1 | #ifndef Py_OBJECT_H |
2 | #define Py_OBJECT_H |
3 | |
4 | #ifdef __cplusplus |
5 | extern "C" { |
6 | #endif |
7 | |
8 | |
9 | /* Object and type object interface */ |
10 | |
11 | /* |
12 | Objects are structures allocated on the heap. Special rules apply to |
13 | the use of objects to ensure they are properly garbage-collected. |
14 | Objects are never allocated statically or on the stack; they must be |
15 | accessed through special macros and functions only. (Type objects are |
16 | exceptions to the first rule; the standard types are represented by |
17 | statically initialized type objects, although work on type/class unification |
18 | for Python 2.2 made it possible to have heap-allocated type objects too). |
19 | |
20 | An object has a 'reference count' that is increased or decreased when a |
21 | pointer to the object is copied or deleted; when the reference count |
22 | reaches zero there are no references to the object left and it can be |
23 | removed from the heap. |
24 | |
25 | An object has a 'type' that determines what it represents and what kind |
26 | of data it contains. An object's type is fixed when it is created. |
27 | Types themselves are represented as objects; an object contains a |
28 | pointer to the corresponding type object. The type itself has a type |
29 | pointer pointing to the object representing the type 'type', which |
30 | contains a pointer to itself!. |
31 | |
32 | Objects do not float around in memory; once allocated an object keeps |
33 | the same size and address. Objects that must hold variable-size data |
34 | can contain pointers to variable-size parts of the object. Not all |
35 | objects of the same type have the same size; but the size cannot change |
36 | after allocation. (These restrictions are made so a reference to an |
37 | object can be simply a pointer -- moving an object would require |
38 | updating all the pointers, and changing an object's size would require |
39 | moving it if there was another object right next to it.) |
40 | |
41 | Objects are always accessed through pointers of the type 'PyObject *'. |
42 | The type 'PyObject' is a structure that only contains the reference count |
43 | and the type pointer. The actual memory allocated for an object |
44 | contains other data that can only be accessed after casting the pointer |
45 | to a pointer to a longer structure type. This longer type must start |
46 | with the reference count and type fields; the macro PyObject_HEAD should be |
47 | used for this (to accommodate for future changes). The implementation |
48 | of a particular object type can cast the object pointer to the proper |
49 | type and back. |
50 | |
51 | A standard interface exists for objects that contain an array of items |
52 | whose size is determined when the object is allocated. |
53 | */ |
54 | |
55 | /* Py_DEBUG implies Py_REF_DEBUG. */ |
56 | #if defined(Py_DEBUG) && !defined(Py_REF_DEBUG) |
57 | # define Py_REF_DEBUG |
58 | #endif |
59 | |
60 | #if defined(Py_LIMITED_API) && defined(Py_TRACE_REFS) |
61 | # error Py_LIMITED_API is incompatible with Py_TRACE_REFS |
62 | #endif |
63 | |
64 | /* PyTypeObject structure is defined in cpython/object.h. |
65 | In Py_LIMITED_API, PyTypeObject is an opaque structure. */ |
66 | typedef struct _typeobject PyTypeObject; |
67 | |
68 | #ifdef Py_TRACE_REFS |
69 | /* Define pointers to support a doubly-linked list of all live heap objects. */ |
70 | #define _PyObject_HEAD_EXTRA \ |
71 | struct _object *_ob_next; \ |
72 | struct _object *_ob_prev; |
73 | |
74 | #define _PyObject_EXTRA_INIT 0, 0, |
75 | |
76 | #else |
77 | # define |
78 | # define |
79 | #endif |
80 | |
81 | /* PyObject_HEAD defines the initial segment of every PyObject. */ |
82 | #define PyObject_HEAD PyObject ob_base; |
83 | |
84 | #define PyObject_HEAD_INIT(type) \ |
85 | { _PyObject_EXTRA_INIT \ |
86 | 1, type }, |
87 | |
88 | #define PyVarObject_HEAD_INIT(type, size) \ |
89 | { PyObject_HEAD_INIT(type) size }, |
90 | |
91 | /* PyObject_VAR_HEAD defines the initial segment of all variable-size |
