1 | #ifndef Py_CPYTHON_OBJECT_H |
2 | # error "this header file must not be included directly" |
3 | #endif |
4 | |
5 | PyAPI_FUNC(void) _Py_NewReference(PyObject *op); |
6 | |
7 | #ifdef Py_TRACE_REFS |
8 | /* Py_TRACE_REFS is such major surgery that we call external routines. */ |
9 | PyAPI_FUNC(void) _Py_ForgetReference(PyObject *); |
10 | #endif |
11 | |
12 | #ifdef Py_REF_DEBUG |
13 | PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void); |
14 | #endif |
15 | |
16 | |
17 | /********************* String Literals ****************************************/ |
18 | /* This structure helps managing static strings. The basic usage goes like this: |
19 | Instead of doing |
20 | |
21 | r = PyObject_CallMethod(o, "foo", "args", ...); |
22 | |
23 | do |
24 | |
25 | _Py_IDENTIFIER(foo); |
26 | ... |
27 | r = _PyObject_CallMethodId(o, &PyId_foo, "args", ...); |
28 | |
29 | PyId_foo is a static variable, either on block level or file level. On first |
30 | usage, the string "foo" is interned, and the structures are linked. On interpreter |
31 | shutdown, all strings are released. |
32 | |
33 | Alternatively, _Py_static_string allows choosing the variable name. |
34 | _PyUnicode_FromId returns a borrowed reference to the interned string. |
35 | _PyObject_{Get,Set,Has}AttrId are __getattr__ versions using _Py_Identifier*. |
36 | */ |
37 | typedef struct _Py_Identifier { |
38 | const char* string; |
39 | // Index in PyInterpreterState.unicode.ids.array. It is process-wide |
40 | // unique and must be initialized to -1. |
41 | Py_ssize_t index; |
42 | } _Py_Identifier; |
43 | |
44 | #define _Py_static_string_init(value) { .string = value, .index = -1 } |
45 | #define _Py_static_string(varname, value) static _Py_Identifier varname = _Py_static_string_init(value) |
46 | #define _Py_IDENTIFIER(varname) _Py_static_string(PyId_##varname, #varname) |
47 | |
48 | /* buffer interface */ |
49 | typedef struct bufferinfo { |
50 | void *buf; |
51 | PyObject *obj; /* owned reference */ |
52 | Py_ssize_t len; |
53 | Py_ssize_t itemsize; /* This is Py_ssize_t so it can be |
54 | pointed to by strides in simple case.*/ |
55 | int readonly; |
56 | int ndim; |
57 | char *format; |
58 | Py_ssize_t *shape; |
59 | Py_ssize_t *strides; |
60 | Py_ssize_t *suboffsets; |
61 | void *internal; |
62 | } Py_buffer; |
63 | |
64 | typedef int (*getbufferproc)(PyObject *, Py_buffer *, int); |
65 | typedef void (*releasebufferproc)(PyObject *, Py_buffer *); |
66 | |
67 | typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args, |
68 | size_t nargsf, PyObject *kwnames); |
69 | |
70 | /* Maximum number of dimensions */ |
71 | #define PyBUF_MAX_NDIM 64 |
72 | |
73 | /* Flags for getting buffers */ |
74 | #define PyBUF_SIMPLE 0 |
75 | #define PyBUF_WRITABLE 0x0001 |
76 | /* we used to include an E, backwards compatible alias */ |
77 | #define PyBUF_WRITEABLE PyBUF_WRITABLE |
78 | #define PyBUF_FORMAT 0x0004 |
79 | #define PyBUF_ND 0x0008 |
80 | #define PyBUF_STRIDES (0x0010 | PyBUF_ND) |
81 | #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES) |
82 | #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES) |
83 | #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES) |
84 | #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES) |
85 | |
86 | #define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE) |
87 | #define PyBUF_CONTIG_RO (PyBUF_ND) |
88 | |
89 | #define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE) |
90 | #define PyBUF_STRIDED_RO (PyBUF_STRIDES) |
91 | |
92 | #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT) |
93 | #define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT) |
94 | |
95 | #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT) |
