new_size: num_elements_ + 1)) { |
634 | p = FindHelper(k); |
635 | } |
636 | const size_type b = p.second; // bucket number |
637 | Node* node = Alloc<Node>(1); |
638 | using KeyAllocator = |
639 | typename Allocator::template rebind<TrivialKey>::other; |
640 | KeyAllocator(alloc_).construct(&node->kv.key(), k); |
641 | iterator result = InsertUnique(b, node); |
642 | ++num_elements_; |
643 | return std::make_pair(result, true); |
644 | } |
645 | |
646 | // Returns iterator so that outer map can update the TrivialKey to point to |
647 | // the Key inside value_type in case TrivialKey is a view type. |
648 | iterator operator[](const TrivialKey& k) { |
649 | KeyValuePair kv(k, Value()); |
650 | return insert(kv).first; |
651 | } |
652 | |
653 | void erase(iterator it) { |
654 | GOOGLE_DCHECK_EQ(it.m_, this); |
655 | typename Tree::iterator tree_it; |
656 | const bool is_list = it.revalidate_if_necessary(&tree_it); |
657 | size_type b = it.bucket_index_; |
658 | Node* const item = it.node_; |
659 | if (is_list) { |
660 | GOOGLE_DCHECK(TableEntryIsNonEmptyList(b)); |
661 | Node* head = static_cast<Node*>(table_[b]); |
662 | head = EraseFromLinkedList(item, head); |
663 | table_[b] = static_cast<void*>(head); |
664 | } else { |
665 | GOOGLE_DCHECK(TableEntryIsTree(b)); |
666 | Tree* tree = static_cast<Tree*>(table_[b]); |
667 | tree->erase(*tree_it); |
668 | if (tree->empty()) { |
669 | // Force b to be the minimum of b and b ^ 1. This is important |
670 | // only because we want index_of_first_non_null_ to be correct. |
671 | b &= ~static_cast<size_type>(1); |
672 | DestroyTree(tree); |
673 | table_[b] = table_[b + 1] = nullptr; |
674 | } |
675 | } |
676 | DestroyNode(node: item); |
677 | --num_elements_; |
678 | if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) { |
679 | while (index_of_first_non_null_ < num_buckets_ && |
680 | table_[index_of_first_non_null_] == nullptr) { |
681 | ++index_of_first_non_null_; |
682 | } |
683 | } |
684 | } |
685 | |
686 | private: |
687 | const_iterator find(const TrivialKey& k, TreeIterator* it) const { |
688 | return FindHelper(k, it).first; |
689 | } |
690 | std::pair<const_iterator, size_type> FindHelper(const TrivialKey& k) const { |
691 | return FindHelper(k, nullptr); |
692 | } |
693 | std::pair<const_iterator, size_type> FindHelper(const TrivialKey& k, |
694 | TreeIterator* it) const { |
695 | size_type b = BucketNumber(k); |
696 | if (TableEntryIsNonEmptyList(b)) { |
697 | Node* node = static_cast<Node*>(table_[b]); |
698 | do { |
699 | if (IsMatch(k0: *KeyPtrFromNodePtr(node), k1: k)) { |
700 | return std::make_pair(const_iterator(node, this, b), b); |
701 | } else { |
702 | node = node->next; |
703 | } |
704 | } while (node != nullptr); |
705 | } else if (TableEntryIsTree(b)) { |
706 | GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]); |
707 | b &= ~static_cast<size_t>(1); |
708 | Tree* tree = static_cast<Tree*>(table_[b]); |
709 | TrivialKey* key = const_cast<TrivialKey*>(&k); |
710 | typename Tree::iterator tree_it = tree->find(key); |
711 | if (tree_it != tree->end()) { |
712 | if (it != nullptr) *it = tree_it; |
713 | return std::make_pair(const_iterator(tree_it, this, b), b); |
714 | } |
715 | } |
716 | return std::make_pair(end(), b); |
717 | } |
718 | |
719 | // Insert the given Node in bucket b. If that would make bucket b too big, |
720 | // and bucket b is not a tree, create a tree for buckets b and b^1 to share. |
721 | // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct |
722 | // bucket. num_elements_ is not modified. |
723 | iterator InsertUnique(size_type b, Node* node) { |
