1 | /* |
2 | * Double-precision x^y function. |
3 | * |
4 | * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
5 | * See https://llvm.org/LICENSE.txt for license information. |
6 | * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
7 | */ |
8 | |
9 | #include <float.h> |
10 | #include <math.h> |
11 | #include <stdint.h> |
12 | #include "math_config.h" |
13 | |
14 | /* |
15 | Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53) |
16 | relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma) |
17 | ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma) |
18 | */ |
19 | |
20 | #define T __pow_log_data.tab |
21 | #define A __pow_log_data.poly |
22 | #define Ln2hi __pow_log_data.ln2hi |
23 | #define Ln2lo __pow_log_data.ln2lo |
24 | #define N (1 << POW_LOG_TABLE_BITS) |
25 | #define OFF 0x3fe6955500000000 |
26 | |
27 | /* Top 12 bits of a double (sign and exponent bits). */ |
28 | static inline uint32_t |
29 | top12 (double x) |
30 | { |
31 | return asuint64 (f: x) >> 52; |
32 | } |
33 | |
34 | /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about |
35 | additional 15 bits precision. IX is the bit representation of x, but |
36 | normalized in the subnormal range using the sign bit for the exponent. */ |
37 | static inline double_t |
38 | log_inline (uint64_t ix, double_t *tail) |
39 | { |
40 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
41 | double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p; |
42 | uint64_t iz, tmp; |
43 | int k, i; |
44 | |
45 | /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. |
46 | The range is split into N subintervals. |
47 | The ith subinterval contains z and c is near its center. */ |
48 | tmp = ix - OFF; |
49 | i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N; |
50 | k = (int64_t) tmp >> 52; /* arithmetic shift */ |
51 | iz = ix - (tmp & 0xfffULL << 52); |
52 | z = asdouble (i: iz); |
53 | kd = (double_t) k; |
54 | |
55 | /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */ |
56 | invc = T[i].invc; |
57 | logc = T[i].logc; |
58 | logctail = T[i].logctail; |
59 | |
60 | /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and |
61 | |z/c - 1| < 1/N, so r = z/c - 1 is exactly representable. */ |
62 | #if HAVE_FAST_FMA |
63 | r = fma (z, invc, -1.0); |
64 | #else |
65 | /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */ |
66 | double_t zhi = asdouble (i: (iz + (1ULL << 31)) & (-1ULL << 32)); |
67 | double_t zlo = z - zhi; |
68 | double_t rhi = zhi * invc - 1.0; |
69 | double_t rlo = zlo * invc; |
70 | r = rhi + rlo; |
71 | #endif |
72 | |
73 | /* k*Ln2 + log(c) + r. */ |
74 | t1 = kd * Ln2hi + logc; |
75 | t2 = t1 + r; |
76 | lo1 = kd * Ln2lo + logctail; |
77 | lo2 = t1 - t2 + r; |
78 | |
79 | /* Evaluation is optimized assuming superscalar pipelined execution. */ |
80 | double_t ar, ar2, ar3, lo3, lo4; |
81 | ar = A[0] * r; /* A[0] = -0.5. */ |
82 | ar2 = r * ar; |
83 | ar3 = r * ar2; |
84 | /* k*Ln2 + log(c) + r + A[0]*r*r. */ |
85 | #if HAVE_FAST_FMA |
86 | hi = t2 + ar2; |
87 | lo3 = fma (ar, r, -ar2); |
88 | lo4 = t2 - hi + ar2; |
89 | #else |
90 | double_t arhi = A[0] * rhi; |
91 | double_t arhi2 = rhi * arhi; |
92 | hi = t2 + arhi2; |
93 | lo3 = rlo * (ar + arhi); |
94 | lo4 = t2 - hi + arhi2; |
95 | #endif |
96 | /* p = log1p(r) - r - A[0]*r*r. */ |
97 | #if POW_LOG_POLY_ORDER == 8 |
98 | p = (ar3 |
99 | * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6])))); |
100 | #endif |
101 | lo = lo1 + lo2 + lo3 + lo4 + p; |
