1 | /* |
2 | * Double-precision log2(x) function. |
3 | * |
4 | * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
5 | * See https://llvm.org/LICENSE.txt for license information. |
6 | * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
7 | */ |
8 | |
9 | #include <float.h> |
10 | #include <math.h> |
11 | #include <stdint.h> |
12 | #include "math_config.h" |
13 | |
14 | #define T __log2_data.tab |
15 | #define T2 __log2_data.tab2 |
16 | #define B __log2_data.poly1 |
17 | #define A __log2_data.poly |
18 | #define InvLn2hi __log2_data.invln2hi |
19 | #define InvLn2lo __log2_data.invln2lo |
20 | #define N (1 << LOG2_TABLE_BITS) |
21 | #define OFF 0x3fe6000000000000 |
22 | |
23 | /* Top 16 bits of a double. */ |
24 | static inline uint32_t |
25 | top16 (double x) |
26 | { |
27 | return asuint64 (f: x) >> 48; |
28 | } |
29 | |
30 | double |
31 | log2 (double x) |
32 | { |
33 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
34 | double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p; |
35 | uint64_t ix, iz, tmp; |
36 | uint32_t top; |
37 | int k, i; |
38 | |
39 | ix = asuint64 (f: x); |
40 | top = top16 (x); |
41 | |
42 | #if LOG2_POLY1_ORDER == 11 |
43 | # define LO asuint64 (1.0 - 0x1.5b51p-5) |
44 | # define HI asuint64 (1.0 + 0x1.6ab2p-5) |
45 | #endif |
46 | if (unlikely (ix - LO < HI - LO)) |
47 | { |
48 | /* Handle close to 1.0 inputs separately. */ |
49 | /* Fix sign of zero with downward rounding when x==1. */ |
50 | if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0))) |
51 | return 0; |
52 | r = x - 1.0; |
53 | #if HAVE_FAST_FMA |
54 | hi = r * InvLn2hi; |
55 | lo = r * InvLn2lo + fma (r, InvLn2hi, -hi); |
56 | #else |
57 | double_t rhi, rlo; |
58 | rhi = asdouble (i: asuint64 (f: r) & -1ULL << 32); |
59 | rlo = r - rhi; |
60 | hi = rhi * InvLn2hi; |
61 | lo = rlo * InvLn2hi + r * InvLn2lo; |
62 | #endif |
63 | r2 = r * r; /* rounding error: 0x1p-62. */ |
64 | r4 = r2 * r2; |
65 | #if LOG2_POLY1_ORDER == 11 |
66 | /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */ |
67 | p = r2 * (B[0] + r * B[1]); |
68 | y = hi + p; |
69 | lo += hi - y + p; |
70 | lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) |
71 | + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9]))); |
72 | y += lo; |
73 | #endif |
74 | return eval_as_double (x: y); |
75 | } |
76 | if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010)) |
77 | { |
78 | /* x < 0x1p-1022 or inf or nan. */ |
79 | if (ix * 2 == 0) |
80 | return __math_divzero (1); |
81 | if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */ |
82 | return x; |
83 | if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) |
84 | return __math_invalid (x); |
85 | /* x is subnormal, normalize it. */ |
86 | ix = asuint64 (f: x * 0x1p52); |
87 | ix -= 52ULL << 52; |
88 | } |
89 | |
90 | /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. |
91 | The range is split into N subintervals. |
92 | The ith subinterval contains z and c is near its center. */ |
93 | tmp = ix - OFF; |
94 | i = (tmp >> (52 - LOG2_TABLE_BITS)) % N; |
95 | k = (int64_t) tmp >> 52; /* arithmetic shift */ |
96 | iz = ix - (tmp & 0xfffULL << 52); |
97 | invc = T[i].invc; |
98 | logc = T[i].logc; |
99 | z = asdouble (i: iz); |
100 | kd = (double_t) k; |
101 | |
102 | /* log2(x) = log2(z/c) + log2(c) + k. */ |
103 | /* r ~= z/c - 1, |r| < 1/(2*N). */ |
104 | #if HAVE_FAST_FMA |
105 | /* rounding error: 0x1p-55/N. */ |
106 | r = fma (z, invc, -1.0); |
107 | t1 = r * InvLn2hi; |
108 | t2 = r * InvLn2lo + fma (r, InvLn2hi, -t1); |
109 | #else |
110 | double_t rhi, rlo; |
111 | /* rounding error: 0x1p-55/N + 0x1p-65. */ |
112 | r = (z - T2[i].chi - T2[i].clo) * invc; |
113 | rhi = asdouble (i: asuint64 (f: r) & -1ULL << 32); |
114 | rlo = r - rhi; |
115 | t1 = rhi * InvLn2hi; |
116 | t2 = rlo * InvLn2hi + r * InvLn2lo; |
117 | #endif |
118 | |
119 | /* hi + lo = r/ln2 + log2(c) + k. */ |
120 | t3 = kd + logc; |
121 | hi = t3 + t1; |
122 | lo = t3 - hi + t1 + t2; |
123 | |
124 | /* log2(r+1) = r/ln2 + r^2*poly(r). */ |
125 | /* Evaluation is optimized assuming superscalar pipelined execution. */ |
126 | r2 = r * r; /* rounding error: 0x1p-54/N^2. */ |
127 | r4 = r2 * r2; |
128 | #if LOG2_POLY_ORDER == 7 |
129 | /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). |
130 | ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */ |
131 | p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]); |
132 | y = lo + r2 * p + hi; |
133 | #endif |
134 | return eval_as_double (x: y); |
135 | } |
136 | #if USE_GLIBC_ABI |
137 | strong_alias (log2, __log2_finite) |
138 | hidden_alias (log2, __ieee754_log2) |
139 | # if LDBL_MANT_DIG == 53 |
140 | long double log2l (long double x) { return log2 (x); } |
141 | # endif |
142 | #endif |
143 | |