724 | GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ || |
725 | table_[index_of_first_non_null_] != nullptr); |
726 | // In practice, the code that led to this point may have already |
727 | // determined whether we are inserting into an empty list, a short list, |
728 | // or whatever. But it's probably cheap enough to recompute that here; |
729 | // it's likely that we're inserting into an empty or short list. |
730 | iterator result; |
731 | GOOGLE_DCHECK(find(*KeyPtrFromNodePtr(node)) == end()); |
732 | if (TableEntryIsEmpty(b)) { |
733 | result = InsertUniqueInList(b, node); |
734 | } else if (TableEntryIsNonEmptyList(b)) { |
735 | if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) { |
736 | TreeConvert(b); |
737 | result = InsertUniqueInTree(b, node); |
738 | GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1)); |
739 | } else { |
740 | // Insert into a pre-existing list. This case cannot modify |
741 | // index_of_first_non_null_, so we skip the code to update it. |
742 | return InsertUniqueInList(b, node); |
743 | } |
744 | } else { |
745 | // Insert into a pre-existing tree. This case cannot modify |
746 | // index_of_first_non_null_, so we skip the code to update it. |
747 | return InsertUniqueInTree(b, node); |
748 | } |
749 | // parentheses around (std::min) prevents macro expansion of min(...) |
750 | index_of_first_non_null_ = |
751 | (std::min)(index_of_first_non_null_, result.bucket_index_); |
752 | return result; |
753 | } |
754 | |
755 | // Helper for InsertUnique. Handles the case where bucket b is a |
756 | // not-too-long linked list. |
757 | iterator InsertUniqueInList(size_type b, Node* node) { |
758 | node->next = static_cast<Node*>(table_[b]); |
759 | table_[b] = static_cast<void*>(node); |
760 | return iterator(node, this, b); |
761 | } |
762 | |
763 | // Helper for InsertUnique. Handles the case where bucket b points to a |
764 | // Tree. |
765 | iterator InsertUniqueInTree(size_type b, Node* node) { |
766 | GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]); |
767 | // Maintain the invariant that node->next is null for all Nodes in Trees. |
768 | node->next = nullptr; |
769 | return iterator( |
770 | static_cast<Tree*>(table_[b])->insert(KeyPtrFromNodePtr(node)).first, |
771 | this, b & ~static_cast<size_t>(1)); |
772 | } |
773 | |
774 | // Returns whether it did resize. Currently this is only used when |
775 | // num_elements_ increases, though it could be used in other situations. |
776 | // It checks for load too low as well as load too high: because any number |
777 | // of erases can occur between inserts, the load could be as low as 0 here. |
778 | // Resizing to a lower size is not always helpful, but failing to do so can |
779 | // destroy the expected big-O bounds for some operations. By having the |
780 | // policy that sometimes we resize down as well as up, clients can easily |
781 | // keep O(size()) = O(number of buckets) if they want that. |
782 | bool ResizeIfLoadIsOutOfRange(size_type new_size) { |
783 | const size_type kMaxMapLoadTimes16 = 12; // controls RAM vs CPU tradeoff |
784 | const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16; |
785 | const size_type lo_cutoff = hi_cutoff / 4; |
786 | // We don't care how many elements are in trees. If a lot are, |
787 | // we may resize even though there are many empty buckets. In |
788 | // practice, this seems fine. |
789 | if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) { |
790 | if (num_buckets_ <= max_size() / 2) { |
791 | Resize(new_num_buckets: num_buckets_ * 2); |
792 | return true; |
793 | } |
