| 1 | /* |
| 2 | * Single-precision log function. |
| 3 | * |
| 4 | * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 5 | * See https://llvm.org/LICENSE.txt for license information. |
| 6 | * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 7 | */ |
| 8 | |
| 9 | #include <math.h> |
| 10 | #include <stdint.h> |
| 11 | #include "math_config.h" |
| 12 | |
| 13 | /* |
| 14 | LOGF_TABLE_BITS = 4 |
| 15 | LOGF_POLY_ORDER = 4 |
| 16 | |
| 17 | ULP error: 0.818 (nearest rounding.) |
| 18 | Relative error: 1.957 * 2^-26 (before rounding.) |
| 19 | */ |
| 20 | |
| 21 | #define T __logf_data.tab |
| 22 | #define A __logf_data.poly |
| 23 | #define Ln2 __logf_data.ln2 |
| 24 | #define N (1 << LOGF_TABLE_BITS) |
| 25 | #define OFF 0x3f330000 |
| 26 | |
| 27 | float |
| 28 | logf (float x) |
| 29 | { |
| 30 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
| 31 | double_t z, r, r2, y, y0, invc, logc; |
| 32 | uint32_t ix, iz, tmp; |
| 33 | int k, i; |
| 34 | |
| 35 | ix = asuint (f: x); |
| 36 | #if WANT_ROUNDING |
| 37 | /* Fix sign of zero with downward rounding when x==1. */ |
| 38 | if (unlikely (ix == 0x3f800000)) |
| 39 | return 0; |
| 40 | #endif |
| 41 | if (unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000)) |
| 42 | { |
| 43 | /* x < 0x1p-126 or inf or nan. */ |
| 44 | if (ix * 2 == 0) |
| 45 | return __math_divzerof (1); |
| 46 | if (ix == 0x7f800000) /* log(inf) == inf. */ |
| 47 | return x; |
| 48 | if ((ix & 0x80000000) || ix * 2 >= 0xff000000) |
| 49 | return __math_invalidf (x); |
| 50 | /* x is subnormal, normalize it. */ |
| 51 | ix = asuint (f: x * 0x1p23f); |
| 52 | ix -= 23 << 23; |
| 53 | } |
| 54 | |
| 55 | /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. |
| 56 | The range is split into N subintervals. |
| 57 | The ith subinterval contains z and c is near its center. */ |
| 58 | tmp = ix - OFF; |
| 59 | i = (tmp >> (23 - LOGF_TABLE_BITS)) % N; |
| 60 | k = (int32_t) tmp >> 23; /* arithmetic shift */ |
| 61 | iz = ix - (tmp & 0x1ff << 23); |
| 62 | invc = T[i].invc; |
| 63 | logc = T[i].logc; |
| 64 | z = (double_t) asfloat (i: iz); |
| 65 | |
| 66 | /* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */ |
| 67 | r = z * invc - 1; |
| 68 | y0 = logc + (double_t) k * Ln2; |
| 69 | |
| 70 | /* Pipelined polynomial evaluation to approximate log1p(r). */ |
| 71 | r2 = r * r; |
| 72 | y = A[1] * r + A[2]; |
| 73 | y = A[0] * r2 + y; |
| 74 | y = y * r2 + (y0 + r); |
| 75 | return eval_as_float (x: y); |
| 76 | } |
| 77 | #if USE_GLIBC_ABI |
| 78 | strong_alias (logf, __logf_finite) |
| 79 | hidden_alias (logf, __ieee754_logf) |
| 80 | #endif |
| 81 | |