| 1 | //===-- Single-precision general exp/log functions ------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H |
| 10 | #define LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H |
| 11 | |
| 12 | #include "common_constants.h" |
| 13 | #include "src/__support/CPP/bit.h" |
| 14 | #include "src/__support/CPP/optional.h" |
| 15 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 16 | #include "src/__support/FPUtil/FPBits.h" |
| 17 | #include "src/__support/FPUtil/PolyEval.h" |
| 18 | #include "src/__support/FPUtil/nearest_integer.h" |
| 19 | #include "src/__support/common.h" |
| 20 | #include "src/__support/macros/config.h" |
| 21 | #include "src/__support/macros/properties/cpu_features.h" |
| 22 | |
| 23 | namespace LIBC_NAMESPACE_DECL { |
| 24 | |
| 25 | struct ExpBase { |
| 26 | // Base = e |
| 27 | static constexpr int MID_BITS = 5; |
| 28 | static constexpr int MID_MASK = (1 << MID_BITS) - 1; |
| 29 | // log2(e) * 2^5 |
| 30 | static constexpr double LOG2_B = 0x1.71547652b82fep+0 * (1 << MID_BITS); |
| 31 | // High and low parts of -log(2) * 2^(-5) |
| 32 | static constexpr double M_LOGB_2_HI = -0x1.62e42fefa0000p-1 / (1 << MID_BITS); |
| 33 | static constexpr double M_LOGB_2_LO = |
| 34 | -0x1.cf79abc9e3b3ap-40 / (1 << MID_BITS); |
| 35 | // Look up table for bit fields of 2^(i/32) for i = 0..31, generated by Sollya |
| 36 | // with: |
| 37 | // > for i from 0 to 31 do printdouble(round(2^(i/32), D, RN)); |
| 38 | static constexpr int64_t EXP_2_MID[1 << MID_BITS] = { |
| 39 | 0x3ff0000000000000, 0x3ff059b0d3158574, 0x3ff0b5586cf9890f, |
| 40 | 0x3ff11301d0125b51, 0x3ff172b83c7d517b, 0x3ff1d4873168b9aa, |
| 41 | 0x3ff2387a6e756238, 0x3ff29e9df51fdee1, 0x3ff306fe0a31b715, |
| 42 | 0x3ff371a7373aa9cb, 0x3ff3dea64c123422, 0x3ff44e086061892d, |
| 43 | 0x3ff4bfdad5362a27, 0x3ff5342b569d4f82, 0x3ff5ab07dd485429, |
| 44 | 0x3ff6247eb03a5585, 0x3ff6a09e667f3bcd, 0x3ff71f75e8ec5f74, |
| 45 | 0x3ff7a11473eb0187, 0x3ff82589994cce13, 0x3ff8ace5422aa0db, |
| 46 | 0x3ff93737b0cdc5e5, 0x3ff9c49182a3f090, 0x3ffa5503b23e255d, |
| 47 | 0x3ffae89f995ad3ad, 0x3ffb7f76f2fb5e47, 0x3ffc199bdd85529c, |
| 48 | 0x3ffcb720dcef9069, 0x3ffd5818dcfba487, 0x3ffdfc97337b9b5f, |
| 49 | 0x3ffea4afa2a490da, 0x3fff50765b6e4540, |
| 50 | }; |
| 51 | |
| 52 | // Approximating e^dx with degree-5 minimax polynomial generated by Sollya: |
| 53 | // > Q = fpminimax(expm1(x)/x, 4, [|1, D...|], [-log(2)/64, log(2)/64]); |
| 54 | // Then: |
| 55 | // e^dx ~ P(dx) = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[3] * dx^5. |
| 56 | static constexpr double COEFFS[4] = { |
| 57 | 0x1.ffffffffe5bc8p-2, 0x1.555555555cd67p-3, 0x1.5555c2a9b48b4p-5, |
| 58 | 0x1.11112a0e34bdbp-7}; |
| 59 | |
| 60 | LIBC_INLINE static double powb_lo(double dx) { |
| 61 | using fputil::multiply_add; |
| 62 | double dx2 = dx * dx; |
| 63 | double c0 = 1.0 + dx; |
| 64 | // c1 = COEFFS[0] + COEFFS[1] * dx |