794 | } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff && |
795 | num_buckets_ > kMinTableSize)) { |
796 | size_type lg2_of_size_reduction_factor = 1; |
797 | // It's possible we want to shrink a lot here... size() could even be 0. |
798 | // So, estimate how much to shrink by making sure we don't shrink so |
799 | // much that we would need to grow the table after a few inserts. |
800 | const size_type hypothetical_size = new_size * 5 / 4 + 1; |
801 | while ((hypothetical_size << lg2_of_size_reduction_factor) < |
802 | hi_cutoff) { |
803 | ++lg2_of_size_reduction_factor; |
804 | } |
805 | size_type new_num_buckets = std::max<size_type>( |
806 | kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor); |
807 | if (new_num_buckets != num_buckets_) { |
808 | Resize(new_num_buckets); |
809 | return true; |
810 | } |
811 | } |
812 | return false; |
813 | } |
814 | |
815 | // Resize to the given number of buckets. |
816 | void Resize(size_t new_num_buckets) { |
817 | GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize); |
818 | void** const old_table = table_; |
819 | const size_type old_table_size = num_buckets_; |
820 | num_buckets_ = new_num_buckets; |
821 | table_ = CreateEmptyTable(n: num_buckets_); |
822 | const size_type start = index_of_first_non_null_; |
823 | index_of_first_non_null_ = num_buckets_; |
824 | for (size_type i = start; i < old_table_size; i++) { |
825 | if (TableEntryIsNonEmptyList(old_table, i)) { |
826 | TransferList(table: old_table, index: i); |
827 | } else if (TableEntryIsTree(old_table, i)) { |
828 | TransferTree(table: old_table, index: i++); |
829 | } |
830 | } |
831 | Dealloc<void*>(old_table, old_table_size); |
832 | } |
833 | |
834 | void TransferList(void* const* table, size_type index) { |
835 | Node* node = static_cast<Node*>(table[index]); |
836 | do { |
837 | Node* next = node->next; |
838 | InsertUnique(b: BucketNumber(k: *KeyPtrFromNodePtr(node)), node); |
839 | node = next; |
840 | } while (node != nullptr); |
841 | } |
842 | |
843 | void TransferTree(void* const* table, size_type index) { |
844 | Tree* tree = static_cast<Tree*>(table[index]); |
845 | typename Tree::iterator tree_it = tree->begin(); |
846 | do { |
847 | Node* node = NodePtrFromKeyPtr(k: *tree_it); |
848 | InsertUnique(b: BucketNumber(k: **tree_it), node); |
849 | } while (++tree_it != tree->end()); |
850 | DestroyTree(tree); |
851 | } |
852 | |
853 | Node* EraseFromLinkedList(Node* item, Node* head) { |
854 | if (head == item) { |
855 | return head->next; |
856 | } else { |
857 | head->next = EraseFromLinkedList(item, head: head->next); |
858 | return head; |
859 | } |
860 | } |
861 | |
862 | bool TableEntryIsEmpty(size_type b) const { |
863 | return TableEntryIsEmpty(table_, b); |
864 | } |
865 | bool TableEntryIsNonEmptyList(size_type b) const { |
866 | return TableEntryIsNonEmptyList(table_, b); |
867 | } |
868 | bool TableEntryIsTree(size_type b) const { |
869 | return TableEntryIsTree(table_, b); |
870 | } |
871 | bool TableEntryIsList(size_type b) const { |
872 | return TableEntryIsList(table_, b); |
873 | } |
874 | static bool TableEntryIsEmpty(void* const* table, size_type b) { |
875 | return table[b] == nullptr; |
876 | } |
877 | static bool TableEntryIsNonEmptyList(void* const* table, size_type b) { |
878 | return table[b] != nullptr && table[b] != table[b ^ 1]; |
879 | } |
880 | static bool TableEntryIsTree(void* const* table, size_type b) { |
881 | return !TableEntryIsEmpty(table, b) && |
882 | !TableEntryIsNonEmptyList(table, b); |
883 | } |
884 | static bool TableEntryIsList(void* const* table, size_type b) { |
885 | return !TableEntryIsTree(table, b); |