92 | * container objects. These end with a declaration of an array with 1 |
93 | * element, but enough space is malloc'ed so that the array actually |
94 | * has room for ob_size elements. Note that ob_size is an element count, |
95 | * not necessarily a byte count. |
96 | */ |
97 | #define PyObject_VAR_HEAD PyVarObject ob_base; |
98 | #define Py_INVALID_SIZE (Py_ssize_t)-1 |
99 | |
100 | /* Nothing is actually declared to be a PyObject, but every pointer to |
101 | * a Python object can be cast to a PyObject*. This is inheritance built |
102 | * by hand. Similarly every pointer to a variable-size Python object can, |
103 | * in addition, be cast to PyVarObject*. |
104 | */ |
105 | typedef struct _object { |
106 | _PyObject_HEAD_EXTRA |
107 | Py_ssize_t ob_refcnt; |
108 | PyTypeObject *ob_type; |
109 | } PyObject; |
110 | |
111 | /* Cast argument to PyObject* type. */ |
112 | #define _PyObject_CAST(op) ((PyObject*)(op)) |
113 | #define _PyObject_CAST_CONST(op) ((const PyObject*)(op)) |
114 | |
115 | typedef struct { |
116 | PyObject ob_base; |
117 | Py_ssize_t ob_size; /* Number of items in variable part */ |
118 | } PyVarObject; |
119 | |
120 | /* Cast argument to PyVarObject* type. */ |
121 | #define _PyVarObject_CAST(op) ((PyVarObject*)(op)) |
122 | #define _PyVarObject_CAST_CONST(op) ((const PyVarObject*)(op)) |
123 | |
124 | |
125 | // Test if the 'x' object is the 'y' object, the same as "x is y" in Python. |
126 | PyAPI_FUNC(int) Py_Is(PyObject *x, PyObject *y); |
127 | #define Py_Is(x, y) ((x) == (y)) |
128 | |
129 | |
130 | static inline Py_ssize_t _Py_REFCNT(const PyObject *ob) { |
131 | return ob->ob_refcnt; |
132 | } |
133 | #define Py_REFCNT(ob) _Py_REFCNT(_PyObject_CAST_CONST(ob)) |
134 | |
135 | |
136 | // bpo-39573: The Py_SET_TYPE() function must be used to set an object type. |
137 | #define Py_TYPE(ob) (_PyObject_CAST(ob)->ob_type) |
138 | |
139 | // bpo-39573: The Py_SET_SIZE() function must be used to set an object size. |
140 | #define Py_SIZE(ob) (_PyVarObject_CAST(ob)->ob_size) |
141 | |
142 | |
143 | static inline int _Py_IS_TYPE(const PyObject *ob, const PyTypeObject *type) { |
144 | // bpo-44378: Don't use Py_TYPE() since Py_TYPE() requires a non-const |
145 | // object. |
146 | return ob->ob_type == type; |
147 | } |
148 | #define Py_IS_TYPE(ob, type) _Py_IS_TYPE(_PyObject_CAST_CONST(ob), type) |
149 | |
150 | |
151 | static inline void _Py_SET_REFCNT(PyObject *ob, Py_ssize_t refcnt) { |
152 | ob->ob_refcnt = refcnt; |
153 | } |
154 | #define Py_SET_REFCNT(ob, refcnt) _Py_SET_REFCNT(_PyObject_CAST(ob), refcnt) |
155 | |
156 | |
157 | static inline void _Py_SET_TYPE(PyObject *ob, PyTypeObject *type) { |
158 | ob->ob_type = type; |
159 | } |
160 | #define Py_SET_TYPE(ob, type) _Py_SET_TYPE(_PyObject_CAST(ob), type) |
161 | |
162 | |
163 | static inline void _Py_SET_SIZE(PyVarObject *ob, Py_ssize_t size) { |
164 | ob->ob_size = size; |
165 | } |
166 | #define Py_SET_SIZE(ob, size) _Py_SET_SIZE(_PyVarObject_CAST(ob), size) |
167 | |
168 | |
169 | /* |
170 | Type objects contain a string containing the type name (to help somewhat |
171 | in debugging), the allocation parameters (see PyObject_New() and |
172 | PyObject_NewVar()), |
173 | and methods for accessing objects of the type. Methods are optional, a |
174 | nil pointer meaning that particular kind of access is not available for |
175 | this type. The Py_DECREF() macro uses the tp_dealloc method without |
176 | checking for a nil pointer; it should always be implemented except if |
177 | the implementation can guarantee that the reference count will never |
178 | reach zero (e.g., for statically allocated type objects). |
179 | |
180 | NB: the methods for certain type groups are now contained in separate |
181 | method blocks. |
182 | */ |
183 | |
184 | typedef PyObject * (*unaryfunc)(PyObject *); |
185 | typedef PyObject * (*binaryfunc)(PyObject *, PyObject *); |
186 | typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *); |
187 | typedef int (*inquiry)(PyObject *); |
