| 1 | //===-- Single-precision 2^x function -------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H |
| 10 | #define LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H |
| 11 | |
| 12 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 13 | #include "src/__support/FPUtil/FPBits.h" |
| 14 | #include "src/__support/FPUtil/PolyEval.h" |
| 15 | #include "src/__support/FPUtil/except_value_utils.h" |
| 16 | #include "src/__support/FPUtil/multiply_add.h" |
| 17 | #include "src/__support/FPUtil/nearest_integer.h" |
| 18 | #include "src/__support/FPUtil/rounding_mode.h" |
| 19 | #include "src/__support/common.h" |
| 20 | #include "src/__support/macros/config.h" |
| 21 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 22 | #include "src/__support/macros/properties/cpu_features.h" |
| 23 | |
| 24 | #include "explogxf.h" |
| 25 | |
| 26 | namespace LIBC_NAMESPACE_DECL { |
| 27 | namespace generic { |
| 28 | |
| 29 | LIBC_INLINE float exp2f(float x) { |
| 30 | using FPBits = typename fputil::FPBits<float>; |
| 31 | FPBits xbits(x); |
| 32 | |
| 33 | uint32_t x_u = xbits.uintval(); |
| 34 | uint32_t x_abs = x_u & 0x7fff'ffffU; |
| 35 | |
| 36 | // When |x| >= 128, or x is nan, or |x| <= 2^-5 |
| 37 | if (LIBC_UNLIKELY(x_abs >= 0x4300'0000U || x_abs <= 0x3d00'0000U)) { |
| 38 | // |x| <= 2^-5 |
| 39 | if (x_abs <= 0x3d00'0000) { |
| 40 | // |x| < 2^-25 |
| 41 | if (LIBC_UNLIKELY(x_abs <= 0x3280'0000U)) { |
| 42 | return 1.0f + x; |
| 43 | } |
| 44 | |
| 45 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 46 | constexpr uint32_t EXVAL1 = 0x3b42'9d37U; |
| 47 | constexpr uint32_t EXVAL2 = 0xbcf3'a937U; |
| 48 | constexpr uint32_t EXVAL_MASK = EXVAL1 & EXVAL2; |
| 49 | |
| 50 | // Check exceptional values. |
| 51 | if (LIBC_UNLIKELY((x_u & EXVAL_MASK) == EXVAL_MASK)) { |
| 52 | if (LIBC_UNLIKELY(x_u == EXVAL1)) { // x = 0x1.853a6ep-9f |
| 53 | return fputil::round_result_slightly_down(0x1.00870ap+0f); |
| 54 | } else if (LIBC_UNLIKELY(x_u == EXVAL2)) { // x = -0x1.e7526ep-6f |
| 55 | return fputil::round_result_slightly_down(0x1.f58d62p-1f); |
| 56 | } |
| 57 | } |
| 58 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 59 | |
| 60 | // Minimax polynomial generated by Sollya with: |
| 61 | // > P = fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]); |
| 62 | constexpr double COEFFS[] = { |
| 63 | 0x1.62e42fefa39f3p-1, 0x1.ebfbdff82c57bp-3, 0x1.c6b08d6f2d7aap-5, |
| 64 | 0x1.3b2ab6fc92f5dp-7, 0x1.5d897cfe27125p-10, 0x1.43090e61e6af1p-13}; |
| 65 | double xd = static_cast<double>(x); |
| 66 | double xsq = xd * xd; |
| 67 | double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]); |
| 68 | double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]); |
| 69 | double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]); |
| 70 | double p = fputil::polyeval(xsq, c0, c1, c2); |
| 71 | double r = fputil::multiply_add(p, xd, 1.0); |
| 72 | return static_cast<float>(r); |
| 73 | } |
| 74 | |
| 75 | // x >= 128 |
| 76 | if (xbits.is_pos()) { |
| 77 | // x is finite |
| 78 | if (x_u < 0x7f80'0000U) { |
| 79 | int rounding = fputil::quick_get_round(); |
| 80 | if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) |
| 81 | return FPBits::max_normal().get_val(); |
| 82 | |
| 83 | fputil::set_errno_if_required(ERANGE); |
| 84 | fputil::raise_except_if_required(FE_OVERFLOW); |
| 85 | } |
| 86 | // x is +inf or nan |
| 87 | return x + FPBits::inf().get_val(); |
| 88 | } |