886 | } |
887 | |
888 | void TreeConvert(size_type b) { |
889 | GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1)); |
890 | typename Allocator::template rebind<Tree>::other tree_allocator(alloc_); |
891 | Tree* tree = tree_allocator.allocate(1); |
892 | // We want to use the three-arg form of construct, if it exists, but we |
893 | // create a temporary and use the two-arg construct that's known to exist. |
894 | // It's clunky, but the compiler should be able to generate more-or-less |
895 | // the same code. |
896 | tree_allocator.construct( |
897 | tree, Tree(typename Tree::key_compare(), KeyPtrAllocator(alloc_))); |
898 | // Now the tree is ready to use. |
899 | size_type count = CopyListToTree(b, tree) + CopyListToTree(b: b ^ 1, tree); |
900 | GOOGLE_DCHECK_EQ(count, tree->size()); |
901 | table_[b] = table_[b ^ 1] = static_cast<void*>(tree); |
902 | } |
903 | |
904 | // Copy a linked list in the given bucket to a tree. |
905 | // Returns the number of things it copied. |
906 | size_type CopyListToTree(size_type b, Tree* tree) { |
907 | size_type count = 0; |
908 | Node* node = static_cast<Node*>(table_[b]); |
909 | while (node != nullptr) { |
910 | tree->insert(KeyPtrFromNodePtr(node)); |
911 | ++count; |
912 | Node* next = node->next; |
913 | node->next = nullptr; |
914 | node = next; |
915 | } |
916 | return count; |
917 | } |
918 | |
919 | // Return whether table_[b] is a linked list that seems awfully long. |
920 | // Requires table_[b] to point to a non-empty linked list. |
921 | bool TableEntryIsTooLong(size_type b) { |
922 | const size_type kMaxLength = 8; |
923 | size_type count = 0; |
924 | Node* node = static_cast<Node*>(table_[b]); |
925 | do { |
926 | ++count; |
927 | node = node->next; |
928 | } while (node != nullptr); |
929 | // Invariant: no linked list ever is more than kMaxLength in length. |
930 | GOOGLE_DCHECK_LE(count, kMaxLength); |
931 | return count >= kMaxLength; |
932 | } |
933 | |
934 | size_type BucketNumber(const TrivialKey& k) const { |
935 | size_type h = hash_function()(k); |
936 | return (h + seed_) & (num_buckets_ - 1); |
937 | } |
938 | |
939 | bool IsMatch(const TrivialKey& k0, const TrivialKey& k1) const { |
940 | return k0 == k1; |
941 | } |
942 | |
943 | // Return a power of two no less than max(kMinTableSize, n). |
944 | // Assumes either n < kMinTableSize or n is a power of two. |
945 | size_type TableSize(size_type n) { |
946 | return n < static_cast<size_type>(kMinTableSize) |
947 | ? static_cast<size_type>(kMinTableSize) |
948 | : n; |
949 | } |
950 | |
951 | // Use alloc_ to allocate an array of n objects of type U. |
952 | template <typename U> |
953 | U* Alloc(size_type n) { |
954 | using alloc_type = typename Allocator::template rebind<U>::other; |
955 | return alloc_type(alloc_).allocate(n); |
956 | } |
957 | |
958 | // Use alloc_ to deallocate an array of n objects of type U. |
959 | template <typename U> |
960 | void Dealloc(U* t, size_type n) { |
961 | using alloc_type = typename Allocator::template rebind<U>::other; |
962 | alloc_type(alloc_).deallocate(t, n); |
963 | } |
964 | |
965 | void DestroyNode(Node* node) { |
966 | alloc_.destroy(&node->kv); |
967 | Dealloc<Node>(node, 1); |
968 | } |
969 | |
970 | void DestroyTree(Tree* tree) { |
971 | typename Allocator::template rebind<Tree>::other tree_allocator(alloc_); |
972 | tree_allocator.destroy(tree); |
973 | tree_allocator.deallocate(tree, 1); |
974 | } |
975 | |
976 | void** CreateEmptyTable(size_type n) { |
977 | GOOGLE_DCHECK(n >= kMinTableSize); |
978 | GOOGLE_DCHECK_EQ(n & (n - 1), 0); |
979 | void** result = Alloc<void*>(n); |
