1 | // Protocol Buffers - Google's data interchange format |
2 | // Copyright 2008 Google Inc. All rights reserved. |
3 | // https://developers.google.com/protocol-buffers/ |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | // Author: kenton@google.com (Kenton Varda) |
32 | // atenasio@google.com (Chris Atenasio) (ZigZag transform) |
33 | // wink@google.com (Wink Saville) (refactored from wire_format.h) |
34 | // Based on original Protocol Buffers design by |
35 | // Sanjay Ghemawat, Jeff Dean, and others. |
36 | // |
37 | // This header is logically internal, but is made public because it is used |
38 | // from protocol-compiler-generated code, which may reside in other components. |
39 | |
40 | #ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ |
41 | #define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ |
42 | |
43 | #include <string> |
44 | |
45 | #include <google/protobuf/stubs/common.h> |
46 | #include <google/protobuf/stubs/logging.h> |
47 | #include <google/protobuf/io/coded_stream.h> |
48 | #include <google/protobuf/arenastring.h> |
49 | #include <google/protobuf/message_lite.h> |
50 | #include <google/protobuf/port.h> |
51 | #include <google/protobuf/repeated_field.h> |
52 | #include <google/protobuf/stubs/casts.h> |
53 | |
54 | // Do UTF-8 validation on string type in Debug build only |
55 | #ifndef NDEBUG |
56 | #define GOOGLE_PROTOBUF_UTF8_VALIDATION_ENABLED |
57 | #endif |
58 | |
59 | // Avoid conflict with iOS where <ConditionalMacros.h> #defines TYPE_BOOL. |
60 | // |
61 | // If some one needs the macro TYPE_BOOL in a file that includes this header, |
62 | // it's possible to bring it back using push/pop_macro as follows. |
63 | // |
64 | // #pragma push_macro("TYPE_BOOL") |
65 | // #include this header and/or all headers that need the macro to be undefined. |
66 | // #pragma pop_macro("TYPE_BOOL") |
67 | #undef TYPE_BOOL |
68 | |
69 | |
70 | namespace google { |
71 | namespace protobuf { |
72 | namespace internal { |
73 | |
74 | #include <google/protobuf/port_def.inc> |
75 | |
76 | // This class is for internal use by the protocol buffer library and by |
77 | // protocol-compiler-generated message classes. It must not be called |
78 | // directly by clients. |
79 | // |
80 | // This class contains helpers for implementing the binary protocol buffer |
81 | // wire format without the need for reflection. Use WireFormat when using |
82 | // reflection. |
83 | // |
84 | // This class is really a namespace that contains only static methods. |
85 | class PROTOBUF_EXPORT WireFormatLite { |
86 | public: |
87 | // ----------------------------------------------------------------- |
88 | // Helper constants and functions related to the format. These are |
89 | // mostly meant for internal and generated code to use. |
90 | |
91 | // The wire format is composed of a sequence of tag/value pairs, each |
92 | // of which contains the value of one field (or one element of a repeated |
93 | // field). Each tag is encoded as a varint. The lower bits of the tag |
94 | // identify its wire type, which specifies the format of the data to follow. |
95 | // The rest of the bits contain the field number. Each type of field (as |
96 | // declared by FieldDescriptor::Type, in descriptor.h) maps to one of |
97 | // these wire types. Immediately following each tag is the field's value, |
98 | // encoded in the format specified by the wire type. Because the tag |
99 | // identifies the encoding of this data, it is possible to skip |
100 | // unrecognized fields for forwards compatibility. |
101 | |
102 | enum WireType { |
103 | WIRETYPE_VARINT = 0, |
104 | WIRETYPE_FIXED64 = 1, |
105 | WIRETYPE_LENGTH_DELIMITED = 2, |
106 | WIRETYPE_START_GROUP = 3, |
107 | WIRETYPE_END_GROUP = 4, |
108 | WIRETYPE_FIXED32 = 5, |
109 | }; |
110 | |
111 | // Lite alternative to FieldDescriptor::Type. Must be kept in sync. |
112 | enum FieldType { |
113 | TYPE_DOUBLE = 1, |
114 | TYPE_FLOAT = 2, |
115 | TYPE_INT64 = 3, |
116 | TYPE_UINT64 = 4, |
117 | TYPE_INT32 = 5, |
118 | TYPE_FIXED64 = 6, |
119 | TYPE_FIXED32 = 7, |
120 | TYPE_BOOL = 8, |
121 | TYPE_STRING = 9, |
122 | TYPE_GROUP = 10, |
123 | TYPE_MESSAGE = 11, |
124 | TYPE_BYTES = 12, |
125 | TYPE_UINT32 = 13, |
126 | TYPE_ENUM = 14, |
127 | TYPE_SFIXED32 = 15, |
128 | TYPE_SFIXED64 = 16, |
129 | TYPE_SINT32 = 17, |
130 | TYPE_SINT64 = 18, |
131 | MAX_FIELD_TYPE = 18, |
132 | }; |
133 | |
134 | // Lite alternative to FieldDescriptor::CppType. Must be kept in sync. |
135 | enum CppType { |
136 | CPPTYPE_INT32 = 1, |
137 | CPPTYPE_INT64 = 2, |
138 | CPPTYPE_UINT32 = 3, |
139 | CPPTYPE_UINT64 = 4, |
140 | CPPTYPE_DOUBLE = 5, |
141 | CPPTYPE_FLOAT = 6, |
142 | CPPTYPE_BOOL = 7, |
143 | CPPTYPE_ENUM = 8, |
144 | CPPTYPE_STRING = 9, |
145 | CPPTYPE_MESSAGE = 10, |
146 | MAX_CPPTYPE = 10, |
147 | }; |
148 | |
149 | // Helper method to get the CppType for a particular Type. |
150 | static CppType FieldTypeToCppType(FieldType type); |
151 | |
152 | // Given a FieldDescriptor::Type return its WireType |
153 | static inline WireFormatLite::WireType WireTypeForFieldType( |
154 | WireFormatLite::FieldType type) { |
155 | return kWireTypeForFieldType[type]; |
156 | } |
157 | |
158 | // Number of bits in a tag which identify the wire type. |
159 | static constexpr int kTagTypeBits = 3; |
160 | // Mask for those bits. |
161 | static constexpr uint32 kTagTypeMask = (1 << kTagTypeBits) - 1; |
162 | |
163 | // Helper functions for encoding and decoding tags. (Inlined below and in |
164 | // _inl.h) |
165 | // |
166 | // This is different from MakeTag(field->number(), field->type()) in the |
167 | // case of packed repeated fields. |
168 | constexpr static uint32 MakeTag(int field_number, WireType type); |
169 | static WireType GetTagWireType(uint32 tag); |
170 | static int GetTagFieldNumber(uint32 tag); |
171 | |
172 | // Compute the byte size of a tag. For groups, this includes both the start |
173 | // and end tags. |
174 | static inline size_t TagSize(int field_number, |
175 | WireFormatLite::FieldType type); |
176 | |
177 | // Skips a field value with the given tag. The input should start |
178 | // positioned immediately after the tag. Skipped values are simply |
179 | // discarded, not recorded anywhere. See WireFormat::SkipField() for a |
180 | // version that records to an UnknownFieldSet. |
181 | static bool SkipField(io::CodedInputStream* input, uint32 tag); |
182 | |
183 | // Skips a field value with the given tag. The input should start |
184 | // positioned immediately after the tag. Skipped values are recorded to a |
185 | // CodedOutputStream. |
186 | static bool SkipField(io::CodedInputStream* input, uint32 tag, |
187 | io::CodedOutputStream* output); |
188 | |
189 | // Reads and ignores a message from the input. Skipped values are simply |
190 | // discarded, not recorded anywhere. See WireFormat::SkipMessage() for a |
191 | // version that records to an UnknownFieldSet. |
192 | static bool SkipMessage(io::CodedInputStream* input); |
193 | |
194 | // Reads and ignores a message from the input. Skipped values are recorded |
195 | // to a CodedOutputStream. |
196 | static bool SkipMessage(io::CodedInputStream* input, |
197 | io::CodedOutputStream* output); |
198 | |
199 | // This macro does the same thing as WireFormatLite::MakeTag(), but the |
200 | // result is usable as a compile-time constant, which makes it usable |
201 | // as a switch case or a template input. WireFormatLite::MakeTag() is more |
202 | // type-safe, though, so prefer it if possible. |
203 | #define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \ |
204 | static_cast<uint32>((static_cast<uint32>(FIELD_NUMBER) << 3) | (TYPE)) |
205 | |
206 | // These are the tags for the old MessageSet format, which was defined as: |
207 | // message MessageSet { |
208 | // repeated group Item = 1 { |
209 | // required int32 type_id = 2; |
210 | // required string message = 3; |
211 | // } |
212 | // } |
213 | static constexpr int kMessageSetItemNumber = 1; |
214 | static constexpr int kMessageSetTypeIdNumber = 2; |
215 | static constexpr int kMessageSetMessageNumber = 3; |
216 | static const int kMessageSetItemStartTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
217 | kMessageSetItemNumber, WireFormatLite::WIRETYPE_START_GROUP); |
218 | static const int kMessageSetItemEndTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
219 | kMessageSetItemNumber, WireFormatLite::WIRETYPE_END_GROUP); |
220 | static const int kMessageSetTypeIdTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
221 | kMessageSetTypeIdNumber, WireFormatLite::WIRETYPE_VARINT); |
222 | static const int kMessageSetMessageTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
223 | kMessageSetMessageNumber, WireFormatLite::WIRETYPE_LENGTH_DELIMITED); |
224 | |
225 | // Byte size of all tags of a MessageSet::Item combined. |
226 | static const size_t kMessageSetItemTagsSize; |
227 | |
228 | // Helper functions for converting between floats/doubles and IEEE-754 |
229 | // uint32s/uint64s so that they can be written. (Assumes your platform |
230 | // uses IEEE-754 floats.) |
231 | static uint32 EncodeFloat(float value); |
232 | static float DecodeFloat(uint32 value); |
233 | static uint64 EncodeDouble(double value); |
234 | static double DecodeDouble(uint64 value); |
235 | |
236 | // Helper functions for mapping signed integers to unsigned integers in |
237 | // such a way that numbers with small magnitudes will encode to smaller |
238 | // varints. If you simply static_cast a negative number to an unsigned |
239 | // number and varint-encode it, it will always take 10 bytes, defeating |
240 | // the purpose of varint. So, for the "sint32" and "sint64" field types, |
241 | // we ZigZag-encode the values. |
242 | static uint32 ZigZagEncode32(int32 n); |
243 | static int32 ZigZagDecode32(uint32 n); |
244 | static uint64 ZigZagEncode64(int64 n); |
245 | static int64 ZigZagDecode64(uint64 n); |
246 | |
247 | // ================================================================= |
248 | // Methods for reading/writing individual field. |
249 | |
250 | // Read fields, not including tags. The assumption is that you already |
251 | // read the tag to determine what field to read. |
252 | |
253 | // For primitive fields, we just use a templatized routine parameterized by |
254 | // the represented type and the FieldType. These are specialized with the |
255 | // appropriate definition for each declared type. |
256 | template <typename CType, enum FieldType DeclaredType> |
257 | PROTOBUF_ALWAYS_INLINE static bool ReadPrimitive(io::CodedInputStream* input, |
258 | CType* value); |
259 | |
260 | // Reads repeated primitive values, with optimizations for repeats. |
261 | // tag_size and tag should both be compile-time constants provided by the |
262 | // protocol compiler. |
263 | template <typename CType, enum FieldType DeclaredType> |