188 | typedef Py_ssize_t (*lenfunc)(PyObject *); |
189 | typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t); |
190 | typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t); |
191 | typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *); |
192 | typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *); |
193 | typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *); |
194 | |
195 | typedef int (*objobjproc)(PyObject *, PyObject *); |
196 | typedef int (*visitproc)(PyObject *, void *); |
197 | typedef int (*traverseproc)(PyObject *, visitproc, void *); |
198 | |
199 | |
200 | typedef void (*freefunc)(void *); |
201 | typedef void (*destructor)(PyObject *); |
202 | typedef PyObject *(*getattrfunc)(PyObject *, char *); |
203 | typedef PyObject *(*getattrofunc)(PyObject *, PyObject *); |
204 | typedef int (*setattrfunc)(PyObject *, char *, PyObject *); |
205 | typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *); |
206 | typedef PyObject *(*reprfunc)(PyObject *); |
207 | typedef Py_hash_t (*hashfunc)(PyObject *); |
208 | typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int); |
209 | typedef PyObject *(*getiterfunc) (PyObject *); |
210 | typedef PyObject *(*iternextfunc) (PyObject *); |
211 | typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *); |
212 | typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *); |
213 | typedef int (*initproc)(PyObject *, PyObject *, PyObject *); |
214 | typedef PyObject *(*newfunc)(PyTypeObject *, PyObject *, PyObject *); |
215 | typedef PyObject *(*allocfunc)(PyTypeObject *, Py_ssize_t); |
216 | |
217 | typedef struct{ |
218 | int slot; /* slot id, see below */ |
219 | void *pfunc; /* function pointer */ |
220 | } PyType_Slot; |
221 | |
222 | typedef struct{ |
223 | const char* name; |
224 | int basicsize; |
225 | int itemsize; |
226 | unsigned int flags; |
227 | PyType_Slot *slots; /* terminated by slot==0. */ |
228 | } PyType_Spec; |
229 | |
230 | PyAPI_FUNC(PyObject*) PyType_FromSpec(PyType_Spec*); |
231 | #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000 |
232 | PyAPI_FUNC(PyObject*) PyType_FromSpecWithBases(PyType_Spec*, PyObject*); |
233 | #endif |
234 | #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03040000 |
235 | PyAPI_FUNC(void*) PyType_GetSlot(PyTypeObject*, int); |
236 | #endif |
237 | #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03090000 |
238 | PyAPI_FUNC(PyObject*) PyType_FromModuleAndSpec(PyObject *, PyType_Spec *, PyObject *); |
239 | PyAPI_FUNC(PyObject *) PyType_GetModule(struct _typeobject *); |
240 | PyAPI_FUNC(void *) PyType_GetModuleState(struct _typeobject *); |
241 | #endif |
242 | |
243 | /* Generic type check */ |
244 | PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *); |
245 | |
246 | static inline int _PyObject_TypeCheck(PyObject *ob, PyTypeObject *type) { |
247 | return Py_IS_TYPE(ob, type) || PyType_IsSubtype(Py_TYPE(ob), type); |
248 | } |
249 | #define PyObject_TypeCheck(ob, type) _PyObject_TypeCheck(_PyObject_CAST(ob), type) |
250 | |
251 | PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */ |
252 | PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */ |
253 | PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */ |
254 | |
255 | PyAPI_FUNC(unsigned long) PyType_GetFlags(PyTypeObject*); |
256 | |
257 | PyAPI_FUNC(int) PyType_Ready(PyTypeObject *); |
258 | PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t); |
259 | PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *, |
260 | PyObject *, PyObject *); |
261 | PyAPI_FUNC(unsigned int) PyType_ClearCache(void); |
262 | PyAPI_FUNC(void) PyType_Modified(PyTypeObject *); |
263 | |
264 | /* Generic operations on objects */ |
265 | PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *); |
266 | PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *); |
267 | PyAPI_FUNC(PyObject *) PyObject_ASCII(PyObject *); |
268 | PyAPI_FUNC(PyObject *) PyObject_Bytes(PyObject *); |
269 | PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int); |
270 | PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int); |
