1 | //===-- Single-precision general exp/log functions ------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H |
10 | #define LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H |
11 | |
12 | #include "common_constants.h" |
13 | #include "src/__support/CPP/bit.h" |
14 | #include "src/__support/CPP/optional.h" |
15 | #include "src/__support/FPUtil/FEnvImpl.h" |
16 | #include "src/__support/FPUtil/FPBits.h" |
17 | #include "src/__support/FPUtil/PolyEval.h" |
18 | #include "src/__support/FPUtil/nearest_integer.h" |
19 | #include "src/__support/common.h" |
20 | #include "src/__support/macros/properties/cpu_features.h" |
21 | |
22 | #include <errno.h> |
23 | |
24 | namespace LIBC_NAMESPACE { |
25 | |
26 | struct ExpBase { |
27 | // Base = e |
28 | static constexpr int MID_BITS = 5; |
29 | static constexpr int MID_MASK = (1 << MID_BITS) - 1; |
30 | // log2(e) * 2^5 |
31 | static constexpr double LOG2_B = 0x1.71547652b82fep+0 * (1 << MID_BITS); |
32 | // High and low parts of -log(2) * 2^(-5) |
33 | static constexpr double M_LOGB_2_HI = -0x1.62e42fefa0000p-1 / (1 << MID_BITS); |
34 | static constexpr double M_LOGB_2_LO = |
35 | -0x1.cf79abc9e3b3ap-40 / (1 << MID_BITS); |
36 | // Look up table for bit fields of 2^(i/32) for i = 0..31, generated by Sollya |
37 | // with: |
38 | // > for i from 0 to 31 do printdouble(round(2^(i/32), D, RN)); |
39 | static constexpr int64_t EXP_2_MID[1 << MID_BITS] = { |
40 | 0x3ff0000000000000, 0x3ff059b0d3158574, 0x3ff0b5586cf9890f, |
41 | 0x3ff11301d0125b51, 0x3ff172b83c7d517b, 0x3ff1d4873168b9aa, |
42 | 0x3ff2387a6e756238, 0x3ff29e9df51fdee1, 0x3ff306fe0a31b715, |
43 | 0x3ff371a7373aa9cb, 0x3ff3dea64c123422, 0x3ff44e086061892d, |
44 | 0x3ff4bfdad5362a27, 0x3ff5342b569d4f82, 0x3ff5ab07dd485429, |
45 | 0x3ff6247eb03a5585, 0x3ff6a09e667f3bcd, 0x3ff71f75e8ec5f74, |
46 | 0x3ff7a11473eb0187, 0x3ff82589994cce13, 0x3ff8ace5422aa0db, |
47 | 0x3ff93737b0cdc5e5, 0x3ff9c49182a3f090, 0x3ffa5503b23e255d, |
48 | 0x3ffae89f995ad3ad, 0x3ffb7f76f2fb5e47, 0x3ffc199bdd85529c, |
49 | 0x3ffcb720dcef9069, 0x3ffd5818dcfba487, 0x3ffdfc97337b9b5f, |
50 | 0x3ffea4afa2a490da, 0x3fff50765b6e4540, |
51 | }; |
52 | |
53 | // Approximating e^dx with degree-5 minimax polynomial generated by Sollya: |
54 | // > Q = fpminimax(expm1(x)/x, 4, [|1, D...|], [-log(2)/64, log(2)/64]); |
55 | // Then: |
56 | // e^dx ~ P(dx) = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[3] * dx^5. |
57 | static constexpr double COEFFS[4] = { |
58 | 0x1.ffffffffe5bc8p-2, 0x1.555555555cd67p-3, 0x1.5555c2a9b48b4p-5, |
59 | 0x1.11112a0e34bdbp-7}; |
60 | |
61 | LIBC_INLINE static double powb_lo(double dx) { |
62 | using fputil::multiply_add; |
63 | double dx2 = dx * dx; |
64 | double c0 = 1.0 + dx; |
65 | // c1 = COEFFS[0] + COEFFS[1] * dx |
66 | double c1 = multiply_add(x: dx, y: ExpBase::COEFFS[1], z: ExpBase::COEFFS[0]); |
67 | // c2 = COEFFS[2] + COEFFS[3] * dx |
