1 | // Protocol Buffers - Google's data interchange format |
2 | // Copyright 2008 Google Inc. All rights reserved. |
3 | // https://developers.google.com/protocol-buffers/ |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | #ifndef GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |
32 | #define GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |
33 | |
34 | #include <cstdint> |
35 | #include <cstring> |
36 | #include <string> |
37 | |
38 | #include <google/protobuf/io/coded_stream.h> |
39 | #include <google/protobuf/io/zero_copy_stream.h> |
40 | #include <google/protobuf/arena.h> |
41 | #include <google/protobuf/arenastring.h> |
42 | #include <google/protobuf/implicit_weak_message.h> |
43 | #include <google/protobuf/metadata_lite.h> |
44 | #include <google/protobuf/port.h> |
45 | #include <google/protobuf/repeated_field.h> |
46 | #include <google/protobuf/wire_format_lite.h> |
47 | #include <google/protobuf/stubs/strutil.h> |
48 | |
49 | #include <google/protobuf/port_def.inc> |
50 | |
51 | |
52 | namespace google { |
53 | namespace protobuf { |
54 | |
55 | class UnknownFieldSet; |
56 | class DescriptorPool; |
57 | class MessageFactory; |
58 | |
59 | namespace internal { |
60 | |
61 | // Template code below needs to know about the existence of these functions. |
62 | PROTOBUF_EXPORT void WriteVarint(uint32 num, uint64 val, std::string* s); |
63 | PROTOBUF_EXPORT void WriteLengthDelimited(uint32 num, StringPiece val, |
64 | std::string* s); |
65 | // Inline because it is just forwarding to s->WriteVarint |
66 | inline void WriteVarint(uint32 num, uint64 val, UnknownFieldSet* s); |
67 | inline void WriteLengthDelimited(uint32 num, StringPiece val, |
68 | UnknownFieldSet* s); |
69 | |
70 | |
71 | // The basic abstraction the parser is designed for is a slight modification |
72 | // of the ZeroCopyInputStream (ZCIS) abstraction. A ZCIS presents a serialized |
73 | // stream as a series of buffers that concatenate to the full stream. |
74 | // Pictorially a ZCIS presents a stream in chunks like so |
75 | // [---------------------------------------------------------------] |
76 | // [---------------------] chunk 1 |
77 | // [----------------------------] chunk 2 |
78 | // chunk 3 [--------------] |
79 | // |
80 | // Where the '-' represent the bytes which are vertically lined up with the |
81 | // bytes of the stream. The proto parser requires its input to be presented |
82 | // similarly with the extra |
83 | // property that each chunk has kSlopBytes past its end that overlaps with the |
84 | // first kSlopBytes of the next chunk, or if there is no next chunk at least its |
85 | // still valid to read those bytes. Again, pictorially, we now have |
86 | // |
87 | // [---------------------------------------------------------------] |
88 | // [-------------------....] chunk 1 |
89 | // [------------------------....] chunk 2 |
90 | // chunk 3 [------------------..**] |
91 | // chunk 4 [--****] |
92 | // Here '-' mean the bytes of the stream or chunk and '.' means bytes past the |
93 | // chunk that match up with the start of the next chunk. Above each chunk has |
94 | // 4 '.' after the chunk. In the case these 'overflow' bytes represents bytes |
95 | // past the stream, indicated by '*' above, their values are unspecified. It is |
96 | // still legal to read them (ie. should not segfault). Reading past the |
97 | // end should be detected by the user and indicated as an error. |
98 | // |
99 | // The reason for this, admittedly, unconventional invariant is to ruthlessly |
100 | // optimize the protobuf parser. Having an overlap helps in two important ways. |
101 | // Firstly it alleviates having to performing bounds checks if a piece of code |
102 | // is guaranteed to not read more than kSlopBytes. Secondly, and more |
103 | // importantly, the protobuf wireformat is such that reading a key/value pair is |
104 | // always less than 16 bytes. This removes the need to change to next buffer in |
