1 | /* |
2 | * Double-precision log(x) function. |
3 | * |
4 | * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
5 | * See https://llvm.org/LICENSE.txt for license information. |
6 | * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
7 | */ |
8 | |
9 | #include <float.h> |
10 | #include <math.h> |
11 | #include <stdint.h> |
12 | #include "math_config.h" |
13 | |
14 | #define T __log_data.tab |
15 | #define T2 __log_data.tab2 |
16 | #define B __log_data.poly1 |
17 | #define A __log_data.poly |
18 | #define Ln2hi __log_data.ln2hi |
19 | #define Ln2lo __log_data.ln2lo |
20 | #define N (1 << LOG_TABLE_BITS) |
21 | #define OFF 0x3fe6000000000000 |
22 | |
23 | /* Top 16 bits of a double. */ |
24 | static inline uint32_t |
25 | top16 (double x) |
26 | { |
27 | return asuint64 (f: x) >> 48; |
28 | } |
29 | |
30 | double |
31 | log (double x) |
32 | { |
33 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
34 | double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo; |
35 | uint64_t ix, iz, tmp; |
36 | uint32_t top; |
37 | int k, i; |
38 | |
39 | ix = asuint64 (f: x); |
40 | top = top16 (x); |
41 | |
42 | #if LOG_POLY1_ORDER == 10 || LOG_POLY1_ORDER == 11 |
43 | # define LO asuint64 (1.0 - 0x1p-5) |
44 | # define HI asuint64 (1.0 + 0x1.1p-5) |
45 | #elif LOG_POLY1_ORDER == 12 |
46 | # define LO asuint64 (1.0 - 0x1p-4) |
47 | # define HI asuint64 (1.0 + 0x1.09p-4) |
48 | #endif |
49 | if (unlikely (ix - LO < HI - LO)) |
50 | { |
51 | /* Handle close to 1.0 inputs separately. */ |
52 | /* Fix sign of zero with downward rounding when x==1. */ |
53 | if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0))) |
54 | return 0; |
55 | r = x - 1.0; |
56 | r2 = r * r; |
57 | r3 = r * r2; |
58 | #if LOG_POLY1_ORDER == 10 |
59 | /* Worst-case error is around 0.516 ULP. */ |
60 | y = r3 * (B[1] + r * B[2] + r2 * B[3] |
61 | + r3 * (B[4] + r * B[5] + r2 * B[6] + r3 * (B[7] + r * B[8]))); |
62 | w = B[0] * r2; /* B[0] == -0.5. */ |
63 | hi = r + w; |
64 | y += r - hi + w; |
65 | y += hi; |
66 | #elif LOG_POLY1_ORDER == 11 |
67 | /* Worst-case error is around 0.516 ULP. */ |
68 | y = r3 * (B[1] + r * B[2] |
69 | + r2 * (B[3] + r * B[4] + r2 * B[5] |
70 | + r3 * (B[6] + r * B[7] + r2 * B[8] + r3 * B[9]))); |
71 | w = B[0] * r2; /* B[0] == -0.5. */ |
72 | hi = r + w; |
73 | y += r - hi + w; |
74 | y += hi; |
75 | #elif LOG_POLY1_ORDER == 12 |
76 | y = r3 * (B[1] + r * B[2] + r2 * B[3] |
77 | + r3 * (B[4] + r * B[5] + r2 * B[6] |
78 | + r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10]))); |
79 | # if N <= 64 |
80 | /* Worst-case error is around 0.532 ULP. */ |
81 | w = B[0] * r2; /* B[0] == -0.5. */ |
82 | hi = r + w; |
83 | y += r - hi + w; |
84 | y += hi; |
85 | # else |
86 | /* Worst-case error is around 0.507 ULP. */ |
87 | w = r * 0x1p27; |
88 | double_t rhi = r + w - w; |
89 | double_t rlo = r - rhi; |
90 | w = rhi * rhi * B[0]; /* B[0] == -0.5. */ |
91 | hi = r + w; |
92 | lo = r - hi + w; |
93 | lo += B[0] * rlo * (rhi + r); |
94 | y += lo; |
95 | y += hi; |
96 | # endif |
97 | #endif |
98 | return eval_as_double (x: y); |
99 | } |
100 | if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010)) |
101 | { |
102 | /* x < 0x1p-1022 or inf or nan. */ |
103 | if (ix * 2 == 0) |
104 | return __math_divzero (1); |
105 | if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */ |
106 | return x; |
107 | if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) |
108 | return __math_invalid (x); |
109 | /* x is subnormal, normalize it. */ |
110 | ix = asuint64 (f: x * 0x1p52); |
111 | ix -= 52ULL << 52; |
112 | } |
113 | |
114 | /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. |
115 | The range is split into N subintervals. |
116 | The ith subinterval contains z and c is near its center. */ |
117 | tmp = ix - OFF; |
118 | i = (tmp >> (52 - LOG_TABLE_BITS)) % N; |
119 | k = (int64_t) tmp >> 52; /* arithmetic shift */ |
120 | iz = ix - (tmp & 0xfffULL << 52); |
121 | invc = T[i].invc; |
122 | logc = T[i].logc; |
123 | z = asdouble (i: iz); |
124 | |
125 | /* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */ |
126 | /* r ~= z/c - 1, |r| < 1/(2*N). */ |
127 | #if HAVE_FAST_FMA |
128 | /* rounding error: 0x1p-55/N. */ |
129 | r = fma (z, invc, -1.0); |
130 | #else |
131 | /* rounding error: 0x1p-55/N + 0x1p-66. */ |
132 | r = (z - T2[i].chi - T2[i].clo) * invc; |
133 | #endif |
134 | kd = (double_t) k; |
135 | |
136 | /* hi + lo = r + log(c) + k*Ln2. */ |
137 | w = kd * Ln2hi + logc; |
138 | hi = w + r; |
139 | lo = w - hi + r + kd * Ln2lo; |
140 | |
141 | /* log(x) = lo + (log1p(r) - r) + hi. */ |
142 | r2 = r * r; /* rounding error: 0x1p-54/N^2. */ |
143 | /* Worst case error if |y| > 0x1p-5: |
144 | 0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma) |
145 | Worst case error if |y| > 0x1p-4: |
146 | 0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */ |
147 | #if LOG_POLY_ORDER == 6 |
148 | y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi; |
149 | #elif LOG_POLY_ORDER == 7 |
150 | y = lo |
151 | + r2 * (A[0] + r * A[1] + r2 * (A[2] + r * A[3]) |
152 | + r2 * r2 * (A[4] + r * A[5])) |
153 | + hi; |
154 | #endif |
155 | return eval_as_double (x: y); |
156 | } |
157 | #if USE_GLIBC_ABI |
158 | strong_alias (log, __log_finite) |
159 | hidden_alias (log, __ieee754_log) |
160 | # if LDBL_MANT_DIG == 53 |
161 | long double logl (long double x) { return log (x); } |
162 | # endif |
163 | #endif |
164 | |