68 | double c2 = multiply_add(x: dx, y: ExpBase::COEFFS[3], z: ExpBase::COEFFS[2]); |
69 | // r = c4 + c5 * dx^4 |
70 | // = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[5] * dx^7 |
71 | return fputil::polyeval(x: dx2, a0: c0, a: c1, a: c2); |
72 | } |
73 | }; |
74 | |
75 | struct Exp10Base : public ExpBase { |
76 | // log2(10) * 2^5 |
77 | static constexpr double LOG2_B = 0x1.a934f0979a371p1 * (1 << MID_BITS); |
78 | // High and low parts of -log10(2) * 2^(-5). |
79 | // Notice that since |x * log2(10)| < 150: |
80 | // |k| = |round(x * log2(10) * 2^5)| < 2^8 * 2^5 = 2^13 |
81 | // So when the FMA instructions are not available, in order for the product |
82 | // k * M_LOGB_2_HI |
83 | // to be exact, we only store the high part of log10(2) up to 38 bits |
84 | // (= 53 - 15) of precision. |
85 | // It is generated by Sollya with: |
86 | // > round(log10(2), 44, RN); |
87 | static constexpr double M_LOGB_2_HI = -0x1.34413509f8p-2 / (1 << MID_BITS); |
88 | // > round(log10(2) - 0x1.34413509f8p-2, D, RN); |
89 | static constexpr double M_LOGB_2_LO = 0x1.80433b83b532ap-44 / (1 << MID_BITS); |
90 | |
91 | // Approximating 10^dx with degree-5 minimax polynomial generated by Sollya: |
92 | // > Q = fpminimax((10^x - 1)/x, 4, [|D...|], [-log10(2)/2^6, log10(2)/2^6]); |
93 | // Then: |
94 | // 10^dx ~ P(dx) = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5. |
95 | static constexpr double COEFFS[5] = {0x1.26bb1bbb55515p1, 0x1.53524c73bd3eap1, |
96 | 0x1.0470591dff149p1, 0x1.2bd7c0a9fbc4dp0, |
97 | 0x1.1429e74a98f43p-1}; |
98 | |
99 | static double powb_lo(double dx) { |
100 | using fputil::multiply_add; |
101 | double dx2 = dx * dx; |
102 | // c0 = 1 + COEFFS[0] * dx |
103 | double c0 = multiply_add(x: dx, y: Exp10Base::COEFFS[0], z: 1.0); |
104 | // c1 = COEFFS[1] + COEFFS[2] * dx |
105 | double c1 = multiply_add(x: dx, y: Exp10Base::COEFFS[2], z: Exp10Base::COEFFS[1]); |
106 | // c2 = COEFFS[3] + COEFFS[4] * dx |
107 | double c2 = multiply_add(x: dx, y: Exp10Base::COEFFS[4], z: Exp10Base::COEFFS[3]); |
108 | // r = c0 + dx^2 * (c1 + c2 * dx^2) |
109 | // = c0 + c1 * dx^2 + c2 * dx^4 |
110 | // = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5. |
111 | return fputil::polyeval(x: dx2, a0: c0, a: c1, a: c2); |
112 | } |
113 | }; |
114 | |
115 | constexpr int LOG_P1_BITS = 6; |
116 | constexpr int LOG_P1_SIZE = 1 << LOG_P1_BITS; |
117 | |
118 | // N[Table[Log[2, 1 + x], {x, 0/64, 63/64, 1/64}], 40] |
119 | extern const double LOG_P1_LOG2[LOG_P1_SIZE]; |
120 | |
121 | // N[Table[1/(1 + x), {x, 0/64, 63/64, 1/64}], 40] |
122 | extern const double LOG_P1_1_OVER[LOG_P1_SIZE]; |
123 | |
124 | // Taylor series expansion for Log[2, 1 + x] splitted to EVEN AND ODD numbers |
125 | // K_LOG2_ODD starts from x^3 |
126 | extern const double K_LOG2_ODD[4]; |
127 | extern const double K_LOG2_EVEN[4]; |
128 | |
129 | // Output of range reduction for exp_b: (2^(mid + hi), lo) |