| 65 | double c1 = multiply_add(dx, ExpBase::COEFFS[1], ExpBase::COEFFS[0]); |
| 66 | // c2 = COEFFS[2] + COEFFS[3] * dx |
| 67 | double c2 = multiply_add(dx, ExpBase::COEFFS[3], ExpBase::COEFFS[2]); |
| 68 | // r = c4 + c5 * dx^4 |
| 69 | // = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[5] * dx^7 |
| 70 | return fputil::polyeval(dx2, c0, c1, c2); |
| 71 | } |
| 72 | }; |
| 73 | |
| 74 | struct Exp10Base : public ExpBase { |
| 75 | // log2(10) * 2^5 |
| 76 | static constexpr double LOG2_B = 0x1.a934f0979a371p1 * (1 << MID_BITS); |
| 77 | // High and low parts of -log10(2) * 2^(-5). |
| 78 | // Notice that since |x * log2(10)| < 150: |
| 79 | // |k| = |round(x * log2(10) * 2^5)| < 2^8 * 2^5 = 2^13 |
| 80 | // So when the FMA instructions are not available, in order for the product |
| 81 | // k * M_LOGB_2_HI |
| 82 | // to be exact, we only store the high part of log10(2) up to 38 bits |
| 83 | // (= 53 - 15) of precision. |
| 84 | // It is generated by Sollya with: |
| 85 | // > round(log10(2), 44, RN); |
| 86 | static constexpr double M_LOGB_2_HI = -0x1.34413509f8p-2 / (1 << MID_BITS); |
| 87 | // > round(log10(2) - 0x1.34413509f8p-2, D, RN); |
| 88 | static constexpr double M_LOGB_2_LO = 0x1.80433b83b532ap-44 / (1 << MID_BITS); |
| 89 | |
| 90 | // Approximating 10^dx with degree-5 minimax polynomial generated by Sollya: |
| 91 | // > Q = fpminimax((10^x - 1)/x, 4, [|D...|], [-log10(2)/2^6, log10(2)/2^6]); |
| 92 | // Then: |
| 93 | // 10^dx ~ P(dx) = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5. |
| 94 | static constexpr double COEFFS[5] = {0x1.26bb1bbb55515p1, 0x1.53524c73bd3eap1, |
| 95 | 0x1.0470591dff149p1, 0x1.2bd7c0a9fbc4dp0, |
| 96 | 0x1.1429e74a98f43p-1}; |
| 97 | |
| 98 | static double powb_lo(double dx) { |
| 99 | using fputil::multiply_add; |
| 100 | double dx2 = dx * dx; |
| 101 | // c0 = 1 + COEFFS[0] * dx |
| 102 | double c0 = multiply_add(dx, Exp10Base::COEFFS[0], 1.0); |
| 103 | // c1 = COEFFS[1] + COEFFS[2] * dx |
| 104 | double c1 = multiply_add(dx, Exp10Base::COEFFS[2], Exp10Base::COEFFS[1]); |
| 105 | // c2 = COEFFS[3] + COEFFS[4] * dx |
| 106 | double c2 = multiply_add(dx, Exp10Base::COEFFS[4], Exp10Base::COEFFS[3]); |
| 107 | // r = c0 + dx^2 * (c1 + c2 * dx^2) |
| 108 | // = c0 + c1 * dx^2 + c2 * dx^4 |
| 109 | // = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5. |
| 110 | return fputil::polyeval(dx2, c0, c1, c2); |
| 111 | } |
| 112 | }; |
| 113 | |
| 114 | constexpr int LOG_P1_BITS = 6; |
| 115 | constexpr int LOG_P1_SIZE = 1 << LOG_P1_BITS; |
| 116 | |
| 117 | // N[Table[Log[2, 1 + x], {x, 0/64, 63/64, 1/64}], 40] |
| 118 | extern const double LOG_P1_LOG2[LOG_P1_SIZE]; |
| 119 | |
| 120 | // N[Table[1/(1 + x), {x, 0/64, 63/64, 1/64}], 40] |
| 121 | extern const double LOG_P1_1_OVER[LOG_P1_SIZE]; |
| 122 | |
| 123 | // Taylor series expansion for Log[2, 1 + x] splitted to EVEN AND ODD numbers |
