1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc. All rights reserved.
3// https://developers.google.com/protocol-buffers/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9// * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11// * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15// * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// Author: kenton@google.com (Kenton Varda)
32// Based on original Protocol Buffers design by
33// Sanjay Ghemawat, Jeff Dean, and others.
34//
35// RepeatedField and RepeatedPtrField are used by generated protocol message
36// classes to manipulate repeated fields. These classes are very similar to
37// STL's vector, but include a number of optimizations found to be useful
38// specifically in the case of Protocol Buffers. RepeatedPtrField is
39// particularly different from STL vector as it manages ownership of the
40// pointers that it contains.
41//
42// Typically, clients should not need to access RepeatedField objects directly,
43// but should instead use the accessor functions generated automatically by the
44// protocol compiler.
45
46#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
47#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
48
49#include <utility>
50#ifdef _MSC_VER
51// This is required for min/max on VS2013 only.
52#include <algorithm>
53#endif
54
55#include <iterator>
56#include <limits>
57#include <string>
58#include <type_traits>
59
60#include <google/protobuf/stubs/logging.h>
61#include <google/protobuf/stubs/common.h>
62#include <google/protobuf/arena.h>
63#include <google/protobuf/message_lite.h>
64#include <google/protobuf/port.h>
65#include <google/protobuf/stubs/casts.h>
66#include <type_traits>
67
68
69// Must be included last.
70#include <google/protobuf/port_def.inc>
71
72#ifdef SWIG
73#error "You cannot SWIG proto headers"
74#endif
75
76namespace google {
77namespace protobuf {
78
79class Message;
80class Reflection;
81
82template <typename T>
83struct WeakRepeatedPtrField;
84
85namespace internal {
86
87class MergePartialFromCodedStreamHelper;
88
89// kRepeatedFieldLowerClampLimit is the smallest size that will be allocated
90// when growing a repeated field.
91constexpr int kRepeatedFieldLowerClampLimit = 4;
92
93// kRepeatedFieldUpperClampLimit is the lowest signed integer value that
94// overflows when multiplied by 2 (which is undefined behavior). Sizes above
95// this will clamp to the maximum int value instead of following exponential
96// growth when growing a repeated field.
97constexpr int kRepeatedFieldUpperClampLimit =
98 (std::numeric_limits<int>::max() / 2) + 1;
99
100// A utility function for logging that doesn't need any template types.
101void LogIndexOutOfBounds(int index, int size);
102
103template <typename Iter>
104inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
105 return static_cast<int>(std::distance(begin, end));
106}
107
108template <typename Iter>
109inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
110 std::input_iterator_tag /*unused*/) {
111 return -1;
112}
113
114template <typename Iter>
115inline int CalculateReserve(Iter begin, Iter end) {
116 typedef typename std::iterator_traits<Iter>::iterator_category Category;
117 return CalculateReserve(begin, end, Category());
118}
119
120// Swaps two blocks of memory of size sizeof(T).
121template <typename T>
122inline void SwapBlock(char* p, char* q) {
123 T tmp;
124 memcpy(&tmp, p, sizeof(T));
125 memcpy(dest: p, src: q, n: sizeof(T));
126 memcpy(q, &tmp, sizeof(T));
127}
128
129// Swaps two blocks of memory of size kSize:
130// template <int kSize> void memswap(char* p, char* q);
131
132template <int kSize>
133inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) {
134}
135
136#define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size) \
137 template <int kSize> \
138 typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \
139 void>::type \
140 memswap(char* p, char* q) { \
141 SwapBlock<reg_type>(p, q); \
142 memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type), \
143 q + sizeof(reg_type)); \
144 }
145
146PROTO_MEMSWAP_DEF_SIZE(uint8, 2)
147PROTO_MEMSWAP_DEF_SIZE(uint16, 4)
148PROTO_MEMSWAP_DEF_SIZE(uint32, 8)
149
150#ifdef __SIZEOF_INT128__
151PROTO_MEMSWAP_DEF_SIZE(uint64, 16)
152PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31))
153#else
154PROTO_MEMSWAP_DEF_SIZE(uint64, (1u << 31))
155#endif
156
157#undef PROTO_MEMSWAP_DEF_SIZE
158
159} // namespace internal
160
161// RepeatedField is used to represent repeated fields of a primitive type (in
162// other words, everything except strings and nested Messages). Most users will
163// not ever use a RepeatedField directly; they will use the get-by-index,
164// set-by-index, and add accessors that are generated for all repeated fields.
165template <typename Element>
166class RepeatedField final {
167 static_assert(
168 alignof(Arena) >= alignof(Element),
169 "We only support types that have an alignment smaller than Arena");
170
171 public:
172 RepeatedField();
173 explicit RepeatedField(Arena* arena);
174 RepeatedField(const RepeatedField& other);
175 template <typename Iter>
176 RepeatedField(Iter begin, const Iter& end);
177 ~RepeatedField();
178
179 RepeatedField& operator=(const RepeatedField& other);
180
181 RepeatedField(RepeatedField&& other) noexcept;
182 RepeatedField& operator=(RepeatedField&& other) noexcept;
183
184 bool empty() const;
185 int size() const;
186
187 const Element& Get(int index) const;
188 Element* Mutable(int index);
189
190 const Element& operator[](int index) const { return Get(index); }
191 Element& operator[](int index) { return *Mutable(index); }
192
193 const Element& at(int index) const;
194 Element& at(int index);
195
196 void Set(int index, const Element& value);
197 void Add(const Element& value);
198 // Appends a new element and return a pointer to it.
199 // The new element is uninitialized if |Element| is a POD type.
200 Element* Add();
201 // Append elements in the range [begin, end) after reserving
202 // the appropriate number of elements.
203 template <typename Iter>
204 void Add(Iter begin, Iter end);
205
206 // Remove the last element in the array.
207 void RemoveLast();
208
209 // Extract elements with indices in "[start .. start+num-1]".
210 // Copy them into "elements[0 .. num-1]" if "elements" is not NULL.
211 // Caution: implementation also moves elements with indices [start+num ..].
212 // Calling this routine inside a loop can cause quadratic behavior.
213 void ExtractSubrange(int start, int num, Element* elements);
214
215 void Clear();
216 void MergeFrom(const RepeatedField& other);
217 void CopyFrom(const RepeatedField& other);
218
219 // Reserve space to expand the field to at least the given size. If the
220 // array is grown, it will always be at least doubled in size.
221 void Reserve(int new_size);
222
223 // Resize the RepeatedField to a new, smaller size. This is O(1).
224 void Truncate(int new_size);
225
226 void AddAlreadyReserved(const Element& value);
227 // Appends a new element and return a pointer to it.
228 // The new element is uninitialized if |Element| is a POD type.
229 // Should be called only if Capacity() > Size().
230 Element* AddAlreadyReserved();
231 Element* AddNAlreadyReserved(int elements);
232 int Capacity() const;
233
234 // Like STL resize. Uses value to fill appended elements.
235 // Like Truncate() if new_size <= size(), otherwise this is
236 // O(new_size - size()).
237 void Resize(int new_size, const Element& value);
238
239 // Gets the underlying array. This pointer is possibly invalidated by
240 // any add or remove operation.
241 Element* mutable_data();
242 const Element* data() const;
243
244 // Swap entire contents with "other". If they are separate arenas then, copies
245 // data between each other.
246 void Swap(RepeatedField* other);
247
248 // Swap entire contents with "other". Should be called only if the caller can
249 // guarantee that both repeated fields are on the same arena or are on the
250 // heap. Swapping between different arenas is disallowed and caught by a
251 // GOOGLE_DCHECK (see API docs for details).
252 void UnsafeArenaSwap(RepeatedField* other);
253
254 // Swap two elements.
255 void SwapElements(int index1, int index2);
256
257 // STL-like iterator support
258 typedef Element* iterator;
259 typedef const Element* const_iterator;
260 typedef Element value_type;
261 typedef value_type& reference;
262 typedef const value_type& const_reference;
263 typedef value_type* pointer;
264 typedef const value_type* const_pointer;
265 typedef int size_type;
266 typedef ptrdiff_t difference_type;
267
268 iterator begin();
269 const_iterator begin() const;
270 const_iterator cbegin() const;
271 iterator end();
272 const_iterator end() const;
273 const_iterator cend() const;
274
275 // Reverse iterator support
276 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
277 typedef std::reverse_iterator<iterator> reverse_iterator;
278 reverse_iterator rbegin() { return reverse_iterator(end()); }
279 const_reverse_iterator rbegin() const {
280 return const_reverse_iterator(end());
281 }
282 reverse_iterator rend() { return reverse_iterator(begin()); }
283 const_reverse_iterator rend() const {
284 return const_reverse_iterator(begin());
285 }
286
287 // Returns the number of bytes used by the repeated field, excluding
288 // sizeof(*this)
289 size_t SpaceUsedExcludingSelfLong() const;
290
291 int SpaceUsedExcludingSelf() const {
292 return internal::ToIntSize(size: SpaceUsedExcludingSelfLong());
293 }
294
295 // Removes the element referenced by position.
296 //
297 // Returns an iterator to the element immediately following the removed
298 // element.
299 //
300 // Invalidates all iterators at or after the removed element, including end().
301 iterator erase(const_iterator position);
302
303 // Removes the elements in the range [first, last).
304 //
305 // Returns an iterator to the element immediately following the removed range.
306 //
307 // Invalidates all iterators at or after the removed range, including end().
308 iterator erase(const_iterator first, const_iterator last);
309
310 // Get the Arena on which this RepeatedField stores its elements.
311 inline Arena* GetArena() const {
312 return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_)
313 : rep()->arena;
314 }
315
316 // For internal use only.
317 //
318 // This is public due to it being called by generated code.
319 inline void InternalSwap(RepeatedField* other);
320
321 private:
322 static constexpr int kInitialSize = 0;
323 // A note on the representation here (see also comment below for
324 // RepeatedPtrFieldBase's struct Rep):
325 //
326 // We maintain the same sizeof(RepeatedField) as before we added arena support
327 // so that we do not degrade performance by bloating memory usage. Directly
328 // adding an arena_ element to RepeatedField is quite costly. By using
329 // indirection in this way, we keep the same size when the RepeatedField is
330 // empty (common case), and add only an 8-byte header to the elements array
331 // when non-empty. We make sure to place the size fields directly in the
332 // RepeatedField class to avoid costly cache misses due to the indirection.
333 int current_size_;
334 int total_size_;
335 struct Rep {
336 Arena* arena;
337 Element elements[1];
338 };
339 // We can not use sizeof(Rep) - sizeof(Element) due to the trailing padding on
340 // the struct. We can not use sizeof(Arena*) as well because there might be
341 // a "gap" after the field arena and before the field elements (e.g., when
342 // Element is double and pointer is 32bit).
343 static const size_t kRepHeaderSize;
344
345 // If total_size_ == 0 this points to an Arena otherwise it points to the
346 // elements member of a Rep struct. Using this invariant allows the storage of
347 // the arena pointer without an extra allocation in the constructor.
348 void* arena_or_elements_;
349
350 // Return pointer to elements array.
351 // pre-condition: the array must have been allocated.
352 Element* elements() const {
353 GOOGLE_DCHECK_GT(total_size_, 0);
354 // Because of above pre-condition this cast is safe.
355 return unsafe_elements();
356 }
357
358 // Return pointer to elements array if it exists otherwise either null or
359 // a invalid pointer is returned. This only happens for empty repeated fields,
360 // where you can't dereference this pointer anyway (it's empty).
361 Element* unsafe_elements() const {
362 return static_cast<Element*>(arena_or_elements_);
363 }
364
365 // Return pointer to the Rep struct.
366 // pre-condition: the Rep must have been allocated, ie elements() is safe.
367 Rep* rep() const {
368 char* addr = reinterpret_cast<char*>(elements()) - offsetof(Rep, elements);
369 return reinterpret_cast<Rep*>(addr);
370 }
371
372 friend class Arena;
373 typedef void InternalArenaConstructable_;
374
375 // Move the contents of |from| into |to|, possibly clobbering |from| in the
376 // process. For primitive types this is just a memcpy(), but it could be
377 // specialized for non-primitive types to, say, swap each element instead.
378 void MoveArray(Element* to, Element* from, int size);
379
380 // Copy the elements of |from| into |to|.
381 void CopyArray(Element* to, const Element* from, int size);
382
383 // Internal helper to delete all elements and deallocate the storage.
384 // If Element has a trivial destructor (for example, if it's a fundamental
385 // type, like int32), the loop will be removed by the optimizer.