105 | // the middle of reading primitive values. Hence there is no need to store and |
106 | // load the current position. |
107 | |
108 | class PROTOBUF_EXPORT EpsCopyInputStream { |
109 | public: |
110 | enum { kSlopBytes = 16, kMaxCordBytesToCopy = 512 }; |
111 | |
112 | explicit EpsCopyInputStream(bool enable_aliasing) |
113 | : aliasing_(enable_aliasing ? kOnPatch : kNoAliasing) {} |
114 | |
115 | void BackUp(const char* ptr) { |
116 | GOOGLE_DCHECK(ptr <= buffer_end_ + kSlopBytes); |
117 | int count; |
118 | if (next_chunk_ == buffer_) { |
119 | count = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
120 | } else { |
121 | count = size_ + static_cast<int>(buffer_end_ - ptr); |
122 | } |
123 | if (count > 0) StreamBackUp(count); |
124 | } |
125 | |
126 | // If return value is negative it's an error |
127 | PROTOBUF_MUST_USE_RESULT int PushLimit(const char* ptr, int limit) { |
128 | GOOGLE_DCHECK(limit >= 0 && limit <= INT_MAX - kSlopBytes); |
129 | // This add is safe due to the invariant above, because |
130 | // ptr - buffer_end_ <= kSlopBytes. |
131 | limit += static_cast<int>(ptr - buffer_end_); |
132 | limit_end_ = buffer_end_ + (std::min)(a: 0, b: limit); |
133 | auto old_limit = limit_; |
134 | limit_ = limit; |
135 | return old_limit - limit; |
136 | } |
137 | |
138 | PROTOBUF_MUST_USE_RESULT bool PopLimit(int delta) { |
139 | if (PROTOBUF_PREDICT_FALSE(!EndedAtLimit())) return false; |
140 | limit_ = limit_ + delta; |
141 | // TODO(gerbens) We could remove this line and hoist the code to |
142 | // DoneFallback. Study the perf/bin-size effects. |
143 | limit_end_ = buffer_end_ + (std::min)(a: 0, b: limit_); |
144 | return true; |
145 | } |
146 | |
147 | PROTOBUF_MUST_USE_RESULT const char* Skip(const char* ptr, int size) { |
148 | if (size <= buffer_end_ + kSlopBytes - ptr) { |
149 | return ptr + size; |
150 | } |
151 | return SkipFallback(ptr, size); |
152 | } |
153 | PROTOBUF_MUST_USE_RESULT const char* ReadString(const char* ptr, int size, |
154 | std::string* s) { |
155 | if (size <= buffer_end_ + kSlopBytes - ptr) { |
156 | s->assign(s: ptr, n: size); |
157 | return ptr + size; |
158 | } |
159 | return ReadStringFallback(ptr, size, str: s); |
160 | } |
161 | PROTOBUF_MUST_USE_RESULT const char* AppendString(const char* ptr, int size, |
162 | std::string* s) { |
163 | if (size <= buffer_end_ + kSlopBytes - ptr) { |
164 | s->append(s: ptr, n: size); |
165 | return ptr + size; |
166 | } |
167 | return AppendStringFallback(ptr, size, str: s); |
168 | } |
169 | |
170 | template <typename Tag, typename T> |
171 | PROTOBUF_MUST_USE_RESULT const char* ReadRepeatedFixed(const char* ptr, |
172 | Tag expected_tag, |
173 | RepeatedField<T>* out); |
174 | |
175 | template <typename T> |
176 | PROTOBUF_MUST_USE_RESULT const char* ReadPackedFixed(const char* ptr, |
177 | int size, |
178 | RepeatedField<T>* out); |
179 | template <typename Add> |
180 | PROTOBUF_MUST_USE_RESULT const char* ReadPackedVarint(const char* ptr, |
181 | Add add); |
182 | |
183 | uint32 LastTag() const { return last_tag_minus_1_ + 1; } |
184 | bool ConsumeEndGroup(uint32 start_tag) { |
185 | bool res = last_tag_minus_1_ == start_tag; |
186 | last_tag_minus_1_ = 0; |
187 | return res; |
188 | } |
189 | bool EndedAtLimit() const { return last_tag_minus_1_ == 0; } |
190 | bool EndedAtEndOfStream() const { return last_tag_minus_1_ == 1; } |
191 | void SetLastTag(uint32 tag) { last_tag_minus_1_ = tag - 1; } |
192 | void SetEndOfStream() { last_tag_minus_1_ = 1; } |
193 | bool IsExceedingLimit(const char* ptr) { |
194 | return ptr > limit_end_ && |
195 | (next_chunk_ == nullptr || ptr - buffer_end_ > limit_); |
196 | } |
197 | int BytesUntilLimit(const char* ptr) const { |
198 | return limit_ + static_cast<int>(buffer_end_ - ptr); |
199 | } |
200 | // Returns true if more data is available, if false is returned one has to |
201 | // call Done for further checks. |
202 | bool DataAvailable(const char* ptr) { return ptr < limit_end_; } |
203 | |
204 | protected: |