| 124 | // K_LOG2_ODD starts from x^3 |
| 125 | extern const double K_LOG2_ODD[4]; |
| 126 | extern const double K_LOG2_EVEN[4]; |
| 127 | |
| 128 | // Output of range reduction for exp_b: (2^(mid + hi), lo) |
| 129 | // where: |
| 130 | // b^x = 2^(mid + hi) * b^lo |
| 131 | struct exp_b_reduc_t { |
| 132 | double mh; // 2^(mid + hi) |
| 133 | double lo; |
| 134 | }; |
| 135 | |
| 136 | // The function correctly calculates b^x value with at least float precision |
| 137 | // in a limited range. |
| 138 | // Range reduction: |
| 139 | // b^x = 2^(hi + mid) * b^lo |
| 140 | // where: |
| 141 | // x = (hi + mid) * log_b(2) + lo |
| 142 | // hi is an integer, |
| 143 | // 0 <= mid * 2^MID_BITS < 2^MID_BITS is an integer |
| 144 | // -2^(-MID_BITS - 1) <= lo * log2(b) <= 2^(-MID_BITS - 1) |
| 145 | // Base class needs to provide the following constants: |
| 146 | // - MID_BITS : number of bits after decimal points used for mid |
| 147 | // - MID_MASK : 2^MID_BITS - 1, mask to extract mid bits |
| 148 | // - LOG2_B : log2(b) * 2^MID_BITS for scaling |
| 149 | // - M_LOGB_2_HI : high part of -log_b(2) * 2^(-MID_BITS) |
| 150 | // - M_LOGB_2_LO : low part of -log_b(2) * 2^(-MID_BITS) |
| 151 | // - EXP_2_MID : look up table for bit fields of 2^mid |
| 152 | // Return: |
| 153 | // { 2^(hi + mid), lo } |
| 154 | template <class Base> LIBC_INLINE exp_b_reduc_t exp_b_range_reduc(float x) { |
| 155 | double xd = static_cast<double>(x); |
| 156 | // kd = round((hi + mid) * log2(b) * 2^MID_BITS) |
| 157 | double kd = fputil::nearest_integer(Base::LOG2_B * xd); |
| 158 | // k = round((hi + mid) * log2(b) * 2^MID_BITS) |
| 159 | int k = static_cast<int>(kd); |
| 160 | // hi = floor(kd * 2^(-MID_BITS)) |
| 161 | // exp_hi = shift hi to the exponent field of double precision. |
| 162 | uint64_t exp_hi = static_cast<uint64_t>(k >> Base::MID_BITS) |
| 163 | << fputil::FPBits<double>::FRACTION_LEN; |
| 164 | // mh = 2^hi * 2^mid |
| 165 | // mh_bits = bit field of mh |
| 166 | uint64_t mh_bits = Base::EXP_2_MID[k & Base::MID_MASK] + exp_hi; |
| 167 | double mh = fputil::FPBits<double>(mh_bits).get_val(); |
| 168 | // dx = lo = x - (hi + mid) * log(2) |
| 169 | double dx = fputil::multiply_add( |
| 170 | kd, Base::M_LOGB_2_LO, fputil::multiply_add(kd, Base::M_LOGB_2_HI, xd)); |
| 171 | return {mh, dx}; |
| 172 | } |
| 173 | |
| 174 | // The function correctly calculates sinh(x) and cosh(x) by calculating exp(x) |
| 175 | // and exp(-x) simultaneously. |
| 176 | // To compute e^x, we perform the following range |
| 177 | // reduction: find hi, mid, lo such that: |
| 178 | // x = (hi + mid) * log(2) + lo, in which |
| 179 | // hi is an integer, |
| 180 | // 0 <= mid * 2^5 < 32 is an integer |
| 181 | // -2^(-6) <= lo * log2(e) <= 2^-6. |
| 182 | // In particular, |
| 183 | // hi + mid = round(x * log2(e) * 2^5) * 2^(-5). |
| 184 | // Then, |
| 185 | // e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo. |