386 void InternalDeallocate(Rep* rep, int size) {
387 if (rep != NULL) {
388 Element* e = &rep->elements[0];
389 Element* limit = &rep->elements[size];
390 for (; e < limit; e++) {
391 e->~Element();
392 }
393 if (rep->arena == NULL) {
394#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
395 const size_t bytes = size * sizeof(*e) + kRepHeaderSize;
396 ::operator delete(static_cast<void*>(rep), bytes);
397#else
398 ::operator delete(static_cast<void*>(rep));
399#endif
400 }
401 }
402 }
403
404 // This class is a performance wrapper around RepeatedField::Add(const T&)
405 // function. In general unless a RepeatedField is a local stack variable LLVM
406 // has a hard time optimizing Add. The machine code tends to be
407 // loop:
408 // mov %size, dword ptr [%repeated_field] // load
409 // cmp %size, dword ptr [%repeated_field + 4]
410 // jae fallback
411 // mov %buffer, qword ptr [%repeated_field + 8]
412 // mov dword [%buffer + %size * 4], %value
413 // inc %size // increment
414 // mov dword ptr [%repeated_field], %size // store
415 // jmp loop
416 //
417 // This puts a load/store in each iteration of the important loop variable
418 // size. It's a pretty bad compile that happens even in simple cases, but
419 // largely the presence of the fallback path disturbs the compilers mem-to-reg
420 // analysis.
421 //
422 // This class takes ownership of a repeated field for the duration of it's
423 // lifetime. The repeated field should not be accessed during this time, ie.
424 // only access through this class is allowed. This class should always be a
425 // function local stack variable. Intended use
426 //
427 // void AddSequence(const int* begin, const int* end, RepeatedField<int>* out)
428 // {
429 // RepeatedFieldAdder<int> adder(out); // Take ownership of out
430 // for (auto it = begin; it != end; ++it) {
431 // adder.Add(*it);
432 // }
433 // }
434 //
435 // Typically due to the fact adder is a local stack variable. The compiler
436 // will be successful in mem-to-reg transformation and the machine code will
437 // be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer + %size *
438 // 4], %val inc %size jmp loop
439 //
440 // The first version executes at 7 cycles per iteration while the second
441 // version near 1 or 2 cycles.
442 class FastAdder {
443 public:
444 explicit FastAdder(RepeatedField* rf) : repeated_field_(rf) {
445 if (kIsPod) {
446 index_ = repeated_field_->current_size_;
447 capacity_ = repeated_field_->total_size_;
448 buffer_ = repeated_field_->unsafe_elements();
449 }
450 }
451 ~FastAdder() {
452 if (kIsPod) repeated_field_->current_size_ = index_;
453 }
454
455 void Add(const Element& val) {
456 if (kIsPod) {
457 if (index_ == capacity_) {
458 repeated_field_->current_size_ = index_;
459 repeated_field_->Reserve(index_ + 1);
460 capacity_ = repeated_field_->total_size_;
461 buffer_ = repeated_field_->unsafe_elements();
462 }
463 buffer_[index_++] = val;
464 } else {
465 repeated_field_->Add(val);
466 }
467 }
468
469 private:
470 constexpr static bool kIsPod = std::is_pod<Element>::value;
471 RepeatedField* repeated_field_;
472 int index_;
473 int capacity_;
474 Element* buffer_;
475
476 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdder);
477 };
478
479 friend class TestRepeatedFieldHelper;
480 friend class ::google::protobuf::internal::ParseContext;
481};
482
483template <typename Element>
484const size_t RepeatedField<Element>::kRepHeaderSize =
485 reinterpret_cast<size_t>(&reinterpret_cast<Rep*>(16)->elements[0]) - 16;
486
487namespace internal {
488template <typename It>
489class RepeatedPtrIterator;
490template <typename It, typename VoidPtr>
491class RepeatedPtrOverPtrsIterator;
492} // namespace internal
493
494namespace internal {
495
496// This is a helper template to copy an array of elements efficiently when they
497// have a trivial copy constructor, and correctly otherwise. This really
498// shouldn't be necessary, but our compiler doesn't optimize std::copy very
499// effectively.
500template <typename Element,
501 bool HasTrivialCopy =
502 std::is_pod<Element>::value>
503struct ElementCopier {
504 void operator()(Element* to, const Element* from, int array_size);
505};
506
507} // namespace internal
508
509namespace internal {
510
511// type-traits helper for RepeatedPtrFieldBase: we only want to invoke
512// arena-related "copy if on different arena" behavior if the necessary methods
513// exist on the contained type. In particular, we rely on MergeFrom() existing
514// as a general proxy for the fact that a copy will work, and we also provide a
515// specific override for std::string*.
516template <typename T>
517struct TypeImplementsMergeBehaviorProbeForMergeFrom {
518 typedef char HasMerge;
519 typedef long HasNoMerge;
520
521 // We accept either of:
522 // - void MergeFrom(const T& other)
523 // - bool MergeFrom(const T& other)
524 //
525 // We mangle these names a bit to avoid compatibility issues in 'unclean'
526 // include environments that may have, e.g., "#define test ..." (yes, this
527 // exists).
528 template <typename U, typename RetType, RetType (U::*)(const U& arg)>
529 struct CheckType;
530 template <typename U>
531 static HasMerge Check(CheckType<U, void, &U::MergeFrom>*);
532 template <typename U>
533 static HasMerge Check(CheckType<U, bool, &U::MergeFrom>*);
534 template <typename U>
535 static HasNoMerge Check(...);
536
537 // Resolves to either std::true_type or std::false_type.
538 typedef std::integral_constant<bool,
539 (sizeof(Check<T>(0)) == sizeof(HasMerge))>
540 type;
541};
542
543template <typename T, typename = void>
544struct TypeImplementsMergeBehavior
545 : TypeImplementsMergeBehaviorProbeForMergeFrom<T> {};
546
547
548template <>
549struct TypeImplementsMergeBehavior<std::string> {
550 typedef std::true_type type;
551};
552
553template <typename T>
554struct IsMovable
555 : std::integral_constant<bool, std::is_move_constructible<T>::value &&
556 std::is_move_assignable<T>::value> {};
557
558// This is the common base class for RepeatedPtrFields. It deals only in void*
559// pointers. Users should not use this interface directly.
560//
561// The methods of this interface correspond to the methods of RepeatedPtrField,
562// but may have a template argument called TypeHandler. Its signature is:
563// class TypeHandler {
564// public:
565// typedef MyType Type;
566// static Type* New();
567// static Type* NewFromPrototype(const Type* prototype,
568// Arena* arena);
569// static void Delete(Type*);
570// static void Clear(Type*);
571// static void Merge(const Type& from, Type* to);
572//
573// // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
574// static int SpaceUsedLong(const Type&);
575// };
576class PROTOBUF_EXPORT RepeatedPtrFieldBase {
577 protected:
578 RepeatedPtrFieldBase();
579 explicit RepeatedPtrFieldBase(Arena* arena);
580 ~RepeatedPtrFieldBase() {
581#ifndef NDEBUG
582 // Try to trigger segfault / asan failure in non-opt builds. If arena_
583 // lifetime has ended before the destructor.
584 if (arena_) (void)arena_->SpaceAllocated();
585#endif
586 }
587
588 public:
589 // Must be called from destructor.
590 template <typename TypeHandler>
591 void Destroy();
592
593 protected:
594 bool empty() const;
595 int size() const;
596
597 template <typename TypeHandler>
598 const typename TypeHandler::Type& at(int index) const;
599 template <typename TypeHandler>
600 typename TypeHandler::Type& at(int index);
601
602 template <typename TypeHandler>
603 typename TypeHandler::Type* Mutable(int index);
604 template <typename TypeHandler>
605 void Delete(int index);
606 template <typename TypeHandler>
607 typename TypeHandler::Type* Add(typename TypeHandler::Type* prototype = NULL);
608
609 public:
610 // The next few methods are public so that they can be called from generated
611 // code when implicit weak fields are used, but they should never be called by
612 // application code.
613
614 template <typename TypeHandler>
615 const typename TypeHandler::Type& Get(int index) const;
616
617 // Creates and adds an element using the given prototype, without introducing
618 // a link-time dependency on the concrete message type. This method is used to
619 // implement implicit weak fields. The prototype may be NULL, in which case an
620 // ImplicitWeakMessage will be used as a placeholder.
621 MessageLite* AddWeak(const MessageLite* prototype);
622
623 template <typename TypeHandler>
624 void Clear();
625
626 template <typename TypeHandler>
627 void MergeFrom(const RepeatedPtrFieldBase& other);
628
629 inline void InternalSwap(RepeatedPtrFieldBase* other);
630
631 protected:
632 template <
633 typename TypeHandler,
634 typename std::enable_if<TypeHandler::Movable::value>::type* = nullptr>
635 void Add(typename TypeHandler::Type&& value);
636
637 template <typename TypeHandler>
638 void RemoveLast();
639 template <typename TypeHandler>
640 void CopyFrom(const RepeatedPtrFieldBase& other);
641
642 void CloseGap(int start, int num);
643
644 void Reserve(int new_size);
645
646 int Capacity() const;
647
648 // Used for constructing iterators.
649 void* const* raw_data() const;
650 void** raw_mutable_data() const;
651
652 template <typename TypeHandler>
653 typename TypeHandler::Type** mutable_data();
654 template <typename TypeHandler>
655 const typename TypeHandler::Type* const* data() const;
656
657 template <typename TypeHandler>
658 PROTOBUF_ALWAYS_INLINE void Swap(RepeatedPtrFieldBase* other);
659
660 void SwapElements(int index1, int index2);
661
662 template <typename TypeHandler>
663 size_t SpaceUsedExcludingSelfLong() const;
664
665 // Advanced memory management --------------------------------------
666
667 // Like Add(), but if there are no cleared objects to use, returns NULL.
668 template <typename TypeHandler>
669 typename TypeHandler::Type* AddFromCleared();
670
671 template <typename TypeHandler>
672 void AddAllocated(typename TypeHandler::Type* value) {
673 typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
674 AddAllocatedInternal<TypeHandler>(value, t);
675 }
676
677 template <typename TypeHandler>
678 void UnsafeArenaAddAllocated(typename TypeHandler::Type* value);
679
680 template <typename TypeHandler>
681 typename TypeHandler::Type* ReleaseLast() {
682 typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
683 return ReleaseLastInternal<TypeHandler>(t);
684 }
685
686 // Releases last element and returns it, but does not do out-of-arena copy.
687 // And just returns the raw pointer to the contained element in the arena.
688 template <typename TypeHandler>
689 typename TypeHandler::Type* UnsafeArenaReleaseLast();
690
691 int ClearedCount() const;
692 template <typename TypeHandler>
693 void AddCleared(typename TypeHandler::Type* value);
694 template <typename TypeHandler>
695 typename TypeHandler::Type* ReleaseCleared();
696
697 template <typename TypeHandler>
698 void AddAllocatedInternal(typename TypeHandler::Type* value, std::true_type);
699 template <typename TypeHandler>
700 void AddAllocatedInternal(typename TypeHandler::Type* value, std::false_type);
701
702 template <typename TypeHandler>
703 PROTOBUF_NOINLINE void AddAllocatedSlowWithCopy(
704 typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena);
705 template <typename TypeHandler>
706 PROTOBUF_NOINLINE void AddAllocatedSlowWithoutCopy(
707 typename TypeHandler::Type* value);
708
709 template <typename TypeHandler>
710 typename TypeHandler::Type* ReleaseLastInternal(std::true_type);
711 template <typename TypeHandler>
712 typename TypeHandler::Type* ReleaseLastInternal(std::false_type);
713
714 template <typename TypeHandler>
715 PROTOBUF_NOINLINE void SwapFallback(RepeatedPtrFieldBase* other);
716
717 inline Arena* GetArena() const { return arena_; }
718
719 private:
720 static constexpr int kInitialSize = 0;
721 // A few notes on internal representation:
722 //
723 // We use an indirected approach, with struct Rep, to keep
724 // sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
725 // was added, namely, 3 8-byte machine words on x86-64. An instance of Rep is
726 // allocated only when the repeated field is non-empty, and it is a
727 // dynamically-sized struct (the header is directly followed by elements[]).
728 // We place arena_ and current_size_ directly in the object to avoid cache
729 // misses due to the indirection, because these fields are checked frequently.
730 // Placing all fields directly in the RepeatedPtrFieldBase instance costs
731 // significant performance for memory-sensitive workloads.
732 Arena* arena_;
733 int current_size_;
734 int total_size_;
735 struct Rep {
736 int allocated_size;
737 void* elements[1];
738 };
739 static constexpr size_t kRepHeaderSize = sizeof(Rep) - sizeof(void*);
740 Rep* rep_;
741
742 template <typename TypeHandler>
743 static inline typename TypeHandler::Type* cast(void* element) {
744 return reinterpret_cast<typename TypeHandler::Type*>(element);
745 }
746 template <typename TypeHandler>
747 static inline const typename TypeHandler::Type* cast(const void* element) {
748 return reinterpret_cast<const typename TypeHandler::Type*>(element);
749 }
750
751 // Non-templated inner function to avoid code duplication. Takes a function
752 // pointer to the type-specific (templated) inner allocate/merge loop.
753 void MergeFromInternal(const RepeatedPtrFieldBase& other,
754 void (RepeatedPtrFieldBase::*inner_loop)(void**,
755 void**, int,
756 int));
757
758 template <typename TypeHandler>
759 void MergeFromInnerLoop(void** our_elems, void** other_elems, int length,
760 int already_allocated);
761
762 // Internal helper: extend array space if necessary to contain |extend_amount|
763 // more elements, and return a pointer to the element immediately following
764 // the old list of elements. This interface factors out common behavior from
765 // Reserve() and MergeFrom() to reduce code size. |extend_amount| must be > 0.