102 | y = hi + lo; |
103 | *tail = hi - y + lo; |
104 | return y; |
105 | } |
106 | |
107 | #undef N |
108 | #undef T |
109 | #define N (1 << EXP_TABLE_BITS) |
110 | #define InvLn2N __exp_data.invln2N |
111 | #define NegLn2hiN __exp_data.negln2hiN |
112 | #define NegLn2loN __exp_data.negln2loN |
113 | #define Shift __exp_data.shift |
114 | #define T __exp_data.tab |
115 | #define C2 __exp_data.poly[5 - EXP_POLY_ORDER] |
116 | #define C3 __exp_data.poly[6 - EXP_POLY_ORDER] |
117 | #define C4 __exp_data.poly[7 - EXP_POLY_ORDER] |
118 | #define C5 __exp_data.poly[8 - EXP_POLY_ORDER] |
119 | #define C6 __exp_data.poly[9 - EXP_POLY_ORDER] |
120 | |
121 | /* Handle cases that may overflow or underflow when computing the result that |
122 | is scale*(1+TMP) without intermediate rounding. The bit representation of |
123 | scale is in SBITS, however it has a computed exponent that may have |
124 | overflown into the sign bit so that needs to be adjusted before using it as |
125 | a double. (int32_t)KI is the k used in the argument reduction and exponent |
126 | adjustment of scale, positive k here means the result may overflow and |
127 | negative k means the result may underflow. */ |
128 | static inline double |
129 | specialcase (double_t tmp, uint64_t sbits, uint64_t ki) |
130 | { |
131 | double_t scale, y; |
132 | |
133 | if ((ki & 0x80000000) == 0) |
134 | { |
135 | /* k > 0, the exponent of scale might have overflowed by <= 460. */ |
136 | sbits -= 1009ull << 52; |
137 | scale = asdouble (i: sbits); |
138 | y = 0x1p1009 * (scale + scale * tmp); |
139 | return check_oflow (x: eval_as_double (x: y)); |
140 | } |
141 | /* k < 0, need special care in the subnormal range. */ |
142 | sbits += 1022ull << 52; |
143 | /* Note: sbits is signed scale. */ |
144 | scale = asdouble (i: sbits); |
145 | y = scale + scale * tmp; |
146 | if (fabs (x: y) < 1.0) |
147 | { |
148 | /* Round y to the right precision before scaling it into the subnormal |
149 | range to avoid double rounding that can cause 0.5+E/2 ulp error where |
150 | E is the worst-case ulp error outside the subnormal range. So this |
151 | is only useful if the goal is better than 1 ulp worst-case error. */ |
152 | double_t hi, lo, one = 1.0; |
153 | if (y < 0.0) |
154 | one = -1.0; |
155 | lo = scale - y + scale * tmp; |
156 | hi = one + y; |
157 | lo = one - hi + y + lo; |
158 | y = eval_as_double (x: hi + lo) - one; |
159 | /* Fix the sign of 0. */ |
160 | if (y == 0.0) |
161 | y = asdouble (i: sbits & 0x8000000000000000); |
162 | /* The underflow exception needs to be signaled explicitly. */ |
163 | force_eval_double (x: opt_barrier_double (x: 0x1p-1022) * 0x1p-1022); |
164 | } |
165 | y = 0x1p-1022 * y; |
166 | return check_uflow (x: eval_as_double (x: y)); |
167 | } |
168 | |
169 | #define SIGN_BIAS (0x800 << EXP_TABLE_BITS) |
170 | |
171 | /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. |
172 | The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */ |
173 | static inline double |
174 | exp_inline (double_t x, double_t xtail, uint32_t sign_bias) |
175 | { |
176 | uint32_t abstop; |
177 | uint64_t ki, idx, top, sbits; |
178 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
179 | double_t kd, z, r, r2, scale, tail, tmp; |
180 | |
181 | abstop = top12 (x) & 0x7ff; |
182 | if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54))) |
183 | { |
184 | if (abstop - top12 (x: 0x1p-54) >= 0x80000000) |
185 | { |
186 | /* Avoid spurious underflow for tiny x. */ |