| 186 | // 2^mid is stored in the lookup table of 32 elements. |
| 187 | // e^lo is computed using a degree-5 minimax polynomial |
| 188 | // generated by Sollya: |
| 189 | // e^lo ~ P(lo) = 1 + lo + c2 * lo^2 + ... + c5 * lo^5 |
| 190 | // = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4) |
| 191 | // = P_even + lo * P_odd |
| 192 | // We perform 2^hi * 2^mid by simply add hi to the exponent field |
| 193 | // of 2^mid. |
| 194 | // To compute e^(-x), notice that: |
| 195 | // e^(-x) = 2^(-(hi + mid)) * e^(-lo) |
| 196 | // ~ 2^(-(hi + mid)) * P(-lo) |
| 197 | // = 2^(-(hi + mid)) * (P_even - lo * P_odd) |
| 198 | // So: |
| 199 | // sinh(x) = (e^x - e^(-x)) / 2 |
| 200 | // ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) - |
| 201 | // 2^(-(hi + mid)) * (P_even - lo * P_odd)) |
| 202 | // = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) + |
| 203 | // lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid)))) |
| 204 | // And similarly: |
| 205 | // cosh(x) = (e^x + e^(-x)) / 2 |
| 206 | // ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) + |
| 207 | // lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid)))) |
| 208 | // The main point of these formulas is that the expensive part of calculating |
| 209 | // the polynomials approximating lower parts of e^(x) and e^(-x) are shared |
| 210 | // and only done once. |
| 211 | template <bool is_sinh> LIBC_INLINE double exp_pm_eval(float x) { |
| 212 | double xd = static_cast<double>(x); |
| 213 | |
| 214 | // kd = round(x * log2(e) * 2^5) |
| 215 | // k_p = round(x * log2(e) * 2^5) |
| 216 | // k_m = round(-x * log2(e) * 2^5) |
| 217 | double kd; |
| 218 | int k_p, k_m; |
| 219 | |
| 220 | #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT |
| 221 | kd = fputil::nearest_integer(ExpBase::LOG2_B * xd); |
| 222 | k_p = static_cast<int>(kd); |
| 223 | k_m = -k_p; |
| 224 | #else |
| 225 | constexpr double HALF_WAY[2] = {0.5, -0.5}; |
| 226 | |
| 227 | k_p = static_cast<int>( |
| 228 | fputil::multiply_add(xd, ExpBase::LOG2_B, HALF_WAY[x < 0.0f])); |
| 229 | k_m = -k_p; |
| 230 | kd = static_cast<double>(k_p); |
| 231 | #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT |
| 232 | |
| 233 | // hi = floor(kf * 2^(-5)) |
| 234 | // exp_hi = shift hi to the exponent field of double precision. |
| 235 | int64_t exp_hi_p = static_cast<int64_t>((k_p >> ExpBase::MID_BITS)) |
| 236 | << fputil::FPBits<double>::FRACTION_LEN; |
| 237 | int64_t exp_hi_m = static_cast<int64_t>((k_m >> ExpBase::MID_BITS)) |
| 238 | << fputil::FPBits<double>::FRACTION_LEN; |
| 239 | // mh_p = 2^(hi + mid) |
| 240 | // mh_m = 2^(-(hi + mid)) |
| 241 | // mh_bits_* = bit field of mh_* |
| 242 | int64_t mh_bits_p = ExpBase::EXP_2_MID[k_p & ExpBase::MID_MASK] + exp_hi_p; |
| 243 | int64_t mh_bits_m = ExpBase::EXP_2_MID[k_m & ExpBase::MID_MASK] + exp_hi_m; |