271 | PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *); |
272 | PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *); |
273 | PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *); |
274 | PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *); |
275 | PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *); |
276 | PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *); |
277 | PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *); |
278 | PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *); |
279 | PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *, PyObject *, PyObject *); |
280 | #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000 |
281 | PyAPI_FUNC(int) PyObject_GenericSetDict(PyObject *, PyObject *, void *); |
282 | #endif |
283 | PyAPI_FUNC(Py_hash_t) PyObject_Hash(PyObject *); |
284 | PyAPI_FUNC(Py_hash_t) PyObject_HashNotImplemented(PyObject *); |
285 | PyAPI_FUNC(int) PyObject_IsTrue(PyObject *); |
286 | PyAPI_FUNC(int) PyObject_Not(PyObject *); |
287 | PyAPI_FUNC(int) PyCallable_Check(PyObject *); |
288 | PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *); |
289 | |
290 | /* PyObject_Dir(obj) acts like Python builtins.dir(obj), returning a |
291 | list of strings. PyObject_Dir(NULL) is like builtins.dir(), |
292 | returning the names of the current locals. In this case, if there are |
293 | no current locals, NULL is returned, and PyErr_Occurred() is false. |
294 | */ |
295 | PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *); |
296 | |
297 | |
298 | /* Helpers for printing recursive container types */ |
299 | PyAPI_FUNC(int) Py_ReprEnter(PyObject *); |
300 | PyAPI_FUNC(void) Py_ReprLeave(PyObject *); |
301 | |
302 | /* Flag bits for printing: */ |
303 | #define Py_PRINT_RAW 1 /* No string quotes etc. */ |
304 | |
305 | /* |
306 | Type flags (tp_flags) |
307 | |
308 | These flags are used to change expected features and behavior for a |
309 | particular type. |
310 | |
311 | Arbitration of the flag bit positions will need to be coordinated among |
312 | all extension writers who publicly release their extensions (this will |
313 | be fewer than you might expect!). |
314 | |
315 | Most flags were removed as of Python 3.0 to make room for new flags. (Some |
316 | flags are not for backwards compatibility but to indicate the presence of an |
317 | optional feature; these flags remain of course.) |
318 | |
319 | Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value. |
320 | |
321 | Code can use PyType_HasFeature(type_ob, flag_value) to test whether the |
322 | given type object has a specified feature. |
323 | */ |
324 | |
325 | #ifndef Py_LIMITED_API |
326 | /* Set if instances of the type object are treated as sequences for pattern matching */ |
327 | #define Py_TPFLAGS_SEQUENCE (1 << 5) |
328 | /* Set if instances of the type object are treated as mappings for pattern matching */ |
329 | #define Py_TPFLAGS_MAPPING (1 << 6) |
330 | #endif |
331 | |
332 | /* Disallow creating instances of the type: set tp_new to NULL and don't create |
333 | * the "__new__" key in the type dictionary. */ |
334 | #define Py_TPFLAGS_DISALLOW_INSTANTIATION (1UL << 7) |
335 | |
336 | /* Set if the type object is immutable: type attributes cannot be set nor deleted */ |
337 | #define Py_TPFLAGS_IMMUTABLETYPE (1UL << 8) |
338 | |
339 | /* Set if the type object is dynamically allocated */ |
340 | #define Py_TPFLAGS_HEAPTYPE (1UL << 9) |
341 | |
342 | /* Set if the type allows subclassing */ |
343 | #define Py_TPFLAGS_BASETYPE (1UL << 10) |
344 | |
345 | /* Set if the type implements the vectorcall protocol (PEP 590) */ |
346 | #ifndef Py_LIMITED_API |
347 | #define Py_TPFLAGS_HAVE_VECTORCALL (1UL << 11) |
348 | // Backwards compatibility alias for API that was provisional in Python 3.8 |
349 | #define _Py_TPFLAGS_HAVE_VECTORCALL Py_TPFLAGS_HAVE_VECTORCALL |
350 | #endif |
351 | |
352 | /* Set if the type is 'ready' -- fully initialized */ |
353 | #define Py_TPFLAGS_READY (1UL << 12) |
354 | |
355 | /* Set while the type is being 'readied', to prevent recursive ready calls */ |