130 | // where: |
131 | // b^x = 2^(mid + hi) * b^lo |
132 | struct exp_b_reduc_t { |
133 | double mh; // 2^(mid + hi) |
134 | double lo; |
135 | }; |
136 | |
137 | // The function correctly calculates b^x value with at least float precision |
138 | // in a limited range. |
139 | // Range reduction: |
140 | // b^x = 2^(hi + mid) * b^lo |
141 | // where: |
142 | // x = (hi + mid) * log_b(2) + lo |
143 | // hi is an integer, |
144 | // 0 <= mid * 2^MID_BITS < 2^MID_BITS is an integer |
145 | // -2^(-MID_BITS - 1) <= lo * log2(b) <= 2^(-MID_BITS - 1) |
146 | // Base class needs to provide the following constants: |
147 | // - MID_BITS : number of bits after decimal points used for mid |
148 | // - MID_MASK : 2^MID_BITS - 1, mask to extract mid bits |
149 | // - LOG2_B : log2(b) * 2^MID_BITS for scaling |
150 | // - M_LOGB_2_HI : high part of -log_b(2) * 2^(-MID_BITS) |
151 | // - M_LOGB_2_LO : low part of -log_b(2) * 2^(-MID_BITS) |
152 | // - EXP_2_MID : look up table for bit fields of 2^mid |
153 | // Return: |
154 | // { 2^(hi + mid), lo } |
155 | template <class Base> LIBC_INLINE exp_b_reduc_t exp_b_range_reduc(float x) { |
156 | double xd = static_cast<double>(x); |
157 | // kd = round((hi + mid) * log2(b) * 2^MID_BITS) |
158 | double kd = fputil::nearest_integer(Base::LOG2_B * xd); |
159 | // k = round((hi + mid) * log2(b) * 2^MID_BITS) |
160 | int k = static_cast<int>(kd); |
161 | // hi = floor(kd * 2^(-MID_BITS)) |
162 | // exp_hi = shift hi to the exponent field of double precision. |
163 | int64_t exp_hi = static_cast<int64_t>((k >> Base::MID_BITS)) |
164 | << fputil::FPBits<double>::FRACTION_LEN; |
165 | // mh = 2^hi * 2^mid |
166 | // mh_bits = bit field of mh |
167 | int64_t mh_bits = Base::EXP_2_MID[k & Base::MID_MASK] + exp_hi; |
168 | double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val(); |
169 | // dx = lo = x - (hi + mid) * log(2) |
170 | double dx = fputil::multiply_add( |
171 | kd, Base::M_LOGB_2_LO, fputil::multiply_add(kd, Base::M_LOGB_2_HI, xd)); |
172 | return {.mh: mh, .lo: dx}; |
173 | } |
174 | |
175 | // The function correctly calculates sinh(x) and cosh(x) by calculating exp(x) |
176 | // and exp(-x) simultaneously. |
177 | // To compute e^x, we perform the following range |
178 | // reduction: find hi, mid, lo such that: |
179 | // x = (hi + mid) * log(2) + lo, in which |
180 | // hi is an integer, |
181 | // 0 <= mid * 2^5 < 32 is an integer |
182 | // -2^(-6) <= lo * log2(e) <= 2^-6. |
183 | // In particular, |
184 | // hi + mid = round(x * log2(e) * 2^5) * 2^(-5). |
185 | // Then, |
186 | // e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo. |
187 | // 2^mid is stored in the lookup table of 32 elements. |
188 | // e^lo is computed using a degree-5 minimax polynomial |
189 | // generated by Sollya: |
190 | // e^lo ~ P(lo) = 1 + lo + c2 * lo^2 + ... + c5 * lo^5 |
191 | // = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4) |