| 244 | double mh_p = fputil::FPBits<double>(uint64_t(mh_bits_p)).get_val(); |
| 245 | double mh_m = fputil::FPBits<double>(uint64_t(mh_bits_m)).get_val(); |
| 246 | // mh_sum = 2^(hi + mid) + 2^(-(hi + mid)) |
| 247 | double mh_sum = mh_p + mh_m; |
| 248 | // mh_diff = 2^(hi + mid) - 2^(-(hi + mid)) |
| 249 | double mh_diff = mh_p - mh_m; |
| 250 | |
| 251 | // dx = lo = x - (hi + mid) * log(2) |
| 252 | double dx = |
| 253 | fputil::multiply_add(kd, ExpBase::M_LOGB_2_LO, |
| 254 | fputil::multiply_add(kd, ExpBase::M_LOGB_2_HI, xd)); |
| 255 | double dx2 = dx * dx; |
| 256 | |
| 257 | // c0 = 1 + COEFFS[0] * lo^2 |
| 258 | // P_even = (1 + COEFFS[0] * lo^2 + COEFFS[2] * lo^4) / 2 |
| 259 | double p_even = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[0] * 0.5, |
| 260 | ExpBase::COEFFS[2] * 0.5); |
| 261 | // P_odd = (1 + COEFFS[1] * lo^2 + COEFFS[3] * lo^4) / 2 |
| 262 | double p_odd = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[1] * 0.5, |
| 263 | ExpBase::COEFFS[3] * 0.5); |
| 264 | |
| 265 | double r; |
| 266 | if constexpr (is_sinh) |
| 267 | r = fputil::multiply_add(dx * mh_sum, p_odd, p_even * mh_diff); |
| 268 | else |
| 269 | r = fputil::multiply_add(dx * mh_diff, p_odd, p_even * mh_sum); |
| 270 | return r; |
| 271 | } |
| 272 | |
| 273 | // x should be positive, normal finite value |
| 274 | LIBC_INLINE static double log2_eval(double x) { |
| 275 | using FPB = fputil::FPBits<double>; |
| 276 | FPB bs(x); |
| 277 | |
| 278 | double result = 0; |
| 279 | result += bs.get_exponent(); |
| 280 | |
| 281 | int p1 = (bs.get_mantissa() >> (FPB::FRACTION_LEN - LOG_P1_BITS)) & |
| 282 | (LOG_P1_SIZE - 1); |
| 283 | |
| 284 | bs.set_uintval(bs.uintval() & (FPB::FRACTION_MASK >> LOG_P1_BITS)); |
| 285 | bs.set_biased_exponent(FPB::EXP_BIAS); |
| 286 | double dx = (bs.get_val() - 1.0) * LOG_P1_1_OVER[p1]; |
| 287 | |
| 288 | // Taylor series for log(2,1+x) |
| 289 | double c1 = fputil::multiply_add(dx, K_LOG2_ODD[0], K_LOG2_EVEN[0]); |
| 290 | double c2 = fputil::multiply_add(dx, K_LOG2_ODD[1], K_LOG2_EVEN[1]); |
| 291 | double c3 = fputil::multiply_add(dx, K_LOG2_ODD[2], K_LOG2_EVEN[2]); |
| 292 | double c4 = fputil::multiply_add(dx, K_LOG2_ODD[3], K_LOG2_EVEN[3]); |
| 293 | |
| 294 | // c0 = dx * (1.0 / ln(2)) + LOG_P1_LOG2[p1] |
| 295 | double c0 = fputil::multiply_add(dx, 0x1.71547652b82fep+0, LOG_P1_LOG2[p1]); |
| 296 | result += LIBC_NAMESPACE::fputil::polyeval(dx * dx, c0, c1, c2, c3, c4); |
| 297 | return result; |
| 298 | } |
| 299 | |
| 300 | // x should be positive, normal finite value |
| 301 | // TODO: Simplify range reduction and polynomial degree for float16. |
| 302 | // See issue #137190. |
| 303 | LIBC_INLINE static float log_eval_f(float x) { |
| 304 | // For x = 2^ex * (1 + mx), logf(x) = ex * logf(2) + logf(1 + mx). |
| 305 | using FPBits = fputil::FPBits<float>; |
| 306 | FPBits xbits(x); |
| 307 | |
| 308 | float ex = static_cast<float>(xbits.get_exponent()); |