356 | #define Py_TPFLAGS_READYING (1UL << 13) |
357 | |
358 | /* Objects support garbage collection (see objimpl.h) */ |
359 | #define Py_TPFLAGS_HAVE_GC (1UL << 14) |
360 | |
361 | /* These two bits are preserved for Stackless Python, next after this is 17 */ |
362 | #ifdef STACKLESS |
363 | #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3UL << 15) |
364 | #else |
365 | #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0 |
366 | #endif |
367 | |
368 | /* Objects behave like an unbound method */ |
369 | #define Py_TPFLAGS_METHOD_DESCRIPTOR (1UL << 17) |
370 | |
371 | /* Object has up-to-date type attribute cache */ |
372 | #define Py_TPFLAGS_VALID_VERSION_TAG (1UL << 19) |
373 | |
374 | /* Type is abstract and cannot be instantiated */ |
375 | #define Py_TPFLAGS_IS_ABSTRACT (1UL << 20) |
376 | |
377 | // This undocumented flag gives certain built-ins their unique pattern-matching |
378 | // behavior, which allows a single positional subpattern to match against the |
379 | // subject itself (rather than a mapped attribute on it): |
380 | #define _Py_TPFLAGS_MATCH_SELF (1UL << 22) |
381 | |
382 | /* These flags are used to determine if a type is a subclass. */ |
383 | #define Py_TPFLAGS_LONG_SUBCLASS (1UL << 24) |
384 | #define Py_TPFLAGS_LIST_SUBCLASS (1UL << 25) |
385 | #define Py_TPFLAGS_TUPLE_SUBCLASS (1UL << 26) |
386 | #define Py_TPFLAGS_BYTES_SUBCLASS (1UL << 27) |
387 | #define Py_TPFLAGS_UNICODE_SUBCLASS (1UL << 28) |
388 | #define Py_TPFLAGS_DICT_SUBCLASS (1UL << 29) |
389 | #define Py_TPFLAGS_BASE_EXC_SUBCLASS (1UL << 30) |
390 | #define Py_TPFLAGS_TYPE_SUBCLASS (1UL << 31) |
391 | |
392 | #define Py_TPFLAGS_DEFAULT ( \ |
393 | Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \ |
394 | 0) |
395 | |
396 | /* NOTE: Some of the following flags reuse lower bits (removed as part of the |
397 | * Python 3.0 transition). */ |
398 | |
399 | /* The following flags are kept for compatibility; in previous |
400 | * versions they indicated presence of newer tp_* fields on the |
401 | * type struct. |
402 | * Starting with 3.8, binary compatibility of C extensions across |
403 | * feature releases of Python is not supported anymore (except when |
404 | * using the stable ABI, in which all classes are created dynamically, |
405 | * using the interpreter's memory layout.) |
406 | * Note that older extensions using the stable ABI set these flags, |
407 | * so the bits must not be repurposed. |
408 | */ |
409 | #define Py_TPFLAGS_HAVE_FINALIZE (1UL << 0) |
410 | #define Py_TPFLAGS_HAVE_VERSION_TAG (1UL << 18) |
411 | |
412 | |
413 | /* |
414 | The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement |
415 | reference counts. Py_DECREF calls the object's deallocator function when |
416 | the refcount falls to 0; for |
417 | objects that don't contain references to other objects or heap memory |
418 | this can be the standard function free(). Both macros can be used |
419 | wherever a void expression is allowed. The argument must not be a |
420 | NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead. |
421 | The macro _Py_NewReference(op) initialize reference counts to 1, and |
422 | in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional |
423 | bookkeeping appropriate to the special build. |
424 | |
425 | We assume that the reference count field can never overflow; this can |
426 | be proven when the size of the field is the same as the pointer size, so |
427 | we ignore the possibility. Provided a C int is at least 32 bits (which |
428 | is implicitly assumed in many parts of this code), that's enough for |
429 | about 2**31 references to an object. |
430 | |
431 | XXX The following became out of date in Python 2.2, but I'm not sure |
432 | XXX what the full truth is now. Certainly, heap-allocated type objects |
433 | XXX can and should be deallocated. |
434 | Type objects should never be deallocated; the type pointer in an object |
435 | is not considered to be a reference to the type object, to save |
436 | complications in the deallocation function. (This is actually a |