96 | #define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT) |
97 | |
98 | |
99 | #define PyBUF_READ 0x100 |
100 | #define PyBUF_WRITE 0x200 |
101 | /* End buffer interface */ |
102 | |
103 | |
104 | typedef struct { |
105 | /* Number implementations must check *both* |
106 | arguments for proper type and implement the necessary conversions |
107 | in the slot functions themselves. */ |
108 | |
109 | binaryfunc nb_add; |
110 | binaryfunc nb_subtract; |
111 | binaryfunc nb_multiply; |
112 | binaryfunc nb_remainder; |
113 | binaryfunc nb_divmod; |
114 | ternaryfunc nb_power; |
115 | unaryfunc nb_negative; |
116 | unaryfunc nb_positive; |
117 | unaryfunc nb_absolute; |
118 | inquiry nb_bool; |
119 | unaryfunc nb_invert; |
120 | binaryfunc nb_lshift; |
121 | binaryfunc nb_rshift; |
122 | binaryfunc nb_and; |
123 | binaryfunc nb_xor; |
124 | binaryfunc nb_or; |
125 | unaryfunc nb_int; |
126 | void *nb_reserved; /* the slot formerly known as nb_long */ |
127 | unaryfunc nb_float; |
128 | |
129 | binaryfunc nb_inplace_add; |
130 | binaryfunc nb_inplace_subtract; |
131 | binaryfunc nb_inplace_multiply; |
132 | binaryfunc nb_inplace_remainder; |
133 | ternaryfunc nb_inplace_power; |
134 | binaryfunc nb_inplace_lshift; |
135 | binaryfunc nb_inplace_rshift; |
136 | binaryfunc nb_inplace_and; |
137 | binaryfunc nb_inplace_xor; |
138 | binaryfunc nb_inplace_or; |
139 | |
140 | binaryfunc nb_floor_divide; |
141 | binaryfunc nb_true_divide; |
142 | binaryfunc nb_inplace_floor_divide; |
143 | binaryfunc nb_inplace_true_divide; |
144 | |
145 | unaryfunc nb_index; |
146 | |
147 | binaryfunc nb_matrix_multiply; |
148 | binaryfunc nb_inplace_matrix_multiply; |
149 | } PyNumberMethods; |
150 | |
151 | typedef struct { |
152 | lenfunc sq_length; |
153 | binaryfunc sq_concat; |
154 | ssizeargfunc sq_repeat; |
155 | ssizeargfunc sq_item; |
156 | void *was_sq_slice; |
157 | ssizeobjargproc sq_ass_item; |
158 | void *was_sq_ass_slice; |
159 | objobjproc sq_contains; |
160 | |
161 | binaryfunc sq_inplace_concat; |
162 | ssizeargfunc sq_inplace_repeat; |
163 | } PySequenceMethods; |
164 | |
165 | typedef struct { |
166 | lenfunc mp_length; |
167 | binaryfunc mp_subscript; |
168 | objobjargproc mp_ass_subscript; |
169 | } PyMappingMethods; |
170 | |
171 | typedef PySendResult (*sendfunc)(PyObject *iter, PyObject *value, PyObject **result); |
172 | |
173 | typedef struct { |
174 | unaryfunc am_await; |
175 | unaryfunc am_aiter; |
176 | unaryfunc am_anext; |
177 | sendfunc am_send; |
178 | } PyAsyncMethods; |
179 | |
180 | typedef struct { |
181 | getbufferproc bf_getbuffer; |
182 | releasebufferproc bf_releasebuffer; |
183 | } PyBufferProcs; |
184 | |
185 | /* Allow printfunc in the tp_vectorcall_offset slot for |
186 | * backwards-compatibility */ |
187 | typedef Py_ssize_t printfunc; |
188 | |
189 | // If this structure is modified, Doc/includes/typestruct.h should be updated |
190 | // as well. |
191 | struct _typeobject { |
192 | PyObject_VAR_HEAD |
193 | const char *tp_name; /* For printing, in format "<module>.<name>" */ |
194 | Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */ |
195 | |
196 | /* Methods to implement standard operations */ |
197 | |
198 | destructor tp_dealloc; |
199 | Py_ssize_t tp_vectorcall_offset; |
200 | getattrfunc tp_getattr; |
201 | setattrfunc tp_setattr; |
202 | PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2) |
203 | or tp_reserved (Python 3) */ |
204 | reprfunc tp_repr; |
205 | |
206 | /* Method suites for standard classes */ |
207 | |
208 | PyNumberMethods *tp_as_number; |
209 | PySequenceMethods *tp_as_sequence; |
210 | PyMappingMethods *tp_as_mapping; |
211 | |