766 void** InternalExtend(int extend_amount);
767
768 // The reflection implementation needs to call protected methods directly,
769 // reinterpreting pointers as being to Message instead of a specific Message
770 // subclass.
771 friend class ::PROTOBUF_NAMESPACE_ID::Reflection;
772
773 // ExtensionSet stores repeated message extensions as
774 // RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to implement
775 // SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong()
776 // reinterpreting MessageLite as Message. ExtensionSet also needs to make use
777 // of AddFromCleared(), which is not part of the public interface.
778 friend class ExtensionSet;
779
780 // The MapFieldBase implementation needs to call protected methods directly,
781 // reinterpreting pointers as being to Message instead of a specific Message
782 // subclass.
783 friend class MapFieldBase;
784
785 // The table-driven MergePartialFromCodedStream implementation needs to
786 // operate on RepeatedPtrField<MessageLite>.
787 friend class MergePartialFromCodedStreamHelper;
788 friend class AccessorHelper;
789 template <typename T>
790 friend struct google::protobuf::WeakRepeatedPtrField;
791
792 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedPtrFieldBase);
793};
794
795template <typename GenericType>
796class GenericTypeHandler {
797 public:
798 typedef GenericType Type;
799 using Movable = IsMovable<GenericType>;
800
801 static inline GenericType* New(Arena* arena) {
802 return Arena::CreateMaybeMessage<Type>(arena);
803 }
804 static inline GenericType* New(Arena* arena, GenericType&& value) {
805 return Arena::Create<GenericType>(arena, std::move(value));
806 }
807 static inline GenericType* NewFromPrototype(const GenericType* prototype,
808 Arena* arena = NULL);
809 static inline void Delete(GenericType* value, Arena* arena) {
810 if (arena == NULL) {
811 delete value;
812 }
813 }
814 static inline Arena* GetArena(GenericType* value) {
815 return Arena::GetArena<Type>(value);
816 }
817 static inline void* GetMaybeArenaPointer(GenericType* value) {
818 return Arena::GetArena<Type>(value);
819 }
820
821 static inline void Clear(GenericType* value) { value->Clear(); }
822 PROTOBUF_NOINLINE
823 static void Merge(const GenericType& from, GenericType* to);
824 static inline size_t SpaceUsedLong(const GenericType& value) {
825 return value.SpaceUsedLong();
826 }
827};
828
829template <typename GenericType>
830GenericType* GenericTypeHandler<GenericType>::NewFromPrototype(
831 const GenericType* /* prototype */, Arena* arena) {
832 return New(arena);
833}
834template <typename GenericType>
835void GenericTypeHandler<GenericType>::Merge(const GenericType& from,
836 GenericType* to) {
837 to->MergeFrom(from);
838}
839
840// NewFromPrototype() and Merge() are not defined inline here, as we will need
841// to do a virtual function dispatch anyways to go from Message* to call
842// New/Merge.
843template <>
844MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
845 const MessageLite* prototype, Arena* arena);
846template <>
847inline Arena* GenericTypeHandler<MessageLite>::GetArena(MessageLite* value) {
848 return value->GetArena();
849}
850template <>
851inline void* GenericTypeHandler<MessageLite>::GetMaybeArenaPointer(
852 MessageLite* value) {
853 return value->GetMaybeArenaPointer();
854}
855template <>
856void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
857 MessageLite* to);
858template <>
859inline void GenericTypeHandler<std::string>::Clear(std::string* value) {
860 value->clear();
861}
862template <>
863void GenericTypeHandler<std::string>::Merge(const std::string& from,
864 std::string* to);
865
866// Message specialization bodies defined in message.cc. This split is necessary
867// to allow proto2-lite (which includes this header) to be independent of
868// Message.
869template <>
870PROTOBUF_EXPORT Message* GenericTypeHandler<Message>::NewFromPrototype(
871 const Message* prototype, Arena* arena);
872template <>
873PROTOBUF_EXPORT Arena* GenericTypeHandler<Message>::GetArena(Message* value);
874template <>
875PROTOBUF_EXPORT void* GenericTypeHandler<Message>::GetMaybeArenaPointer(
876 Message* value);
877
878class StringTypeHandler {
879 public:
880 typedef std::string Type;
881 using Movable = IsMovable<Type>;
882
883 static inline std::string* New(Arena* arena) {
884 return Arena::Create<std::string>(arena);
885 }
886 static inline std::string* New(Arena* arena, std::string&& value) {
887 return Arena::Create<std::string>(arena, args: std::move(value));
888 }
889 static inline std::string* NewFromPrototype(const std::string*,
890 Arena* arena) {
891 return New(arena);
892 }
893 static inline Arena* GetArena(std::string*) { return NULL; }
894 static inline void* GetMaybeArenaPointer(std::string* /* value */) {
895 return NULL;
896 }
897 static inline void Delete(std::string* value, Arena* arena) {
898 if (arena == NULL) {
899 delete value;
900 }
901 }
902 static inline void Clear(std::string* value) { value->clear(); }
903 static inline void Merge(const std::string& from, std::string* to) {
904 *to = from;
905 }
906 static size_t SpaceUsedLong(const std::string& value) {
907 return sizeof(value) + StringSpaceUsedExcludingSelfLong(str: value);
908 }
909};
910
911} // namespace internal
912
913// RepeatedPtrField is like RepeatedField, but used for repeated strings or
914// Messages.
915template <typename Element>
916class RepeatedPtrField final : private internal::RepeatedPtrFieldBase {
917 public:
918 RepeatedPtrField();
919 explicit RepeatedPtrField(Arena* arena);
920
921 RepeatedPtrField(const RepeatedPtrField& other);
922 template <typename Iter>
923 RepeatedPtrField(Iter begin, const Iter& end);
924 ~RepeatedPtrField();
925
926 RepeatedPtrField& operator=(const RepeatedPtrField& other);
927
928 RepeatedPtrField(RepeatedPtrField&& other) noexcept;
929 RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept;
930
931 bool empty() const;
932 int size() const;
933
934 const Element& Get(int index) const;
935 Element* Mutable(int index);
936 Element* Add();
937 void Add(Element&& value);
938
939 const Element& operator[](int index) const { return Get(index); }
940 Element& operator[](int index) { return *Mutable(index); }
941
942 const Element& at(int index) const;
943 Element& at(int index);
944
945 // Remove the last element in the array.
946 // Ownership of the element is retained by the array.
947 void RemoveLast();
948
949 // Delete elements with indices in the range [start .. start+num-1].
950 // Caution: implementation moves all elements with indices [start+num .. ].
951 // Calling this routine inside a loop can cause quadratic behavior.
952 void DeleteSubrange(int start, int num);
953
954 void Clear();
955 void MergeFrom(const RepeatedPtrField& other);
956 void CopyFrom(const RepeatedPtrField& other);
957
958 // Reserve space to expand the field to at least the given size. This only
959 // resizes the pointer array; it doesn't allocate any objects. If the
960 // array is grown, it will always be at least doubled in size.
961 void Reserve(int new_size);
962
963 int Capacity() const;
964
965 // Gets the underlying array. This pointer is possibly invalidated by
966 // any add or remove operation.
967 Element** mutable_data();
968 const Element* const* data() const;
969
970 // Swap entire contents with "other". If they are on separate arenas, then
971 // copies data.
972 void Swap(RepeatedPtrField* other);
973
974 // Swap entire contents with "other". Caller should guarantee that either both
975 // fields are on the same arena or both are on the heap. Swapping between
976 // different arenas with this function is disallowed and is caught via
977 // GOOGLE_DCHECK.
978 void UnsafeArenaSwap(RepeatedPtrField* other);
979
980 // Swap two elements.
981 void SwapElements(int index1, int index2);
982
983 // STL-like iterator support
984 typedef internal::RepeatedPtrIterator<Element> iterator;
985 typedef internal::RepeatedPtrIterator<const Element> const_iterator;
986 typedef Element value_type;
987 typedef value_type& reference;
988 typedef const value_type& const_reference;
989 typedef value_type* pointer;
990 typedef const value_type* const_pointer;
991 typedef int size_type;
992 typedef ptrdiff_t difference_type;
993
994 iterator begin();
995 const_iterator begin() const;
996 const_iterator cbegin() const;
997 iterator end();
998 const_iterator end() const;
999 const_iterator cend() const;
1000
1001 // Reverse iterator support
1002 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
1003 typedef std::reverse_iterator<iterator> reverse_iterator;
1004 reverse_iterator rbegin() { return reverse_iterator(end()); }
1005 const_reverse_iterator rbegin() const {
1006 return const_reverse_iterator(end());
1007 }
1008 reverse_iterator rend() { return reverse_iterator(begin()); }
1009 const_reverse_iterator rend() const {
1010 return const_reverse_iterator(begin());
1011 }
1012
1013 // Custom STL-like iterator that iterates over and returns the underlying
1014 // pointers to Element rather than Element itself.
1015 typedef internal::RepeatedPtrOverPtrsIterator<Element*, void*>
1016 pointer_iterator;
1017 typedef internal::RepeatedPtrOverPtrsIterator<const Element* const,
1018 const void* const>
1019 const_pointer_iterator;
1020 pointer_iterator pointer_begin();
1021 const_pointer_iterator pointer_begin() const;
1022 pointer_iterator pointer_end();
1023 const_pointer_iterator pointer_end() const;
1024
1025 // Returns (an estimate of) the number of bytes used by the repeated field,
1026 // excluding sizeof(*this).
1027 size_t SpaceUsedExcludingSelfLong() const;
1028
1029 int SpaceUsedExcludingSelf() const {
1030 return internal::ToIntSize(size: SpaceUsedExcludingSelfLong());
1031 }
1032
1033 // Advanced memory management --------------------------------------
1034 // When hardcore memory management becomes necessary -- as it sometimes
1035 // does here at Google -- the following methods may be useful.
1036
1037 // Add an already-allocated object, passing ownership to the
1038 // RepeatedPtrField.
1039 //
1040 // Note that some special behavior occurs with respect to arenas:
1041 //
1042 // (i) if this field holds submessages, the new submessage will be copied if
1043 // the original is in an arena and this RepeatedPtrField is either in a
1044 // different arena, or on the heap.
1045 // (ii) if this field holds strings, the passed-in string *must* be
1046 // heap-allocated, not arena-allocated. There is no way to dynamically check
1047 // this at runtime, so User Beware.
1048 void AddAllocated(Element* value);
1049
1050 // Remove the last element and return it, passing ownership to the caller.
1051 // Requires: size() > 0
1052 //
1053 // If this RepeatedPtrField is on an arena, an object copy is required to pass
1054 // ownership back to the user (for compatible semantics). Use
1055 // UnsafeArenaReleaseLast() if this behavior is undesired.
1056 Element* ReleaseLast();
1057
1058 // Add an already-allocated object, skipping arena-ownership checks. The user
1059 // must guarantee that the given object is in the same arena as this
1060 // RepeatedPtrField.
1061 // It is also useful in legacy code that uses temporary ownership to avoid
1062 // copies. Example:
1063 // RepeatedPtrField<T> temp_field;
1064 // temp_field.AddAllocated(new T);
1065 // ... // Do something with temp_field
1066 // temp_field.ExtractSubrange(0, temp_field.size(), nullptr);
1067 // If you put temp_field on the arena this fails, because the ownership
1068 // transfers to the arena at the "AddAllocated" call and is not released
1069 // anymore causing a double delete. UnsafeArenaAddAllocated prevents this.
1070 void UnsafeArenaAddAllocated(Element* value);
1071
1072 // Remove the last element and return it. Works only when operating on an
1073 // arena. The returned pointer is to the original object in the arena, hence
1074 // has the arena's lifetime.
1075 // Requires: current_size_ > 0
1076 Element* UnsafeArenaReleaseLast();
1077
1078 // Extract elements with indices in the range "[start .. start+num-1]".
1079 // The caller assumes ownership of the extracted elements and is responsible
1080 // for deleting them when they are no longer needed.
1081 // If "elements" is non-NULL, then pointers to the extracted elements
1082 // are stored in "elements[0 .. num-1]" for the convenience of the caller.
1083 // If "elements" is NULL, then the caller must use some other mechanism
1084 // to perform any further operations (like deletion) on these elements.
1085 // Caution: implementation also moves elements with indices [start+num ..].
1086 // Calling this routine inside a loop can cause quadratic behavior.
1087 //
1088 // Memory copying behavior is identical to ReleaseLast(), described above: if
1089 // this RepeatedPtrField is on an arena, an object copy is performed for each
1090 // returned element, so that all returned element pointers are to
1091 // heap-allocated copies. If this copy is not desired, the user should call
1092 // UnsafeArenaExtractSubrange().
1093 void ExtractSubrange(int start, int num, Element** elements);
1094
1095 // Identical to ExtractSubrange() described above, except that when this
1096 // repeated field is on an arena, no object copies are performed. Instead, the
1097 // raw object pointers are returned. Thus, if on an arena, the returned
1098 // objects must not be freed, because they will not be heap-allocated objects.