437 | decision that's up to the implementer of each new type so if you want, |
438 | you can count such references to the type object.) |
439 | */ |
440 | |
441 | #ifdef Py_REF_DEBUG |
442 | PyAPI_DATA(Py_ssize_t) _Py_RefTotal; |
443 | PyAPI_FUNC(void) _Py_NegativeRefcount(const char *filename, int lineno, |
444 | PyObject *op); |
445 | #endif /* Py_REF_DEBUG */ |
446 | |
447 | PyAPI_FUNC(void) _Py_Dealloc(PyObject *); |
448 | |
449 | /* |
450 | These are provided as conveniences to Python runtime embedders, so that |
451 | they can have object code that is not dependent on Python compilation flags. |
452 | */ |
453 | PyAPI_FUNC(void) Py_IncRef(PyObject *); |
454 | PyAPI_FUNC(void) Py_DecRef(PyObject *); |
455 | |
456 | // Similar to Py_IncRef() and Py_DecRef() but the argument must be non-NULL. |
457 | // Private functions used by Py_INCREF() and Py_DECREF(). |
458 | PyAPI_FUNC(void) _Py_IncRef(PyObject *); |
459 | PyAPI_FUNC(void) _Py_DecRef(PyObject *); |
460 | |
461 | static inline void _Py_INCREF(PyObject *op) |
462 | { |
463 | #if defined(Py_REF_DEBUG) && defined(Py_LIMITED_API) && Py_LIMITED_API+0 >= 0x030A0000 |
464 | // Stable ABI for Python 3.10 built in debug mode. |
465 | _Py_IncRef(op); |
466 | #else |
467 | // Non-limited C API and limited C API for Python 3.9 and older access |
468 | // directly PyObject.ob_refcnt. |
469 | #ifdef Py_REF_DEBUG |
470 | _Py_RefTotal++; |
471 | #endif |
472 | op->ob_refcnt++; |
473 | #endif |
474 | } |
475 | #define Py_INCREF(op) _Py_INCREF(_PyObject_CAST(op)) |
476 | |
477 | static inline void _Py_DECREF( |
478 | #if defined(Py_REF_DEBUG) && !(defined(Py_LIMITED_API) && Py_LIMITED_API+0 >= 0x030A0000) |
479 | const char *filename, int lineno, |
480 | #endif |
481 | PyObject *op) |
482 | { |
483 | #if defined(Py_REF_DEBUG) && defined(Py_LIMITED_API) && Py_LIMITED_API+0 >= 0x030A0000 |
484 | // Stable ABI for Python 3.10 built in debug mode. |
485 | _Py_DecRef(op); |
486 | #else |
487 | // Non-limited C API and limited C API for Python 3.9 and older access |
488 | // directly PyObject.ob_refcnt. |
489 | #ifdef Py_REF_DEBUG |
490 | _Py_RefTotal--; |
491 | #endif |
492 | if (--op->ob_refcnt != 0) { |
493 | #ifdef Py_REF_DEBUG |
494 | if (op->ob_refcnt < 0) { |
495 | _Py_NegativeRefcount(filename, lineno, op); |
496 | } |
497 | #endif |
498 | } |
499 | else { |
500 | _Py_Dealloc(op); |
501 | } |
502 | #endif |
503 | } |
504 | #if defined(Py_REF_DEBUG) && !(defined(Py_LIMITED_API) && Py_LIMITED_API+0 >= 0x030A0000) |
505 | # define Py_DECREF(op) _Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op)) |
506 | #else |
507 | # define Py_DECREF(op) _Py_DECREF(_PyObject_CAST(op)) |
508 | #endif |
509 | |
510 | |
511 | /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear |
512 | * and tp_dealloc implementations. |
513 | * |
514 | * Note that "the obvious" code can be deadly: |
515 | * |
516 | * Py_XDECREF(op); |
517 | * op = NULL; |
518 | * |
519 | * Typically, `op` is something like self->containee, and `self` is done |
520 | * using its `containee` member. In the code sequence above, suppose |
521 | * `containee` is non-NULL with a refcount of 1. Its refcount falls to |
522 | * 0 on the first line, which can trigger an arbitrary amount of code, |
523 | * possibly including finalizers (like __del__ methods or weakref callbacks) |
524 | * coded in Python, which in turn can release the GIL and allow other threads |
525 | * to run, etc. Such code may even invoke methods of `self` again, or cause |
526 | * cyclic gc to trigger, but-- oops! --self->containee still points to the |
527 | * object being torn down, and it may be in an insane state while being torn |
528 | * down. This has in fact been a rich historic source of miserable (rare & |
529 | * hard-to-diagnose) segfaulting (and other) bugs. |
530 | * |
531 | * The safe way is: |
532 | * |
533 | * Py_CLEAR(op); |
534 | * |
535 | * That arranges to set `op` to NULL _before_ decref'ing, so that any code |
536 | * triggered as a side-effect of `op` getting torn down no longer believes |