212 | /* More standard operations (here for binary compatibility) */ |
213 | |
214 | hashfunc tp_hash; |
215 | ternaryfunc tp_call; |
216 | reprfunc tp_str; |
217 | getattrofunc tp_getattro; |
218 | setattrofunc tp_setattro; |
219 | |
220 | /* Functions to access object as input/output buffer */ |
221 | PyBufferProcs *tp_as_buffer; |
222 | |
223 | /* Flags to define presence of optional/expanded features */ |
224 | unsigned long tp_flags; |
225 | |
226 | const char *tp_doc; /* Documentation string */ |
227 | |
228 | /* Assigned meaning in release 2.0 */ |
229 | /* call function for all accessible objects */ |
230 | traverseproc tp_traverse; |
231 | |
232 | /* delete references to contained objects */ |
233 | inquiry tp_clear; |
234 | |
235 | /* Assigned meaning in release 2.1 */ |
236 | /* rich comparisons */ |
237 | richcmpfunc tp_richcompare; |
238 | |
239 | /* weak reference enabler */ |
240 | Py_ssize_t tp_weaklistoffset; |
241 | |
242 | /* Iterators */ |
243 | getiterfunc tp_iter; |
244 | iternextfunc tp_iternext; |
245 | |
246 | /* Attribute descriptor and subclassing stuff */ |
247 | struct PyMethodDef *tp_methods; |
248 | struct PyMemberDef *tp_members; |
249 | struct PyGetSetDef *tp_getset; |
250 | // Strong reference on a heap type, borrowed reference on a static type |
251 | struct _typeobject *tp_base; |
252 | PyObject *tp_dict; |
253 | descrgetfunc tp_descr_get; |
254 | descrsetfunc tp_descr_set; |
255 | Py_ssize_t tp_dictoffset; |
256 | initproc tp_init; |
257 | allocfunc tp_alloc; |
258 | newfunc tp_new; |
259 | freefunc tp_free; /* Low-level free-memory routine */ |
260 | inquiry tp_is_gc; /* For PyObject_IS_GC */ |
261 | PyObject *tp_bases; |
262 | PyObject *tp_mro; /* method resolution order */ |
263 | PyObject *tp_cache; |
264 | PyObject *tp_subclasses; |
265 | PyObject *tp_weaklist; |
266 | destructor tp_del; |
267 | |
268 | /* Type attribute cache version tag. Added in version 2.6 */ |
269 | unsigned int tp_version_tag; |
270 | |
271 | destructor tp_finalize; |
272 | vectorcallfunc tp_vectorcall; |
273 | }; |
274 | |
275 | /* The *real* layout of a type object when allocated on the heap */ |
276 | typedef struct _heaptypeobject { |
277 | /* Note: there's a dependency on the order of these members |
278 | in slotptr() in typeobject.c . */ |
279 | PyTypeObject ht_type; |
280 | PyAsyncMethods as_async; |
281 | PyNumberMethods as_number; |
282 | PyMappingMethods as_mapping; |
283 | PySequenceMethods as_sequence; /* as_sequence comes after as_mapping, |
284 | so that the mapping wins when both |
285 | the mapping and the sequence define |
286 | a given operator (e.g. __getitem__). |
287 | see add_operators() in typeobject.c . */ |
288 | PyBufferProcs as_buffer; |
289 | PyObject *ht_name, *ht_slots, *ht_qualname; |
290 | struct _dictkeysobject *ht_cached_keys; |
291 | PyObject *ht_module; |
292 | /* here are optional user slots, followed by the members. */ |
293 | } PyHeapTypeObject; |
294 | |
295 | /* access macro to the members which are floating "behind" the object */ |
296 | #define PyHeapType_GET_MEMBERS(etype) \ |
297 | ((PyMemberDef *)(((char *)etype) + Py_TYPE(etype)->tp_basicsize)) |
298 | |
299 | PyAPI_FUNC(const char *) _PyType_Name(PyTypeObject *); |
300 | PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *); |
301 | PyAPI_FUNC(PyObject *) _PyType_LookupId(PyTypeObject *, _Py_Identifier *); |
302 | PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, _Py_Identifier *); |
303 | PyAPI_FUNC(PyTypeObject *) _PyType_CalculateMetaclass(PyTypeObject *, PyObject *); |
304 | PyAPI_FUNC(PyObject *) _PyType_GetDocFromInternalDoc(const char *, const char *); |