1099 void UnsafeArenaExtractSubrange(int start, int num, Element** elements);
1100
1101 // When elements are removed by calls to RemoveLast() or Clear(), they
1102 // are not actually freed. Instead, they are cleared and kept so that
1103 // they can be reused later. This can save lots of CPU time when
1104 // repeatedly reusing a protocol message for similar purposes.
1105 //
1106 // Hardcore programs may choose to manipulate these cleared objects
1107 // to better optimize memory management using the following routines.
1108
1109 // Get the number of cleared objects that are currently being kept
1110 // around for reuse.
1111 int ClearedCount() const;
1112 // Add an element to the pool of cleared objects, passing ownership to
1113 // the RepeatedPtrField. The element must be cleared prior to calling
1114 // this method.
1115 //
1116 // This method cannot be called when the repeated field is on an arena or when
1117 // |value| is; both cases will trigger a GOOGLE_DCHECK-failure.
1118 void AddCleared(Element* value);
1119 // Remove a single element from the cleared pool and return it, passing
1120 // ownership to the caller. The element is guaranteed to be cleared.
1121 // Requires: ClearedCount() > 0
1122 //
1123 //
1124 // This method cannot be called when the repeated field is on an arena; doing
1125 // so will trigger a GOOGLE_DCHECK-failure.
1126 Element* ReleaseCleared();
1127
1128 // Removes the element referenced by position.
1129 //
1130 // Returns an iterator to the element immediately following the removed
1131 // element.
1132 //
1133 // Invalidates all iterators at or after the removed element, including end().
1134 iterator erase(const_iterator position);
1135
1136 // Removes the elements in the range [first, last).
1137 //
1138 // Returns an iterator to the element immediately following the removed range.
1139 //
1140 // Invalidates all iterators at or after the removed range, including end().
1141 iterator erase(const_iterator first, const_iterator last);
1142
1143 // Gets the arena on which this RepeatedPtrField stores its elements.
1144 inline Arena* GetArena() const;
1145
1146 // For internal use only.
1147 //
1148 // This is public due to it being called by generated code.
1149 void InternalSwap(RepeatedPtrField* other) {
1150 internal::RepeatedPtrFieldBase::InternalSwap(other);
1151 }
1152
1153 private:
1154 // Note: RepeatedPtrField SHOULD NOT be subclassed by users.
1155 class TypeHandler;
1156
1157 // Implementations for ExtractSubrange(). The copying behavior must be
1158 // included only if the type supports the necessary operations (e.g.,
1159 // MergeFrom()), so we must resolve this at compile time. ExtractSubrange()
1160 // uses SFINAE to choose one of the below implementations.
1161 void ExtractSubrangeInternal(int start, int num, Element** elements,
1162 std::true_type);
1163 void ExtractSubrangeInternal(int start, int num, Element** elements,
1164 std::false_type);
1165
1166 friend class Arena;
1167
1168 template <typename T>
1169 friend struct WeakRepeatedPtrField;
1170
1171 typedef void InternalArenaConstructable_;
1172
1173};
1174
1175// implementation ====================================================
1176
1177template <typename Element>
1178inline RepeatedField<Element>::RepeatedField()
1179 : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {}
1180
1181template <typename Element>
1182inline RepeatedField<Element>::RepeatedField(Arena* arena)
1183 : current_size_(0), total_size_(0), arena_or_elements_(arena) {}
1184
1185template <typename Element>
1186inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
1187 : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
1188 if (other.current_size_ != 0) {
1189 Reserve(new_size: other.size());
1190 AddNAlreadyReserved(elements: other.size());
1191 CopyArray(to: Mutable(index: 0), from: &other.Get(0), size: other.size());
1192 }
1193}
1194
1195template <typename Element>
1196template <typename Iter>
1197RepeatedField<Element>::RepeatedField(Iter begin, const Iter& end)
1198 : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
1199 Add(begin, end);
1200}
1201
1202template <typename Element>
1203RepeatedField<Element>::~RepeatedField() {
1204 if (total_size_ > 0) {
1205 InternalDeallocate(rep: rep(), size: total_size_);
1206 }
1207}
1208
1209template <typename Element>
1210inline RepeatedField<Element>& RepeatedField<Element>::operator=(
1211 const RepeatedField& other) {
1212 if (this != &other) CopyFrom(other);
1213 return *this;
1214}
1215
1216template <typename Element>
1217inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept
1218 : RepeatedField() {
1219 // We don't just call Swap(&other) here because it would perform 3 copies if
1220 // other is on an arena. This field can't be on an arena because arena
1221 // construction always uses the Arena* accepting constructor.
1222 if (other.GetArena()) {
1223 CopyFrom(other);
1224 } else {
1225 InternalSwap(other: &other);
1226 }
1227}
1228
1229template <typename Element>
1230inline RepeatedField<Element>& RepeatedField<Element>::operator=(
1231 RepeatedField&& other) noexcept {
1232 // We don't just call Swap(&other) here because it would perform 3 copies if
1233 // the two fields are on different arenas.
1234 if (this != &other) {
1235 if (this->GetArena() != other.GetArena()) {
1236 CopyFrom(other);
1237 } else {
1238 InternalSwap(other: &other);
1239 }
1240 }
1241 return *this;
1242}
1243
1244template <typename Element>
1245inline bool RepeatedField<Element>::empty() const {
1246 return current_size_ == 0;
1247}
1248
1249template <typename Element>
1250inline int RepeatedField<Element>::size() const {
1251 return current_size_;
1252}
1253
1254template <typename Element>
1255inline int RepeatedField<Element>::Capacity() const {
1256 return total_size_;
1257}
1258
1259template <typename Element>
1260inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
1261 GOOGLE_DCHECK_LT(current_size_, total_size_);
1262 elements()[current_size_++] = value;
1263}
1264
1265template <typename Element>
1266inline Element* RepeatedField<Element>::AddAlreadyReserved() {
1267 GOOGLE_DCHECK_LT(current_size_, total_size_);
1268 return &elements()[current_size_++];
1269}
1270
1271template <typename Element>
1272inline Element* RepeatedField<Element>::AddNAlreadyReserved(int n) {
1273 GOOGLE_DCHECK_GE(total_size_ - current_size_, n)
1274 << total_size_ << ", " << current_size_;
1275 // Warning: sometimes people call this when n == 0 and total_size_ == 0. In
1276 // this case the return pointer points to a zero size array (n == 0). Hence
1277 // we can just use unsafe_elements(), because the user cannot dereference the
1278 // pointer anyway.
1279 Element* ret = unsafe_elements() + current_size_;
1280 current_size_ += n;
1281 return ret;
1282}
1283
1284template <typename Element>
1285inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
1286 GOOGLE_DCHECK_GE(new_size, 0);
1287 if (new_size > current_size_) {
1288 Reserve(new_size);
1289 std::fill(&elements()[current_size_], &elements()[new_size], value);
1290 }
1291 current_size_ = new_size;
1292}
1293
1294template <typename Element>
1295inline const Element& RepeatedField<Element>::Get(int index) const {
1296 GOOGLE_DCHECK_GE(index, 0);
1297 GOOGLE_DCHECK_LT(index, current_size_);
1298 return elements()[index];
1299}
1300
1301template <typename Element>
1302inline const Element& RepeatedField<Element>::at(int index) const {
1303 GOOGLE_CHECK_GE(index, 0);
1304 GOOGLE_CHECK_LT(index, current_size_);
1305 return elements()[index];
1306}
1307
1308template <typename Element>
1309inline Element& RepeatedField<Element>::at(int index) {
1310 GOOGLE_CHECK_GE(index, 0);
1311 GOOGLE_CHECK_LT(index, current_size_);
1312 return elements()[index];
1313}
1314
1315template <typename Element>
1316inline Element* RepeatedField<Element>::Mutable(int index) {
1317 GOOGLE_DCHECK_GE(index, 0);
1318 GOOGLE_DCHECK_LT(index, current_size_);
1319 return &elements()[index];
1320}
1321
1322template <typename Element>
1323inline void RepeatedField<Element>::Set(int index, const Element& value) {
1324 GOOGLE_DCHECK_GE(index, 0);
1325 GOOGLE_DCHECK_LT(index, current_size_);
1326 elements()[index] = value;
1327}
1328
1329template <typename Element>
1330inline void RepeatedField<Element>::Add(const Element& value) {
1331 uint32 size = current_size_;
1332 if (static_cast<int>(size) == total_size_) Reserve(new_size: total_size_ + 1);
1333 elements()[size] = value;
1334 current_size_ = size + 1;
1335}
1336
1337template <typename Element>
1338inline Element* RepeatedField<Element>::Add() {
1339 uint32 size = current_size_;
1340 if (static_cast<int>(size) == total_size_) Reserve(new_size: total_size_ + 1);
1341 auto ptr = &elements()[size];
1342 current_size_ = size + 1;
1343 return ptr;
1344}
1345
1346template <typename Element>
1347template <typename Iter>
1348inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
1349 int reserve = internal::CalculateReserve(begin, end);
1350 if (reserve != -1) {
1351 if (reserve == 0) {
1352 return;
1353 }
1354
1355 Reserve(new_size: reserve + size());
1356 // TODO(ckennelly): The compiler loses track of the buffer freshly
1357 // allocated by Reserve() by the time we call elements, so it cannot
1358 // guarantee that elements does not alias [begin(), end()).
1359 //
1360 // If restrict is available, annotating the pointer obtained from elements()
1361 // causes this to lower to memcpy instead of memmove.
1362 std::copy(begin, end, elements() + size());
1363 current_size_ = reserve + size();
1364 } else {
1365 FastAdder fast_adder(this);
1366 for (; begin != end; ++begin) fast_adder.Add(*begin);
1367 }
1368}
1369
1370template <typename Element>
1371inline void RepeatedField<Element>::RemoveLast() {
1372 GOOGLE_DCHECK_GT(current_size_, 0);
1373 current_size_--;
1374}
1375
1376template <typename Element>
1377void RepeatedField<Element>::ExtractSubrange(int start, int num,
1378 Element* elements) {
1379 GOOGLE_DCHECK_GE(start, 0);
1380 GOOGLE_DCHECK_GE(num, 0);
1381 GOOGLE_DCHECK_LE(start + num, this->current_size_);
1382
1383 // Save the values of the removed elements if requested.
1384 if (elements != NULL) {
1385 for (int i = 0; i < num; ++i) elements[i] = this->Get(i + start);
1386 }
1387
1388 // Slide remaining elements down to fill the gap.
1389 if (num > 0) {
1390 for (int i = start + num; i < this->current_size_; ++i)
1391 this->Set(i - num, this->Get(i));
1392 this->Truncate(this->current_size_ - num);
1393 }
1394}
1395
1396template <typename Element>
1397inline void RepeatedField<Element>::Clear() {
1398 current_size_ = 0;
1399}
1400
1401template <typename Element>
1402inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
1403 GOOGLE_DCHECK_NE(&other, this);
1404 if (other.current_size_ != 0) {
1405 int existing_size = size();
1406 Reserve(new_size: existing_size + other.size());
1407 AddNAlreadyReserved(n: other.size());
1408 CopyArray(to: Mutable(index: existing_size), from: &other.Get(0), size: other.size());
1409 }
1410}
1411
1412template <typename Element>
1413inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
1414 if (&other == this) return;
1415 Clear();
1416 MergeFrom(other);
1417}
1418
1419template <typename Element>
1420inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
1421 const_iterator position) {
1422 return erase(position, position + 1);
1423}
1424
1425template <typename Element>
1426inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
1427 const_iterator first, const_iterator last) {
1428 size_type first_offset = first - cbegin();
1429 if (first != last) {
1430 Truncate(new_size: std::copy(last, cend(), begin() + first_offset) - cbegin());
1431 }
1432 return begin() + first_offset;
1433}
1434
1435template <typename Element>
1436inline Element* RepeatedField<Element>::mutable_data() {
1437 return unsafe_elements();
1438}
1439
1440template <typename Element>
1441inline const Element* RepeatedField<Element>::data() const {
1442 return unsafe_elements();
1443}
1444
1445template <typename Element>
1446inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) {
1447 GOOGLE_DCHECK(this != other);
1448 GOOGLE_DCHECK(GetArena() == other->GetArena());
1449
1450 // Swap all fields at once.