264 | PROTOBUF_ALWAYS_INLINE static bool ReadRepeatedPrimitive( |
265 | int tag_size, uint32 tag, io::CodedInputStream* input, |
266 | RepeatedField<CType>* value); |
267 | |
268 | // Identical to ReadRepeatedPrimitive, except will not inline the |
269 | // implementation. |
270 | template <typename CType, enum FieldType DeclaredType> |
271 | static bool ReadRepeatedPrimitiveNoInline(int tag_size, uint32 tag, |
272 | io::CodedInputStream* input, |
273 | RepeatedField<CType>* value); |
274 | |
275 | // Reads a primitive value directly from the provided buffer. It returns a |
276 | // pointer past the segment of data that was read. |
277 | // |
278 | // This is only implemented for the types with fixed wire size, e.g. |
279 | // float, double, and the (s)fixed* types. |
280 | template <typename CType, enum FieldType DeclaredType> |
281 | PROTOBUF_ALWAYS_INLINE static const uint8* ReadPrimitiveFromArray( |
282 | const uint8* buffer, CType* value); |
283 | |
284 | // Reads a primitive packed field. |
285 | // |
286 | // This is only implemented for packable types. |
287 | template <typename CType, enum FieldType DeclaredType> |
288 | PROTOBUF_ALWAYS_INLINE static bool ReadPackedPrimitive( |
289 | io::CodedInputStream* input, RepeatedField<CType>* value); |
290 | |
291 | // Identical to ReadPackedPrimitive, except will not inline the |
292 | // implementation. |
293 | template <typename CType, enum FieldType DeclaredType> |
294 | static bool ReadPackedPrimitiveNoInline(io::CodedInputStream* input, |
295 | RepeatedField<CType>* value); |
296 | |
297 | // Read a packed enum field. If the is_valid function is not NULL, values for |
298 | // which is_valid(value) returns false are silently dropped. |
299 | static bool ReadPackedEnumNoInline(io::CodedInputStream* input, |
300 | bool (*is_valid)(int), |
301 | RepeatedField<int>* values); |
302 | |
303 | // Read a packed enum field. If the is_valid function is not NULL, values for |
304 | // which is_valid(value) returns false are appended to unknown_fields_stream. |
305 | static bool ReadPackedEnumPreserveUnknowns( |
306 | io::CodedInputStream* input, int field_number, bool (*is_valid)(int), |
307 | io::CodedOutputStream* unknown_fields_stream, RepeatedField<int>* values); |
308 | |
309 | // Read a string. ReadString(..., std::string* value) requires an |
310 | // existing std::string. |
311 | static inline bool ReadString(io::CodedInputStream* input, |
312 | std::string* value); |
313 | // ReadString(..., std::string** p) is internal-only, and should only be |
314 | // called from generated code. It starts by setting *p to "new std::string" if |
315 | // *p == &GetEmptyStringAlreadyInited(). It then invokes |
316 | // ReadString(io::CodedInputStream* input, *p). This is useful for reducing |
317 | // code size. |
318 | static inline bool ReadString(io::CodedInputStream* input, std::string** p); |
319 | // Analogous to ReadString(). |
320 | static bool ReadBytes(io::CodedInputStream* input, std::string* value); |
321 | static bool ReadBytes(io::CodedInputStream* input, std::string** p); |
322 | |
323 | enum Operation { |
324 | PARSE = 0, |
325 | SERIALIZE = 1, |
326 | }; |
327 | |
328 | // Returns true if the data is valid UTF-8. |
329 | static bool VerifyUtf8String(const char* data, int size, Operation op, |
330 | const char* field_name); |
331 | |
332 | template <typename MessageType> |
333 | static inline bool ReadGroup(int field_number, io::CodedInputStream* input, |
334 | MessageType* value); |
335 | |
336 | template <typename MessageType> |
337 | static inline bool ReadMessage(io::CodedInputStream* input, |
338 | MessageType* value); |
339 | |
340 | template <typename MessageType> |
341 | static inline bool ReadMessageNoVirtual(io::CodedInputStream* input, |
342 | MessageType* value) { |
343 | return ReadMessage(input, value); |
344 | } |
345 | |
346 | // Write a tag. The Write*() functions typically include the tag, so |
347 | // normally there's no need to call this unless using the Write*NoTag() |
348 | // variants. |
349 | PROTOBUF_ALWAYS_INLINE static void WriteTag(int field_number, WireType type, |
350 | io::CodedOutputStream* output); |
351 | |
352 | // Write fields, without tags. |
353 | PROTOBUF_ALWAYS_INLINE static void WriteInt32NoTag( |
354 | int32 value, io::CodedOutputStream* output); |
355 | PROTOBUF_ALWAYS_INLINE static void WriteInt64NoTag( |
356 | int64 value, io::CodedOutputStream* output); |
357 | PROTOBUF_ALWAYS_INLINE static void WriteUInt32NoTag( |
358 | uint32 value, io::CodedOutputStream* output); |
359 | PROTOBUF_ALWAYS_INLINE static void WriteUInt64NoTag( |
360 | uint64 value, io::CodedOutputStream* output); |
361 | PROTOBUF_ALWAYS_INLINE static void WriteSInt32NoTag( |
362 | int32 value, io::CodedOutputStream* output); |
363 | PROTOBUF_ALWAYS_INLINE static void WriteSInt64NoTag( |
364 | int64 value, io::CodedOutputStream* output); |
365 | PROTOBUF_ALWAYS_INLINE static void WriteFixed32NoTag( |
366 | uint32 value, io::CodedOutputStream* output); |
367 | PROTOBUF_ALWAYS_INLINE static void WriteFixed64NoTag( |
368 | uint64 value, io::CodedOutputStream* output); |
369 | PROTOBUF_ALWAYS_INLINE static void WriteSFixed32NoTag( |
370 | int32 value, io::CodedOutputStream* output); |
371 | PROTOBUF_ALWAYS_INLINE static void WriteSFixed64NoTag( |
372 | int64 value, io::CodedOutputStream* output); |
373 | PROTOBUF_ALWAYS_INLINE static void WriteFloatNoTag( |
374 | float value, io::CodedOutputStream* output); |
375 | PROTOBUF_ALWAYS_INLINE static void WriteDoubleNoTag( |
376 | double value, io::CodedOutputStream* output); |
377 | PROTOBUF_ALWAYS_INLINE static void WriteBoolNoTag( |
378 | bool value, io::CodedOutputStream* output); |
379 | PROTOBUF_ALWAYS_INLINE static void WriteEnumNoTag( |
380 | int value, io::CodedOutputStream* output); |
381 | |
382 | // Write array of primitive fields, without tags |
383 | static void WriteFloatArray(const float* a, int n, |
384 | io::CodedOutputStream* output); |
385 | static void WriteDoubleArray(const double* a, int n, |
386 | io::CodedOutputStream* output); |
387 | static void WriteFixed32Array(const uint32* a, int n, |
388 | io::CodedOutputStream* output); |
389 | static void WriteFixed64Array(const uint64* a, int n, |
390 | io::CodedOutputStream* output); |
391 | static void WriteSFixed32Array(const int32* a, int n, |
392 | io::CodedOutputStream* output); |
393 | static void WriteSFixed64Array(const int64* a, int n, |
394 | io::CodedOutputStream* output); |
395 | static void WriteBoolArray(const bool* a, int n, |
396 | io::CodedOutputStream* output); |
397 | |
398 | // Write fields, including tags. |
399 | static void WriteInt32(int field_number, int32 value, |
400 | io::CodedOutputStream* output); |
401 | static void WriteInt64(int field_number, int64 value, |
402 | io::CodedOutputStream* output); |
403 | static void WriteUInt32(int field_number, uint32 value, |
404 | io::CodedOutputStream* output); |
405 | static void WriteUInt64(int field_number, uint64 value, |
406 | io::CodedOutputStream* output); |
407 | static void WriteSInt32(int field_number, int32 value, |
408 | io::CodedOutputStream* output); |
409 | static void WriteSInt64(int field_number, int64 value, |
410 | io::CodedOutputStream* output); |
411 | static void WriteFixed32(int field_number, uint32 value, |
412 | io::CodedOutputStream* output); |
413 | static void WriteFixed64(int field_number, uint64 value, |
414 | io::CodedOutputStream* output); |
415 | static void WriteSFixed32(int field_number, int32 value, |
416 | io::CodedOutputStream* output); |
417 | static void WriteSFixed64(int field_number, int64 value, |
418 | io::CodedOutputStream* output); |
419 | static void WriteFloat(int field_number, float value, |
420 | io::CodedOutputStream* output); |
421 | static void WriteDouble(int field_number, double value, |
422 | io::CodedOutputStream* output); |
423 | static void WriteBool(int field_number, bool value, |
424 | io::CodedOutputStream* output); |
425 | static void WriteEnum(int field_number, int value, |
426 | io::CodedOutputStream* output); |
427 | |
428 | static void WriteString(int field_number, const std::string& value, |
429 | io::CodedOutputStream* output); |
430 | static void WriteBytes(int field_number, const std::string& value, |
431 | io::CodedOutputStream* output); |
432 | static void WriteStringMaybeAliased(int field_number, |
433 | const std::string& value, |
434 | io::CodedOutputStream* output); |
435 | static void WriteBytesMaybeAliased(int field_number, const std::string& value, |
436 | io::CodedOutputStream* output); |
437 | |
438 | static void WriteGroup(int field_number, const MessageLite& value, |
439 | io::CodedOutputStream* output); |
440 | static void WriteMessage(int field_number, const MessageLite& value, |
441 | io::CodedOutputStream* output); |
442 | // Like above, but these will check if the output stream has enough |
443 | // space to write directly to a flat array. |
444 | static void WriteGroupMaybeToArray(int field_number, const MessageLite& value, |
445 | io::CodedOutputStream* output); |
446 | static void WriteMessageMaybeToArray(int field_number, |
447 | const MessageLite& value, |
448 | io::CodedOutputStream* output); |
449 | |
450 | // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The |
451 | // pointer must point at an instance of MessageType, *not* a subclass (or |
452 | // the subclass must not override SerializeWithCachedSizes()). |
453 | template <typename MessageType> |
454 | static inline void WriteGroupNoVirtual(int field_number, |
455 | const MessageType& value, |
456 | io::CodedOutputStream* output); |
457 | template <typename MessageType> |
458 | static inline void WriteMessageNoVirtual(int field_number, |
459 | const MessageType& value, |
460 | io::CodedOutputStream* output); |
461 | |
462 | // Like above, but use only *ToArray methods of CodedOutputStream. |
463 | PROTOBUF_ALWAYS_INLINE static uint8* WriteTagToArray(int field_number, |
464 | WireType type, |
465 | uint8* target); |
466 | |
467 | // Write fields, without tags. |
468 | PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32NoTagToArray(int32 value, |
469 | uint8* target); |
470 | PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64NoTagToArray(int64 value, |
471 | uint8* target); |
472 | PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32NoTagToArray(uint32 value, |
473 | uint8* target); |
474 | PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64NoTagToArray(uint64 value, |
475 | uint8* target); |
476 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32NoTagToArray(int32 value, |
477 | uint8* target); |
478 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64NoTagToArray(int64 value, |
479 | uint8* target); |
480 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32NoTagToArray(uint32 value, |
481 | uint8* target); |