205 | // Returns true is limit (either an explicit limit or end of stream) is |
206 | // reached. It aligns *ptr across buffer seams. |
207 | // If limit is exceeded it returns true and ptr is set to null. |
208 | bool DoneWithCheck(const char** ptr, int d) { |
209 | GOOGLE_DCHECK(*ptr); |
210 | if (PROTOBUF_PREDICT_TRUE(*ptr < limit_end_)) return false; |
211 | // No need to fetch buffer if we ended on a limit in the slop region |
212 | if ((*ptr - buffer_end_) == limit_) return true; |
213 | auto res = DoneFallback(ptr: *ptr, d); |
214 | *ptr = res.first; |
215 | return res.second; |
216 | } |
217 | |
218 | const char* InitFrom(StringPiece flat) { |
219 | overall_limit_ = 0; |
220 | if (flat.size() > kSlopBytes) { |
221 | limit_ = kSlopBytes; |
222 | limit_end_ = buffer_end_ = flat.data() + flat.size() - kSlopBytes; |
223 | next_chunk_ = buffer_; |
224 | if (aliasing_ == kOnPatch) aliasing_ = kNoDelta; |
225 | return flat.data(); |
226 | } else { |
227 | std::memcpy(dest: buffer_, src: flat.data(), n: flat.size()); |
228 | limit_ = 0; |
229 | limit_end_ = buffer_end_ = buffer_ + flat.size(); |
230 | next_chunk_ = nullptr; |
231 | if (aliasing_ == kOnPatch) { |
232 | aliasing_ = reinterpret_cast<std::uintptr_t>(flat.data()) - |
233 | reinterpret_cast<std::uintptr_t>(buffer_); |
234 | } |
235 | return buffer_; |
236 | } |
237 | } |
238 | |
239 | const char* InitFrom(io::ZeroCopyInputStream* zcis); |
240 | |
241 | const char* InitFrom(io::ZeroCopyInputStream* zcis, int limit) { |
242 | if (limit == -1) return InitFrom(zcis); |
243 | overall_limit_ = limit; |
244 | auto res = InitFrom(zcis); |
245 | limit_ = limit - static_cast<int>(buffer_end_ - res); |
246 | limit_end_ = buffer_end_ + (std::min)(a: 0, b: limit_); |
247 | return res; |
248 | } |
249 | |
250 | private: |
251 | const char* limit_end_; // buffer_end_ + min(limit_, 0) |
252 | const char* buffer_end_; |
253 | const char* next_chunk_; |
254 | int size_; |
255 | int limit_; // relative to buffer_end_; |
256 | io::ZeroCopyInputStream* zcis_ = nullptr; |
257 | char buffer_[2 * kSlopBytes] = {}; |
258 | enum { kNoAliasing = 0, kOnPatch = 1, kNoDelta = 2 }; |
259 | std::uintptr_t aliasing_ = kNoAliasing; |
260 | // This variable is used to communicate how the parse ended, in order to |
261 | // completely verify the parsed data. A wire-format parse can end because of |
262 | // one of the following conditions: |
263 | // 1) A parse can end on a pushed limit. |
264 | // 2) A parse can end on End Of Stream (EOS). |
265 | // 3) A parse can end on 0 tag (only valid for toplevel message). |
266 | // 4) A parse can end on an end-group tag. |
267 | // This variable should always be set to 0, which indicates case 1. If the |
268 | // parse terminated due to EOS (case 2), it's set to 1. In case the parse |
269 | // ended due to a terminating tag (case 3 and 4) it's set to (tag - 1). |
270 | // This var doesn't really belong in EpsCopyInputStream and should be part of |
271 | // the ParseContext, but case 2 is most easily and optimally implemented in |
272 | // DoneFallback. |
273 | uint32 last_tag_minus_1_ = 0; |
274 | int overall_limit_ = INT_MAX; // Overall limit independent of pushed limits. |
275 | // Pretty random large number that seems like a safe allocation on most |
276 | // systems. TODO(gerbens) do we need to set this as build flag? |
277 | enum { kSafeStringSize = 50000000 }; |
278 | |
279 | std::pair<const char*, bool> DoneFallback(const char* ptr, int d); |
280 | const char* Next(int overrun, int d); |
281 | const char* SkipFallback(const char* ptr, int size); |
282 | const char* AppendStringFallback(const char* ptr, int size, std::string* str); |
283 | const char* ReadStringFallback(const char* ptr, int size, std::string* str); |
284 | bool StreamNext(const void** data) { |
285 | bool res = zcis_->Next(data, size: &size_); |
286 | if (res) overall_limit_ -= size_; |
287 | return res; |
288 | } |
289 | void StreamBackUp(int count) { |
290 | zcis_->BackUp(count); |
291 | overall_limit_ += count; |