187 | /* Note: 0 is common input. */ |
188 | double_t one = WANT_ROUNDING ? 1.0 + x : 1.0; |
189 | return sign_bias ? -one : one; |
190 | } |
191 | if (abstop >= top12 (x: 1024.0)) |
192 | { |
193 | /* Note: inf and nan are already handled. */ |
194 | if (asuint64 (f: x) >> 63) |
195 | return __math_uflow (sign_bias); |
196 | else |
197 | return __math_oflow (sign_bias); |
198 | } |
199 | /* Large x is special cased below. */ |
200 | abstop = 0; |
201 | } |
202 | |
203 | /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ |
204 | /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ |
205 | z = InvLn2N * x; |
206 | #if TOINT_INTRINSICS |
207 | kd = roundtoint (z); |
208 | ki = converttoint (z); |
209 | #elif EXP_USE_TOINT_NARROW |
210 | /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */ |
211 | kd = eval_as_double (z + Shift); |
212 | ki = asuint64 (kd) >> 16; |
213 | kd = (double_t) (int32_t) ki; |
214 | #else |
215 | /* z - kd is in [-1, 1] in non-nearest rounding modes. */ |
216 | kd = eval_as_double (x: z + Shift); |
217 | ki = asuint64 (f: kd); |
218 | kd -= Shift; |
219 | #endif |
220 | r = x + kd * NegLn2hiN + kd * NegLn2loN; |
221 | /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ |
222 | r += xtail; |
223 | /* 2^(k/N) ~= scale * (1 + tail). */ |
224 | idx = 2 * (ki % N); |
225 | top = (ki + sign_bias) << (52 - EXP_TABLE_BITS); |
226 | tail = asdouble (T[idx]); |
227 | /* This is only a valid scale when -1023*N < k < 1024*N. */ |
228 | sbits = T[idx + 1] + top; |
229 | /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ |
230 | /* Evaluation is optimized assuming superscalar pipelined execution. */ |
231 | r2 = r * r; |
232 | /* Without fma the worst case error is 0.25/N ulp larger. */ |
233 | /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ |
234 | #if EXP_POLY_ORDER == 4 |
235 | tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4); |
236 | #elif EXP_POLY_ORDER == 5 |
237 | tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); |
238 | #elif EXP_POLY_ORDER == 6 |
239 | tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6); |
240 | #endif |
241 | if (unlikely (abstop == 0)) |
242 | return specialcase (tmp, sbits, ki); |
243 | scale = asdouble (i: sbits); |
244 | /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there |
245 | is no spurious underflow here even without fma. */ |
246 | return eval_as_double (x: scale + scale * tmp); |
247 | } |
248 | |
249 | /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is |
250 | the bit representation of a non-zero finite floating-point value. */ |
251 | static inline int |
252 | checkint (uint64_t iy) |
253 | { |
254 | int e = iy >> 52 & 0x7ff; |
255 | if (e < 0x3ff) |
256 | return 0; |
257 | if (e > 0x3ff + 52) |
258 | return 2; |
259 | if (iy & ((1ULL << (0x3ff + 52 - e)) - 1)) |
260 | return 0; |
261 | if (iy & (1ULL << (0x3ff + 52 - e))) |
262 | return 1; |
263 | return 2; |
264 | } |
265 | |
266 | /* Returns 1 if input is the bit representation of 0, infinity or nan. */ |
267 | static inline int |
268 | zeroinfnan (uint64_t i) |
269 | { |
270 | return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1; |
271 | } |
272 | |
273 | double |
274 | pow (double x, double y) |
275 | { |
276 | uint32_t sign_bias = 0; |
277 | uint64_t ix, iy; |
278 | uint32_t topx, topy; |
279 | |
280 | ix = asuint64 (f: x); |
281 | iy = asuint64 (f: y); |
282 | topx = top12 (x); |
283 | topy = top12 (x: y); |
284 | if (unlikely (topx - 0x001 >= 0x7ff - 0x001 |