482 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64NoTagToArray(uint64 value, |
483 | uint8* target); |
484 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32NoTagToArray(int32 value, |
485 | uint8* target); |
486 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64NoTagToArray(int64 value, |
487 | uint8* target); |
488 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatNoTagToArray(float value, |
489 | uint8* target); |
490 | PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleNoTagToArray(double value, |
491 | uint8* target); |
492 | PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolNoTagToArray(bool value, |
493 | uint8* target); |
494 | PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumNoTagToArray(int value, |
495 | uint8* target); |
496 | |
497 | // Write fields, without tags. These require that value.size() > 0. |
498 | template <typename T> |
499 | PROTOBUF_ALWAYS_INLINE static uint8* WritePrimitiveNoTagToArray( |
500 | const RepeatedField<T>& value, uint8* (*Writer)(T, uint8*), |
501 | uint8* target); |
502 | template <typename T> |
503 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFixedNoTagToArray( |
504 | const RepeatedField<T>& value, uint8* (*Writer)(T, uint8*), |
505 | uint8* target); |
506 | |
507 | PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32NoTagToArray( |
508 | const RepeatedField<int32>& value, uint8* output); |
509 | PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64NoTagToArray( |
510 | const RepeatedField<int64>& value, uint8* output); |
511 | PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32NoTagToArray( |
512 | const RepeatedField<uint32>& value, uint8* output); |
513 | PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64NoTagToArray( |
514 | const RepeatedField<uint64>& value, uint8* output); |
515 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32NoTagToArray( |
516 | const RepeatedField<int32>& value, uint8* output); |
517 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64NoTagToArray( |
518 | const RepeatedField<int64>& value, uint8* output); |
519 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32NoTagToArray( |
520 | const RepeatedField<uint32>& value, uint8* output); |
521 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64NoTagToArray( |
522 | const RepeatedField<uint64>& value, uint8* output); |
523 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32NoTagToArray( |
524 | const RepeatedField<int32>& value, uint8* output); |
525 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64NoTagToArray( |
526 | const RepeatedField<int64>& value, uint8* output); |
527 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatNoTagToArray( |
528 | const RepeatedField<float>& value, uint8* output); |
529 | PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleNoTagToArray( |
530 | const RepeatedField<double>& value, uint8* output); |
531 | PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolNoTagToArray( |
532 | const RepeatedField<bool>& value, uint8* output); |
533 | PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumNoTagToArray( |
534 | const RepeatedField<int>& value, uint8* output); |
535 | |
536 | // Write fields, including tags. |
537 | PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32ToArray(int field_number, |
538 | int32 value, |
539 | uint8* target); |
540 | PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64ToArray(int field_number, |
541 | int64 value, |
542 | uint8* target); |
543 | PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32ToArray(int field_number, |
544 | uint32 value, |
545 | uint8* target); |
546 | PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64ToArray(int field_number, |
547 | uint64 value, |
548 | uint8* target); |
549 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32ToArray(int field_number, |
550 | int32 value, |
551 | uint8* target); |
552 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64ToArray(int field_number, |
553 | int64 value, |
554 | uint8* target); |
555 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32ToArray(int field_number, |
556 | uint32 value, |
557 | uint8* target); |
558 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64ToArray(int field_number, |
559 | uint64 value, |
560 | uint8* target); |
561 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32ToArray(int field_number, |
562 | int32 value, |
563 | uint8* target); |
564 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64ToArray(int field_number, |
565 | int64 value, |
566 | uint8* target); |
567 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatToArray(int field_number, |
568 | float value, |
569 | uint8* target); |
570 | PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleToArray(int field_number, |
571 | double value, |
572 | uint8* target); |
573 | PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolToArray(int field_number, |
574 | bool value, |
575 | uint8* target); |
576 | PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumToArray(int field_number, |
577 | int value, |
578 | uint8* target); |
579 | |
580 | template <typename T> |
581 | PROTOBUF_ALWAYS_INLINE static uint8* WritePrimitiveToArray( |
582 | int field_number, const RepeatedField<T>& value, |
583 | uint8* (*Writer)(int, T, uint8*), uint8* target); |
584 | |
585 | PROTOBUF_ALWAYS_INLINE static uint8* WriteInt32ToArray( |
586 | int field_number, const RepeatedField<int32>& value, uint8* output); |
587 | PROTOBUF_ALWAYS_INLINE static uint8* WriteInt64ToArray( |
588 | int field_number, const RepeatedField<int64>& value, uint8* output); |
589 | PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt32ToArray( |
590 | int field_number, const RepeatedField<uint32>& value, uint8* output); |
591 | PROTOBUF_ALWAYS_INLINE static uint8* WriteUInt64ToArray( |
592 | int field_number, const RepeatedField<uint64>& value, uint8* output); |
593 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt32ToArray( |
594 | int field_number, const RepeatedField<int32>& value, uint8* output); |
595 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSInt64ToArray( |
596 | int field_number, const RepeatedField<int64>& value, uint8* output); |
597 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed32ToArray( |
598 | int field_number, const RepeatedField<uint32>& value, uint8* output); |
599 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFixed64ToArray( |
600 | int field_number, const RepeatedField<uint64>& value, uint8* output); |
601 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed32ToArray( |
602 | int field_number, const RepeatedField<int32>& value, uint8* output); |
603 | PROTOBUF_ALWAYS_INLINE static uint8* WriteSFixed64ToArray( |
604 | int field_number, const RepeatedField<int64>& value, uint8* output); |
605 | PROTOBUF_ALWAYS_INLINE static uint8* WriteFloatToArray( |
606 | int field_number, const RepeatedField<float>& value, uint8* output); |
607 | PROTOBUF_ALWAYS_INLINE static uint8* WriteDoubleToArray( |
608 | int field_number, const RepeatedField<double>& value, uint8* output); |
609 | PROTOBUF_ALWAYS_INLINE static uint8* WriteBoolToArray( |
610 | int field_number, const RepeatedField<bool>& value, uint8* output); |
611 | PROTOBUF_ALWAYS_INLINE static uint8* WriteEnumToArray( |
612 | int field_number, const RepeatedField<int>& value, uint8* output); |
613 | |
614 | PROTOBUF_ALWAYS_INLINE static uint8* WriteStringToArray( |
615 | int field_number, const std::string& value, uint8* target); |
616 | PROTOBUF_ALWAYS_INLINE static uint8* WriteBytesToArray( |
617 | int field_number, const std::string& value, uint8* target); |
618 | |
619 | // Whether to serialize deterministically (e.g., map keys are |
620 | // sorted) is a property of a CodedOutputStream, and in the process |
621 | // of serialization, the "ToArray" variants may be invoked. But they don't |
622 | // have a CodedOutputStream available, so they get an additional parameter |
623 | // telling them whether to serialize deterministically. |
624 | template <typename MessageType> |
625 | PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteGroup( |
626 | int field_number, const MessageType& value, uint8* target, |
627 | io::EpsCopyOutputStream* stream); |
628 | template <typename MessageType> |
629 | PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteMessage( |
630 | int field_number, const MessageType& value, uint8* target, |
631 | io::EpsCopyOutputStream* stream); |
632 | |
633 | // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The |
634 | // pointer must point at an instance of MessageType, *not* a subclass (or |
635 | // the subclass must not override SerializeWithCachedSizes()). |
636 | template <typename MessageType> |
637 | PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteGroupNoVirtualToArray( |
638 | int field_number, const MessageType& value, uint8* target); |
639 | template <typename MessageType> |
640 | PROTOBUF_ALWAYS_INLINE static uint8* InternalWriteMessageNoVirtualToArray( |
641 | int field_number, const MessageType& value, uint8* target); |
642 | |
643 | // For backward-compatibility, the last four methods also have versions |
644 | // that are non-deterministic always. |
645 | PROTOBUF_ALWAYS_INLINE static uint8* WriteGroupToArray( |
646 | int field_number, const MessageLite& value, uint8* target) { |
647 | io::EpsCopyOutputStream stream( |
648 | target, |
649 | value.GetCachedSize() + |
650 | static_cast<int>(2 * io::CodedOutputStream::VarintSize32( |
651 | value: static_cast<uint32>(field_number) << 3)), |
652 | io::CodedOutputStream::IsDefaultSerializationDeterministic()); |
653 | return InternalWriteGroup(field_number, value, target, stream: &stream); |
654 | } |
655 | PROTOBUF_ALWAYS_INLINE static uint8* WriteMessageToArray( |
656 | int field_number, const MessageLite& value, uint8* target) { |
657 | int size = value.GetCachedSize(); |
658 | io::EpsCopyOutputStream stream( |
659 | target, |
660 | size + static_cast<int>(io::CodedOutputStream::VarintSize32( |
661 | value: static_cast<uint32>(field_number) << 3) + |
662 | io::CodedOutputStream::VarintSize32(value: size)), |
663 | io::CodedOutputStream::IsDefaultSerializationDeterministic()); |
664 | return InternalWriteMessage(field_number, value, target, stream: &stream); |
665 | } |
666 | |
667 | // Compute the byte size of a field. The XxSize() functions do NOT include |
668 | // the tag, so you must also call TagSize(). (This is because, for repeated |
669 | // fields, you should only call TagSize() once and multiply it by the element |
670 | // count, but you may have to call XxSize() for each individual element.) |
671 | static inline size_t Int32Size(int32 value); |
672 | static inline size_t Int64Size(int64 value); |
673 | static inline size_t UInt32Size(uint32 value); |
674 | static inline size_t UInt64Size(uint64 value); |