292 | } |
293 | |
294 | template <typename A> |
295 | const char* AppendSize(const char* ptr, int size, const A& append) { |
296 | int chunk_size = buffer_end_ + kSlopBytes - ptr; |
297 | do { |
298 | GOOGLE_DCHECK(size > chunk_size); |
299 | append(ptr, chunk_size); |
300 | ptr += chunk_size; |
301 | size -= chunk_size; |
302 | // DoneFallBack asserts it isn't called when exactly on the limit. If this |
303 | // happens we fail the parse, as we are at the limit and still more bytes |
304 | // to read. |
305 | if (limit_ == kSlopBytes) return nullptr; |
306 | auto res = DoneFallback(ptr, d: -1); |
307 | if (res.second) return nullptr; // If done we passed the limit |
308 | ptr = res.first; |
309 | chunk_size = buffer_end_ + kSlopBytes - ptr; |
310 | } while (size > chunk_size); |
311 | append(ptr, size); |
312 | return ptr + size; |
313 | } |
314 | |
315 | // AppendUntilEnd appends data until a limit (either a PushLimit or end of |
316 | // stream. Normal payloads are from length delimited fields which have an |
317 | // explicit size. Reading until limit only comes when the string takes |
318 | // the place of a protobuf, ie RawMessage/StringRawMessage, lazy fields and |
319 | // implicit weak messages. We keep these methods private and friend them. |
320 | template <typename A> |
321 | const char* AppendUntilEnd(const char* ptr, const A& append) { |
322 | while (!DoneWithCheck(ptr: &ptr, d: -1)) { |
323 | append(ptr, limit_end_ - ptr); |
324 | ptr = limit_end_; |
325 | } |
326 | return ptr; |
327 | } |
328 | |
329 | PROTOBUF_MUST_USE_RESULT const char* AppendString(const char* ptr, |
330 | std::string* str) { |
331 | return AppendUntilEnd( |
332 | ptr, append: [str](const char* p, ptrdiff_t s) { str->append(s: p, n: s); }); |
333 | } |
334 | friend class ImplicitWeakMessage; |
335 | }; |
336 | |
337 | // ParseContext holds all data that is global to the entire parse. Most |
338 | // importantly it contains the input stream, but also recursion depth and also |
339 | // stores the end group tag, in case a parser ended on a endgroup, to verify |
340 | // matching start/end group tags. |
341 | class PROTOBUF_EXPORT ParseContext : public EpsCopyInputStream { |
342 | public: |
343 | struct Data { |
344 | const DescriptorPool* pool = nullptr; |
345 | MessageFactory* factory = nullptr; |
346 | }; |
347 | |
348 | template <typename... T> |
349 | ParseContext(int depth, bool aliasing, const char** start, T&&... args) |
350 | : EpsCopyInputStream(aliasing), depth_(depth) { |
351 | *start = InitFrom(std::forward<T>(args)...); |
352 | } |
353 | |
354 | void TrackCorrectEnding() { group_depth_ = 0; } |
355 | |
356 | bool Done(const char** ptr) { return DoneWithCheck(ptr, d: group_depth_); } |
357 | bool DoneNoSlopCheck(const char** ptr) { return DoneWithCheck(ptr, d: -1); } |
358 | |
359 | int depth() const { return depth_; } |
360 | |
361 | Data& data() { return data_; } |
362 | const Data& data() const { return data_; } |
363 | |
364 | template <typename T> |
365 | PROTOBUF_MUST_USE_RESULT const char* ParseMessage(T* msg, const char* ptr); |
366 | // We outline when the type is generic and we go through a virtual |
367 | const char* ParseMessage(MessageLite* msg, const char* ptr); |
368 | const char* ParseMessage(Message* msg, const char* ptr); |
369 | |
370 | template <typename T> |
371 | PROTOBUF_MUST_USE_RESULT PROTOBUF_ALWAYS_INLINE const char* ParseGroup( |
372 | T* msg, const char* ptr, uint32 tag) { |
373 | if (--depth_ < 0) return nullptr; |
374 | group_depth_++; |
375 | ptr = msg->_InternalParse(ptr, this); |
376 | group_depth_--; |
377 | depth_++; |
378 | if (PROTOBUF_PREDICT_FALSE(!ConsumeEndGroup(tag))) return nullptr; |
379 | return ptr; |
380 | } |
381 | |
382 | private: |
383 | // The context keeps an internal stack to keep track of the recursive |
384 | // part of the parse state. |
385 | // Current depth of the active parser, depth counts down. |
386 | // This is used to limit recursion depth (to prevent overflow on malicious |