537 | * `op` points to a valid object. |
538 | * |
539 | * There are cases where it's safe to use the naive code, but they're brittle. |
540 | * For example, if `op` points to a Python integer, you know that destroying |
541 | * one of those can't cause problems -- but in part that relies on that |
542 | * Python integers aren't currently weakly referencable. Best practice is |
543 | * to use Py_CLEAR() even if you can't think of a reason for why you need to. |
544 | */ |
545 | #define Py_CLEAR(op) \ |
546 | do { \ |
547 | PyObject *_py_tmp = _PyObject_CAST(op); \ |
548 | if (_py_tmp != NULL) { \ |
549 | (op) = NULL; \ |
550 | Py_DECREF(_py_tmp); \ |
551 | } \ |
552 | } while (0) |
553 | |
554 | /* Function to use in case the object pointer can be NULL: */ |
555 | static inline void _Py_XINCREF(PyObject *op) |
556 | { |
557 | if (op != NULL) { |
558 | Py_INCREF(op); |
559 | } |
560 | } |
561 | |
562 | #define Py_XINCREF(op) _Py_XINCREF(_PyObject_CAST(op)) |
563 | |
564 | static inline void _Py_XDECREF(PyObject *op) |
565 | { |
566 | if (op != NULL) { |
567 | Py_DECREF(op); |
568 | } |
569 | } |
570 | |
571 | #define Py_XDECREF(op) _Py_XDECREF(_PyObject_CAST(op)) |
572 | |
573 | // Create a new strong reference to an object: |
574 | // increment the reference count of the object and return the object. |
575 | PyAPI_FUNC(PyObject*) Py_NewRef(PyObject *obj); |
576 | |
577 | // Similar to Py_NewRef(), but the object can be NULL. |
578 | PyAPI_FUNC(PyObject*) Py_XNewRef(PyObject *obj); |
579 | |
580 | static inline PyObject* _Py_NewRef(PyObject *obj) |
581 | { |
582 | Py_INCREF(obj); |
583 | return obj; |
584 | } |
585 | |
586 | static inline PyObject* _Py_XNewRef(PyObject *obj) |
587 | { |
588 | Py_XINCREF(obj); |
589 | return obj; |
590 | } |
591 | |
592 | // Py_NewRef() and Py_XNewRef() are exported as functions for the stable ABI. |
593 | // Names overridden with macros by static inline functions for best |
594 | // performances. |
595 | #define Py_NewRef(obj) _Py_NewRef(_PyObject_CAST(obj)) |
596 | #define Py_XNewRef(obj) _Py_XNewRef(_PyObject_CAST(obj)) |
597 | |
598 | |
599 | /* |
600 | _Py_NoneStruct is an object of undefined type which can be used in contexts |
601 | where NULL (nil) is not suitable (since NULL often means 'error'). |
602 | |
603 | Don't forget to apply Py_INCREF() when returning this value!!! |
604 | */ |
605 | PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */ |
606 | #define Py_None (&_Py_NoneStruct) |
607 | |
608 | // Test if an object is the None singleton, the same as "x is None" in Python. |
609 | PyAPI_FUNC(int) Py_IsNone(PyObject *x); |
610 | #define Py_IsNone(x) Py_Is((x), Py_None) |
611 | |
612 | /* Macro for returning Py_None from a function */ |
613 | #define Py_RETURN_NONE return Py_NewRef(Py_None) |
614 | |
615 | /* |
616 | Py_NotImplemented is a singleton used to signal that an operation is |
617 | not implemented for a given type combination. |
618 | */ |
619 | PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */ |
620 | #define Py_NotImplemented (&_Py_NotImplementedStruct) |
621 | |
622 | /* Macro for returning Py_NotImplemented from a function */ |
623 | #define Py_RETURN_NOTIMPLEMENTED return Py_NewRef(Py_NotImplemented) |
624 | |
625 | /* Rich comparison opcodes */ |
626 | #define Py_LT 0 |
627 | #define Py_LE 1 |
628 | #define Py_EQ 2 |
629 | #define Py_NE 3 |
630 | #define Py_GT 4 |
631 | #define Py_GE 5 |
632 | |
633 | #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030A0000 |
634 | /* Result of calling PyIter_Send */ |
635 | typedef enum { |
636 | PYGEN_RETURN = 0, |
637 | PYGEN_ERROR = -1, |
638 | PYGEN_NEXT = 1, |
639 | } PySendResult; |
640 | #endif |
641 | |
642 | /* |
643 | * Macro for implementing rich comparisons |
644 | * |
645 | * Needs to be a macro because any C-comparable type can be used. |
646 | */ |
647 | #define Py_RETURN_RICHCOMPARE(val1, val2, op) \ |
648 | do { \ |
649 | switch (op) { \ |
650 | case Py_EQ: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