1451 static_assert(std::is_standard_layout<RepeatedField<Element>>::value,
1452 "offsetof() requires standard layout before c++17");
1453 internal::memswap<offsetof(RepeatedField, arena_or_elements_) +
1454 sizeof(this->arena_or_elements_) -
1455 offsetof(RepeatedField, current_size_)>(
1456 reinterpret_cast<char*>(this) + offsetof(RepeatedField, current_size_),
1457 reinterpret_cast<char*>(other) + offsetof(RepeatedField, current_size_));
1458}
1459
1460template <typename Element>
1461void RepeatedField<Element>::Swap(RepeatedField* other) {
1462 if (this == other) return;
1463 if (GetArena() == other->GetArena()) {
1464 InternalSwap(other);
1465 } else {
1466 RepeatedField<Element> temp(other->GetArena());
1467 temp.MergeFrom(*this);
1468 CopyFrom(other: *other);
1469 other->UnsafeArenaSwap(&temp);
1470 }
1471}
1472
1473template <typename Element>
1474void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
1475 if (this == other) return;
1476 InternalSwap(other);
1477}
1478
1479template <typename Element>
1480void RepeatedField<Element>::SwapElements(int index1, int index2) {
1481 using std::swap; // enable ADL with fallback
1482 swap(elements()[index1], elements()[index2]);
1483}
1484
1485template <typename Element>
1486inline typename RepeatedField<Element>::iterator
1487RepeatedField<Element>::begin() {
1488 return unsafe_elements();
1489}
1490template <typename Element>
1491inline typename RepeatedField<Element>::const_iterator
1492RepeatedField<Element>::begin() const {
1493 return unsafe_elements();
1494}
1495template <typename Element>
1496inline typename RepeatedField<Element>::const_iterator
1497RepeatedField<Element>::cbegin() const {
1498 return unsafe_elements();
1499}
1500template <typename Element>
1501inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end() {
1502 return unsafe_elements() + current_size_;
1503}
1504template <typename Element>
1505inline typename RepeatedField<Element>::const_iterator
1506RepeatedField<Element>::end() const {
1507 return unsafe_elements() + current_size_;
1508}
1509template <typename Element>
1510inline typename RepeatedField<Element>::const_iterator
1511RepeatedField<Element>::cend() const {
1512 return unsafe_elements() + current_size_;
1513}
1514
1515template <typename Element>
1516inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
1517 return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0;
1518}
1519
1520namespace internal {
1521// Returns the new size for a reserved field based on its 'total_size' and the
1522// requested 'new_size'. The result is clamped to the closed interval:
1523// [internal::kMinRepeatedFieldAllocationSize,
1524// std::numeric_limits<int>::max()]
1525// Requires:
1526// new_size > total_size &&
1527// (total_size == 0 ||
1528// total_size >= kRepeatedFieldLowerClampLimit)
1529inline int CalculateReserveSize(int total_size, int new_size) {
1530 if (new_size < kRepeatedFieldLowerClampLimit) {
1531 // Clamp to smallest allowed size.
1532 return kRepeatedFieldLowerClampLimit;
1533 }
1534 if (total_size < kRepeatedFieldUpperClampLimit) {
1535 return std::max(a: total_size * 2, b: new_size);
1536 } else {
1537 // Clamp to largest allowed size.
1538 GOOGLE_DCHECK_GT(new_size, kRepeatedFieldUpperClampLimit);
1539 return std::numeric_limits<int>::max();
1540 }
1541}
1542} // namespace internal
1543
1544// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
1545// amount of code bloat.
1546template <typename Element>
1547void RepeatedField<Element>::Reserve(int new_size) {
1548 if (total_size_ >= new_size) return;
1549 Rep* old_rep = total_size_ > 0 ? rep() : NULL;
1550 Rep* new_rep;
1551 Arena* arena = GetArena();
1552 new_size = internal::CalculateReserveSize(total_size: total_size_, new_size);
1553 GOOGLE_DCHECK_LE(
1554 static_cast<size_t>(new_size),
1555 (std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element))
1556 << "Requested size is too large to fit into size_t.";
1557 size_t bytes =
1558 kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
1559 if (arena == NULL) {
1560 new_rep = static_cast<Rep*>(::operator new(bytes));
1561 } else {
1562 new_rep = reinterpret_cast<Rep*>(Arena::CreateArray<char>(arena, num_elements: bytes));
1563 }
1564 new_rep->arena = arena;
1565 int old_total_size = total_size_;
1566 // Already known: new_size >= internal::kMinRepeatedFieldAllocationSize
1567 // Maintain invariant:
1568 // total_size_ == 0 ||
1569 // total_size_ >= internal::kMinRepeatedFieldAllocationSize
1570 total_size_ = new_size;
1571 arena_or_elements_ = new_rep->elements;
1572 // Invoke placement-new on newly allocated elements. We shouldn't have to do
1573 // this, since Element is supposed to be POD, but a previous version of this
1574 // code allocated storage with "new Element[size]" and some code uses
1575 // RepeatedField with non-POD types, relying on constructor invocation. If
1576 // Element has a trivial constructor (e.g., int32), gcc (tested with -O2)
1577 // completely removes this loop because the loop body is empty, so this has no
1578 // effect unless its side-effects are required for correctness.
1579 // Note that we do this before MoveArray() below because Element's copy
1580 // assignment implementation will want an initialized instance first.
1581 Element* e = &elements()[0];
1582 Element* limit = e + total_size_;
1583 for (; e < limit; e++) {
1584 new (e) Element;
1585 }
1586 if (current_size_ > 0) {
1587 MoveArray(to: &elements()[0], from: old_rep->elements, size: current_size_);
1588 }
1589
1590 // Likewise, we need to invoke destructors on the old array.
1591 InternalDeallocate(rep: old_rep, size: old_total_size);
1592
1593}
1594
1595template <typename Element>
1596inline void RepeatedField<Element>::Truncate(int new_size) {
1597 GOOGLE_DCHECK_LE(new_size, current_size_);
1598 if (current_size_ > 0) {
1599 current_size_ = new_size;
1600 }
1601}
1602
1603template <typename Element>
1604inline void RepeatedField<Element>::MoveArray(Element* to, Element* from,
1605 int array_size) {
1606 CopyArray(to, from, size: array_size);
1607}
1608
1609template <typename Element>
1610inline void RepeatedField<Element>::CopyArray(Element* to, const Element* from,
1611 int array_size) {
1612 internal::ElementCopier<Element>()(to, from, array_size);
1613}
1614
1615namespace internal {
1616
1617template <typename Element, bool HasTrivialCopy>
1618void ElementCopier<Element, HasTrivialCopy>::operator()(Element* to,
1619 const Element* from,
1620 int array_size) {
1621 std::copy(from, from + array_size, to);
1622}
1623
1624template <typename Element>
1625struct ElementCopier<Element, true> {
1626 void operator()(Element* to, const Element* from, int array_size) {
1627 memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element));
1628 }
1629};
1630
1631} // namespace internal
1632
1633
1634// -------------------------------------------------------------------
1635
1636namespace internal {
1637
1638inline RepeatedPtrFieldBase::RepeatedPtrFieldBase()
1639 : arena_(NULL), current_size_(0), total_size_(0), rep_(NULL) {}
1640
1641inline RepeatedPtrFieldBase::RepeatedPtrFieldBase(Arena* arena)
1642 : arena_(arena), current_size_(0), total_size_(0), rep_(NULL) {}
1643
1644template <typename TypeHandler>
1645void RepeatedPtrFieldBase::Destroy() {
1646 if (rep_ != NULL && arena_ == NULL) {
1647 int n = rep_->allocated_size;
1648 void* const* elements = rep_->elements;
1649 for (int i = 0; i < n; i++) {
1650 TypeHandler::Delete(cast<TypeHandler>(elements[i]), NULL);
1651 }
1652#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
1653 const size_t size = total_size_ * sizeof(elements[0]) + kRepHeaderSize;
1654 ::operator delete(static_cast<void*>(rep_), size);
1655#else
1656 ::operator delete(static_cast<void*>(rep_));
1657#endif
1658 }
1659 rep_ = NULL;
1660}
1661
1662template <typename TypeHandler>
1663inline void RepeatedPtrFieldBase::Swap(RepeatedPtrFieldBase* other) {
1664 if (other->GetArena() == GetArena()) {
1665 InternalSwap(other);
1666 } else {
1667 SwapFallback<TypeHandler>(other);
1668 }
1669}
1670
1671template <typename TypeHandler>
1672void RepeatedPtrFieldBase::SwapFallback(RepeatedPtrFieldBase* other) {
1673 GOOGLE_DCHECK(other->GetArena() != GetArena());
1674
1675 // Copy semantics in this case. We try to improve efficiency by placing the
1676 // temporary on |other|'s arena so that messages are copied twice rather than
1677 // three times.
1678 RepeatedPtrFieldBase temp(other->GetArena());
1679 temp.MergeFrom<TypeHandler>(*this);
1680 this->Clear<TypeHandler>();
1681 this->MergeFrom<TypeHandler>(*other);
1682 other->InternalSwap(other: &temp);
1683 temp.Destroy<TypeHandler>(); // Frees rep_ if `other` had no arena.
1684}
1685
1686inline bool RepeatedPtrFieldBase::empty() const { return current_size_ == 0; }
1687
1688inline int RepeatedPtrFieldBase::size() const { return current_size_; }
1689
1690template <typename TypeHandler>
1691inline const typename TypeHandler::Type& RepeatedPtrFieldBase::Get(
1692 int index) const {
1693 GOOGLE_DCHECK_GE(index, 0);
1694 GOOGLE_DCHECK_LT(index, current_size_);
1695 return *cast<TypeHandler>(rep_->elements[index]);
1696}
1697
1698template <typename TypeHandler>
1699inline const typename TypeHandler::Type& RepeatedPtrFieldBase::at(
1700 int index) const {
1701 GOOGLE_CHECK_GE(index, 0);
1702 GOOGLE_CHECK_LT(index, current_size_);
1703 return *cast<TypeHandler>(rep_->elements[index]);
1704}
1705
1706template <typename TypeHandler>
1707inline typename TypeHandler::Type& RepeatedPtrFieldBase::at(int index) {
1708 GOOGLE_CHECK_GE(index, 0);
1709 GOOGLE_CHECK_LT(index, current_size_);
1710 return *cast<TypeHandler>(rep_->elements[index]);
1711}
1712
1713template <typename TypeHandler>
1714inline typename TypeHandler::Type* RepeatedPtrFieldBase::Mutable(int index) {
1715 GOOGLE_DCHECK_GE(index, 0);
1716 GOOGLE_DCHECK_LT(index, current_size_);
1717 return cast<TypeHandler>(rep_->elements[index]);
1718}
1719
1720template <typename TypeHandler>
1721inline void RepeatedPtrFieldBase::Delete(int index) {
1722 GOOGLE_DCHECK_GE(index, 0);
1723 GOOGLE_DCHECK_LT(index, current_size_);
1724 TypeHandler::Delete(cast<TypeHandler>(rep_->elements[index]), arena_);
1725}
1726
1727template <typename TypeHandler>
1728inline typename TypeHandler::Type* RepeatedPtrFieldBase::Add(
1729 typename TypeHandler::Type* prototype) {
1730 if (rep_ != NULL && current_size_ < rep_->allocated_size) {
1731 return cast<TypeHandler>(rep_->elements[current_size_++]);
1732 }
1733 if (!rep_ || rep_->allocated_size == total_size_) {
1734 Reserve(new_size: total_size_ + 1);
1735 }
1736 ++rep_->allocated_size;
1737 typename TypeHandler::Type* result =
1738 TypeHandler::NewFromPrototype(prototype, arena_);
1739 rep_->elements[current_size_++] = result;
1740 return result;
1741}
1742
1743template <typename TypeHandler,
1744 typename std::enable_if<TypeHandler::Movable::value>::type*>
1745inline void RepeatedPtrFieldBase::Add(typename TypeHandler::Type&& value) {
1746 if (rep_ != NULL && current_size_ < rep_->allocated_size) {
1747 *cast<TypeHandler>(rep_->elements[current_size_++]) = std::move(value);
1748 return;
1749 }
1750 if (!rep_ || rep_->allocated_size == total_size_) {
1751 Reserve(new_size: total_size_ + 1);
1752 }
1753 ++rep_->allocated_size;
1754 typename TypeHandler::Type* result =
1755 TypeHandler::New(arena_, std::move(value));
1756 rep_->elements[current_size_++] = result;
1757}
1758
1759template <typename TypeHandler>
1760inline void RepeatedPtrFieldBase::RemoveLast() {
1761 GOOGLE_DCHECK_GT(current_size_, 0);
1762 TypeHandler::Clear(cast<TypeHandler>(rep_->elements[--current_size_]));
1763}
1764
1765template <typename TypeHandler>
1766void RepeatedPtrFieldBase::Clear() {
1767 const int n = current_size_;
1768 GOOGLE_DCHECK_GE(n, 0);
1769 if (n > 0) {
1770 void* const* elements = rep_->elements;
1771 int i = 0;
1772 do {
1773 TypeHandler::Clear(cast<TypeHandler>(elements[i++]));
1774 } while (i < n);
1775 current_size_ = 0;
1776 }
1777}
1778
1779// To avoid unnecessary code duplication and reduce binary size, we use a
1780// layered approach to implementing MergeFrom(). The toplevel method is
1781// templated, so we get a small thunk per concrete message type in the binary.
1782// This calls a shared implementation with most of the logic, passing a function
1783// pointer to another type-specific piece of code that calls the object-allocate
1784// and merge handlers.