675 | static inline size_t SInt32Size(int32 value); |
676 | static inline size_t SInt64Size(int64 value); |
677 | static inline size_t EnumSize(int value); |
678 | |
679 | static size_t Int32Size(const RepeatedField<int32>& value); |
680 | static size_t Int64Size(const RepeatedField<int64>& value); |
681 | static size_t UInt32Size(const RepeatedField<uint32>& value); |
682 | static size_t UInt64Size(const RepeatedField<uint64>& value); |
683 | static size_t SInt32Size(const RepeatedField<int32>& value); |
684 | static size_t SInt64Size(const RepeatedField<int64>& value); |
685 | static size_t EnumSize(const RepeatedField<int>& value); |
686 | |
687 | // These types always have the same size. |
688 | static constexpr size_t kFixed32Size = 4; |
689 | static constexpr size_t kFixed64Size = 8; |
690 | static constexpr size_t kSFixed32Size = 4; |
691 | static constexpr size_t kSFixed64Size = 8; |
692 | static constexpr size_t kFloatSize = 4; |
693 | static constexpr size_t kDoubleSize = 8; |
694 | static constexpr size_t kBoolSize = 1; |
695 | |
696 | static inline size_t StringSize(const std::string& value); |
697 | static inline size_t BytesSize(const std::string& value); |
698 | |
699 | template <typename MessageType> |
700 | static inline size_t GroupSize(const MessageType& value); |
701 | template <typename MessageType> |
702 | static inline size_t MessageSize(const MessageType& value); |
703 | |
704 | // Like above, but de-virtualize the call to ByteSize(). The |
705 | // pointer must point at an instance of MessageType, *not* a subclass (or |
706 | // the subclass must not override ByteSize()). |
707 | template <typename MessageType> |
708 | static inline size_t GroupSizeNoVirtual(const MessageType& value); |
709 | template <typename MessageType> |
710 | static inline size_t MessageSizeNoVirtual(const MessageType& value); |
711 | |
712 | // Given the length of data, calculate the byte size of the data on the |
713 | // wire if we encode the data as a length delimited field. |
714 | static inline size_t LengthDelimitedSize(size_t length); |
715 | |
716 | private: |
717 | // A helper method for the repeated primitive reader. This method has |
718 | // optimizations for primitive types that have fixed size on the wire, and |
719 | // can be read using potentially faster paths. |
720 | template <typename CType, enum FieldType DeclaredType> |
721 | PROTOBUF_ALWAYS_INLINE static bool ReadRepeatedFixedSizePrimitive( |
722 | int tag_size, uint32 tag, io::CodedInputStream* input, |
723 | RepeatedField<CType>* value); |
724 | |
725 | // Like ReadRepeatedFixedSizePrimitive but for packed primitive fields. |
726 | template <typename CType, enum FieldType DeclaredType> |
727 | PROTOBUF_ALWAYS_INLINE static bool ReadPackedFixedSizePrimitive( |
728 | io::CodedInputStream* input, RepeatedField<CType>* value); |
729 | |
730 | static const CppType kFieldTypeToCppTypeMap[]; |
731 | static const WireFormatLite::WireType kWireTypeForFieldType[]; |
732 | static void WriteSubMessageMaybeToArray(int size, const MessageLite& value, |
733 | io::CodedOutputStream* output); |
734 | |
735 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite); |
736 | }; |
737 | |
738 | // A class which deals with unknown values. The default implementation just |
739 | // discards them. WireFormat defines a subclass which writes to an |
740 | // UnknownFieldSet. This class is used by ExtensionSet::ParseField(), since |
741 | // ExtensionSet is part of the lite library but UnknownFieldSet is not. |
742 | class PROTOBUF_EXPORT FieldSkipper { |
743 | public: |
744 | FieldSkipper() {} |
745 | virtual ~FieldSkipper() {} |
746 | |
747 | // Skip a field whose tag has already been consumed. |
748 | virtual bool SkipField(io::CodedInputStream* input, uint32 tag); |
749 | |
750 | // Skip an entire message or group, up to an end-group tag (which is consumed) |
751 | // or end-of-stream. |
752 | virtual bool SkipMessage(io::CodedInputStream* input); |
753 | |
754 | // Deal with an already-parsed unrecognized enum value. The default |
755 | // implementation does nothing, but the UnknownFieldSet-based implementation |
756 | // saves it as an unknown varint. |
757 | virtual void SkipUnknownEnum(int field_number, int value); |
758 | }; |
759 | |
760 | // Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream. |
761 | |
762 | class PROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper { |
763 | public: |
764 | explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields) |
765 | : unknown_fields_(unknown_fields) {} |
766 | ~CodedOutputStreamFieldSkipper() override {} |
767 | |
768 | // implements FieldSkipper ----------------------------------------- |
769 | bool SkipField(io::CodedInputStream* input, uint32 tag) override; |
770 | bool SkipMessage(io::CodedInputStream* input) override; |
771 | void SkipUnknownEnum(int field_number, int value) override; |
772 | |
773 | protected: |
774 | io::CodedOutputStream* unknown_fields_; |
775 | }; |
776 | |
777 | // inline methods ==================================================== |
778 | |
779 | inline WireFormatLite::CppType WireFormatLite::FieldTypeToCppType( |
780 | FieldType type) { |
781 | return kFieldTypeToCppTypeMap[type]; |
782 | } |
783 | |
784 | constexpr inline uint32 WireFormatLite::MakeTag(int field_number, |
785 | WireType type) { |
786 | return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type); |
787 | } |
788 | |
789 | inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32 tag) { |
790 | return static_cast<WireType>(tag & kTagTypeMask); |
791 | } |
792 | |
793 | inline int WireFormatLite::GetTagFieldNumber(uint32 tag) { |
794 | return static_cast<int>(tag >> kTagTypeBits); |
795 | } |
796 | |
797 | inline size_t WireFormatLite::TagSize(int field_number, |
798 | WireFormatLite::FieldType type) { |
799 | size_t result = io::CodedOutputStream::VarintSize32( |
800 | value: static_cast<uint32>(field_number << kTagTypeBits)); |
801 | if (type == TYPE_GROUP) { |
802 | // Groups have both a start and an end tag. |
803 | return result * 2; |
804 | } else { |
805 | return result; |
806 | } |
807 | } |
808 | |
809 | inline uint32 WireFormatLite::EncodeFloat(float value) { |
810 | return bit_cast<uint32>(from: value); |
811 | } |
812 | |
813 | inline float WireFormatLite::DecodeFloat(uint32 value) { |
814 | return bit_cast<float>(from: value); |
815 | } |
816 | |
817 | inline uint64 WireFormatLite::EncodeDouble(double value) { |
818 | return bit_cast<uint64>(from: value); |
819 | } |
820 | |
821 | inline double WireFormatLite::DecodeDouble(uint64 value) { |
822 | return bit_cast<double>(from: value); |
823 | } |
824 | |
825 | // ZigZag Transform: Encodes signed integers so that they can be |
826 | // effectively used with varint encoding. |
827 | // |
828 | // varint operates on unsigned integers, encoding smaller numbers into |
829 | // fewer bytes. If you try to use it on a signed integer, it will treat |
830 | // this number as a very large unsigned integer, which means that even |
831 | // small signed numbers like -1 will take the maximum number of bytes |
832 | // (10) to encode. ZigZagEncode() maps signed integers to unsigned |
833 | // in such a way that those with a small absolute value will have smaller |
834 | // encoded values, making them appropriate for encoding using varint. |
835 | // |
836 | // int32 -> uint32 |
837 | // ------------------------- |
838 | // 0 -> 0 |
839 | // -1 -> 1 |
840 | // 1 -> 2 |
841 | // -2 -> 3 |
842 | // ... -> ... |
843 | // 2147483647 -> 4294967294 |
844 | // -2147483648 -> 4294967295 |
845 | // |
846 | // >> encode >> |
847 | // << decode << |
848 | |
849 | inline uint32 WireFormatLite::ZigZagEncode32(int32 n) { |
850 | // Note: the right-shift must be arithmetic |
851 | // Note: left shift must be unsigned because of overflow |
852 | return (static_cast<uint32>(n) << 1) ^ static_cast<uint32>(n >> 31); |
853 | } |
854 | |
855 | inline int32 WireFormatLite::ZigZagDecode32(uint32 n) { |
856 | // Note: Using unsigned types prevent undefined behavior |
857 | return static_cast<int32>((n >> 1) ^ (~(n & 1) + 1)); |
858 | } |
859 | |
860 | inline uint64 WireFormatLite::ZigZagEncode64(int64 n) { |
861 | // Note: the right-shift must be arithmetic |
862 | // Note: left shift must be unsigned because of overflow |
863 | return (static_cast<uint64>(n) << 1) ^ static_cast<uint64>(n >> 63); |
864 | } |
865 | |
866 | inline int64 WireFormatLite::ZigZagDecode64(uint64 n) { |
867 | // Note: Using unsigned types prevent undefined behavior |
868 | return static_cast<int64>((n >> 1) ^ (~(n & 1) + 1)); |
869 | } |
870 | |
871 | // String is for UTF-8 text only, but, even so, ReadString() can simply |
872 | // call ReadBytes(). |
873 | |
874 | inline bool WireFormatLite::ReadString(io::CodedInputStream* input, |
875 | std::string* value) { |
876 | return ReadBytes(input, value); |
877 | } |
878 | |
879 | inline bool WireFormatLite::ReadString(io::CodedInputStream* input, |
880 | std::string** p) { |
881 | return ReadBytes(input, p); |
882 | } |
883 | |
884 | inline uint8* InternalSerializeUnknownMessageSetItemsToArray( |
885 | const std::string& unknown_fields, uint8* target, |
886 | io::EpsCopyOutputStream* stream) { |
887 | return stream->WriteRaw(data: unknown_fields.data(), |
888 | size: static_cast<int>(unknown_fields.size()), ptr: target); |
889 | } |
890 | |
891 | inline size_t ComputeUnknownMessageSetItemsSize( |
892 | const std::string& unknown_fields) { |
893 | return unknown_fields.size(); |
894 | } |
895 | |
896 | // Implementation details of ReadPrimitive. |
897 | |
898 | template <> |
899 | inline bool WireFormatLite::ReadPrimitive<int32, WireFormatLite::TYPE_INT32>( |
900 | io::CodedInputStream* input, int32* value) { |
901 | uint32 temp; |
902 | if (!input->ReadVarint32(value: &temp)) return false; |
903 | *value = static_cast<int32>(temp); |
904 | return true; |
905 | } |
906 | template <> |
907 | inline bool WireFormatLite::ReadPrimitive<int64, WireFormatLite::TYPE_INT64>( |
908 | io::CodedInputStream* input, int64* value) { |
909 | uint64 temp; |
910 | if (!input->ReadVarint64(value: &temp)) return false; |
911 | *value = static_cast<int64>(temp); |
912 | return true; |
913 | } |
914 | template <> |
915 | inline bool WireFormatLite::ReadPrimitive<uint32, WireFormatLite::TYPE_UINT32>( |
916 | io::CodedInputStream* input, uint32* value) { |
917 | return input->ReadVarint32(value); |
918 | } |
919 | template <> |
920 | inline bool WireFormatLite::ReadPrimitive<uint64, WireFormatLite::TYPE_UINT64>( |
921 | io::CodedInputStream* input, uint64* value) { |
922 | return input->ReadVarint64(value); |
923 | } |
924 | template <> |
925 | inline bool WireFormatLite::ReadPrimitive<int32, WireFormatLite::TYPE_SINT32>( |
926 | io::CodedInputStream* input, int32* value) { |
927 | uint32 temp; |
928 | if (!input->ReadVarint32(value: &temp)) return false; |