305 | PyAPI_FUNC(PyObject *) _PyType_GetTextSignatureFromInternalDoc(const char *, const char *); |
306 | struct PyModuleDef; |
307 | PyAPI_FUNC(PyObject *) _PyType_GetModuleByDef(PyTypeObject *, struct PyModuleDef *); |
308 | |
309 | struct _Py_Identifier; |
310 | PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int); |
311 | PyAPI_FUNC(void) _Py_BreakPoint(void); |
312 | PyAPI_FUNC(void) _PyObject_Dump(PyObject *); |
313 | PyAPI_FUNC(int) _PyObject_IsFreed(PyObject *); |
314 | |
315 | PyAPI_FUNC(int) _PyObject_IsAbstract(PyObject *); |
316 | PyAPI_FUNC(PyObject *) _PyObject_GetAttrId(PyObject *, struct _Py_Identifier *); |
317 | PyAPI_FUNC(int) _PyObject_SetAttrId(PyObject *, struct _Py_Identifier *, PyObject *); |
318 | /* Replacements of PyObject_GetAttr() and _PyObject_GetAttrId() which |
319 | don't raise AttributeError. |
320 | |
321 | Return 1 and set *result != NULL if an attribute is found. |
322 | Return 0 and set *result == NULL if an attribute is not found; |
323 | an AttributeError is silenced. |
324 | Return -1 and set *result == NULL if an error other than AttributeError |
325 | is raised. |
326 | */ |
327 | PyAPI_FUNC(int) _PyObject_LookupAttr(PyObject *, PyObject *, PyObject **); |
328 | PyAPI_FUNC(int) _PyObject_LookupAttrId(PyObject *, struct _Py_Identifier *, PyObject **); |
329 | |
330 | PyAPI_FUNC(int) _PyObject_GetMethod(PyObject *obj, PyObject *name, PyObject **method); |
331 | |
332 | PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *); |
333 | PyAPI_FUNC(PyObject *) _PyObject_NextNotImplemented(PyObject *); |
334 | PyAPI_FUNC(void) PyObject_CallFinalizer(PyObject *); |
335 | PyAPI_FUNC(int) PyObject_CallFinalizerFromDealloc(PyObject *); |
336 | |
337 | /* Same as PyObject_Generic{Get,Set}Attr, but passing the attributes |
338 | dict as the last parameter. */ |
339 | PyAPI_FUNC(PyObject *) |
340 | _PyObject_GenericGetAttrWithDict(PyObject *, PyObject *, PyObject *, int); |
341 | PyAPI_FUNC(int) |
342 | _PyObject_GenericSetAttrWithDict(PyObject *, PyObject *, |
343 | PyObject *, PyObject *); |
344 | |
345 | PyAPI_FUNC(PyObject *) _PyObject_FunctionStr(PyObject *); |
346 | |
347 | /* Safely decref `op` and set `op` to `op2`. |
348 | * |
349 | * As in case of Py_CLEAR "the obvious" code can be deadly: |
350 | * |
351 | * Py_DECREF(op); |
352 | * op = op2; |
353 | * |
354 | * The safe way is: |
355 | * |
356 | * Py_SETREF(op, op2); |
357 | * |
358 | * That arranges to set `op` to `op2` _before_ decref'ing, so that any code |
359 | * triggered as a side-effect of `op` getting torn down no longer believes |
360 | * `op` points to a valid object. |
361 | * |
362 | * Py_XSETREF is a variant of Py_SETREF that uses Py_XDECREF instead of |
363 | * Py_DECREF. |
364 | */ |
365 | |
366 | #define Py_SETREF(op, op2) \ |
367 | do { \ |
368 | PyObject *_py_tmp = _PyObject_CAST(op); \ |
369 | (op) = (op2); \ |
370 | Py_DECREF(_py_tmp); \ |
371 | } while (0) |
372 | |
373 | #define Py_XSETREF(op, op2) \ |
374 | do { \ |
375 | PyObject *_py_tmp = _PyObject_CAST(op); \ |
376 | (op) = (op2); \ |
377 | Py_XDECREF(_py_tmp); \ |
378 | } while (0) |
379 | |
380 | |
381 | PyAPI_DATA(PyTypeObject) _PyNone_Type; |
382 | PyAPI_DATA(PyTypeObject) _PyNotImplemented_Type; |
383 | |
384 | /* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE. |
385 | * Defined in object.c. |
386 | */ |
387 | PyAPI_DATA(int) _Py_SwappedOp[]; |
388 | |
389 | PyAPI_FUNC(void) |
390 | _PyDebugAllocatorStats(FILE *out, const char *block_name, int num_blocks, |
391 | size_t sizeof_block); |
392 | PyAPI_FUNC(void) |
393 | _PyObject_DebugTypeStats(FILE *out); |
394 | |
395 | /* Define a pair of assertion macros: |
396 | _PyObject_ASSERT_FROM(), _PyObject_ASSERT_WITH_MSG() and _PyObject_ASSERT(). |