387 | // data), but is also used to index in stack_ to store the current state. |
388 | int depth_; |
389 | // Unfortunately necessary for the fringe case of ending on 0 or end-group tag |
390 | // in the last kSlopBytes of a ZeroCopyInputStream chunk. |
391 | int group_depth_ = INT_MIN; |
392 | Data data_; |
393 | }; |
394 | |
395 | template <uint32 tag> |
396 | bool ExpectTag(const char* ptr) { |
397 | if (tag < 128) { |
398 | return *ptr == tag; |
399 | } else { |
400 | static_assert(tag < 128 * 128, "We only expect tags for 1 or 2 bytes" ); |
401 | char buf[2] = {static_cast<char>(tag | 0x80), static_cast<char>(tag >> 7)}; |
402 | return std::memcmp(s1: ptr, s2: buf, n: 2) == 0; |
403 | } |
404 | } |
405 | |
406 | template <int> |
407 | struct EndianHelper; |
408 | |
409 | template <> |
410 | struct EndianHelper<1> { |
411 | static uint8 Load(const void* p) { return *static_cast<const uint8*>(p); } |
412 | }; |
413 | |
414 | template <> |
415 | struct EndianHelper<2> { |
416 | static uint16 Load(const void* p) { |
417 | uint16 tmp; |
418 | std::memcpy(dest: &tmp, src: p, n: 2); |
419 | #ifndef PROTOBUF_LITTLE_ENDIAN |
420 | tmp = bswap_16(tmp); |
421 | #endif |
422 | return tmp; |
423 | } |
424 | }; |
425 | |
426 | template <> |
427 | struct EndianHelper<4> { |
428 | static uint32 Load(const void* p) { |
429 | uint32 tmp; |
430 | std::memcpy(dest: &tmp, src: p, n: 4); |
431 | #ifndef PROTOBUF_LITTLE_ENDIAN |
432 | tmp = bswap_32(tmp); |
433 | #endif |
434 | return tmp; |
435 | } |
436 | }; |
437 | |
438 | template <> |
439 | struct EndianHelper<8> { |
440 | static uint64 Load(const void* p) { |
441 | uint64 tmp; |
442 | std::memcpy(dest: &tmp, src: p, n: 8); |
443 | #ifndef PROTOBUF_LITTLE_ENDIAN |
444 | tmp = bswap_64(tmp); |
445 | #endif |
446 | return tmp; |
447 | } |
448 | }; |
449 | |
450 | template <typename T> |
451 | T UnalignedLoad(const char* p) { |
452 | auto tmp = EndianHelper<sizeof(T)>::Load(p); |
453 | T res; |
454 | memcpy(&res, &tmp, sizeof(T)); |
455 | return res; |
456 | } |
457 | |
458 | PROTOBUF_EXPORT |
459 | std::pair<const char*, uint32> VarintParseSlow32(const char* p, uint32 res); |
460 | PROTOBUF_EXPORT |
461 | std::pair<const char*, uint64> VarintParseSlow64(const char* p, uint32 res); |
462 | |
463 | inline const char* VarintParseSlow(const char* p, uint32 res, uint32* out) { |
464 | auto tmp = VarintParseSlow32(p, res); |
465 | *out = tmp.second; |
466 | return tmp.first; |
467 | } |
468 | |
469 | inline const char* VarintParseSlow(const char* p, uint32 res, uint64* out) { |
470 | auto tmp = VarintParseSlow64(p, res); |
471 | *out = tmp.second; |
472 | return tmp.first; |
473 | } |
474 | |
475 | template <typename T> |
476 | PROTOBUF_MUST_USE_RESULT const char* VarintParse(const char* p, T* out) { |
477 | auto ptr = reinterpret_cast<const uint8*>(p); |
478 | uint32 res = ptr[0]; |
479 | if (!(res & 0x80)) { |
480 | *out = res; |
481 | return p + 1; |
482 | } |
483 | uint32 byte = ptr[1]; |
484 | res += (byte - 1) << 7; |
485 | if (!(byte & 0x80)) { |
486 | *out = res; |
487 | return p + 2; |
488 | } |
489 | return VarintParseSlow(p, res, out); |
490 | } |
491 | |
492 | // Used for tags, could read up to 5 bytes which must be available. |
493 | // Caller must ensure its safe to call. |
494 | |
495 | PROTOBUF_EXPORT |
496 | std::pair<const char*, uint32> ReadTagFallback(const char* p, uint32 res); |
497 | |
498 | // Same as ParseVarint but only accept 5 bytes at most. |
499 | inline const char* ReadTag(const char* p, uint32* out, uint32 /*max_tag*/ = 0) { |
500 | uint32 res = static_cast<uint8>(p[0]); |
501 | if (res < 128) { |
502 | *out = res; |
503 | return p + 1; |
504 | } |
505 | uint32 second = static_cast<uint8>(p[1]); |
506 | res += (second - 1) << 7; |
507 | if (second < 128) { |
508 | *out = res; |
509 | return p + 2; |
510 | } |
511 | auto tmp = ReadTagFallback(p, res); |
512 | *out = tmp.second; |
513 | return tmp.first; |
514 | } |
515 | |
516 | // Decode 2 consecutive bytes of a varint and returns the value, shifted left |