1785template <typename TypeHandler>
1786inline void RepeatedPtrFieldBase::MergeFrom(const RepeatedPtrFieldBase& other) {
1787 GOOGLE_DCHECK_NE(&other, this);
1788 if (other.current_size_ == 0) return;
1789 MergeFromInternal(other,
1790 inner_loop: &RepeatedPtrFieldBase::MergeFromInnerLoop<TypeHandler>);
1791}
1792
1793inline void RepeatedPtrFieldBase::MergeFromInternal(
1794 const RepeatedPtrFieldBase& other,
1795 void (RepeatedPtrFieldBase::*inner_loop)(void**, void**, int, int)) {
1796 // Note: wrapper has already guaranteed that other.rep_ != NULL here.
1797 int other_size = other.current_size_;
1798 void** other_elements = other.rep_->elements;
1799 void** new_elements = InternalExtend(extend_amount: other_size);
1800 int allocated_elems = rep_->allocated_size - current_size_;
1801 (this->*inner_loop)(new_elements, other_elements, other_size,
1802 allocated_elems);
1803 current_size_ += other_size;
1804 if (rep_->allocated_size < current_size_) {
1805 rep_->allocated_size = current_size_;
1806 }
1807}
1808
1809// Merges other_elems to our_elems.
1810template <typename TypeHandler>
1811void RepeatedPtrFieldBase::MergeFromInnerLoop(void** our_elems,
1812 void** other_elems, int length,
1813 int already_allocated) {
1814 // Split into two loops, over ranges [0, allocated) and [allocated, length),
1815 // to avoid a branch within the loop.
1816 for (int i = 0; i < already_allocated && i < length; i++) {
1817 // Already allocated: use existing element.
1818 typename TypeHandler::Type* other_elem =
1819 reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
1820 typename TypeHandler::Type* new_elem =
1821 reinterpret_cast<typename TypeHandler::Type*>(our_elems[i]);
1822 TypeHandler::Merge(*other_elem, new_elem);
1823 }
1824 Arena* arena = GetArena();
1825 for (int i = already_allocated; i < length; i++) {
1826 // Not allocated: alloc a new element first, then merge it.
1827 typename TypeHandler::Type* other_elem =
1828 reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
1829 typename TypeHandler::Type* new_elem =
1830 TypeHandler::NewFromPrototype(other_elem, arena);
1831 TypeHandler::Merge(*other_elem, new_elem);
1832 our_elems[i] = new_elem;
1833 }
1834}
1835
1836template <typename TypeHandler>
1837inline void RepeatedPtrFieldBase::CopyFrom(const RepeatedPtrFieldBase& other) {
1838 if (&other == this) return;
1839 RepeatedPtrFieldBase::Clear<TypeHandler>();
1840 RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
1841}
1842
1843inline int RepeatedPtrFieldBase::Capacity() const { return total_size_; }
1844
1845inline void* const* RepeatedPtrFieldBase::raw_data() const {
1846 return rep_ ? rep_->elements : NULL;
1847}
1848
1849inline void** RepeatedPtrFieldBase::raw_mutable_data() const {
1850 return rep_ ? const_cast<void**>(rep_->elements) : NULL;
1851}
1852
1853template <typename TypeHandler>
1854inline typename TypeHandler::Type** RepeatedPtrFieldBase::mutable_data() {
1855 // TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
1856 // method entirely.
1857 return reinterpret_cast<typename TypeHandler::Type**>(raw_mutable_data());
1858}
1859
1860template <typename TypeHandler>
1861inline const typename TypeHandler::Type* const* RepeatedPtrFieldBase::data()
1862 const {
1863 // TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
1864 // method entirely.
1865 return reinterpret_cast<const typename TypeHandler::Type* const*>(raw_data());
1866}
1867
1868inline void RepeatedPtrFieldBase::SwapElements(int index1, int index2) {
1869 using std::swap; // enable ADL with fallback
1870 swap(a&: rep_->elements[index1], b&: rep_->elements[index2]);
1871}
1872
1873template <typename TypeHandler>
1874inline size_t RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong() const {
1875 size_t allocated_bytes = static_cast<size_t>(total_size_) * sizeof(void*);
1876 if (rep_ != NULL) {
1877 for (int i = 0; i < rep_->allocated_size; ++i) {
1878 allocated_bytes +=
1879 TypeHandler::SpaceUsedLong(*cast<TypeHandler>(rep_->elements[i]));
1880 }
1881 allocated_bytes += kRepHeaderSize;
1882 }
1883 return allocated_bytes;
1884}
1885
1886template <typename TypeHandler>
1887inline typename TypeHandler::Type* RepeatedPtrFieldBase::AddFromCleared() {
1888 if (rep_ != NULL && current_size_ < rep_->allocated_size) {
1889 return cast<TypeHandler>(rep_->elements[current_size_++]);
1890 } else {
1891 return NULL;
1892 }
1893}
1894
1895// AddAllocated version that implements arena-safe copying behavior.
1896template <typename TypeHandler>
1897void RepeatedPtrFieldBase::AddAllocatedInternal(
1898 typename TypeHandler::Type* value, std::true_type) {
1899 Arena* element_arena =
1900 reinterpret_cast<Arena*>(TypeHandler::GetMaybeArenaPointer(value));
1901 Arena* arena = GetArena();
1902 if (arena == element_arena && rep_ && rep_->allocated_size < total_size_) {
1903 // Fast path: underlying arena representation (tagged pointer) is equal to
1904 // our arena pointer, and we can add to array without resizing it (at least
1905 // one slot that is not allocated).
1906 void** elems = rep_->elements;
1907 if (current_size_ < rep_->allocated_size) {
1908 // Make space at [current] by moving first allocated element to end of
1909 // allocated list.
1910 elems[rep_->allocated_size] = elems[current_size_];
1911 }
1912 elems[current_size_] = value;
1913 current_size_ = current_size_ + 1;
1914 rep_->allocated_size = rep_->allocated_size + 1;
1915 } else {
1916 AddAllocatedSlowWithCopy<TypeHandler>(value, TypeHandler::GetArena(value),
1917 arena);
1918 }
1919}
1920
1921// Slowpath handles all cases, copying if necessary.
1922template <typename TypeHandler>
1923void RepeatedPtrFieldBase::AddAllocatedSlowWithCopy(
1924 // Pass value_arena and my_arena to avoid duplicate virtual call (value) or
1925 // load (mine).
1926 typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena) {
1927 // Ensure that either the value is in the same arena, or if not, we do the
1928 // appropriate thing: Own() it (if it's on heap and we're in an arena) or copy
1929 // it to our arena/heap (otherwise).
1930 if (my_arena != NULL && value_arena == NULL) {
1931 my_arena->Own(value);
1932 } else if (my_arena != value_arena) {
1933 typename TypeHandler::Type* new_value =
1934 TypeHandler::NewFromPrototype(value, my_arena);
1935 TypeHandler::Merge(*value, new_value);
1936 TypeHandler::Delete(value, value_arena);
1937 value = new_value;
1938 }
1939
1940 UnsafeArenaAddAllocated<TypeHandler>(value);
1941}
1942
1943// AddAllocated version that does not implement arena-safe copying behavior.
1944template <typename TypeHandler>
1945void RepeatedPtrFieldBase::AddAllocatedInternal(
1946 typename TypeHandler::Type* value, std::false_type) {
1947 if (rep_ && rep_->allocated_size < total_size_) {
1948 // Fast path: underlying arena representation (tagged pointer) is equal to
1949 // our arena pointer, and we can add to array without resizing it (at least
1950 // one slot that is not allocated).
1951 void** elems = rep_->elements;
1952 if (current_size_ < rep_->allocated_size) {
1953 // Make space at [current] by moving first allocated element to end of
1954 // allocated list.
1955 elems[rep_->allocated_size] = elems[current_size_];
1956 }
1957 elems[current_size_] = value;
1958 current_size_ = current_size_ + 1;
1959 ++rep_->allocated_size;
1960 } else {
1961 UnsafeArenaAddAllocated<TypeHandler>(value);
1962 }
1963}
1964
1965template <typename TypeHandler>
1966void RepeatedPtrFieldBase::UnsafeArenaAddAllocated(
1967 typename TypeHandler::Type* value) {
1968 // Make room for the new pointer.
1969 if (!rep_ || current_size_ == total_size_) {
1970 // The array is completely full with no cleared objects, so grow it.
1971 Reserve(new_size: total_size_ + 1);
1972 ++rep_->allocated_size;
1973 } else if (rep_->allocated_size == total_size_) {
1974 // There is no more space in the pointer array because it contains some
1975 // cleared objects awaiting reuse. We don't want to grow the array in this
1976 // case because otherwise a loop calling AddAllocated() followed by Clear()
1977 // would leak memory.
1978 TypeHandler::Delete(cast<TypeHandler>(rep_->elements[current_size_]),
1979 arena_);
1980 } else if (current_size_ < rep_->allocated_size) {
1981 // We have some cleared objects. We don't care about their order, so we
1982 // can just move the first one to the end to make space.
1983 rep_->elements[rep_->allocated_size] = rep_->elements[current_size_];
1984 ++rep_->allocated_size;
1985 } else {
1986 // There are no cleared objects.
1987 ++rep_->allocated_size;
1988 }
1989
1990 rep_->elements[current_size_++] = value;
1991}
1992
1993// ReleaseLast() for types that implement merge/copy behavior.
1994template <typename TypeHandler>
1995inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseLastInternal(
1996 std::true_type) {
1997 // First, release an element.
1998 typename TypeHandler::Type* result = UnsafeArenaReleaseLast<TypeHandler>();
1999 // Now perform a copy if we're on an arena.
2000 Arena* arena = GetArena();
2001 if (arena == NULL) {
2002 return result;
2003 } else {
2004 typename TypeHandler::Type* new_result =
2005 TypeHandler::NewFromPrototype(result, NULL);
2006 TypeHandler::Merge(*result, new_result);
2007 return new_result;
2008 }
2009}
2010
2011// ReleaseLast() for types that *do not* implement merge/copy behavior -- this
2012// is the same as UnsafeArenaReleaseLast(). Note that we GOOGLE_DCHECK-fail if we're on
2013// an arena, since the user really should implement the copy operation in this
2014// case.
2015template <typename TypeHandler>
2016inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseLastInternal(
2017 std::false_type) {
2018 GOOGLE_DCHECK(GetArena() == NULL)
2019 << "ReleaseLast() called on a RepeatedPtrField that is on an arena, "
2020 << "with a type that does not implement MergeFrom. This is unsafe; "
2021 << "please implement MergeFrom for your type.";
2022 return UnsafeArenaReleaseLast<TypeHandler>();
2023}
2024
2025template <typename TypeHandler>
2026inline typename TypeHandler::Type*
2027RepeatedPtrFieldBase::UnsafeArenaReleaseLast() {
2028 GOOGLE_DCHECK_GT(current_size_, 0);
2029 typename TypeHandler::Type* result =
2030 cast<TypeHandler>(rep_->elements[--current_size_]);
2031 --rep_->allocated_size;
2032 if (current_size_ < rep_->allocated_size) {
2033 // There are cleared elements on the end; replace the removed element
2034 // with the last allocated element.
2035 rep_->elements[current_size_] = rep_->elements[rep_->allocated_size];
2036 }
2037 return result;
2038}
2039
2040inline int RepeatedPtrFieldBase::ClearedCount() const {
2041 return rep_ ? (rep_->allocated_size - current_size_) : 0;
2042}
2043
2044template <typename TypeHandler>
2045inline void RepeatedPtrFieldBase::AddCleared(
2046 typename TypeHandler::Type* value) {
2047 GOOGLE_DCHECK(GetArena() == NULL)
2048 << "AddCleared() can only be used on a RepeatedPtrField not on an arena.";
2049 GOOGLE_DCHECK(TypeHandler::GetArena(value) == NULL)
2050 << "AddCleared() can only accept values not on an arena.";
2051 if (!rep_ || rep_->allocated_size == total_size_) {
2052 Reserve(new_size: total_size_ + 1);
2053 }
2054 rep_->elements[rep_->allocated_size++] = value;
2055}
2056
2057template <typename TypeHandler>
2058inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseCleared() {
2059 GOOGLE_DCHECK(GetArena() == NULL)
2060 << "ReleaseCleared() can only be used on a RepeatedPtrField not on "
2061 << "an arena.";
2062 GOOGLE_DCHECK(GetArena() == NULL);
2063 GOOGLE_DCHECK(rep_ != NULL);
2064 GOOGLE_DCHECK_GT(rep_->allocated_size, current_size_);
2065 return cast<TypeHandler>(rep_->elements[--rep_->allocated_size]);
2066}
2067
2068} // namespace internal
2069
2070// -------------------------------------------------------------------
2071
2072template <typename Element>
2073class RepeatedPtrField<Element>::TypeHandler
2074 : public internal::GenericTypeHandler<Element> {};
2075
2076template <>
2077class RepeatedPtrField<std::string>::TypeHandler
2078 : public internal::StringTypeHandler {};
2079
2080template <typename Element>
2081inline RepeatedPtrField<Element>::RepeatedPtrField() : RepeatedPtrFieldBase() {}
2082
2083template <typename Element>
2084inline RepeatedPtrField<Element>::RepeatedPtrField(Arena* arena)
2085 : RepeatedPtrFieldBase(arena) {}
2086
2087template <typename Element>
2088inline RepeatedPtrField<Element>::RepeatedPtrField(
2089 const RepeatedPtrField& other)
2090 : RepeatedPtrFieldBase() {
2091 MergeFrom(other);
2092}
2093
2094template <typename Element>
2095template <typename Iter>
2096inline RepeatedPtrField<Element>::RepeatedPtrField(Iter begin,
2097 const Iter& end) {
2098 int reserve = internal::CalculateReserve(begin, end);
2099 if (reserve != -1) {
2100 Reserve(new_size: reserve);
2101 }
2102 for (; begin != end; ++begin) {
2103 *Add() = *begin;
2104 }
2105}
2106
2107template <typename Element>
2108RepeatedPtrField<Element>::~RepeatedPtrField() {
2109 Destroy<TypeHandler>();
2110}
2111
2112template <typename Element>
2113inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
2114 const RepeatedPtrField& other) {
2115 if (this != &other) CopyFrom(other);
2116 return *this;
2117}
2118
2119template <typename Element>
2120inline RepeatedPtrField<Element>::RepeatedPtrField(
2121 RepeatedPtrField&& other) noexcept
2122 : RepeatedPtrField() {
2123 // We don't just call Swap(&other) here because it would perform 3 copies if
2124 // other is on an arena. This field can't be on an arena because arena
2125 // construction always uses the Arena* accepting constructor.
