1 | //===-- Single-precision asin function ------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/asinf.h" |
10 | #include "src/__support/FPUtil/FEnvImpl.h" |
11 | #include "src/__support/FPUtil/FPBits.h" |
12 | #include "src/__support/FPUtil/PolyEval.h" |
13 | #include "src/__support/FPUtil/except_value_utils.h" |
14 | #include "src/__support/FPUtil/multiply_add.h" |
15 | #include "src/__support/FPUtil/sqrt.h" |
16 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
17 | #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA |
18 | |
19 | #include <errno.h> |
20 | |
21 | #include "inv_trigf_utils.h" |
22 | |
23 | namespace LIBC_NAMESPACE { |
24 | |
25 | static constexpr size_t N_EXCEPTS = 2; |
26 | |
27 | // Exceptional values when |x| <= 0.5 |
28 | static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_LO = {.values: { |
29 | // (inputs, RZ output, RU offset, RD offset, RN offset) |
30 | // x = 0x1.137f0cp-5, asinf(x) = 0x1.138c58p-5 (RZ) |
31 | {.input: 0x3d09bf86, .rnd_towardzero_result: 0x3d09c62c, .rnd_upward_offset: 1, .rnd_downward_offset: 0, .rnd_tonearest_offset: 1}, |
32 | // x = 0x1.cbf43cp-4, asinf(x) = 0x1.cced1cp-4 (RZ) |
33 | {.input: 0x3de5fa1e, .rnd_towardzero_result: 0x3de6768e, .rnd_upward_offset: 1, .rnd_downward_offset: 0, .rnd_tonearest_offset: 0}, |
34 | }}; |
35 | |
36 | // Exceptional values when 0.5 < |x| <= 1 |
37 | static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_HI = {.values: { |
38 | // (inputs, RZ output, RU offset, RD offset, RN offset) |
39 | // x = 0x1.107434p-1, asinf(x) = 0x1.1f4b64p-1 (RZ) |
40 | {.input: 0x3f083a1a, .rnd_towardzero_result: 0x3f0fa5b2, .rnd_upward_offset: 1, .rnd_downward_offset: 0, .rnd_tonearest_offset: 0}, |
41 | // x = 0x1.ee836cp-1, asinf(x) = 0x1.4f0654p0 (RZ) |
42 | {.input: 0x3f7741b6, .rnd_towardzero_result: 0x3fa7832a, .rnd_upward_offset: 1, .rnd_downward_offset: 0, .rnd_tonearest_offset: 0}, |
43 | }}; |
44 | |
45 | LLVM_LIBC_FUNCTION(float, asinf, (float x)) { |
46 | using FPBits = typename fputil::FPBits<float>; |
47 | |
48 | FPBits xbits(x); |
49 | uint32_t x_uint = xbits.uintval(); |
50 | uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; |
51 | constexpr double SIGN[2] = {1.0, -1.0}; |
52 | uint32_t x_sign = x_uint >> 31; |
53 | |
54 | // |x| <= 0.5-ish |
55 | if (x_abs < 0x3f04'471dU) { |
56 | // |x| < 0x1.d12edp-12 |
57 | if (LIBC_UNLIKELY(x_abs < 0x39e8'9768U)) { |
58 | // When |x| < 2^-12, the relative error of the approximation asin(x) ~ x |
59 | // is: |
60 | // |asin(x) - x| / |asin(x)| < |x^3| / (6|x|) |
61 | // = x^2 / 6 |
62 | // < 2^-25 |
63 | // < epsilon(1)/2. |
64 | // So the correctly rounded values of asin(x) are: |
65 | // = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, |
66 | // or (rounding mode = FE_UPWARD and x is |
67 | // negative), |
68 | // = x otherwise. |
69 | // To simplify the rounding decision and make it more efficient, we use |
70 | // fma(x, 2^-25, x) instead. |
71 | // An exhaustive test shows that this formula work correctly for all |
72 | // rounding modes up to |x| < 0x1.d12edp-12. |
73 | // Note: to use the formula x + 2^-25*x to decide the correct rounding, we |
74 | // do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when |