517 | // by 1. It simultaneous updates *ptr to *ptr + 1 or *ptr + 2 depending if the |
518 | // first byte's continuation bit is set. |
519 | // If bit 15 of return value is set (equivalent to the continuation bits of both |
520 | // bytes being set) the varint continues, otherwise the parse is done. On x86 |
521 | // movsx eax, dil |
522 | // add edi, eax |
523 | // adc [rsi], 1 |
524 | // add eax, eax |
525 | // and eax, edi |
526 | inline uint32 DecodeTwoBytes(const char** ptr) { |
527 | uint32 value = UnalignedLoad<uint16>(p: *ptr); |
528 | // Sign extend the low byte continuation bit |
529 | uint32_t x = static_cast<int8_t>(value); |
530 | // This add is an amazing operation, it cancels the low byte continuation bit |
531 | // from y transferring it to the carry. Simultaneously it also shifts the 7 |
532 | // LSB left by one tightly against high byte varint bits. Hence value now |
533 | // contains the unpacked value shifted left by 1. |
534 | value += x; |
535 | // Use the carry to update the ptr appropriately. |
536 | *ptr += value < x ? 2 : 1; |
537 | return value & (x + x); // Mask out the high byte iff no continuation |
538 | } |
539 | |
540 | // More efficient varint parsing for big varints |
541 | inline const char* ParseBigVarint(const char* p, uint64* out) { |
542 | auto pnew = p; |
543 | auto tmp = DecodeTwoBytes(ptr: &pnew); |
544 | uint64 res = tmp >> 1; |
545 | if (PROTOBUF_PREDICT_TRUE(std::int16_t(tmp) >= 0)) { |
546 | *out = res; |
547 | return pnew; |
548 | } |
549 | for (std::uint32_t i = 1; i < 5; i++) { |
550 | pnew = p + 2 * i; |
551 | tmp = DecodeTwoBytes(ptr: &pnew); |
552 | res += (static_cast<std::uint64_t>(tmp) - 2) << (14 * i - 1); |
553 | if (PROTOBUF_PREDICT_TRUE(std::int16_t(tmp) >= 0)) { |
554 | *out = res; |
555 | return pnew; |
556 | } |
557 | } |
558 | return nullptr; |
559 | } |
560 | |
561 | PROTOBUF_EXPORT |
562 | std::pair<const char*, int32> ReadSizeFallback(const char* p, uint32 first); |
563 | // Used for tags, could read up to 5 bytes which must be available. Additionally |
564 | // it makes sure the unsigned value fits a int32, otherwise returns nullptr. |
565 | // Caller must ensure its safe to call. |
566 | inline uint32 ReadSize(const char** pp) { |
567 | auto p = *pp; |
568 | uint32 res = static_cast<uint8>(p[0]); |
569 | if (res < 128) { |
570 | *pp = p + 1; |
571 | return res; |
572 | } |
573 | auto x = ReadSizeFallback(p, first: res); |
574 | *pp = x.first; |
575 | return x.second; |
576 | } |
577 | |
578 | // Some convenience functions to simplify the generated parse loop code. |
579 | // Returning the value and updating the buffer pointer allows for nicer |
580 | // function composition. We rely on the compiler to inline this. |
581 | // Also in debug compiles having local scoped variables tend to generated |
582 | // stack frames that scale as O(num fields). |
583 | inline uint64 ReadVarint64(const char** p) { |
584 | uint64 tmp; |
585 | *p = VarintParse(p: *p, out: &tmp); |
586 | return tmp; |
587 | } |
588 | |
589 | inline uint32 ReadVarint32(const char** p) { |
590 | uint32 tmp; |
591 | *p = VarintParse(p: *p, out: &tmp); |
592 | return tmp; |
593 | } |
594 | |
595 | inline int64 ReadVarintZigZag64(const char** p) { |
596 | uint64 tmp; |
597 | *p = VarintParse(p: *p, out: &tmp); |
598 | return WireFormatLite::ZigZagDecode64(n: tmp); |
599 | } |
600 | |
601 | inline int32 ReadVarintZigZag32(const char** p) { |
602 | uint64 tmp; |
603 | *p = VarintParse(p: *p, out: &tmp); |
604 | return WireFormatLite::ZigZagDecode32(n: static_cast<uint32>(tmp)); |
605 | } |
606 | |
607 | template <typename T> |
608 | PROTOBUF_MUST_USE_RESULT const char* ParseContext::ParseMessage( |
609 | T* msg, const char* ptr) { |
610 | int size = ReadSize(pp: &ptr); |
611 | if (!ptr) return nullptr; |
612 | auto old = PushLimit(ptr, limit: size); |
613 | if (--depth_ < 0) return nullptr; |
614 | ptr = msg->_InternalParse(ptr, this); |