397 | |
398 | These work like the regular C assert(), in that they will abort the |
399 | process with a message on stderr if the given condition fails to hold, |
400 | but compile away to nothing if NDEBUG is defined. |
401 | |
402 | However, before aborting, Python will also try to call _PyObject_Dump() on |
403 | the given object. This may be of use when investigating bugs in which a |
404 | particular object is corrupt (e.g. buggy a tp_visit method in an extension |
405 | module breaking the garbage collector), to help locate the broken objects. |
406 | |
407 | The WITH_MSG variant allows you to supply an additional message that Python |
408 | will attempt to print to stderr, after the object dump. */ |
409 | #ifdef NDEBUG |
410 | /* No debugging: compile away the assertions: */ |
411 | # define _PyObject_ASSERT_FROM(obj, expr, msg, filename, lineno, func) \ |
412 | ((void)0) |
413 | #else |
414 | /* With debugging: generate checks: */ |
415 | # define _PyObject_ASSERT_FROM(obj, expr, msg, filename, lineno, func) \ |
416 | ((expr) \ |
417 | ? (void)(0) \ |
418 | : _PyObject_AssertFailed((obj), Py_STRINGIFY(expr), \ |
419 | (msg), (filename), (lineno), (func))) |
420 | #endif |
421 | |
422 | #define _PyObject_ASSERT_WITH_MSG(obj, expr, msg) \ |
423 | _PyObject_ASSERT_FROM(obj, expr, msg, __FILE__, __LINE__, __func__) |
424 | #define _PyObject_ASSERT(obj, expr) \ |
425 | _PyObject_ASSERT_WITH_MSG(obj, expr, NULL) |
426 | |
427 | #define _PyObject_ASSERT_FAILED_MSG(obj, msg) \ |
428 | _PyObject_AssertFailed((obj), NULL, (msg), __FILE__, __LINE__, __func__) |
429 | |
430 | /* Declare and define _PyObject_AssertFailed() even when NDEBUG is defined, |
431 | to avoid causing compiler/linker errors when building extensions without |
432 | NDEBUG against a Python built with NDEBUG defined. |
433 | |
434 | msg, expr and function can be NULL. */ |
435 | PyAPI_FUNC(void) _Py_NO_RETURN _PyObject_AssertFailed( |
436 | PyObject *obj, |
437 | const char *expr, |
438 | const char *msg, |
439 | const char *file, |
440 | int line, |
441 | const char *function); |
442 | |
443 | /* Check if an object is consistent. For example, ensure that the reference |
444 | counter is greater than or equal to 1, and ensure that ob_type is not NULL. |
445 | |
446 | Call _PyObject_AssertFailed() if the object is inconsistent. |
447 | |
448 | If check_content is zero, only check header fields: reduce the overhead. |
449 | |
450 | The function always return 1. The return value is just here to be able to |
451 | write: |
452 | |
453 | assert(_PyObject_CheckConsistency(obj, 1)); */ |
454 | PyAPI_FUNC(int) _PyObject_CheckConsistency( |
455 | PyObject *op, |
456 | int check_content); |
457 | |
458 | |
459 | /* Trashcan mechanism, thanks to Christian Tismer. |
460 | |
461 | When deallocating a container object, it's possible to trigger an unbounded |
462 | chain of deallocations, as each Py_DECREF in turn drops the refcount on "the |
463 | next" object in the chain to 0. This can easily lead to stack overflows, |
464 | especially in threads (which typically have less stack space to work with). |
465 | |
466 | A container object can avoid this by bracketing the body of its tp_dealloc |
467 | function with a pair of macros: |
468 | |
469 | static void |
470 | mytype_dealloc(mytype *p) |
471 | { |
472 | ... declarations go here ... |
473 | |
474 | PyObject_GC_UnTrack(p); // must untrack first |
475 | Py_TRASHCAN_BEGIN(p, mytype_dealloc) |
476 | ... The body of the deallocator goes here, including all calls ... |
477 | ... to Py_DECREF on contained objects. ... |
478 | Py_TRASHCAN_END // there should be no code after this |
479 | } |
480 | |