285 | || (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)) |
286 | { |
287 | /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0 |
288 | and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */ |
289 | /* Special cases: (x < 0x1p-126 or inf or nan) or |
290 | (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */ |
291 | if (unlikely (zeroinfnan (iy))) |
292 | { |
293 | if (2 * iy == 0) |
294 | return issignaling_inline (x) ? x + y : 1.0; |
295 | if (ix == asuint64 (f: 1.0)) |
296 | return issignaling_inline (x: y) ? x + y : 1.0; |
297 | if (2 * ix > 2 * asuint64 (INFINITY) |
298 | || 2 * iy > 2 * asuint64 (INFINITY)) |
299 | return x + y; |
300 | if (2 * ix == 2 * asuint64 (f: 1.0)) |
301 | return 1.0; |
302 | if ((2 * ix < 2 * asuint64 (f: 1.0)) == !(iy >> 63)) |
303 | return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ |
304 | return y * y; |
305 | } |
306 | if (unlikely (zeroinfnan (ix))) |
307 | { |
308 | double_t x2 = x * x; |
309 | if (ix >> 63 && checkint (iy) == 1) |
310 | { |
311 | x2 = -x2; |
312 | sign_bias = 1; |
313 | } |
314 | if (WANT_ERRNO && 2 * ix == 0 && iy >> 63) |
315 | return __math_divzero (sign_bias); |
316 | /* Without the barrier some versions of clang hoist the 1/x2 and |
317 | thus division by zero exception can be signaled spuriously. */ |
318 | return iy >> 63 ? opt_barrier_double (x: 1 / x2) : x2; |
319 | } |
320 | /* Here x and y are non-zero finite. */ |
321 | if (ix >> 63) |
322 | { |
323 | /* Finite x < 0. */ |
324 | int yint = checkint (iy); |
325 | if (yint == 0) |
326 | return __math_invalid (x); |
327 | if (yint == 1) |
328 | sign_bias = SIGN_BIAS; |
329 | ix &= 0x7fffffffffffffff; |
330 | topx &= 0x7ff; |
331 | } |
332 | if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be) |
333 | { |
334 | /* Note: sign_bias == 0 here because y is not odd. */ |
335 | if (ix == asuint64 (f: 1.0)) |
336 | return 1.0; |
337 | if ((topy & 0x7ff) < 0x3be) |
338 | { |
339 | /* |y| < 2^-65, x^y ~= 1 + y*log(x). */ |
340 | if (WANT_ROUNDING) |
341 | return ix > asuint64 (f: 1.0) ? 1.0 + y : 1.0 - y; |
342 | else |
343 | return 1.0; |
344 | } |
345 | return (ix > asuint64 (f: 1.0)) == (topy < 0x800) ? __math_oflow (0) |
346 | : __math_uflow (0); |
347 | } |
348 | if (topx == 0) |
349 | { |
350 | /* Normalize subnormal x so exponent becomes negative. */ |
351 | /* Without the barrier some versions of clang evaluate the mul |
352 | unconditionally causing spurious overflow exceptions. */ |
353 | ix = asuint64 (f: opt_barrier_double (x) * 0x1p52); |
354 | ix &= 0x7fffffffffffffff; |
355 | ix -= 52ULL << 52; |
356 | } |
357 | } |
358 | |
359 | double_t lo; |
360 | double_t hi = log_inline (ix, tail: &lo); |
361 | double_t ehi, elo; |
362 | #if HAVE_FAST_FMA |
363 | ehi = y * hi; |
364 | elo = y * lo + fma (y, hi, -ehi); |
365 | #else |
366 | double_t yhi = asdouble (i: iy & -1ULL << 27); |
367 | double_t ylo = y - yhi; |
368 | double_t lhi = asdouble (i: asuint64 (f: hi) & -1ULL << 27); |
369 | double_t llo = hi - lhi + lo; |
370 | ehi = yhi * lhi; |
371 | elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25. */ |
372 | #endif |
373 | return exp_inline (x: ehi, xtail: elo, sign_bias); |
374 | } |
375 | #if USE_GLIBC_ABI |
376 | strong_alias (pow, __pow_finite) |
377 | hidden_alias (pow, __ieee754_pow) |
378 | # if LDBL_MANT_DIG == 53 |
379 | long double powl (long double x, long double y) { return pow (x, y); } |
380 | # endif |
381 | #endif |
382 | |