615 | if (PROTOBUF_PREDICT_FALSE(ptr == nullptr)) return nullptr; |
616 | depth_++; |
617 | if (!PopLimit(delta: old)) return nullptr; |
618 | return ptr; |
619 | } |
620 | |
621 | template <typename Add> |
622 | const char* EpsCopyInputStream::ReadPackedVarint(const char* ptr, Add add) { |
623 | int size = ReadSize(pp: &ptr); |
624 | if (ptr == nullptr) return nullptr; |
625 | auto old = PushLimit(ptr, limit: size); |
626 | if (old < 0) return nullptr; |
627 | while (!DoneWithCheck(ptr: &ptr, d: -1)) { |
628 | uint64 varint; |
629 | ptr = VarintParse(p: ptr, out: &varint); |
630 | if (!ptr) return nullptr; |
631 | add(varint); |
632 | } |
633 | if (!PopLimit(delta: old)) return nullptr; |
634 | return ptr; |
635 | } |
636 | |
637 | // Helper for verification of utf8 |
638 | PROTOBUF_EXPORT |
639 | bool VerifyUTF8(StringPiece s, const char* field_name); |
640 | |
641 | inline bool VerifyUTF8(const std::string* s, const char* field_name) { |
642 | return VerifyUTF8(s: *s, field_name); |
643 | } |
644 | |
645 | // All the string parsers with or without UTF checking and for all CTypes. |
646 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* InlineGreedyStringParser( |
647 | std::string* s, const char* ptr, ParseContext* ctx); |
648 | |
649 | |
650 | // Add any of the following lines to debug which parse function is failing. |
651 | |
652 | #define GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, ret) \ |
653 | if (!(predicate)) { \ |
654 | /* ::raise(SIGINT); */ \ |
655 | /* GOOGLE_LOG(ERROR) << "Parse failure"; */ \ |
656 | return ret; \ |
657 | } |
658 | |
659 | #define GOOGLE_PROTOBUF_PARSER_ASSERT(predicate) \ |
660 | GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, nullptr) |
661 | |
662 | template <typename T> |
663 | PROTOBUF_MUST_USE_RESULT const char* FieldParser(uint64 tag, T& field_parser, |
664 | const char* ptr, |
665 | ParseContext* ctx) { |
666 | uint32 number = tag >> 3; |
667 | GOOGLE_PROTOBUF_PARSER_ASSERT(number != 0); |
668 | using WireType = internal::WireFormatLite::WireType; |
669 | switch (tag & 7) { |
670 | case WireType::WIRETYPE_VARINT: { |
671 | uint64 value; |
672 | ptr = VarintParse(p: ptr, out: &value); |
673 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
674 | field_parser.AddVarint(number, value); |
675 | break; |
676 | } |
677 | case WireType::WIRETYPE_FIXED64: { |
678 | uint64 value = UnalignedLoad<uint64>(p: ptr); |
679 | ptr += 8; |
680 | field_parser.AddFixed64(number, value); |
681 | break; |
682 | } |
683 | case WireType::WIRETYPE_LENGTH_DELIMITED: { |
684 | ptr = field_parser.ParseLengthDelimited(number, ptr, ctx); |
685 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
686 | break; |
687 | } |
688 | case WireType::WIRETYPE_START_GROUP: { |
689 | ptr = field_parser.ParseGroup(number, ptr, ctx); |
690 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
691 | break; |
692 | } |
693 | case WireType::WIRETYPE_END_GROUP: { |
694 | GOOGLE_LOG(FATAL) << "Can't happen" ; |
695 | break; |
696 | } |
697 | case WireType::WIRETYPE_FIXED32: { |
698 | uint32 value = UnalignedLoad<uint32>(p: ptr); |
699 | ptr += 4; |
700 | field_parser.AddFixed32(number, value); |
701 | break; |
702 | } |
703 | default: |
704 | return nullptr; |
705 | } |
706 | return ptr; |
707 | } |
708 | |
709 | template <typename T> |
710 | PROTOBUF_MUST_USE_RESULT const char* WireFormatParser(T& field_parser, |
711 | const char* ptr, |
712 | ParseContext* ctx) { |
713 | while (!ctx->Done(ptr: &ptr)) { |
714 | uint32 tag; |
715 | ptr = ReadTag(p: ptr, out: &tag); |
716 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); |
717 | if (tag == 0 || (tag & 7) == 4) { |
718 | ctx->SetLastTag(tag); |
719 | return ptr; |
720 | } |
721 | ptr = FieldParser(tag, field_parser, ptr, ctx); |
722 | GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); |
723 | } |
724 | return ptr; |
725 | } |
726 | |
727 | // The packed parsers parse repeated numeric primitives directly into the |
728 | // corresponding field |
729 | |
730 | // These are packed varints |