980 | memset(s: result, c: 0, n: n * sizeof(result[0])); |
981 | return result; |
982 | } |
983 | |
984 | // Return a randomish value. |
985 | size_type Seed() const { |
986 | size_type s = static_cast<size_type>(reinterpret_cast<uintptr_t>(this)); |
987 | #if defined(__x86_64__) && defined(__GNUC__) && \ |
988 | !defined(GOOGLE_PROTOBUF_NO_RDTSC) |
989 | uint32 hi, lo; |
990 | asm("rdtsc" : "=a" (lo), "=d" (hi)); |
991 | s += ((static_cast<uint64>(hi) << 32) | lo); |
992 | #endif |
993 | return s; |
994 | } |
995 | |
996 | friend class Arena; |
997 | using InternalArenaConstructable_ = void; |
998 | using DestructorSkippable_ = void; |
999 | |
1000 | size_type num_elements_; |
1001 | size_type num_buckets_; |
1002 | size_type seed_; |
1003 | size_type index_of_first_non_null_; |
1004 | void** table_; // an array with num_buckets_ entries |
1005 | Allocator alloc_; |
1006 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap); |
1007 | }; // end of class InnerMap |
1008 | |
1009 | public: |
1010 | // Iterators |
1011 | class const_iterator { |
1012 | using InnerIt = typename InnerMap::const_iterator; |
1013 | |
1014 | public: |
1015 | using iterator_category = std::forward_iterator_tag; |
1016 | using value_type = typename Map::value_type; |
1017 | using difference_type = ptrdiff_t; |
1018 | using pointer = const value_type*; |
1019 | using reference = const value_type&; |
1020 | |
1021 | const_iterator() {} |
1022 | explicit const_iterator(const InnerIt& it) : it_(it) {} |
1023 | |
1024 | const_reference operator*() const { return *it_->value(); } |
1025 | const_pointer operator->() const { return &(operator*()); } |
1026 | |
1027 | const_iterator& operator++() { |
1028 | ++it_; |
1029 | return *this; |
1030 | } |
1031 | const_iterator operator++(int) { return const_iterator(it_++); } |
1032 | |
1033 | friend bool operator==(const const_iterator& a, const const_iterator& b) { |
1034 | return a.it_ == b.it_; |
1035 | } |
1036 | friend bool operator!=(const const_iterator& a, const const_iterator& b) { |
1037 | return !(a == b); |
1038 | } |
1039 | |
1040 | private: |
1041 | InnerIt it_; |
1042 | }; |
1043 | |
1044 | class iterator { |
1045 | using InnerIt = typename InnerMap::iterator; |
1046 | |
1047 | public: |
1048 | using iterator_category = std::forward_iterator_tag; |
1049 | using value_type = typename Map::value_type; |
1050 | using difference_type = ptrdiff_t; |
1051 | using pointer = value_type*; |
1052 | using reference = value_type&; |
1053 | |
1054 | iterator() {} |
1055 | explicit iterator(const InnerIt& it) : it_(it) {} |
1056 | |
1057 | reference operator*() const { return *it_->value(); } |
1058 | pointer operator->() const { return &(operator*()); } |
1059 | |
1060 | iterator& operator++() { |
1061 | ++it_; |
1062 | return *this; |
1063 | } |
1064 | iterator operator++(int) { return iterator(it_++); } |
1065 | |
1066 | // Allow implicit conversion to const_iterator. |
1067 | operator const_iterator() const { // NOLINT(runtime/explicit) |
1068 | return const_iterator(typename InnerMap::const_iterator(it_)); |
1069 | } |
1070 | |
1071 | friend bool operator==(const iterator& a, const iterator& b) { |
1072 | return a.it_ == b.it_; |
1073 | } |
1074 | friend bool operator!=(const iterator& a, const iterator& b) { |
1075 | return !(a == b); |
1076 | } |
1077 | |
1078 | private: |
1079 | friend class Map; |
1080 | |
1081 | InnerIt it_; |
1082 | }; |
1083 | |
1084 | iterator begin() { return iterator(elements_->begin()); } |
1085 | iterator end() { return iterator(elements_->end()); } |
1086 | const_iterator begin() const { |