2126 if (other.GetArena()) {
2127 CopyFrom(other);
2128 } else {
2129 InternalSwap(other: &other);
2130 }
2131}
2132
2133template <typename Element>
2134inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
2135 RepeatedPtrField&& other) noexcept {
2136 // We don't just call Swap(&other) here because it would perform 3 copies if
2137 // the two fields are on different arenas.
2138 if (this != &other) {
2139 if (this->GetArena() != other.GetArena()) {
2140 CopyFrom(other);
2141 } else {
2142 InternalSwap(other: &other);
2143 }
2144 }
2145 return *this;
2146}
2147
2148template <typename Element>
2149inline bool RepeatedPtrField<Element>::empty() const {
2150 return RepeatedPtrFieldBase::empty();
2151}
2152
2153template <typename Element>
2154inline int RepeatedPtrField<Element>::size() const {
2155 return RepeatedPtrFieldBase::size();
2156}
2157
2158template <typename Element>
2159inline const Element& RepeatedPtrField<Element>::Get(int index) const {
2160 return RepeatedPtrFieldBase::Get<TypeHandler>(index);
2161}
2162
2163template <typename Element>
2164inline const Element& RepeatedPtrField<Element>::at(int index) const {
2165 return RepeatedPtrFieldBase::at<TypeHandler>(index);
2166}
2167
2168template <typename Element>
2169inline Element& RepeatedPtrField<Element>::at(int index) {
2170 return RepeatedPtrFieldBase::at<TypeHandler>(index);
2171}
2172
2173
2174template <typename Element>
2175inline Element* RepeatedPtrField<Element>::Mutable(int index) {
2176 return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
2177}
2178
2179template <typename Element>
2180inline Element* RepeatedPtrField<Element>::Add() {
2181 return RepeatedPtrFieldBase::Add<TypeHandler>();
2182}
2183
2184template <typename Element>
2185inline void RepeatedPtrField<Element>::Add(Element&& value) {
2186 RepeatedPtrFieldBase::Add<TypeHandler>(std::move(value));
2187}
2188
2189template <typename Element>
2190inline void RepeatedPtrField<Element>::RemoveLast() {
2191 RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
2192}
2193
2194template <typename Element>
2195inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
2196 GOOGLE_DCHECK_GE(start, 0);
2197 GOOGLE_DCHECK_GE(num, 0);
2198 GOOGLE_DCHECK_LE(start + num, size());
2199 for (int i = 0; i < num; ++i) {
2200 RepeatedPtrFieldBase::Delete<TypeHandler>(start + i);
2201 }
2202 ExtractSubrange(start, num, NULL);
2203}
2204
2205template <typename Element>
2206inline void RepeatedPtrField<Element>::ExtractSubrange(int start, int num,
2207 Element** elements) {
2208 typename internal::TypeImplementsMergeBehavior<
2209 typename TypeHandler::Type>::type t;
2210 ExtractSubrangeInternal(start, num, elements, t);
2211}
2212
2213// ExtractSubrange() implementation for types that implement merge/copy
2214// behavior.
2215template <typename Element>
2216inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
2217 int start, int num, Element** elements, std::true_type) {
2218 GOOGLE_DCHECK_GE(start, 0);
2219 GOOGLE_DCHECK_GE(num, 0);
2220 GOOGLE_DCHECK_LE(start + num, size());
2221
2222 if (num > 0) {
2223 // Save the values of the removed elements if requested.
2224 if (elements != NULL) {
2225 if (GetArena() != NULL) {
2226 // If we're on an arena, we perform a copy for each element so that the
2227 // returned elements are heap-allocated.
2228 for (int i = 0; i < num; ++i) {
2229 Element* element =
2230 RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
2231 typename TypeHandler::Type* new_value =
2232 TypeHandler::NewFromPrototype(element, NULL);
2233 TypeHandler::Merge(*element, new_value);
2234 elements[i] = new_value;
2235 }
2236 } else {
2237 for (int i = 0; i < num; ++i) {
2238 elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
2239 }
2240 }
2241 }
2242 CloseGap(start, num);
2243 }
2244}
2245
2246// ExtractSubrange() implementation for types that do not implement merge/copy
2247// behavior.
2248template <typename Element>
2249inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
2250 int start, int num, Element** elements, std::false_type) {
2251 // This case is identical to UnsafeArenaExtractSubrange(). However, since
2252 // ExtractSubrange() must return heap-allocated objects by contract, and we
2253 // cannot fulfill this contract if we are an on arena, we must GOOGLE_DCHECK() that
2254 // we are not on an arena.
2255 GOOGLE_DCHECK(GetArena() == NULL)
2256 << "ExtractSubrange() when arena is non-NULL is only supported when "
2257 << "the Element type supplies a MergeFrom() operation to make copies.";
2258 UnsafeArenaExtractSubrange(start, num, elements);
2259}
2260
2261template <typename Element>
2262inline void RepeatedPtrField<Element>::UnsafeArenaExtractSubrange(
2263 int start, int num, Element** elements) {
2264 GOOGLE_DCHECK_GE(start, 0);
2265 GOOGLE_DCHECK_GE(num, 0);
2266 GOOGLE_DCHECK_LE(start + num, size());
2267
2268 if (num > 0) {
2269 // Save the values of the removed elements if requested.
2270 if (elements != NULL) {
2271 for (int i = 0; i < num; ++i) {
2272 elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
2273 }
2274 }
2275 CloseGap(start, num);
2276 }
2277}
2278
2279template <typename Element>
2280inline void RepeatedPtrField<Element>::Clear() {
2281 RepeatedPtrFieldBase::Clear<TypeHandler>();
2282}
2283
2284template <typename Element>
2285inline void RepeatedPtrField<Element>::MergeFrom(
2286 const RepeatedPtrField& other) {
2287 RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
2288}
2289
2290template <typename Element>
2291inline void RepeatedPtrField<Element>::CopyFrom(const RepeatedPtrField& other) {
2292 RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
2293}
2294
2295template <typename Element>
2296inline typename RepeatedPtrField<Element>::iterator
2297RepeatedPtrField<Element>::erase(const_iterator position) {
2298 return erase(position, position + 1);
2299}
2300
2301template <typename Element>
2302inline typename RepeatedPtrField<Element>::iterator
2303RepeatedPtrField<Element>::erase(const_iterator first, const_iterator last) {
2304 size_type pos_offset = std::distance(cbegin(), first);
2305 size_type last_offset = std::distance(cbegin(), last);
2306 DeleteSubrange(start: pos_offset, num: last_offset - pos_offset);
2307 return begin() + pos_offset;
2308}
2309
2310template <typename Element>
2311inline Element** RepeatedPtrField<Element>::mutable_data() {
2312 return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
2313}
2314
2315template <typename Element>
2316inline const Element* const* RepeatedPtrField<Element>::data() const {
2317 return RepeatedPtrFieldBase::data<TypeHandler>();
2318}
2319
2320template <typename Element>
2321inline void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
2322 if (this == other) return;
2323 RepeatedPtrFieldBase::Swap<TypeHandler>(other);
2324}
2325
2326template <typename Element>
2327inline void RepeatedPtrField<Element>::UnsafeArenaSwap(
2328 RepeatedPtrField* other) {
2329 if (this == other) return;
2330 RepeatedPtrFieldBase::InternalSwap(other);
2331}
2332
2333template <typename Element>
2334inline void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
2335 RepeatedPtrFieldBase::SwapElements(index1, index2);
2336}
2337
2338template <typename Element>
2339inline Arena* RepeatedPtrField<Element>::GetArena() const {
2340 return RepeatedPtrFieldBase::GetArena();
2341}
2342
2343template <typename Element>
2344inline size_t RepeatedPtrField<Element>::SpaceUsedExcludingSelfLong() const {
2345 return RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong<TypeHandler>();
2346}
2347
2348template <typename Element>
2349inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
2350 RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
2351}
2352
2353template <typename Element>
2354inline void RepeatedPtrField<Element>::UnsafeArenaAddAllocated(Element* value) {
2355 RepeatedPtrFieldBase::UnsafeArenaAddAllocated<TypeHandler>(value);
2356}
2357
2358template <typename Element>
2359inline Element* RepeatedPtrField<Element>::ReleaseLast() {
2360 return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
2361}
2362
2363template <typename Element>
2364inline Element* RepeatedPtrField<Element>::UnsafeArenaReleaseLast() {
2365 return RepeatedPtrFieldBase::UnsafeArenaReleaseLast<TypeHandler>();
2366}
2367
2368template <typename Element>
2369inline int RepeatedPtrField<Element>::ClearedCount() const {
2370 return RepeatedPtrFieldBase::ClearedCount();
2371}
2372
2373template <typename Element>
2374inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
2375 return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
2376}
2377
2378template <typename Element>
2379inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
2380 return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
2381}
2382
2383template <typename Element>
2384inline void RepeatedPtrField<Element>::Reserve(int new_size) {
2385 return RepeatedPtrFieldBase::Reserve(new_size);
2386}
2387
2388template <typename Element>
2389inline int RepeatedPtrField<Element>::Capacity() const {
2390 return RepeatedPtrFieldBase::Capacity();
2391}
2392
2393// -------------------------------------------------------------------
2394
2395namespace internal {
2396
2397// STL-like iterator implementation for RepeatedPtrField. You should not
2398// refer to this class directly; use RepeatedPtrField<T>::iterator instead.
2399//
2400// The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
2401// very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
2402// but adds random-access operators and is modified to wrap a void** base
2403// iterator (since RepeatedPtrField stores its array as a void* array and
2404// casting void** to T** would violate C++ aliasing rules).
2405//
2406// This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
2407// (jyasskin@google.com).
2408template <typename Element>
2409class RepeatedPtrIterator {
2410 public:
2411 using iterator = RepeatedPtrIterator<Element>;
2412 using iterator_category = std::random_access_iterator_tag;
2413 using value_type = typename std::remove_const<Element>::type;
2414 using difference_type = std::ptrdiff_t;
2415 using pointer = Element*;
2416 using reference = Element&;
2417
2418 RepeatedPtrIterator() : it_(NULL) {}
2419 explicit RepeatedPtrIterator(void* const* it) : it_(it) {}
2420
2421 // Allow "upcasting" from RepeatedPtrIterator<T**> to
2422 // RepeatedPtrIterator<const T*const*>.
2423 template <typename OtherElement>
2424 RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
2425 : it_(other.it_) {
2426 // Force a compiler error if the other type is not convertible to ours.
2427 if (false) {
2428 implicit_cast<Element*>(static_cast<OtherElement*>(nullptr));
2429 }
2430 }
2431
2432 // dereferenceable
2433 reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
2434 pointer operator->() const { return &(operator*()); }
2435
2436 // {inc,dec}rementable
2437 iterator& operator++() {
2438 ++it_;
2439 return *this;
2440 }
2441 iterator operator++(int) { return iterator(it_++); }
2442 iterator& operator--() {
2443 --it_;
2444 return *this;
2445 }
2446 iterator operator--(int) { return iterator(it_--); }
2447
2448 // equality_comparable
2449 bool operator==(const iterator& x) const { return it_ == x.it_; }
2450 bool operator!=(const iterator& x) const { return it_ != x.it_; }
2451
2452 // less_than_comparable
2453 bool operator<(const iterator& x) const { return it_ < x.it_; }
2454 bool operator<=(const iterator& x) const { return it_ <= x.it_; }
2455 bool operator>(const iterator& x) const { return it_ > x.it_; }
2456 bool operator>=(const iterator& x) const { return it_ >= x.it_; }
2457
2458 // addable, subtractable
2459 iterator& operator+=(difference_type d) {
2460 it_ += d;
2461 return *this;
2462 }
2463 friend iterator operator+(iterator it, const difference_type d) {
2464 it += d;
2465 return it;
2466 }
2467 friend iterator operator+(const difference_type d, iterator it) {
2468 it += d;
2469 return it;
2470 }
2471 iterator& operator-=(difference_type d) {
2472 it_ -= d;
2473 return *this;
2474 }
2475 friend iterator operator-(iterator it, difference_type d) {
2476 it -= d;
2477 return it;
2478 }
2479
2480 // indexable
2481 reference operator[](difference_type d) const { return *(*this + d); }
2482
2483 // random access iterator
2484 difference_type operator-(const iterator& x) const { return it_ - x.it_; }
2485
2486 private:
2487 template <typename OtherElement>
2488 friend class RepeatedPtrIterator;
2489
2490 // The internal iterator.