| 309 | // p1 is the leading 7 bits of mx, i.e. |
| 310 | // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7). |
| 311 | int p1 = static_cast<int>(xbits.get_mantissa() >> (FPBits::FRACTION_LEN - 7)); |
| 312 | |
| 313 | // Set bits to (1 + (mx - p1*2^(-7))) |
| 314 | xbits.set_uintval(xbits.uintval() & (FPBits::FRACTION_MASK >> 7)); |
| 315 | xbits.set_biased_exponent(FPBits::EXP_BIAS); |
| 316 | // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)). |
| 317 | float dx = (xbits.get_val() - 1.0f) * ONE_OVER_F_FLOAT[p1]; |
| 318 | |
| 319 | // Minimax polynomial for log(1 + dx), generated using Sollya: |
| 320 | // > P = fpminimax(log(1 + x)/x, 6, [|SG...|], [0, 2^-7]); |
| 321 | // > Q = (P - 1) / x; |
| 322 | // > for i from 0 to degree(Q) do print(coeff(Q, i)); |
| 323 | constexpr float COEFFS[6] = {-0x1p-1f, 0x1.555556p-2f, -0x1.00022ep-2f, |
| 324 | 0x1.9ea056p-3f, -0x1.e50324p-2f, 0x1.c018fp3f}; |
| 325 | |
| 326 | float dx2 = dx * dx; |
| 327 | |
| 328 | float c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]); |
| 329 | float c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]); |
| 330 | float c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]); |
| 331 | |
| 332 | float p = fputil::polyeval(dx2, dx, c1, c2, c3); |
| 333 | |
| 334 | // Generated by Sollya with the following commands: |
| 335 | // > display = hexadecimal; |
| 336 | // > round(log(2), SG, RN); |
| 337 | constexpr float LOGF_2 = 0x1.62e43p-1f; |
| 338 | |
| 339 | float result = fputil::multiply_add(ex, LOGF_2, LOG_F_FLOAT[p1] + p); |
| 340 | return result; |
| 341 | } |
| 342 | |
| 343 | // x should be positive, normal finite value |
| 344 | LIBC_INLINE static double log_eval(double x) { |
| 345 | // For x = 2^ex * (1 + mx) |
| 346 | // log(x) = ex * log(2) + log(1 + mx) |
| 347 | using FPB = fputil::FPBits<double>; |
| 348 | FPB bs(x); |
| 349 | |
| 350 | double ex = static_cast<double>(bs.get_exponent()); |
| 351 | |
| 352 | // p1 is the leading 7 bits of mx, i.e. |
| 353 | // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7). |
| 354 | int p1 = static_cast<int>(bs.get_mantissa() >> (FPB::FRACTION_LEN - 7)); |
| 355 | |
| 356 | // Set bs to (1 + (mx - p1*2^(-7)) |
| 357 | bs.set_uintval(bs.uintval() & (FPB::FRACTION_MASK >> 7)); |
| 358 | bs.set_biased_exponent(FPB::EXP_BIAS); |
| 359 | // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)). |
| 360 | double dx = (bs.get_val() - 1.0) * ONE_OVER_F[p1]; |
| 361 | |
| 362 | // Minimax polynomial of log(1 + dx) generated by Sollya with: |
| 363 | // > P = fpminimax(log(1 + x)/x, 6, [|D...|], [0, 2^-7]); |
| 364 | const double COEFFS[6] = {-0x1.ffffffffffffcp-2, 0x1.5555555552ddep-2, |
| 365 | -0x1.ffffffefe562dp-3, 0x1.9999817d3a50fp-3, |
| 366 | -0x1.554317b3f67a5p-3, 0x1.1dc5c45e09c18p-3}; |
| 367 | double dx2 = dx * dx; |
| 368 | double c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]); |