481 | CAUTION: Never return from the middle of the body! If the body needs to |
482 | "get out early", put a label immediately before the Py_TRASHCAN_END |
483 | call, and goto it. Else the call-depth counter (see below) will stay |
484 | above 0 forever, and the trashcan will never get emptied. |
485 | |
486 | How it works: The BEGIN macro increments a call-depth counter. So long |
487 | as this counter is small, the body of the deallocator is run directly without |
488 | further ado. But if the counter gets large, it instead adds p to a list of |
489 | objects to be deallocated later, skips the body of the deallocator, and |
490 | resumes execution after the END macro. The tp_dealloc routine then returns |
491 | without deallocating anything (and so unbounded call-stack depth is avoided). |
492 | |
493 | When the call stack finishes unwinding again, code generated by the END macro |
494 | notices this, and calls another routine to deallocate all the objects that |
495 | may have been added to the list of deferred deallocations. In effect, a |
496 | chain of N deallocations is broken into (N-1)/(PyTrash_UNWIND_LEVEL-1) pieces, |
497 | with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL. |
498 | |
499 | Since the tp_dealloc of a subclass typically calls the tp_dealloc of the base |
500 | class, we need to ensure that the trashcan is only triggered on the tp_dealloc |
501 | of the actual class being deallocated. Otherwise we might end up with a |
502 | partially-deallocated object. To check this, the tp_dealloc function must be |
503 | passed as second argument to Py_TRASHCAN_BEGIN(). |
504 | */ |
505 | |
506 | /* This is the old private API, invoked by the macros before 3.2.4. |
507 | Kept for binary compatibility of extensions using the stable ABI. */ |
508 | PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*); |
509 | PyAPI_FUNC(void) _PyTrash_destroy_chain(void); |
510 | |
511 | /* This is the old private API, invoked by the macros before 3.9. |
512 | Kept for binary compatibility of extensions using the stable ABI. */ |
513 | PyAPI_FUNC(void) _PyTrash_thread_deposit_object(PyObject*); |
514 | PyAPI_FUNC(void) _PyTrash_thread_destroy_chain(void); |
515 | |
516 | /* Forward declarations for PyThreadState */ |
517 | struct _ts; |
518 | |
519 | /* Python 3.9 private API, invoked by the macros below. */ |
520 | PyAPI_FUNC(int) _PyTrash_begin(struct _ts *tstate, PyObject *op); |
521 | PyAPI_FUNC(void) _PyTrash_end(struct _ts *tstate); |
522 | /* Python 3.10 private API, invoked by the Py_TRASHCAN_BEGIN(). */ |
523 | PyAPI_FUNC(int) _PyTrash_cond(PyObject *op, destructor dealloc); |
524 | |
525 | #define PyTrash_UNWIND_LEVEL 50 |
526 | |
527 | #define Py_TRASHCAN_BEGIN_CONDITION(op, cond) \ |
528 | do { \ |
529 | PyThreadState *_tstate = NULL; \ |
530 | /* If "cond" is false, then _tstate remains NULL and the deallocator \ |
531 | * is run normally without involving the trashcan */ \ |
532 | if (cond) { \ |
533 | _tstate = PyThreadState_Get(); \ |
534 | if (_PyTrash_begin(_tstate, _PyObject_CAST(op))) { \ |
535 | break; \ |
536 | } \ |
537 | } |
538 | /* The body of the deallocator is here. */ |
539 | #define Py_TRASHCAN_END \ |
540 | if (_tstate) { \ |
541 | _PyTrash_end(_tstate); \ |
542 | } \ |
543 | } while (0); |
544 | |
545 | #define Py_TRASHCAN_BEGIN(op, dealloc) \ |
546 | Py_TRASHCAN_BEGIN_CONDITION(op, \ |
547 | _PyTrash_cond(_PyObject_CAST(op), (destructor)dealloc)) |
548 | |
549 | /* For backwards compatibility, these macros enable the trashcan |
550 | * unconditionally */ |
551 | #define Py_TRASHCAN_SAFE_BEGIN(op) Py_TRASHCAN_BEGIN_CONDITION(op, 1) |
552 | #define Py_TRASHCAN_SAFE_END(op) Py_TRASHCAN_END |
553 | |