1 | /* |
2 | * Single-precision log2 function. |
3 | * |
4 | * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
5 | * See https://llvm.org/LICENSE.txt for license information. |
6 | * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
7 | */ |
8 | |
9 | #include <math.h> |
10 | #include <stdint.h> |
11 | #include "math_config.h" |
12 | |
13 | /* |
14 | LOG2F_TABLE_BITS = 4 |
15 | LOG2F_POLY_ORDER = 4 |
16 | |
17 | ULP error: 0.752 (nearest rounding.) |
18 | Relative error: 1.9 * 2^-26 (before rounding.) |
19 | */ |
20 | |
21 | #define N (1 << LOG2F_TABLE_BITS) |
22 | #define T __log2f_data.tab |
23 | #define A __log2f_data.poly |
24 | #define OFF 0x3f330000 |
25 | |
26 | float |
27 | log2f (float x) |
28 | { |
29 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
30 | double_t z, r, r2, p, y, y0, invc, logc; |
31 | uint32_t ix, iz, top, tmp; |
32 | int k, i; |
33 | |
34 | ix = asuint (f: x); |
35 | #if WANT_ROUNDING |
36 | /* Fix sign of zero with downward rounding when x==1. */ |
37 | if (unlikely (ix == 0x3f800000)) |
38 | return 0; |
39 | #endif |
40 | if (unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000)) |
41 | { |
42 | /* x < 0x1p-126 or inf or nan. */ |
43 | if (ix * 2 == 0) |
44 | return __math_divzerof (1); |
45 | if (ix == 0x7f800000) /* log2(inf) == inf. */ |
46 | return x; |
47 | if ((ix & 0x80000000) || ix * 2 >= 0xff000000) |
48 | return __math_invalidf (x); |
49 | /* x is subnormal, normalize it. */ |
50 | ix = asuint (f: x * 0x1p23f); |
51 | ix -= 23 << 23; |
52 | } |
53 | |
54 | /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. |
55 | The range is split into N subintervals. |
56 | The ith subinterval contains z and c is near its center. */ |
57 | tmp = ix - OFF; |
58 | i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N; |
59 | top = tmp & 0xff800000; |
60 | iz = ix - top; |
61 | k = (int32_t) tmp >> 23; /* arithmetic shift */ |
62 | invc = T[i].invc; |
63 | logc = T[i].logc; |
64 | z = (double_t) asfloat (i: iz); |
65 | |
66 | /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */ |
67 | r = z * invc - 1; |
68 | y0 = logc + (double_t) k; |
69 | |
70 | /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */ |
71 | r2 = r * r; |
72 | y = A[1] * r + A[2]; |
73 | y = A[0] * r2 + y; |
74 | p = A[3] * r + y0; |
75 | y = y * r2 + p; |
76 | return eval_as_float (x: y); |
77 | } |
78 | #if USE_GLIBC_ABI |
79 | strong_alias (log2f, __log2f_finite) |
80 | hidden_alias (log2f, __ieee754_log2f) |
81 | #endif |
82 | |