731 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedInt32Parser( |
732 | void* object, const char* ptr, ParseContext* ctx); |
733 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedUInt32Parser( |
734 | void* object, const char* ptr, ParseContext* ctx); |
735 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedInt64Parser( |
736 | void* object, const char* ptr, ParseContext* ctx); |
737 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedUInt64Parser( |
738 | void* object, const char* ptr, ParseContext* ctx); |
739 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedSInt32Parser( |
740 | void* object, const char* ptr, ParseContext* ctx); |
741 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedSInt64Parser( |
742 | void* object, const char* ptr, ParseContext* ctx); |
743 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedEnumParser( |
744 | void* object, const char* ptr, ParseContext* ctx); |
745 | |
746 | template <typename T> |
747 | PROTOBUF_EXPORT_TEMPLATE_DEFINE |
748 | PROTOBUF_MUST_USE_RESULT const |
749 | char* PackedEnumParser(void* object, const char* ptr, ParseContext* ctx, |
750 | bool (*is_valid)(int), InternalMetadata* metadata, |
751 | int field_num) { |
752 | return ctx->ReadPackedVarint( |
753 | ptr, [object, is_valid, metadata, field_num](uint64 val) { |
754 | if (is_valid(val)) { |
755 | static_cast<RepeatedField<int>*>(object)->Add(value: val); |
756 | } else { |
757 | WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>()); |
758 | } |
759 | }); |
760 | } |
761 | |
762 | template <typename T> |
763 | PROTOBUF_EXPORT_TEMPLATE_DEFINE |
764 | PROTOBUF_MUST_USE_RESULT const |
765 | char* PackedEnumParserArg(void* object, const char* ptr, ParseContext* ctx, |
766 | bool (*is_valid)(const void*, int), |
767 | const void* data, InternalMetadata* metadata, |
768 | int field_num) { |
769 | return ctx->ReadPackedVarint( |
770 | ptr, [object, is_valid, data, metadata, field_num](uint64 val) { |
771 | if (is_valid(data, val)) { |
772 | static_cast<RepeatedField<int>*>(object)->Add(value: val); |
773 | } else { |
774 | WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>()); |
775 | } |
776 | }); |
777 | } |
778 | |
779 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedBoolParser( |
780 | void* object, const char* ptr, ParseContext* ctx); |
781 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedFixed32Parser( |
782 | void* object, const char* ptr, ParseContext* ctx); |
783 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedSFixed32Parser( |
784 | void* object, const char* ptr, ParseContext* ctx); |
785 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedFixed64Parser( |
786 | void* object, const char* ptr, ParseContext* ctx); |
787 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedSFixed64Parser( |
788 | void* object, const char* ptr, ParseContext* ctx); |
789 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedFloatParser( |
790 | void* object, const char* ptr, ParseContext* ctx); |
791 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* PackedDoubleParser( |
792 | void* object, const char* ptr, ParseContext* ctx); |
793 | |
794 | // This is the only recursive parser. |
795 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* UnknownGroupLiteParse( |
796 | std::string* unknown, const char* ptr, ParseContext* ctx); |
797 | // This is a helper to for the UnknownGroupLiteParse but is actually also |
798 | // useful in the generated code. It uses overload on std::string* vs |
799 | // UnknownFieldSet* to make the generated code isomorphic between full and lite. |
800 | PROTOBUF_EXPORT PROTOBUF_MUST_USE_RESULT const char* UnknownFieldParse( |
801 | uint32 tag, std::string* unknown, const char* ptr, ParseContext* ctx); |
802 | |
803 | } // namespace internal |
804 | } // namespace protobuf |
805 | } // namespace google |
806 | |
807 | #include <google/protobuf/port_undef.inc> |
808 | |
809 | #endif // GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |
810 | |