651 | case Py_NE: if ((val1) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
652 | case Py_LT: if ((val1) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
653 | case Py_GT: if ((val1) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
654 | case Py_LE: if ((val1) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
655 | case Py_GE: if ((val1) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
656 | default: \ |
657 | Py_UNREACHABLE(); \ |
658 | } \ |
659 | } while (0) |
660 | |
661 | |
662 | /* |
663 | More conventions |
664 | ================ |
665 | |
666 | Argument Checking |
667 | ----------------- |
668 | |
669 | Functions that take objects as arguments normally don't check for nil |
670 | arguments, but they do check the type of the argument, and return an |
671 | error if the function doesn't apply to the type. |
672 | |
673 | Failure Modes |
674 | ------------- |
675 | |
676 | Functions may fail for a variety of reasons, including running out of |
677 | memory. This is communicated to the caller in two ways: an error string |
678 | is set (see errors.h), and the function result differs: functions that |
679 | normally return a pointer return NULL for failure, functions returning |
680 | an integer return -1 (which could be a legal return value too!), and |
681 | other functions return 0 for success and -1 for failure. |
682 | Callers should always check for errors before using the result. If |
683 | an error was set, the caller must either explicitly clear it, or pass |
684 | the error on to its caller. |
685 | |
686 | Reference Counts |
687 | ---------------- |
688 | |
689 | It takes a while to get used to the proper usage of reference counts. |
690 | |
691 | Functions that create an object set the reference count to 1; such new |
692 | objects must be stored somewhere or destroyed again with Py_DECREF(). |
693 | Some functions that 'store' objects, such as PyTuple_SetItem() and |
694 | PyList_SetItem(), |
695 | don't increment the reference count of the object, since the most |
696 | frequent use is to store a fresh object. Functions that 'retrieve' |
697 | objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also |
698 | don't increment |
699 | the reference count, since most frequently the object is only looked at |
700 | quickly. Thus, to retrieve an object and store it again, the caller |
701 | must call Py_INCREF() explicitly. |
702 | |
703 | NOTE: functions that 'consume' a reference count, like |
704 | PyList_SetItem(), consume the reference even if the object wasn't |
705 | successfully stored, to simplify error handling. |
706 | |
707 | It seems attractive to make other functions that take an object as |
708 | argument consume a reference count; however, this may quickly get |
709 | confusing (even the current practice is already confusing). Consider |
710 | it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at |
711 | times. |
712 | */ |
713 | |
714 | #ifndef Py_LIMITED_API |
715 | # define Py_CPYTHON_OBJECT_H |
716 | # include "cpython/object.h" |
717 | # undef Py_CPYTHON_OBJECT_H |
718 | #endif |
719 | |
720 | |
721 | static inline int |
722 | PyType_HasFeature(PyTypeObject *type, unsigned long feature) |
723 | { |
724 | unsigned long flags; |
725 | #ifdef Py_LIMITED_API |
726 | // PyTypeObject is opaque in the limited C API |
727 | flags = PyType_GetFlags(type); |
728 | #else |
729 | flags = type->tp_flags; |
730 | #endif |
731 | return ((flags & feature) != 0); |
732 | } |
733 | |
734 | #define PyType_FastSubclass(type, flag) PyType_HasFeature(type, flag) |
735 | |
736 | static inline int _PyType_Check(PyObject *op) { |
737 | return PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS); |
738 | } |
739 | #define PyType_Check(op) _PyType_Check(_PyObject_CAST(op)) |
740 | |
741 | static inline int _PyType_CheckExact(PyObject *op) { |
742 | return Py_IS_TYPE(op, &PyType_Type); |
743 | } |
744 | #define PyType_CheckExact(op) _PyType_CheckExact(_PyObject_CAST(op)) |
745 | |
746 | #ifdef __cplusplus |
747 | } |
748 | #endif |
749 | #endif /* !Py_OBJECT_H */ |
750 | |