2491 void* const* it_;
2492};
2493
2494// Provide an iterator that operates on pointers to the underlying objects
2495// rather than the objects themselves as RepeatedPtrIterator does.
2496// Consider using this when working with stl algorithms that change
2497// the array.
2498// The VoidPtr template parameter holds the type-agnostic pointer value
2499// referenced by the iterator. It should either be "void *" for a mutable
2500// iterator, or "const void* const" for a constant iterator.
2501template <typename Element, typename VoidPtr>
2502class RepeatedPtrOverPtrsIterator {
2503 public:
2504 using iterator = RepeatedPtrOverPtrsIterator<Element, VoidPtr>;
2505 using iterator_category = std::random_access_iterator_tag;
2506 using value_type = typename std::remove_const<Element>::type;
2507 using difference_type = std::ptrdiff_t;
2508 using pointer = Element*;
2509 using reference = Element&;
2510
2511 RepeatedPtrOverPtrsIterator() : it_(NULL) {}
2512 explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}
2513
2514 // dereferenceable
2515 reference operator*() const { return *reinterpret_cast<Element*>(it_); }
2516 pointer operator->() const { return &(operator*()); }
2517
2518 // {inc,dec}rementable
2519 iterator& operator++() {
2520 ++it_;
2521 return *this;
2522 }
2523 iterator operator++(int) { return iterator(it_++); }
2524 iterator& operator--() {
2525 --it_;
2526 return *this;
2527 }
2528 iterator operator--(int) { return iterator(it_--); }
2529
2530 // equality_comparable
2531 bool operator==(const iterator& x) const { return it_ == x.it_; }
2532 bool operator!=(const iterator& x) const { return it_ != x.it_; }
2533
2534 // less_than_comparable
2535 bool operator<(const iterator& x) const { return it_ < x.it_; }
2536 bool operator<=(const iterator& x) const { return it_ <= x.it_; }
2537 bool operator>(const iterator& x) const { return it_ > x.it_; }
2538 bool operator>=(const iterator& x) const { return it_ >= x.it_; }
2539
2540 // addable, subtractable
2541 iterator& operator+=(difference_type d) {
2542 it_ += d;
2543 return *this;
2544 }
2545 friend iterator operator+(iterator it, difference_type d) {
2546 it += d;
2547 return it;
2548 }
2549 friend iterator operator+(difference_type d, iterator it) {
2550 it += d;
2551 return it;
2552 }
2553 iterator& operator-=(difference_type d) {
2554 it_ -= d;
2555 return *this;
2556 }
2557 friend iterator operator-(iterator it, difference_type d) {
2558 it -= d;
2559 return it;
2560 }
2561
2562 // indexable
2563 reference operator[](difference_type d) const { return *(*this + d); }
2564
2565 // random access iterator
2566 difference_type operator-(const iterator& x) const { return it_ - x.it_; }
2567
2568 private:
2569 template <typename OtherElement>
2570 friend class RepeatedPtrIterator;
2571
2572 // The internal iterator.
2573 VoidPtr* it_;
2574};
2575
2576void RepeatedPtrFieldBase::InternalSwap(RepeatedPtrFieldBase* other) {
2577 GOOGLE_DCHECK(this != other);
2578 GOOGLE_DCHECK(GetArena() == other->GetArena());
2579
2580 // Swap all fields at once.
2581 static_assert(std::is_standard_layout<RepeatedPtrFieldBase>::value,
2582 "offsetof() requires standard layout before c++17");
2583 internal::memswap<offsetof(RepeatedPtrFieldBase, rep_) + sizeof(this->rep_) -
2584 offsetof(RepeatedPtrFieldBase, current_size_)>(
2585 p: reinterpret_cast<char*>(this) +
2586 offsetof(RepeatedPtrFieldBase, current_size_),
2587 q: reinterpret_cast<char*>(other) +
2588 offsetof(RepeatedPtrFieldBase, current_size_));
2589}
2590
2591} // namespace internal
2592
2593template <typename Element>
2594inline typename RepeatedPtrField<Element>::iterator
2595RepeatedPtrField<Element>::begin() {
2596 return iterator(raw_data());
2597}
2598template <typename Element>
2599inline typename RepeatedPtrField<Element>::const_iterator
2600RepeatedPtrField<Element>::begin() const {
2601 return iterator(raw_data());
2602}
2603template <typename Element>
2604inline typename RepeatedPtrField<Element>::const_iterator
2605RepeatedPtrField<Element>::cbegin() const {
2606 return begin();
2607}
2608template <typename Element>
2609inline typename RepeatedPtrField<Element>::iterator
2610RepeatedPtrField<Element>::end() {
2611 return iterator(raw_data() + size());
2612}
2613template <typename Element>
2614inline typename RepeatedPtrField<Element>::const_iterator
2615RepeatedPtrField<Element>::end() const {
2616 return iterator(raw_data() + size());
2617}
2618template <typename Element>
2619inline typename RepeatedPtrField<Element>::const_iterator
2620RepeatedPtrField<Element>::cend() const {
2621 return end();
2622}
2623
2624template <typename Element>
2625inline typename RepeatedPtrField<Element>::pointer_iterator
2626RepeatedPtrField<Element>::pointer_begin() {
2627 return pointer_iterator(raw_mutable_data());
2628}
2629template <typename Element>
2630inline typename RepeatedPtrField<Element>::const_pointer_iterator
2631RepeatedPtrField<Element>::pointer_begin() const {
2632 return const_pointer_iterator(const_cast<const void* const*>(raw_data()));
2633}
2634template <typename Element>
2635inline typename RepeatedPtrField<Element>::pointer_iterator
2636RepeatedPtrField<Element>::pointer_end() {
2637 return pointer_iterator(raw_mutable_data() + size());
2638}
2639template <typename Element>
2640inline typename RepeatedPtrField<Element>::const_pointer_iterator
2641RepeatedPtrField<Element>::pointer_end() const {
2642 return const_pointer_iterator(
2643 const_cast<const void* const*>(raw_data() + size()));
2644}
2645
2646// Iterators and helper functions that follow the spirit of the STL
2647// std::back_insert_iterator and std::back_inserter but are tailor-made
2648// for RepeatedField and RepeatedPtrField. Typical usage would be:
2649//
2650// std::copy(some_sequence.begin(), some_sequence.end(),
2651// RepeatedFieldBackInserter(proto.mutable_sequence()));
2652//
2653// Ported by johannes from util/gtl/proto-array-iterators.h
2654
2655namespace internal {
2656// A back inserter for RepeatedField objects.
2657template <typename T>
2658class RepeatedFieldBackInsertIterator
2659 : public std::iterator<std::output_iterator_tag, T> {
2660 public:
2661 explicit RepeatedFieldBackInsertIterator(
2662 RepeatedField<T>* const mutable_field)
2663 : field_(mutable_field) {}
2664 RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
2665 field_->Add(value);
2666 return *this;
2667 }
2668 RepeatedFieldBackInsertIterator<T>& operator*() { return *this; }
2669 RepeatedFieldBackInsertIterator<T>& operator++() { return *this; }
2670 RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
2671 return *this;
2672 }
2673
2674 private:
2675 RepeatedField<T>* field_;
2676};
2677
2678// A back inserter for RepeatedPtrField objects.
2679template <typename T>
2680class RepeatedPtrFieldBackInsertIterator
2681 : public std::iterator<std::output_iterator_tag, T> {
2682 public:
2683 RepeatedPtrFieldBackInsertIterator(RepeatedPtrField<T>* const mutable_field)
2684 : field_(mutable_field) {}
2685 RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
2686 *field_->Add() = value;
2687 return *this;
2688 }
2689 RepeatedPtrFieldBackInsertIterator<T>& operator=(
2690 const T* const ptr_to_value) {
2691 *field_->Add() = *ptr_to_value;
2692 return *this;
2693 }
2694 RepeatedPtrFieldBackInsertIterator<T>& operator=(T&& value) {
2695 *field_->Add() = std::move(value);
2696 return *this;
2697 }
2698 RepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
2699 RepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
2700 RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
2701 return *this;
2702 }
2703
2704 private:
2705 RepeatedPtrField<T>* field_;
2706};
2707
2708// A back inserter for RepeatedPtrFields that inserts by transferring ownership
2709// of a pointer.
2710template <typename T>
2711class AllocatedRepeatedPtrFieldBackInsertIterator
2712 : public std::iterator<std::output_iterator_tag, T> {
2713 public:
2714 explicit AllocatedRepeatedPtrFieldBackInsertIterator(
2715 RepeatedPtrField<T>* const mutable_field)
2716 : field_(mutable_field) {}
2717 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
2718 T* const ptr_to_value) {
2719 field_->AddAllocated(ptr_to_value);
2720 return *this;
2721 }
2722 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
2723 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
2724 AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
2725 return *this;
2726 }
2727
2728 private:
2729 RepeatedPtrField<T>* field_;
2730};
2731
2732// Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one
2733// uses the UnsafeArenaAddAllocated instead.
2734template <typename T>
2735class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator
2736 : public std::iterator<std::output_iterator_tag, T> {
2737 public:
2738 explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator(
2739 RepeatedPtrField<T>* const mutable_field)
2740 : field_(mutable_field) {}
2741 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
2742 T const* const ptr_to_value) {
2743 field_->UnsafeArenaAddAllocated(const_cast<T*>(ptr_to_value));
2744 return *this;
2745 }
2746 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
2747 return *this;
2748 }
2749 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
2750 return *this;
2751 }
2752 UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
2753 int /* unused */) {
2754 return *this;
2755 }
2756
2757 private:
2758 RepeatedPtrField<T>* field_;
2759};
2760
2761} // namespace internal
2762
2763// Provides a back insert iterator for RepeatedField instances,
2764// similar to std::back_inserter().
2765template <typename T>
2766internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter(
2767 RepeatedField<T>* const mutable_field) {
2768 return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
2769}
2770
2771// Provides a back insert iterator for RepeatedPtrField instances,
2772// similar to std::back_inserter().
2773template <typename T>
2774internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedPtrFieldBackInserter(
2775 RepeatedPtrField<T>* const mutable_field) {
2776 return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
2777}
2778
2779// Special back insert iterator for RepeatedPtrField instances, just in
2780// case someone wants to write generic template code that can access both
2781// RepeatedFields and RepeatedPtrFields using a common name.
2782template <typename T>
2783internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedFieldBackInserter(
2784 RepeatedPtrField<T>* const mutable_field) {
2785 return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
2786}
2787
2788// Provides a back insert iterator for RepeatedPtrField instances
2789// similar to std::back_inserter() which transfers the ownership while
2790// copying elements.
2791template <typename T>
2792internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
2793AllocatedRepeatedPtrFieldBackInserter(
2794 RepeatedPtrField<T>* const mutable_field) {
2795 return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
2796 mutable_field);
2797}
2798
2799// Similar to AllocatedRepeatedPtrFieldBackInserter, using
2800// UnsafeArenaAddAllocated instead of AddAllocated.
2801// This is slightly faster if that matters. It is also useful in legacy code
2802// that uses temporary ownership to avoid copies. Example:
2803// RepeatedPtrField<T> temp_field;
2804// temp_field.AddAllocated(new T);
2805// ... // Do something with temp_field
2806// temp_field.ExtractSubrange(0, temp_field.size(), nullptr);
2807// If you put temp_field on the arena this fails, because the ownership
2808// transfers to the arena at the "AddAllocated" call and is not released anymore
2809// causing a double delete. Using UnsafeArenaAddAllocated prevents this.
2810template <typename T>
2811internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>
2812UnsafeArenaAllocatedRepeatedPtrFieldBackInserter(
2813 RepeatedPtrField<T>* const mutable_field) {
2814 return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>(
2815 mutable_field);
2816}
2817
2818// Extern declarations of common instantiations to reduce library bloat.
2819extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<bool>;
2820extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int32>;
2821extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint32>;
2822extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int64>;
2823extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint64>;
2824extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<float>;
2825extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<double>;
2826extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
2827 RepeatedPtrField<std::string>;
2828
2829} // namespace protobuf
2830} // namespace google
2831
2832#include <google/protobuf/port_undef.inc>
2833
2834#endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__
2835

source code of include/google/protobuf/repeated_field.h