192 | // = P_even + lo * P_odd |
193 | // We perform 2^hi * 2^mid by simply add hi to the exponent field |
194 | // of 2^mid. |
195 | // To compute e^(-x), notice that: |
196 | // e^(-x) = 2^(-(hi + mid)) * e^(-lo) |
197 | // ~ 2^(-(hi + mid)) * P(-lo) |
198 | // = 2^(-(hi + mid)) * (P_even - lo * P_odd) |
199 | // So: |
200 | // sinh(x) = (e^x - e^(-x)) / 2 |
201 | // ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) - |
202 | // 2^(-(hi + mid)) * (P_even - lo * P_odd)) |
203 | // = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) + |
204 | // lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid)))) |
205 | // And similarly: |
206 | // cosh(x) = (e^x + e^(-x)) / 2 |
207 | // ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) + |
208 | // lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid)))) |
209 | // The main point of these formulas is that the expensive part of calculating |
210 | // the polynomials approximating lower parts of e^(x) and e^(-x) are shared |
211 | // and only done once. |
212 | template <bool is_sinh> LIBC_INLINE double exp_pm_eval(float x) { |
213 | double xd = static_cast<double>(x); |
214 | |
215 | // kd = round(x * log2(e) * 2^5) |
216 | // k_p = round(x * log2(e) * 2^5) |
217 | // k_m = round(-x * log2(e) * 2^5) |
218 | double kd; |
219 | int k_p, k_m; |
220 | |
221 | #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT |
222 | kd = fputil::nearest_integer(x: ExpBase::LOG2_B * xd); |
223 | k_p = static_cast<int>(kd); |
224 | k_m = -k_p; |
225 | #else |
226 | constexpr double HALF_WAY[2] = {0.5, -0.5}; |
227 | |
228 | k_p = static_cast<int>( |
229 | fputil::multiply_add(xd, ExpBase::LOG2_B, HALF_WAY[x < 0.0f])); |
230 | k_m = -k_p; |
231 | kd = static_cast<double>(k_p); |
232 | #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT |
233 | |
234 | // hi = floor(kf * 2^(-5)) |
235 | // exp_hi = shift hi to the exponent field of double precision. |
236 | int64_t exp_hi_p = static_cast<int64_t>((k_p >> ExpBase::MID_BITS)) |
237 | << fputil::FPBits<double>::FRACTION_LEN; |
238 | int64_t exp_hi_m = static_cast<int64_t>((k_m >> ExpBase::MID_BITS)) |
239 | << fputil::FPBits<double>::FRACTION_LEN; |
240 | // mh_p = 2^(hi + mid) |
241 | // mh_m = 2^(-(hi + mid)) |
242 | // mh_bits_* = bit field of mh_* |
243 | int64_t mh_bits_p = ExpBase::EXP_2_MID[k_p & ExpBase::MID_MASK] + exp_hi_p; |
244 | int64_t mh_bits_m = ExpBase::EXP_2_MID[k_m & ExpBase::MID_MASK] + exp_hi_m; |
245 | double mh_p = fputil::FPBits<double>(uint64_t(mh_bits_p)).get_val(); |
246 | double mh_m = fputil::FPBits<double>(uint64_t(mh_bits_m)).get_val(); |
247 | // mh_sum = 2^(hi + mid) + 2^(-(hi + mid)) |
248 | double mh_sum = mh_p + mh_m; |
249 | // mh_diff = 2^(hi + mid) - 2^(-(hi + mid)) |
250 | double mh_diff = mh_p - mh_m; |
251 | |
252 | // dx = lo = x - (hi + mid) * log(2) |
253 | double dx = |
254 | fputil::multiply_add(x: kd, y: ExpBase::M_LOGB_2_LO, |