1087 | return const_iterator(iterator(elements_->begin())); |
1088 | } |
1089 | const_iterator end() const { |
1090 | return const_iterator(iterator(elements_->end())); |
1091 | } |
1092 | const_iterator cbegin() const { return begin(); } |
1093 | const_iterator cend() const { return end(); } |
1094 | |
1095 | // Capacity |
1096 | size_type size() const { return elements_->size(); } |
1097 | bool empty() const { return size() == 0; } |
1098 | |
1099 | // Element access |
1100 | T& operator[](const key_type& key) { |
1101 | typename InnerMap::iterator it = (*elements_)[key]; |
1102 | value_type** value = &it->value(); |
1103 | if (*value == nullptr) { |
1104 | *value = CreateValueTypeInternal(key); |
1105 | // We need to update the key in case it's a view type. |
1106 | it->key() = (*value)->first; |
1107 | internal::MapValueInitializer<is_proto_enum<T>::value, T>::Initialize( |
1108 | (*value)->second, default_enum_value_); |
1109 | } |
1110 | return (*value)->second; |
1111 | } |
1112 | const T& at(const key_type& key) const { |
1113 | const_iterator it = find(key); |
1114 | GOOGLE_CHECK(it != end()) << "key not found: " << key; |
1115 | return it->second; |
1116 | } |
1117 | T& at(const key_type& key) { |
1118 | iterator it = find(key); |
1119 | GOOGLE_CHECK(it != end()) << "key not found: " << key; |
1120 | return it->second; |
1121 | } |
1122 | |
1123 | // Lookup |
1124 | size_type count(const key_type& key) const { |
1125 | const_iterator it = find(key); |
1126 | GOOGLE_DCHECK(it == end() || key == it->first); |
1127 | return it == end() ? 0 : 1; |
1128 | } |
1129 | const_iterator find(const key_type& key) const { |
1130 | return const_iterator(iterator(elements_->find(key))); |
1131 | } |
1132 | iterator find(const key_type& key) { return iterator(elements_->find(key)); } |
1133 | bool contains(const Key& key) const { return elements_->contains(key); } |
1134 | std::pair<const_iterator, const_iterator> equal_range( |
1135 | const key_type& key) const { |
1136 | const_iterator it = find(key); |
1137 | if (it == end()) { |
1138 | return std::pair<const_iterator, const_iterator>(it, it); |
1139 | } else { |
1140 | const_iterator begin = it++; |
1141 | return std::pair<const_iterator, const_iterator>(begin, it); |
1142 | } |
1143 | } |
1144 | std::pair<iterator, iterator> equal_range(const key_type& key) { |
1145 | iterator it = find(key); |
1146 | if (it == end()) { |
1147 | return std::pair<iterator, iterator>(it, it); |
1148 | } else { |
1149 | iterator begin = it++; |
1150 | return std::pair<iterator, iterator>(begin, it); |
1151 | } |
1152 | } |
1153 | |
1154 | // insert |
1155 | std::pair<iterator, bool> insert(const value_type& value) { |
1156 | std::pair<typename InnerMap::iterator, bool> p = |
1157 | elements_->insert(value.first); |
1158 | if (p.second) { |
1159 | p.first->value() = CreateValueTypeInternal(value); |
1160 | // We need to update the key in case it's a view type. |
1161 | p.first->key() = p.first->value()->first; |
1162 | } |
1163 | return std::pair<iterator, bool>(iterator(p.first), p.second); |
1164 | } |
1165 | template <class InputIt> |
1166 | void insert(InputIt first, InputIt last) { |
1167 | for (InputIt it = first; it != last; ++it) { |
1168 | iterator exist_it = find(it->first); |
1169 | if (exist_it == end()) { |
1170 | operator[](key: it->first) = it->second; |
1171 | } |
1172 | } |
1173 | } |
1174 | void insert(std::initializer_list<value_type> values) { |
1175 | insert(values.begin(), values.end()); |
1176 | } |
1177 | |
1178 | // Erase and clear |
1179 | size_type erase(const key_type& key) { |
1180 | iterator it = find(key); |