929 | *value = ZigZagDecode32(n: temp); |
930 | return true; |
931 | } |
932 | template <> |
933 | inline bool WireFormatLite::ReadPrimitive<int64, WireFormatLite::TYPE_SINT64>( |
934 | io::CodedInputStream* input, int64* value) { |
935 | uint64 temp; |
936 | if (!input->ReadVarint64(value: &temp)) return false; |
937 | *value = ZigZagDecode64(n: temp); |
938 | return true; |
939 | } |
940 | template <> |
941 | inline bool WireFormatLite::ReadPrimitive<uint32, WireFormatLite::TYPE_FIXED32>( |
942 | io::CodedInputStream* input, uint32* value) { |
943 | return input->ReadLittleEndian32(value); |
944 | } |
945 | template <> |
946 | inline bool WireFormatLite::ReadPrimitive<uint64, WireFormatLite::TYPE_FIXED64>( |
947 | io::CodedInputStream* input, uint64* value) { |
948 | return input->ReadLittleEndian64(value); |
949 | } |
950 | template <> |
951 | inline bool WireFormatLite::ReadPrimitive<int32, WireFormatLite::TYPE_SFIXED32>( |
952 | io::CodedInputStream* input, int32* value) { |
953 | uint32 temp; |
954 | if (!input->ReadLittleEndian32(value: &temp)) return false; |
955 | *value = static_cast<int32>(temp); |
956 | return true; |
957 | } |
958 | template <> |
959 | inline bool WireFormatLite::ReadPrimitive<int64, WireFormatLite::TYPE_SFIXED64>( |
960 | io::CodedInputStream* input, int64* value) { |
961 | uint64 temp; |
962 | if (!input->ReadLittleEndian64(value: &temp)) return false; |
963 | *value = static_cast<int64>(temp); |
964 | return true; |
965 | } |
966 | template <> |
967 | inline bool WireFormatLite::ReadPrimitive<float, WireFormatLite::TYPE_FLOAT>( |
968 | io::CodedInputStream* input, float* value) { |
969 | uint32 temp; |
970 | if (!input->ReadLittleEndian32(value: &temp)) return false; |
971 | *value = DecodeFloat(value: temp); |
972 | return true; |
973 | } |
974 | template <> |
975 | inline bool WireFormatLite::ReadPrimitive<double, WireFormatLite::TYPE_DOUBLE>( |
976 | io::CodedInputStream* input, double* value) { |
977 | uint64 temp; |
978 | if (!input->ReadLittleEndian64(value: &temp)) return false; |
979 | *value = DecodeDouble(value: temp); |
980 | return true; |
981 | } |
982 | template <> |
983 | inline bool WireFormatLite::ReadPrimitive<bool, WireFormatLite::TYPE_BOOL>( |
984 | io::CodedInputStream* input, bool* value) { |
985 | uint64 temp; |
986 | if (!input->ReadVarint64(value: &temp)) return false; |
987 | *value = temp != 0; |
988 | return true; |
989 | } |
990 | template <> |
991 | inline bool WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>( |
992 | io::CodedInputStream* input, int* value) { |
993 | uint32 temp; |
994 | if (!input->ReadVarint32(value: &temp)) return false; |
995 | *value = static_cast<int>(temp); |
996 | return true; |
997 | } |
998 | |
999 | template <> |
1000 | inline const uint8* |
1001 | WireFormatLite::ReadPrimitiveFromArray<uint32, WireFormatLite::TYPE_FIXED32>( |
1002 | const uint8* buffer, uint32* value) { |
1003 | return io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value); |
1004 | } |
1005 | template <> |
1006 | inline const uint8* |
1007 | WireFormatLite::ReadPrimitiveFromArray<uint64, WireFormatLite::TYPE_FIXED64>( |
1008 | const uint8* buffer, uint64* value) { |
1009 | return io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value); |
1010 | } |
1011 | template <> |
1012 | inline const uint8* |
1013 | WireFormatLite::ReadPrimitiveFromArray<int32, WireFormatLite::TYPE_SFIXED32>( |
1014 | const uint8* buffer, int32* value) { |
1015 | uint32 temp; |
1016 | buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value: &temp); |
1017 | *value = static_cast<int32>(temp); |
1018 | return buffer; |
1019 | } |
1020 | template <> |
1021 | inline const uint8* |
1022 | WireFormatLite::ReadPrimitiveFromArray<int64, WireFormatLite::TYPE_SFIXED64>( |
1023 | const uint8* buffer, int64* value) { |
1024 | uint64 temp; |
1025 | buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value: &temp); |
1026 | *value = static_cast<int64>(temp); |
1027 | return buffer; |
1028 | } |
1029 | template <> |
1030 | inline const uint8* |
1031 | WireFormatLite::ReadPrimitiveFromArray<float, WireFormatLite::TYPE_FLOAT>( |
1032 | const uint8* buffer, float* value) { |
1033 | uint32 temp; |
1034 | buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value: &temp); |
1035 | *value = DecodeFloat(value: temp); |
1036 | return buffer; |
1037 | } |
1038 | template <> |
1039 | inline const uint8* |
1040 | WireFormatLite::ReadPrimitiveFromArray<double, WireFormatLite::TYPE_DOUBLE>( |
1041 | const uint8* buffer, double* value) { |
1042 | uint64 temp; |
1043 | buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value: &temp); |
1044 | *value = DecodeDouble(value: temp); |
1045 | return buffer; |
1046 | } |
1047 | |
1048 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1049 | inline bool WireFormatLite::ReadRepeatedPrimitive( |
1050 | int, // tag_size, unused. |
1051 | uint32 tag, io::CodedInputStream* input, RepeatedField<CType>* values) { |
1052 | CType value; |
1053 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1054 | values->Add(value); |
1055 | int elements_already_reserved = values->Capacity() - values->size(); |
1056 | while (elements_already_reserved > 0 && input->ExpectTag(expected: tag)) { |
1057 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1058 | values->AddAlreadyReserved(value); |
1059 | elements_already_reserved--; |
1060 | } |
1061 | return true; |
1062 | } |
1063 | |
1064 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1065 | inline bool WireFormatLite::ReadRepeatedFixedSizePrimitive( |
1066 | int tag_size, uint32 tag, io::CodedInputStream* input, |
1067 | RepeatedField<CType>* values) { |
1068 | GOOGLE_DCHECK_EQ(UInt32Size(tag), static_cast<size_t>(tag_size)); |
1069 | CType value; |
1070 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1071 | values->Add(value); |
1072 | |
1073 | // For fixed size values, repeated values can be read more quickly by |
1074 | // reading directly from a raw array. |
1075 | // |
1076 | // We can get a tight loop by only reading as many elements as can be |
1077 | // added to the RepeatedField without having to do any resizing. Additionally, |
1078 | // we only try to read as many elements as are available from the current |
1079 | // buffer space. Doing so avoids having to perform boundary checks when |
1080 | // reading the value: the maximum number of elements that can be read is |
1081 | // known outside of the loop. |
1082 | const void* void_pointer; |
1083 | int size; |
1084 | input->GetDirectBufferPointerInline(data: &void_pointer, size: &size); |
1085 | if (size > 0) { |
1086 | const uint8* buffer = reinterpret_cast<const uint8*>(void_pointer); |
1087 | // The number of bytes each type occupies on the wire. |
1088 | const int per_value_size = tag_size + static_cast<int>(sizeof(value)); |
1089 | |
1090 | // parentheses around (std::min) prevents macro expansion of min(...) |
1091 | int elements_available = |
1092 | (std::min)(values->Capacity() - values->size(), size / per_value_size); |
1093 | int num_read = 0; |
1094 | while (num_read < elements_available && |
1095 | (buffer = io::CodedInputStream::ExpectTagFromArray(buffer, expected: tag)) != |
1096 | NULL) { |
1097 | buffer = ReadPrimitiveFromArray<CType, DeclaredType>(buffer, &value); |
1098 | values->AddAlreadyReserved(value); |
1099 | ++num_read; |
1100 | } |
1101 | const int read_bytes = num_read * per_value_size; |
1102 | if (read_bytes > 0) { |
1103 | input->Skip(count: read_bytes); |
1104 | } |
1105 | } |
1106 | return true; |
1107 | } |
1108 | |
1109 | // Specializations of ReadRepeatedPrimitive for the fixed size types, which use |
1110 | // the optimized code path. |
1111 | #define READ_REPEATED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \ |
1112 | template <> \ |
1113 | inline bool WireFormatLite::ReadRepeatedPrimitive< \ |
1114 | CPPTYPE, WireFormatLite::DECLARED_TYPE>( \ |
1115 | int tag_size, uint32 tag, io::CodedInputStream* input, \ |
1116 | RepeatedField<CPPTYPE>* values) { \ |
1117 | return ReadRepeatedFixedSizePrimitive<CPPTYPE, \ |
1118 | WireFormatLite::DECLARED_TYPE>( \ |
1119 | tag_size, tag, input, values); \ |
1120 | } |
1121 | |
1122 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint32, TYPE_FIXED32) |
1123 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint64, TYPE_FIXED64) |
1124 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(int32, TYPE_SFIXED32) |
1125 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(int64, TYPE_SFIXED64) |
1126 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT) |
1127 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE) |
1128 | |
1129 | #undef READ_REPEATED_FIXED_SIZE_PRIMITIVE |
1130 | |
1131 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1132 | bool WireFormatLite::ReadRepeatedPrimitiveNoInline( |
1133 | int tag_size, uint32 tag, io::CodedInputStream* input, |
1134 | RepeatedField<CType>* value) { |
1135 | return ReadRepeatedPrimitive<CType, DeclaredType>(tag_size, tag, input, |
1136 | value); |
1137 | } |
1138 | |
1139 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1140 | inline bool WireFormatLite::ReadPackedPrimitive(io::CodedInputStream* input, |
1141 | RepeatedField<CType>* values) { |
1142 | int length; |
1143 | if (!input->ReadVarintSizeAsInt(value: &length)) return false; |
1144 | io::CodedInputStream::Limit limit = input->PushLimit(byte_limit: length); |
1145 | while (input->BytesUntilLimit() > 0) { |
1146 | CType value; |
1147 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1148 | values->Add(value); |
1149 | } |
1150 | input->PopLimit(limit); |
1151 | return true; |
1152 | } |
1153 | |
1154 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1155 | inline bool WireFormatLite::ReadPackedFixedSizePrimitive( |
1156 | io::CodedInputStream* input, RepeatedField<CType>* values) { |
1157 | int length; |
1158 | if (!input->ReadVarintSizeAsInt(value: &length)) return false; |
1159 | const int old_entries = values->size(); |
1160 | const int new_entries = length / static_cast<int>(sizeof(CType)); |
1161 | const int new_bytes = new_entries * static_cast<int>(sizeof(CType)); |
1162 | if (new_bytes != length) return false; |
1163 | // We would *like* to pre-allocate the buffer to write into (for |
1164 | // speed), but *must* avoid performing a very large allocation due |
1165 | // to a malicious user-supplied "length" above. So we have a fast |
1166 | // path that pre-allocates when the "length" is less than a bound. |
1167 | // We determine the bound by calling BytesUntilTotalBytesLimit() and |
1168 | // BytesUntilLimit(). These return -1 to mean "no limit set". |
1169 | // There are four cases: |
1170 | // TotalBytesLimit Limit |
1171 | // -1 -1 Use slow path. |
1172 | // -1 >= 0 Use fast path if length <= Limit. |
1173 | // >= 0 -1 Use slow path. |