| 89 | // x <= -150 |
| 90 | if (x_u >= 0xc316'0000U) { |
| 91 | // exp(-Inf) = 0 |
| 92 | if (xbits.is_inf()) |
| 93 | return 0.0f; |
| 94 | // exp(nan) = nan |
| 95 | if (xbits.is_nan()) |
| 96 | return x; |
| 97 | if (fputil::fenv_is_round_up()) |
| 98 | return FPBits::min_subnormal().get_val(); |
| 99 | if (x != 0.0f) { |
| 100 | fputil::set_errno_if_required(ERANGE); |
| 101 | fputil::raise_except_if_required(FE_UNDERFLOW); |
| 102 | } |
| 103 | return 0.0f; |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | // For -150 < x < 128, to compute 2^x, we perform the following range |
| 108 | // reduction: find hi, mid, lo such that: |
| 109 | // x = hi + mid + lo, in which |
| 110 | // hi is an integer, |
| 111 | // 0 <= mid * 2^5 < 32 is an integer |
| 112 | // -2^(-6) <= lo <= 2^-6. |
| 113 | // In particular, |
| 114 | // hi + mid = round(x * 2^5) * 2^(-5). |
| 115 | // Then, |
| 116 | // 2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo. |
| 117 | // 2^mid is stored in the lookup table of 32 elements. |
| 118 | // 2^lo is computed using a degree-5 minimax polynomial |
| 119 | // generated by Sollya. |
| 120 | // We perform 2^hi * 2^mid by simply add hi to the exponent field |
| 121 | // of 2^mid. |
| 122 | |
| 123 | // kf = (hi + mid) * 2^5 = round(x * 2^5) |
| 124 | float kf; |
| 125 | int k; |
| 126 | #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT |
| 127 | kf = fputil::nearest_integer(x * 32.0f); |
| 128 | k = static_cast<int>(kf); |
| 129 | #else |
| 130 | constexpr float HALF[2] = {0.5f, -0.5f}; |
| 131 | k = static_cast<int>(fputil::multiply_add(x, 32.0f, HALF[x < 0.0f])); |
| 132 | kf = static_cast<float>(k); |
| 133 | #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT |
| 134 | |
| 135 | // dx = lo = x - (hi + mid) = x - kf * 2^(-5) |
| 136 | double dx = fputil::multiply_add(-0x1.0p-5f, kf, x); |
| 137 | |
| 138 | // hi = floor(kf * 2^(-4)) |
| 139 | // exp_hi = shift hi to the exponent field of double precision. |
| 140 | int64_t exp_hi = |
| 141 | static_cast<int64_t>(static_cast<uint64_t>(k >> ExpBase::MID_BITS) |
| 142 | << fputil::FPBits<double>::FRACTION_LEN); |
| 143 | // mh = 2^hi * 2^mid |
| 144 | // mh_bits = bit field of mh |
| 145 | int64_t mh_bits = ExpBase::EXP_2_MID[k & ExpBase::MID_MASK] + exp_hi; |
| 146 | double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val(); |
| 147 | |
| 148 | // Degree-5 polynomial approximating (2^x - 1)/x generating by Sollya with: |
| 149 | // > P = fpminimax((2^x - 1)/x, 5, [|D...|], [-1/32. 1/32]); |
| 150 | constexpr double COEFFS[5] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff8131c4p-3, |
| 151 | 0x1.c6b08d7061695p-5, 0x1.3b2b1bee74b2ap-7, |
| 152 | 0x1.5d88091198529p-10}; |
| 153 | double dx_sq = dx * dx; |
| 154 | double c1 = fputil::multiply_add(dx, COEFFS[0], 1.0); |
| 155 | double c2 = fputil::multiply_add(dx, COEFFS[2], COEFFS[1]); |
| 156 | double c3 = fputil::multiply_add(dx, COEFFS[4], COEFFS[3]); |
| 157 | double p = fputil::multiply_add(dx_sq, c3, c2); |
| 158 | // 2^x = 2^(hi + mid + lo) |
| 159 | // = 2^(hi + mid) * 2^lo |
| 160 | // ~ mh * (1 + lo * P(lo)) |
| 161 | // = mh + (mh*lo) * P(lo) |
| 162 | return static_cast<float>(fputil::multiply_add(p, dx_sq * mh, c1 * mh)); |
| 163 | } |
| 164 | |
| 165 | } // namespace generic |
| 166 | } // namespace LIBC_NAMESPACE_DECL |
| 167 | |
| 168 | #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H |
| 169 | |