255 | z: fputil::multiply_add(x: kd, y: ExpBase::M_LOGB_2_HI, z: xd)); |
256 | double dx2 = dx * dx; |
257 | |
258 | // c0 = 1 + COEFFS[0] * lo^2 |
259 | // P_even = (1 + COEFFS[0] * lo^2 + COEFFS[2] * lo^4) / 2 |
260 | double p_even = fputil::polyeval(x: dx2, a0: 0.5, a: ExpBase::COEFFS[0] * 0.5, |
261 | a: ExpBase::COEFFS[2] * 0.5); |
262 | // P_odd = (1 + COEFFS[1] * lo^2 + COEFFS[3] * lo^4) / 2 |
263 | double p_odd = fputil::polyeval(x: dx2, a0: 0.5, a: ExpBase::COEFFS[1] * 0.5, |
264 | a: ExpBase::COEFFS[3] * 0.5); |
265 | |
266 | double r; |
267 | if constexpr (is_sinh) |
268 | r = fputil::multiply_add(x: dx * mh_sum, y: p_odd, z: p_even * mh_diff); |
269 | else |
270 | r = fputil::multiply_add(x: dx * mh_diff, y: p_odd, z: p_even * mh_sum); |
271 | return r; |
272 | } |
273 | |
274 | // x should be positive, normal finite value |
275 | LIBC_INLINE static double log2_eval(double x) { |
276 | using FPB = fputil::FPBits<double>; |
277 | FPB bs(x); |
278 | |
279 | double result = 0; |
280 | result += bs.get_exponent(); |
281 | |
282 | int p1 = (bs.get_mantissa() >> (FPB::FRACTION_LEN - LOG_P1_BITS)) & |
283 | (LOG_P1_SIZE - 1); |
284 | |
285 | bs.set_uintval(bs.uintval() & (FPB::FRACTION_MASK >> LOG_P1_BITS)); |
286 | bs.set_biased_exponent(FPB::EXP_BIAS); |
287 | double dx = (bs.get_val() - 1.0) * LOG_P1_1_OVER[p1]; |
288 | |
289 | // Taylor series for log(2,1+x) |
290 | double c1 = fputil::multiply_add(x: dx, y: K_LOG2_ODD[0], z: K_LOG2_EVEN[0]); |
291 | double c2 = fputil::multiply_add(x: dx, y: K_LOG2_ODD[1], z: K_LOG2_EVEN[1]); |
292 | double c3 = fputil::multiply_add(x: dx, y: K_LOG2_ODD[2], z: K_LOG2_EVEN[2]); |
293 | double c4 = fputil::multiply_add(x: dx, y: K_LOG2_ODD[3], z: K_LOG2_EVEN[3]); |
294 | |
295 | // c0 = dx * (1.0 / ln(2)) + LOG_P1_LOG2[p1] |
296 | double c0 = fputil::multiply_add(x: dx, y: 0x1.71547652b82fep+0, z: LOG_P1_LOG2[p1]); |
297 | result += LIBC_NAMESPACE::fputil::polyeval(x: dx * dx, a0: c0, a: c1, a: c2, a: c3, a: c4); |
298 | return result; |
299 | } |
300 | |
301 | // x should be positive, normal finite value |
302 | LIBC_INLINE static double log_eval(double x) { |
303 | // For x = 2^ex * (1 + mx) |
304 | // log(x) = ex * log(2) + log(1 + mx) |
305 | using FPB = fputil::FPBits<double>; |
306 | FPB bs(x); |
307 | |
308 | double ex = static_cast<double>(bs.get_exponent()); |
309 | |
310 | // p1 is the leading 7 bits of mx, i.e. |
311 | // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7). |
312 | int p1 = static_cast<int>(bs.get_mantissa() >> (FPB::FRACTION_LEN - 7)); |
313 | |
314 | // Set bs to (1 + (mx - p1*2^(-7)) |
315 | bs.set_uintval(bs.uintval() & (FPB::FRACTION_MASK >> 7)); |
316 | bs.set_biased_exponent(FPB::EXP_BIAS); |
317 | // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)). |
318 | double dx = (bs.get_val() - 1.0) * ONE_OVER_F[p1]; |
319 | |
320 | // Minimax polynomial of log(1 + dx) generated by Sollya with: |