1174 | // >= 0 >= 0 Use fast path if length <= min(both limits). |
1175 | int64 bytes_limit = input->BytesUntilTotalBytesLimit(); |
1176 | if (bytes_limit == -1) { |
1177 | bytes_limit = input->BytesUntilLimit(); |
1178 | } else { |
1179 | // parentheses around (std::min) prevents macro expansion of min(...) |
1180 | bytes_limit = |
1181 | (std::min)(a: bytes_limit, b: static_cast<int64>(input->BytesUntilLimit())); |
1182 | } |
1183 | if (bytes_limit >= new_bytes) { |
1184 | // Fast-path that pre-allocates *values to the final size. |
1185 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
1186 | values->Resize(old_entries + new_entries, 0); |
1187 | // values->mutable_data() may change after Resize(), so do this after: |
1188 | void* dest = reinterpret_cast<void*>(values->mutable_data() + old_entries); |
1189 | if (!input->ReadRaw(buffer: dest, size: new_bytes)) { |
1190 | values->Truncate(old_entries); |
1191 | return false; |
1192 | } |
1193 | #else |
1194 | values->Reserve(old_entries + new_entries); |
1195 | CType value; |
1196 | for (int i = 0; i < new_entries; ++i) { |
1197 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1198 | values->AddAlreadyReserved(value); |
1199 | } |
1200 | #endif |
1201 | } else { |
1202 | // This is the slow-path case where "length" may be too large to |
1203 | // safely allocate. We read as much as we can into *values |
1204 | // without pre-allocating "length" bytes. |
1205 | CType value; |
1206 | for (int i = 0; i < new_entries; ++i) { |
1207 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1208 | values->Add(value); |
1209 | } |
1210 | } |
1211 | return true; |
1212 | } |
1213 | |
1214 | // Specializations of ReadPackedPrimitive for the fixed size types, which use |
1215 | // an optimized code path. |
1216 | #define READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \ |
1217 | template <> \ |
1218 | inline bool \ |
1219 | WireFormatLite::ReadPackedPrimitive<CPPTYPE, WireFormatLite::DECLARED_TYPE>( \ |
1220 | io::CodedInputStream * input, RepeatedField<CPPTYPE> * values) { \ |
1221 | return ReadPackedFixedSizePrimitive<CPPTYPE, \ |
1222 | WireFormatLite::DECLARED_TYPE>( \ |
1223 | input, values); \ |
1224 | } |
1225 | |
1226 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint32, TYPE_FIXED32) |
1227 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint64, TYPE_FIXED64) |
1228 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int32, TYPE_SFIXED32) |
1229 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int64, TYPE_SFIXED64) |
1230 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT) |
1231 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE) |
1232 | |
1233 | #undef READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE |
1234 | |
1235 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1236 | bool WireFormatLite::ReadPackedPrimitiveNoInline(io::CodedInputStream* input, |
1237 | RepeatedField<CType>* values) { |
1238 | return ReadPackedPrimitive<CType, DeclaredType>(input, values); |
1239 | } |
1240 | |
1241 | |
1242 | template <typename MessageType> |
1243 | inline bool WireFormatLite::ReadGroup(int field_number, |
1244 | io::CodedInputStream* input, |
1245 | MessageType* value) { |
1246 | if (!input->IncrementRecursionDepth()) return false; |
1247 | if (!value->MergePartialFromCodedStream(input)) return false; |
1248 | input->UnsafeDecrementRecursionDepth(); |
1249 | // Make sure the last thing read was an end tag for this group. |
1250 | if (!input->LastTagWas(expected: MakeTag(field_number, type: WIRETYPE_END_GROUP))) { |
1251 | return false; |
1252 | } |
1253 | return true; |
1254 | } |
1255 | template <typename MessageType> |
1256 | inline bool WireFormatLite::ReadMessage(io::CodedInputStream* input, |
1257 | MessageType* value) { |
1258 | int length; |
1259 | if (!input->ReadVarintSizeAsInt(value: &length)) return false; |
1260 | std::pair<io::CodedInputStream::Limit, int> p = |
1261 | input->IncrementRecursionDepthAndPushLimit(byte_limit: length); |
1262 | if (p.second < 0 || !value->MergePartialFromCodedStream(input)) return false; |
1263 | // Make sure that parsing stopped when the limit was hit, not at an endgroup |
1264 | // tag. |
1265 | return input->DecrementRecursionDepthAndPopLimit(limit: p.first); |
1266 | } |
1267 | |
1268 | // =================================================================== |
1269 | |
1270 | inline void WireFormatLite::WriteTag(int field_number, WireType type, |
1271 | io::CodedOutputStream* output) { |
1272 | output->WriteTag(value: MakeTag(field_number, type)); |
1273 | } |
1274 | |
1275 | inline void WireFormatLite::WriteInt32NoTag(int32 value, |
1276 | io::CodedOutputStream* output) { |
1277 | output->WriteVarint32SignExtended(value); |
1278 | } |
1279 | inline void WireFormatLite::WriteInt64NoTag(int64 value, |
1280 | io::CodedOutputStream* output) { |
1281 | output->WriteVarint64(value: static_cast<uint64>(value)); |
1282 | } |
1283 | inline void WireFormatLite::WriteUInt32NoTag(uint32 value, |
1284 | io::CodedOutputStream* output) { |
1285 | output->WriteVarint32(value); |
1286 | } |
1287 | inline void WireFormatLite::WriteUInt64NoTag(uint64 value, |
1288 | io::CodedOutputStream* output) { |
1289 | output->WriteVarint64(value); |
1290 | } |
1291 | inline void WireFormatLite::WriteSInt32NoTag(int32 value, |
1292 | io::CodedOutputStream* output) { |
1293 | output->WriteVarint32(value: ZigZagEncode32(n: value)); |
1294 | } |
1295 | inline void WireFormatLite::WriteSInt64NoTag(int64 value, |
1296 | io::CodedOutputStream* output) { |
1297 | output->WriteVarint64(value: ZigZagEncode64(n: value)); |
1298 | } |
1299 | inline void WireFormatLite::WriteFixed32NoTag(uint32 value, |
1300 | io::CodedOutputStream* output) { |
1301 | output->WriteLittleEndian32(value); |
1302 | } |
1303 | inline void WireFormatLite::WriteFixed64NoTag(uint64 value, |
1304 | io::CodedOutputStream* output) { |
1305 | output->WriteLittleEndian64(value); |
1306 | } |
1307 | inline void WireFormatLite::WriteSFixed32NoTag(int32 value, |
1308 | io::CodedOutputStream* output) { |
1309 | output->WriteLittleEndian32(value: static_cast<uint32>(value)); |
1310 | } |
1311 | inline void WireFormatLite::WriteSFixed64NoTag(int64 value, |
1312 | io::CodedOutputStream* output) { |
1313 | output->WriteLittleEndian64(value: static_cast<uint64>(value)); |
1314 | } |
1315 | inline void WireFormatLite::WriteFloatNoTag(float value, |
1316 | io::CodedOutputStream* output) { |
1317 | output->WriteLittleEndian32(value: EncodeFloat(value)); |
1318 | } |
1319 | inline void WireFormatLite::WriteDoubleNoTag(double value, |
1320 | io::CodedOutputStream* output) { |
1321 | output->WriteLittleEndian64(value: EncodeDouble(value)); |
1322 | } |
1323 | inline void WireFormatLite::WriteBoolNoTag(bool value, |
1324 | io::CodedOutputStream* output) { |
1325 | output->WriteVarint32(value: value ? 1 : 0); |
1326 | } |
1327 | inline void WireFormatLite::WriteEnumNoTag(int value, |
1328 | io::CodedOutputStream* output) { |
1329 | output->WriteVarint32SignExtended(value); |
1330 | } |
1331 | |
1332 | // See comment on ReadGroupNoVirtual to understand the need for this template |
1333 | // parameter name. |
1334 | template <typename MessageType_WorkAroundCppLookupDefect> |
1335 | inline void WireFormatLite::WriteGroupNoVirtual( |
1336 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
1337 | io::CodedOutputStream* output) { |
1338 | WriteTag(field_number, type: WIRETYPE_START_GROUP, output); |
1339 | value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output); |
1340 | WriteTag(field_number, type: WIRETYPE_END_GROUP, output); |
1341 | } |
1342 | template <typename MessageType_WorkAroundCppLookupDefect> |
1343 | inline void WireFormatLite::WriteMessageNoVirtual( |
1344 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
1345 | io::CodedOutputStream* output) { |
1346 | WriteTag(field_number, type: WIRETYPE_LENGTH_DELIMITED, output); |
1347 | output->WriteVarint32( |
1348 | value: value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()); |
1349 | value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output); |
1350 | } |
1351 | |
1352 | // =================================================================== |
1353 | |
1354 | inline uint8* WireFormatLite::WriteTagToArray(int field_number, WireType type, |
1355 | uint8* target) { |
1356 | return io::CodedOutputStream::WriteTagToArray(value: MakeTag(field_number, type), |
1357 | target); |
1358 | } |
1359 | |
1360 | inline uint8* WireFormatLite::WriteInt32NoTagToArray(int32 value, |
1361 | uint8* target) { |
1362 | return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target); |
1363 | } |
1364 | inline uint8* WireFormatLite::WriteInt64NoTagToArray(int64 value, |
1365 | uint8* target) { |
1366 | return io::CodedOutputStream::WriteVarint64ToArray(value: static_cast<uint64>(value), |
1367 | target); |
1368 | } |
1369 | inline uint8* WireFormatLite::WriteUInt32NoTagToArray(uint32 value, |
1370 | uint8* target) { |
1371 | return io::CodedOutputStream::WriteVarint32ToArray(value, target); |
1372 | } |
1373 | inline uint8* WireFormatLite::WriteUInt64NoTagToArray(uint64 value, |
1374 | uint8* target) { |
1375 | return io::CodedOutputStream::WriteVarint64ToArray(value, target); |
1376 | } |
1377 | inline uint8* WireFormatLite::WriteSInt32NoTagToArray(int32 value, |
1378 | uint8* target) { |
1379 | return io::CodedOutputStream::WriteVarint32ToArray(value: ZigZagEncode32(n: value), |
1380 | target); |
1381 | } |
1382 | inline uint8* WireFormatLite::WriteSInt64NoTagToArray(int64 value, |
1383 | uint8* target) { |
1384 | return io::CodedOutputStream::WriteVarint64ToArray(value: ZigZagEncode64(n: value), |
1385 | target); |
1386 | } |
1387 | inline uint8* WireFormatLite::WriteFixed32NoTagToArray(uint32 value, |
1388 | uint8* target) { |
1389 | return io::CodedOutputStream::WriteLittleEndian32ToArray(value, target); |
1390 | } |
1391 | inline uint8* WireFormatLite::WriteFixed64NoTagToArray(uint64 value, |
1392 | uint8* target) { |
1393 | return io::CodedOutputStream::WriteLittleEndian64ToArray(value, target); |
1394 | } |
1395 | inline uint8* WireFormatLite::WriteSFixed32NoTagToArray(int32 value, |
1396 | uint8* target) { |
1397 | return io::CodedOutputStream::WriteLittleEndian32ToArray( |
1398 | value: static_cast<uint32>(value), target); |
1399 | } |
1400 | inline uint8* WireFormatLite::WriteSFixed64NoTagToArray(int64 value, |
1401 | uint8* target) { |
1402 | return io::CodedOutputStream::WriteLittleEndian64ToArray( |
1403 | value: static_cast<uint64>(value), target); |
1404 | } |
1405 | inline uint8* WireFormatLite::WriteFloatNoTagToArray(float value, |
1406 | uint8* target) { |
1407 | return io::CodedOutputStream::WriteLittleEndian32ToArray(value: EncodeFloat(value), |
1408 | target); |
1409 | } |
1410 | inline uint8* WireFormatLite::WriteDoubleNoTagToArray(double value, |
