1 | /* |
2 | * Single-precision e^x function. |
3 | * |
4 | * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
5 | * See https://llvm.org/LICENSE.txt for license information. |
6 | * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
7 | */ |
8 | |
9 | #include <math.h> |
10 | #include <stdint.h> |
11 | #include "math_config.h" |
12 | |
13 | /* |
14 | EXP2F_TABLE_BITS = 5 |
15 | EXP2F_POLY_ORDER = 3 |
16 | |
17 | ULP error: 0.502 (nearest rounding.) |
18 | Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.) |
19 | Wrong count: 170635 (all nearest rounding wrong results with fma.) |
20 | Non-nearest ULP error: 1 (rounded ULP error) |
21 | */ |
22 | |
23 | #define N (1 << EXP2F_TABLE_BITS) |
24 | #define InvLn2N __exp2f_data.invln2_scaled |
25 | #define T __exp2f_data.tab |
26 | #define C __exp2f_data.poly_scaled |
27 | |
28 | static inline uint32_t |
29 | top12 (float x) |
30 | { |
31 | return asuint (f: x) >> 20; |
32 | } |
33 | |
34 | float |
35 | expf (float x) |
36 | { |
37 | uint32_t abstop; |
38 | uint64_t ki, t; |
39 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
40 | double_t kd, xd, z, r, r2, y, s; |
41 | |
42 | xd = (double_t) x; |
43 | abstop = top12 (x) & 0x7ff; |
44 | if (unlikely (abstop >= top12 (88.0f))) |
45 | { |
46 | /* |x| >= 88 or x is nan. */ |
47 | if (asuint (f: x) == asuint (f: -INFINITY)) |
48 | return 0.0f; |
49 | if (abstop >= top12 (INFINITY)) |
50 | return x + x; |
51 | if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */ |
52 | return __math_oflowf (0); |
53 | if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */ |
54 | return __math_uflowf (0); |
55 | #if WANT_ERRNO_UFLOW |
56 | if (x < -0x1.9d1d9ep6f) /* x < log(0x1p-149) ~= -103.28 */ |
57 | return __math_may_uflowf (0); |
58 | #endif |
59 | } |
60 | |
61 | /* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */ |
62 | z = InvLn2N * xd; |
63 | |
64 | /* Round and convert z to int, the result is in [-150*N, 128*N] and |
65 | ideally nearest int is used, otherwise the magnitude of r can be |
66 | bigger which gives larger approximation error. */ |
67 | #if TOINT_INTRINSICS |
68 | kd = roundtoint (z); |
69 | ki = converttoint (z); |
70 | #else |
71 | # define SHIFT __exp2f_data.shift |
72 | kd = eval_as_double (x: z + SHIFT); |
73 | ki = asuint64 (f: kd); |
74 | kd -= SHIFT; |
75 | #endif |
76 | r = z - kd; |
77 | |
78 | /* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ |
79 | t = T[ki % N]; |
80 | t += ki << (52 - EXP2F_TABLE_BITS); |
81 | s = asdouble (i: t); |
82 | z = C[0] * r + C[1]; |
83 | r2 = r * r; |
84 | y = C[2] * r + 1; |
85 | y = z * r2 + y; |
86 | y = y * s; |
87 | return eval_as_float (x: y); |
88 | } |
89 | #if USE_GLIBC_ABI |
90 | strong_alias (expf, __expf_finite) |
91 | hidden_alias (expf, __ieee754_expf) |
92 | #endif |
93 | |