321 | // > P = fpminimax(log(1 + x)/x, 6, [|D...|], [0, 2^-7]); |
322 | const double COEFFS[6] = {-0x1.ffffffffffffcp-2, 0x1.5555555552ddep-2, |
323 | -0x1.ffffffefe562dp-3, 0x1.9999817d3a50fp-3, |
324 | -0x1.554317b3f67a5p-3, 0x1.1dc5c45e09c18p-3}; |
325 | double dx2 = dx * dx; |
326 | double c1 = fputil::multiply_add(x: dx, y: COEFFS[1], z: COEFFS[0]); |
327 | double c2 = fputil::multiply_add(x: dx, y: COEFFS[3], z: COEFFS[2]); |
328 | double c3 = fputil::multiply_add(x: dx, y: COEFFS[5], z: COEFFS[4]); |
329 | |
330 | double p = fputil::polyeval(x: dx2, a0: dx, a: c1, a: c2, a: c3); |
331 | double result = |
332 | fputil::multiply_add(x: ex, /*log(2)*/ y: 0x1.62e42fefa39efp-1, z: LOG_F[p1] + p); |
333 | return result; |
334 | } |
335 | |
336 | // Rounding tests for 2^hi * (mid + lo) when the output might be denormal. We |
337 | // assume further that 1 <= mid < 2, mid + lo < 2, and |lo| << mid. |
338 | // Notice that, if 0 < x < 2^-1022, |
339 | // double(2^-1022 + x) - 2^-1022 = double(x). |
340 | // So if we scale x up by 2^1022, we can use |
341 | // double(1.0 + 2^1022 * x) - 1.0 to test how x is rounded in denormal range. |
342 | LIBC_INLINE cpp::optional<double> ziv_test_denorm(int hi, double mid, double lo, |
343 | double err) { |
344 | using FPBits = typename fputil::FPBits<double>; |
345 | |
346 | // Scaling factor = 1/(min normal number) = 2^1022 |
347 | int64_t exp_hi = static_cast<int64_t>(hi + 1022) << FPBits::FRACTION_LEN; |
348 | double mid_hi = cpp::bit_cast<double>(from: exp_hi + cpp::bit_cast<int64_t>(from: mid)); |
349 | double lo_scaled = |
350 | (lo != 0.0) ? cpp::bit_cast<double>(from: exp_hi + cpp::bit_cast<int64_t>(from: lo)) |
351 | : 0.0; |
352 | |
353 | double = 0.0; |
354 | uint64_t scale_down = 0x3FE0'0000'0000'0000; // 1022 in the exponent field. |
355 | |
356 | // Result is denormal if (mid_hi + lo_scale < 1.0). |
357 | if ((1.0 - mid_hi) > lo_scaled) { |
358 | // Extra rounding step is needed, which adds more rounding errors. |
359 | err += 0x1.0p-52; |
360 | extra_factor = 1.0; |
361 | scale_down = 0x3FF0'0000'0000'0000; // 1023 in the exponent field. |
362 | } |
363 | |
364 | double err_scaled = |
365 | cpp::bit_cast<double>(from: exp_hi + cpp::bit_cast<int64_t>(from: err)); |
366 | |
367 | double lo_u = lo_scaled + err_scaled; |
368 | double lo_l = lo_scaled - err_scaled; |
369 | |
370 | // By adding 1.0, the results will have similar rounding points as denormal |
371 | // outputs. |
372 | double upper = extra_factor + (mid_hi + lo_u); |
373 | double lower = extra_factor + (mid_hi + lo_l); |
374 | |
375 | if (LIBC_LIKELY(upper == lower)) { |
376 | return cpp::bit_cast<double>(from: cpp::bit_cast<uint64_t>(from: upper) - scale_down); |
377 | } |
378 | |
379 | return cpp::nullopt; |
380 | } |
381 | |
382 | } // namespace LIBC_NAMESPACE |
383 | |
384 | #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H |
385 | |