1411 | uint8* target) { |
1412 | return io::CodedOutputStream::WriteLittleEndian64ToArray(value: EncodeDouble(value), |
1413 | target); |
1414 | } |
1415 | inline uint8* WireFormatLite::WriteBoolNoTagToArray(bool value, uint8* target) { |
1416 | return io::CodedOutputStream::WriteVarint32ToArray(value: value ? 1 : 0, target); |
1417 | } |
1418 | inline uint8* WireFormatLite::WriteEnumNoTagToArray(int value, uint8* target) { |
1419 | return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target); |
1420 | } |
1421 | |
1422 | template <typename T> |
1423 | inline uint8* WireFormatLite::WritePrimitiveNoTagToArray( |
1424 | const RepeatedField<T>& value, uint8* (*Writer)(T, uint8*), uint8* target) { |
1425 | const int n = value.size(); |
1426 | GOOGLE_DCHECK_GT(n, 0); |
1427 | |
1428 | const T* ii = value.data(); |
1429 | int i = 0; |
1430 | do { |
1431 | target = Writer(ii[i], target); |
1432 | } while (++i < n); |
1433 | |
1434 | return target; |
1435 | } |
1436 | |
1437 | template <typename T> |
1438 | inline uint8* WireFormatLite::WriteFixedNoTagToArray( |
1439 | const RepeatedField<T>& value, uint8* (*Writer)(T, uint8*), uint8* target) { |
1440 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
1441 | (void)Writer; |
1442 | |
1443 | const int n = value.size(); |
1444 | GOOGLE_DCHECK_GT(n, 0); |
1445 | |
1446 | const T* ii = value.data(); |
1447 | const int bytes = n * static_cast<int>(sizeof(ii[0])); |
1448 | memcpy(target, ii, static_cast<size_t>(bytes)); |
1449 | return target + bytes; |
1450 | #else |
1451 | return WritePrimitiveNoTagToArray(value, Writer, target); |
1452 | #endif |
1453 | } |
1454 | |
1455 | inline uint8* WireFormatLite::WriteInt32NoTagToArray( |
1456 | const RepeatedField<int32>& value, uint8* target) { |
1457 | return WritePrimitiveNoTagToArray(value, Writer: WriteInt32NoTagToArray, target); |
1458 | } |
1459 | inline uint8* WireFormatLite::WriteInt64NoTagToArray( |
1460 | const RepeatedField<int64>& value, uint8* target) { |
1461 | return WritePrimitiveNoTagToArray(value, Writer: WriteInt64NoTagToArray, target); |
1462 | } |
1463 | inline uint8* WireFormatLite::WriteUInt32NoTagToArray( |
1464 | const RepeatedField<uint32>& value, uint8* target) { |
1465 | return WritePrimitiveNoTagToArray(value, Writer: WriteUInt32NoTagToArray, target); |
1466 | } |
1467 | inline uint8* WireFormatLite::WriteUInt64NoTagToArray( |
1468 | const RepeatedField<uint64>& value, uint8* target) { |
1469 | return WritePrimitiveNoTagToArray(value, Writer: WriteUInt64NoTagToArray, target); |
1470 | } |
1471 | inline uint8* WireFormatLite::WriteSInt32NoTagToArray( |
1472 | const RepeatedField<int32>& value, uint8* target) { |
1473 | return WritePrimitiveNoTagToArray(value, Writer: WriteSInt32NoTagToArray, target); |
1474 | } |
1475 | inline uint8* WireFormatLite::WriteSInt64NoTagToArray( |
1476 | const RepeatedField<int64>& value, uint8* target) { |
1477 | return WritePrimitiveNoTagToArray(value, Writer: WriteSInt64NoTagToArray, target); |
1478 | } |
1479 | inline uint8* WireFormatLite::WriteFixed32NoTagToArray( |
1480 | const RepeatedField<uint32>& value, uint8* target) { |
1481 | return WriteFixedNoTagToArray(value, Writer: WriteFixed32NoTagToArray, target); |
1482 | } |
1483 | inline uint8* WireFormatLite::WriteFixed64NoTagToArray( |
1484 | const RepeatedField<uint64>& value, uint8* target) { |
1485 | return WriteFixedNoTagToArray(value, Writer: WriteFixed64NoTagToArray, target); |
1486 | } |
1487 | inline uint8* WireFormatLite::WriteSFixed32NoTagToArray( |
1488 | const RepeatedField<int32>& value, uint8* target) { |
1489 | return WriteFixedNoTagToArray(value, Writer: WriteSFixed32NoTagToArray, target); |
1490 | } |
1491 | inline uint8* WireFormatLite::WriteSFixed64NoTagToArray( |
1492 | const RepeatedField<int64>& value, uint8* target) { |
1493 | return WriteFixedNoTagToArray(value, Writer: WriteSFixed64NoTagToArray, target); |
1494 | } |
1495 | inline uint8* WireFormatLite::WriteFloatNoTagToArray( |
1496 | const RepeatedField<float>& value, uint8* target) { |
1497 | return WriteFixedNoTagToArray(value, Writer: WriteFloatNoTagToArray, target); |
1498 | } |
1499 | inline uint8* WireFormatLite::WriteDoubleNoTagToArray( |
1500 | const RepeatedField<double>& value, uint8* target) { |
1501 | return WriteFixedNoTagToArray(value, Writer: WriteDoubleNoTagToArray, target); |
1502 | } |
1503 | inline uint8* WireFormatLite::WriteBoolNoTagToArray( |
1504 | const RepeatedField<bool>& value, uint8* target) { |
1505 | return WritePrimitiveNoTagToArray(value, Writer: WriteBoolNoTagToArray, target); |
1506 | } |
1507 | inline uint8* WireFormatLite::WriteEnumNoTagToArray( |
1508 | const RepeatedField<int>& value, uint8* target) { |
1509 | return WritePrimitiveNoTagToArray(value, Writer: WriteEnumNoTagToArray, target); |
1510 | } |
1511 | |
1512 | inline uint8* WireFormatLite::WriteInt32ToArray(int field_number, int32 value, |
1513 | uint8* target) { |
1514 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1515 | return WriteInt32NoTagToArray(value, target); |
1516 | } |
1517 | inline uint8* WireFormatLite::WriteInt64ToArray(int field_number, int64 value, |
1518 | uint8* target) { |
1519 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1520 | return WriteInt64NoTagToArray(value, target); |
1521 | } |
1522 | inline uint8* WireFormatLite::WriteUInt32ToArray(int field_number, uint32 value, |
1523 | uint8* target) { |
1524 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1525 | return WriteUInt32NoTagToArray(value, target); |
1526 | } |
1527 | inline uint8* WireFormatLite::WriteUInt64ToArray(int field_number, uint64 value, |
1528 | uint8* target) { |
1529 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1530 | return WriteUInt64NoTagToArray(value, target); |
1531 | } |
1532 | inline uint8* WireFormatLite::WriteSInt32ToArray(int field_number, int32 value, |
1533 | uint8* target) { |
1534 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1535 | return WriteSInt32NoTagToArray(value, target); |
1536 | } |
1537 | inline uint8* WireFormatLite::WriteSInt64ToArray(int field_number, int64 value, |
1538 | uint8* target) { |
1539 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1540 | return WriteSInt64NoTagToArray(value, target); |
1541 | } |
1542 | inline uint8* WireFormatLite::WriteFixed32ToArray(int field_number, |
1543 | uint32 value, uint8* target) { |
1544 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED32, target); |
1545 | return WriteFixed32NoTagToArray(value, target); |
1546 | } |
1547 | inline uint8* WireFormatLite::WriteFixed64ToArray(int field_number, |
1548 | uint64 value, uint8* target) { |
1549 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED64, target); |
1550 | return WriteFixed64NoTagToArray(value, target); |
1551 | } |
1552 | inline uint8* WireFormatLite::WriteSFixed32ToArray(int field_number, |
1553 | int32 value, uint8* target) { |
1554 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED32, target); |
1555 | return WriteSFixed32NoTagToArray(value, target); |
1556 | } |
1557 | inline uint8* WireFormatLite::WriteSFixed64ToArray(int field_number, |
1558 | int64 value, uint8* target) { |
1559 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED64, target); |
1560 | return WriteSFixed64NoTagToArray(value, target); |
1561 | } |
1562 | inline uint8* WireFormatLite::WriteFloatToArray(int field_number, float value, |
1563 | uint8* target) { |
1564 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED32, target); |
1565 | return WriteFloatNoTagToArray(value, target); |
1566 | } |
1567 | inline uint8* WireFormatLite::WriteDoubleToArray(int field_number, double value, |
1568 | uint8* target) { |
1569 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED64, target); |
1570 | return WriteDoubleNoTagToArray(value, target); |
1571 | } |
1572 | inline uint8* WireFormatLite::WriteBoolToArray(int field_number, bool value, |
1573 | uint8* target) { |
1574 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1575 | return WriteBoolNoTagToArray(value, target); |
1576 | } |
1577 | inline uint8* WireFormatLite::WriteEnumToArray(int field_number, int value, |
1578 | uint8* target) { |
1579 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1580 | return WriteEnumNoTagToArray(value, target); |
1581 | } |
1582 | |
1583 | template <typename T> |
1584 | inline uint8* WireFormatLite::WritePrimitiveToArray( |
1585 | int field_number, const RepeatedField<T>& value, |
1586 | uint8* (*Writer)(int, T, uint8*), uint8* target) { |
1587 | const int n = value.size(); |
1588 | if (n == 0) { |
1589 | return target; |
1590 | } |
1591 | |
1592 | const T* ii = value.data(); |
1593 | int i = 0; |
1594 | do { |
1595 | target = Writer(field_number, ii[i], target); |
1596 | } while (++i < n); |
1597 | |
1598 | return target; |
1599 | } |
1600 | |
1601 | inline uint8* WireFormatLite::WriteInt32ToArray( |
1602 | int field_number, const RepeatedField<int32>& value, uint8* target) { |
1603 | return WritePrimitiveToArray(field_number, value, Writer: WriteInt32ToArray, target); |
1604 | } |
1605 | inline uint8* WireFormatLite::WriteInt64ToArray( |
1606 | int field_number, const RepeatedField<int64>& value, uint8* target) { |
1607 | return WritePrimitiveToArray(field_number, value, Writer: WriteInt64ToArray, target); |
1608 | } |
1609 | inline uint8* WireFormatLite::WriteUInt32ToArray( |
1610 | int field_number, const RepeatedField<uint32>& value, uint8* target) { |
1611 | return WritePrimitiveToArray(field_number, value, Writer: WriteUInt32ToArray, target); |
1612 | } |
1613 | inline uint8* WireFormatLite::WriteUInt64ToArray( |
1614 | int field_number, const RepeatedField<uint64>& value, uint8* target) { |
1615 | return WritePrimitiveToArray(field_number, value, Writer: WriteUInt64ToArray, target); |
1616 | } |
1617 | inline uint8* WireFormatLite::WriteSInt32ToArray( |
1618 | int field_number, const RepeatedField<int32>& value, uint8* target) { |
1619 | return WritePrimitiveToArray(field_number, value, Writer: WriteSInt32ToArray, target); |
1620 | } |
1621 | inline uint8* WireFormatLite::WriteSInt64ToArray( |
1622 | int field_number, const RepeatedField<int64>& value, uint8* target) { |
1623 | return WritePrimitiveToArray(field_number, value, Writer: WriteSInt64ToArray, target); |
1624 | } |
1625 | inline uint8* WireFormatLite::WriteFixed32ToArray( |
1626 | int field_number, const RepeatedField<uint32>& value, uint8* target) { |
1627 | return WritePrimitiveToArray(field_number, value, Writer: WriteFixed32ToArray, |
1628 | target); |
1629 | } |
1630 | inline uint8* WireFormatLite::WriteFixed64ToArray( |
1631 | int field_number, const RepeatedField<uint64>& value, uint8* target) { |
1632 | return WritePrimitiveToArray(field_number, value, Writer: WriteFixed64ToArray, |
1633 | target); |
1634 | } |
1635 | inline uint8* WireFormatLite::WriteSFixed32ToArray( |