1181 | if (it == end()) { |
1182 | return 0; |
1183 | } else { |
1184 | erase(it); |
1185 | return 1; |
1186 | } |
1187 | } |
1188 | iterator erase(iterator pos) { |
1189 | value_type* value = pos.operator->(); |
1190 | iterator i = pos++; |
1191 | elements_->erase(i.it_); |
1192 | // Note: we need to delete the value after erasing from the inner map |
1193 | // because the inner map's key may be a view of the value's key. |
1194 | if (arena_ == nullptr) delete value; |
1195 | return pos; |
1196 | } |
1197 | void erase(iterator first, iterator last) { |
1198 | while (first != last) { |
1199 | first = erase(first); |
1200 | } |
1201 | } |
1202 | void clear() { erase(begin(), end()); } |
1203 | |
1204 | // Assign |
1205 | Map& operator=(const Map& other) { |
1206 | if (this != &other) { |
1207 | clear(); |
1208 | insert(other.begin(), other.end()); |
1209 | } |
1210 | return *this; |
1211 | } |
1212 | |
1213 | void swap(Map& other) { |
1214 | if (arena_ == other.arena_) { |
1215 | std::swap(default_enum_value_, other.default_enum_value_); |
1216 | std::swap(elements_, other.elements_); |
1217 | } else { |
1218 | // TODO(zuguang): optimize this. The temporary copy can be allocated |
1219 | // in the same arena as the other message, and the "other = copy" can |
1220 | // be replaced with the fast-path swap above. |
1221 | Map copy = *this; |
1222 | *this = other; |
1223 | other = copy; |
1224 | } |
1225 | } |
1226 | |
1227 | // Access to hasher. Currently this returns a copy, but it may |
1228 | // be modified to return a const reference in the future. |
1229 | hasher hash_function() const { return elements_->hash_function(); } |
1230 | |
1231 | private: |
1232 | // Set default enum value only for proto2 map field whose value is enum type. |
1233 | void SetDefaultEnumValue(int default_enum_value) { |
1234 | default_enum_value_ = default_enum_value; |
1235 | } |
1236 | |
1237 | value_type* CreateValueTypeInternal(const Key& key) { |
1238 | if (arena_ == nullptr) { |
1239 | return new value_type(key); |
1240 | } else { |
1241 | value_type* value = reinterpret_cast<value_type*>( |
1242 | Arena::CreateArray<uint8>(arena: arena_, num_elements: sizeof(value_type))); |
1243 | Arena::CreateInArenaStorage(const_cast<Key*>(&value->first), arena_, key); |
1244 | Arena::CreateInArenaStorage(&value->second, arena_); |
1245 | return value; |
1246 | } |
1247 | } |
1248 | |
1249 | value_type* CreateValueTypeInternal(const value_type& value) { |
1250 | if (arena_ == nullptr) { |
1251 | return new value_type(value); |
1252 | } else { |
1253 | value_type* p = reinterpret_cast<value_type*>( |
1254 | Arena::CreateArray<uint8>(arena: arena_, num_elements: sizeof(value_type))); |
1255 | Arena::CreateInArenaStorage(const_cast<Key*>(&p->first), arena_, |
1256 | value.first); |
1257 | Arena::CreateInArenaStorage(&p->second, arena_); |
1258 | p->second = value.second; |
1259 | return p; |
1260 | } |
1261 | } |
1262 | |
1263 | Arena* arena_; |
1264 | int default_enum_value_; |
1265 | InnerMap* elements_; |
1266 | |
1267 | friend class Arena; |
1268 | using InternalArenaConstructable_ = void; |
1269 | using DestructorSkippable_ = void; |
1270 | template <typename Derived, typename K, typename V, |
1271 | internal::WireFormatLite::FieldType key_wire_type, |
1272 | internal::WireFormatLite::FieldType value_wire_type, |
1273 | int default_enum_value> |
1274 | friend class internal::MapFieldLite; |
1275 | }; |
1276 | |
1277 | } // namespace protobuf |
1278 | } // namespace google |
1279 | |
1280 | #include <google/protobuf/port_undef.inc> |
1281 | |
1282 | #endif // GOOGLE_PROTOBUF_MAP_H__ |
1283 | |