75 | // |x| < 2^-125. For targets without FMA instructions, we simply use |
76 | // double for intermediate results as it is more efficient than using an |
77 | // emulated version of FMA. |
78 | #if defined(LIBC_TARGET_CPU_HAS_FMA) |
79 | return fputil::multiply_add(x, y: 0x1.0p-25f, z: x); |
80 | #else |
81 | double xd = static_cast<double>(x); |
82 | return static_cast<float>(fputil::multiply_add(xd, 0x1.0p-25, xd)); |
83 | #endif // LIBC_TARGET_CPU_HAS_FMA |
84 | } |
85 | |
86 | // Check for exceptional values |
87 | if (auto r = ASINF_EXCEPTS_LO.lookup_odd(x_abs, sign: x_sign); |
88 | LIBC_UNLIKELY(r.has_value())) |
89 | return r.value(); |
90 | |
91 | // For |x| <= 0.5, we approximate asinf(x) by: |
92 | // asin(x) = x * P(x^2) |
93 | // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating |
94 | // asin(x)/x on [0, 0.5] generated by Sollya with: |
95 | // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|], |
96 | // [|1, D...|], [0, 0.5]); |
97 | // An exhaustive test shows that this approximation works well up to a |
98 | // little more than 0.5. |
99 | double xd = static_cast<double>(x); |
100 | double xsq = xd * xd; |
101 | double x3 = xd * xsq; |
102 | double r = asin_eval(xsq); |
103 | return static_cast<float>(fputil::multiply_add(x: x3, y: r, z: xd)); |
104 | } |
105 | |
106 | // |x| > 1, return NaNs. |
107 | if (LIBC_UNLIKELY(x_abs > 0x3f80'0000U)) { |
108 | if (x_abs <= 0x7f80'0000U) { |
109 | fputil::set_errno_if_required(EDOM); |
110 | fputil::raise_except_if_required(FE_INVALID); |
111 | } |
112 | return FPBits::quiet_nan().get_val(); |
113 | } |
114 | |
115 | // Check for exceptional values |
116 | if (auto r = ASINF_EXCEPTS_HI.lookup_odd(x_abs, sign: x_sign); |
117 | LIBC_UNLIKELY(r.has_value())) |
118 | return r.value(); |
119 | |
120 | // When |x| > 0.5, we perform range reduction as follow: |
121 | // |
122 | // Assume further that 0.5 < x <= 1, and let: |
123 | // y = asin(x) |
124 | // We will use the double angle formula: |
125 | // cos(2y) = 1 - 2 sin^2(y) |
126 | // and the complement angle identity: |
127 | // x = sin(y) = cos(pi/2 - y) |
128 | // = 1 - 2 sin^2 (pi/4 - y/2) |
129 | // So: |
130 | // sin(pi/4 - y/2) = sqrt( (1 - x)/2 ) |
131 | // And hence: |
132 | // pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) ) |
133 | // Equivalently: |
134 | // asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) ) |
135 | // Let u = (1 - x)/2, then: |
136 | // asin(x) = pi/2 - 2 * asin( sqrt(u) ) |
137 | // Moreover, since 0.5 < x <= 1: |
138 | // 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5, |
139 | // And hence we can reuse the same polynomial approximation of asin(x) when |
140 | // |x| <= 0.5: |
141 | // asin(x) ~ pi/2 - 2 * sqrt(u) * P(u), |
142 | |
143 | xbits.set_sign(Sign::POS); |
144 | double sign = SIGN[x_sign]; |
145 | double xd = static_cast<double>(xbits.get_val()); |
146 | double u = fputil::multiply_add(x: -0.5, y: xd, z: 0.5); |
147 | double c1 = sign * (-2 * fputil::sqrt(x: u)); |
148 | double c2 = fputil::multiply_add(x: sign, y: M_MATH_PI_2, z: c1); |
149 | double c3 = c1 * u; |
150 | |
151 | double r = asin_eval(xsq: u); |
152 | return static_cast<float>(fputil::multiply_add(x: c3, y: r, z: c2)); |
153 | } |
154 | |
155 | } // namespace LIBC_NAMESPACE |
156 | |