1636 | int field_number, const RepeatedField<int32>& value, uint8* target) { |
1637 | return WritePrimitiveToArray(field_number, value, Writer: WriteSFixed32ToArray, |
1638 | target); |
1639 | } |
1640 | inline uint8* WireFormatLite::WriteSFixed64ToArray( |
1641 | int field_number, const RepeatedField<int64>& value, uint8* target) { |
1642 | return WritePrimitiveToArray(field_number, value, Writer: WriteSFixed64ToArray, |
1643 | target); |
1644 | } |
1645 | inline uint8* WireFormatLite::WriteFloatToArray( |
1646 | int field_number, const RepeatedField<float>& value, uint8* target) { |
1647 | return WritePrimitiveToArray(field_number, value, Writer: WriteFloatToArray, target); |
1648 | } |
1649 | inline uint8* WireFormatLite::WriteDoubleToArray( |
1650 | int field_number, const RepeatedField<double>& value, uint8* target) { |
1651 | return WritePrimitiveToArray(field_number, value, Writer: WriteDoubleToArray, target); |
1652 | } |
1653 | inline uint8* WireFormatLite::WriteBoolToArray(int field_number, |
1654 | const RepeatedField<bool>& value, |
1655 | uint8* target) { |
1656 | return WritePrimitiveToArray(field_number, value, Writer: WriteBoolToArray, target); |
1657 | } |
1658 | inline uint8* WireFormatLite::WriteEnumToArray(int field_number, |
1659 | const RepeatedField<int>& value, |
1660 | uint8* target) { |
1661 | return WritePrimitiveToArray(field_number, value, Writer: WriteEnumToArray, target); |
1662 | } |
1663 | inline uint8* WireFormatLite::WriteStringToArray(int field_number, |
1664 | const std::string& value, |
1665 | uint8* target) { |
1666 | // String is for UTF-8 text only |
1667 | // WARNING: In wire_format.cc, both strings and bytes are handled by |
1668 | // WriteString() to avoid code duplication. If the implementations become |
1669 | // different, you will need to update that usage. |
1670 | target = WriteTagToArray(field_number, type: WIRETYPE_LENGTH_DELIMITED, target); |
1671 | return io::CodedOutputStream::WriteStringWithSizeToArray(str: value, target); |
1672 | } |
1673 | inline uint8* WireFormatLite::WriteBytesToArray(int field_number, |
1674 | const std::string& value, |
1675 | uint8* target) { |
1676 | target = WriteTagToArray(field_number, type: WIRETYPE_LENGTH_DELIMITED, target); |
1677 | return io::CodedOutputStream::WriteStringWithSizeToArray(str: value, target); |
1678 | } |
1679 | |
1680 | |
1681 | template <typename MessageType> |
1682 | inline uint8* WireFormatLite::InternalWriteGroup( |
1683 | int field_number, const MessageType& value, uint8* target, |
1684 | io::EpsCopyOutputStream* stream) { |
1685 | target = WriteTagToArray(field_number, type: WIRETYPE_START_GROUP, target); |
1686 | target = value._InternalSerialize(target, stream); |
1687 | target = stream->EnsureSpace(ptr: target); |
1688 | return WriteTagToArray(field_number, type: WIRETYPE_END_GROUP, target); |
1689 | } |
1690 | template <typename MessageType> |
1691 | inline uint8* WireFormatLite::InternalWriteMessage( |
1692 | int field_number, const MessageType& value, uint8* target, |
1693 | io::EpsCopyOutputStream* stream) { |
1694 | target = WriteTagToArray(field_number, type: WIRETYPE_LENGTH_DELIMITED, target); |
1695 | target = io::CodedOutputStream::WriteVarint32ToArray( |
1696 | value: static_cast<uint32>(value.GetCachedSize()), target); |
1697 | return value._InternalSerialize(target, stream); |
1698 | } |
1699 | |
1700 | // See comment on ReadGroupNoVirtual to understand the need for this template |
1701 | // parameter name. |
1702 | template <typename MessageType_WorkAroundCppLookupDefect> |
1703 | inline uint8* WireFormatLite::InternalWriteGroupNoVirtualToArray( |
1704 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
1705 | uint8* target) { |
1706 | target = WriteTagToArray(field_number, type: WIRETYPE_START_GROUP, target); |
1707 | target = value.MessageType_WorkAroundCppLookupDefect:: |
1708 | SerializeWithCachedSizesToArray(target); |
1709 | return WriteTagToArray(field_number, type: WIRETYPE_END_GROUP, target); |
1710 | } |
1711 | template <typename MessageType_WorkAroundCppLookupDefect> |
1712 | inline uint8* WireFormatLite::InternalWriteMessageNoVirtualToArray( |
1713 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
1714 | uint8* target) { |
1715 | target = WriteTagToArray(field_number, type: WIRETYPE_LENGTH_DELIMITED, target); |
1716 | target = io::CodedOutputStream::WriteVarint32ToArray( |
1717 | value: static_cast<uint32>( |
1718 | value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()), |
1719 | target); |
1720 | return value |
1721 | .MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizesToArray( |
1722 | target); |
1723 | } |
1724 | |
1725 | // =================================================================== |
1726 | |
1727 | inline size_t WireFormatLite::Int32Size(int32 value) { |
1728 | return io::CodedOutputStream::VarintSize32SignExtended(value); |
1729 | } |
1730 | inline size_t WireFormatLite::Int64Size(int64 value) { |
1731 | return io::CodedOutputStream::VarintSize64(value: static_cast<uint64>(value)); |
1732 | } |
1733 | inline size_t WireFormatLite::UInt32Size(uint32 value) { |
1734 | return io::CodedOutputStream::VarintSize32(value); |
1735 | } |
1736 | inline size_t WireFormatLite::UInt64Size(uint64 value) { |
1737 | return io::CodedOutputStream::VarintSize64(value); |
1738 | } |
1739 | inline size_t WireFormatLite::SInt32Size(int32 value) { |
1740 | return io::CodedOutputStream::VarintSize32(value: ZigZagEncode32(n: value)); |
1741 | } |
1742 | inline size_t WireFormatLite::SInt64Size(int64 value) { |
1743 | return io::CodedOutputStream::VarintSize64(value: ZigZagEncode64(n: value)); |
1744 | } |
1745 | inline size_t WireFormatLite::EnumSize(int value) { |
1746 | return io::CodedOutputStream::VarintSize32SignExtended(value); |
1747 | } |
1748 | |
1749 | inline size_t WireFormatLite::StringSize(const std::string& value) { |
1750 | return LengthDelimitedSize(length: value.size()); |
1751 | } |
1752 | inline size_t WireFormatLite::BytesSize(const std::string& value) { |
1753 | return LengthDelimitedSize(length: value.size()); |
1754 | } |
1755 | |
1756 | |
1757 | template <typename MessageType> |
1758 | inline size_t WireFormatLite::GroupSize(const MessageType& value) { |
1759 | return value.ByteSizeLong(); |
1760 | } |
1761 | template <typename MessageType> |
1762 | inline size_t WireFormatLite::MessageSize(const MessageType& value) { |
1763 | return LengthDelimitedSize(length: value.ByteSizeLong()); |
1764 | } |
1765 | |
1766 | // See comment on ReadGroupNoVirtual to understand the need for this template |
1767 | // parameter name. |
1768 | template <typename MessageType_WorkAroundCppLookupDefect> |
1769 | inline size_t WireFormatLite::GroupSizeNoVirtual( |
1770 | const MessageType_WorkAroundCppLookupDefect& value) { |
1771 | return value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong(); |
1772 | } |
1773 | template <typename MessageType_WorkAroundCppLookupDefect> |
1774 | inline size_t WireFormatLite::MessageSizeNoVirtual( |
1775 | const MessageType_WorkAroundCppLookupDefect& value) { |
1776 | return LengthDelimitedSize( |
1777 | length: value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong()); |
1778 | } |
1779 | |
1780 | inline size_t WireFormatLite::LengthDelimitedSize(size_t length) { |
1781 | // The static_cast here prevents an error in certain compiler configurations |
1782 | // but is not technically correct--if length is too large to fit in a uint32 |
1783 | // then it will be silently truncated. We will need to fix this if we ever |
1784 | // decide to start supporting serialized messages greater than 2 GiB in size. |
1785 | return length + |
1786 | io::CodedOutputStream::VarintSize32(value: static_cast<uint32>(length)); |
1787 | } |
1788 | |
1789 | template <typename MS> |
1790 | bool ParseMessageSetItemImpl(io::CodedInputStream* input, MS ms) { |
1791 | // This method parses a group which should contain two fields: |
1792 | // required int32 type_id = 2; |
1793 | // required data message = 3; |
1794 | |
1795 | uint32 last_type_id = 0; |
1796 | |
1797 | // If we see message data before the type_id, we'll append it to this so |
1798 | // we can parse it later. |
1799 | std::string message_data; |
1800 | |
1801 | enum class State { kNoTag, kHasType, kHasPayload, kDone }; |
1802 | State state = State::kNoTag; |
1803 | |
1804 | while (true) { |
1805 | const uint32 tag = input->ReadTagNoLastTag(); |
1806 | if (tag == 0) return false; |
1807 | |
1808 | switch (tag) { |
1809 | case WireFormatLite::kMessageSetTypeIdTag: { |
1810 | uint32 type_id; |
1811 | if (!input->ReadVarint32(value: &type_id)) return false; |
1812 | if (state == State::kNoTag) { |
1813 | last_type_id = type_id; |
1814 | state = State::kHasType; |
1815 | } else if (state == State::kHasPayload) { |
1816 | // We saw some message data before the type_id. Have to parse it |
1817 | // now. |
1818 | io::CodedInputStream sub_input( |
1819 | reinterpret_cast<const uint8*>(message_data.data()), |
1820 | static_cast<int>(message_data.size())); |
1821 | sub_input.SetRecursionLimit(input->RecursionBudget()); |
1822 | if (!ms.ParseField(type_id, &sub_input)) { |
1823 | return false; |
1824 | } |
1825 | message_data.clear(); |
1826 | state = State::kDone; |
1827 | } |
1828 | |
1829 | break; |
1830 | } |
1831 | |
1832 | case WireFormatLite::kMessageSetMessageTag: { |
1833 | if (state == State::kHasType) { |
1834 | // Already saw type_id, so we can parse this directly. |
1835 | if (!ms.ParseField(last_type_id, input)) { |
1836 | return false; |
1837 | } |
1838 | state = State::kDone; |
1839 | } else if (state == State::kNoTag) { |
1840 | // We haven't seen a type_id yet. Append this data to message_data. |
1841 | uint32 length; |
1842 | if (!input->ReadVarint32(value: &length)) return false; |
1843 | if (static_cast<int32>(length) < 0) return false; |
1844 | uint32 size = static_cast<uint32>( |
1845 | length + io::CodedOutputStream::VarintSize32(value: length)); |
1846 | message_data.resize(n: size); |
1847 | auto ptr = reinterpret_cast<uint8*>(&message_data[0]); |
1848 | ptr = io::CodedOutputStream::WriteVarint32ToArray(value: length, target: ptr); |
1849 | if (!input->ReadRaw(buffer: ptr, size: length)) return false; |
1850 | state = State::kHasPayload; |
1851 | } else { |
1852 | if (!ms.SkipField(tag, input)) return false; |
1853 | } |
1854 | |
1855 | break; |
1856 | } |
1857 | |
1858 | case WireFormatLite::kMessageSetItemEndTag: { |
1859 | return true; |
1860 | } |
1861 | |
1862 | default: { |
1863 | if (!ms.SkipField(tag, input)) return false; |
1864 | } |
1865 | } |
1866 | } |
1867 | } |
1868 | |
1869 | } // namespace internal |
1870 | } // namespace protobuf |
1871 | } // namespace google |
1872 | |
1873 | #include <google/protobuf/port_undef.inc> |
1874 | |
1875 | #endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ |
1876 | |