| 369 | double c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]); |
| 370 | double c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]); |
| 371 | |
| 372 | double p = fputil::polyeval(dx2, dx, c1, c2, c3); |
| 373 | double result = |
| 374 | fputil::multiply_add(ex, /*log(2)*/ 0x1.62e42fefa39efp-1, LOG_F[p1] + p); |
| 375 | return result; |
| 376 | } |
| 377 | |
| 378 | // Rounding tests for 2^hi * (mid + lo) when the output might be denormal. We |
| 379 | // assume further that 1 <= mid < 2, mid + lo < 2, and |lo| << mid. |
| 380 | // Notice that, if 0 < x < 2^-1022, |
| 381 | // double(2^-1022 + x) - 2^-1022 = double(x). |
| 382 | // So if we scale x up by 2^1022, we can use |
| 383 | // double(1.0 + 2^1022 * x) - 1.0 to test how x is rounded in denormal range. |
| 384 | template <bool SKIP_ZIV_TEST = false> |
| 385 | LIBC_INLINE static cpp::optional<double> |
| 386 | ziv_test_denorm(int hi, double mid, double lo, double err) { |
| 387 | using FPBits = typename fputil::FPBits<double>; |
| 388 | |
| 389 | // Scaling factor = 1/(min normal number) = 2^1022 |
| 390 | int64_t exp_hi = static_cast<int64_t>(hi + 1022) << FPBits::FRACTION_LEN; |
| 391 | double mid_hi = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(mid)); |
| 392 | double lo_scaled = |
| 393 | (lo != 0.0) ? cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(lo)) |
| 394 | : 0.0; |
| 395 | |
| 396 | double extra_factor = 0.0; |
| 397 | uint64_t scale_down = 0x3FE0'0000'0000'0000; // 1022 in the exponent field. |
| 398 | |
| 399 | // Result is denormal if (mid_hi + lo_scale < 1.0). |
| 400 | if ((1.0 - mid_hi) > lo_scaled) { |
| 401 | // Extra rounding step is needed, which adds more rounding errors. |
| 402 | err += 0x1.0p-52; |
| 403 | extra_factor = 1.0; |
| 404 | scale_down = 0x3FF0'0000'0000'0000; // 1023 in the exponent field. |
| 405 | } |
| 406 | |
| 407 | // By adding 1.0, the results will have similar rounding points as denormal |
| 408 | // outputs. |
| 409 | if constexpr (SKIP_ZIV_TEST) { |
| 410 | double r = extra_factor + (mid_hi + lo_scaled); |
| 411 | return cpp::bit_cast<double>(cpp::bit_cast<uint64_t>(r) - scale_down); |
| 412 | } else { |
| 413 | double err_scaled = |
| 414 | cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(err)); |
| 415 | |
| 416 | double lo_u = lo_scaled + err_scaled; |
| 417 | double lo_l = lo_scaled - err_scaled; |
| 418 | |
| 419 | double upper = extra_factor + (mid_hi + lo_u); |
| 420 | double lower = extra_factor + (mid_hi + lo_l); |
| 421 | |
| 422 | if (LIBC_LIKELY(upper == lower)) { |
| 423 | return cpp::bit_cast<double>(cpp::bit_cast<uint64_t>(upper) - scale_down); |
| 424 | } |
| 425 | |
| 426 | return cpp::nullopt; |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | } // namespace LIBC_NAMESPACE_DECL |
| 431 | |
| 432 | #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H |
| 433 | |