1 | //===-- Double-precision e^x function -------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "src/math/exp.h" |
10 | #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. |
11 | #include "explogxf.h" // ziv_test_denorm. |
12 | #include "src/__support/CPP/bit.h" |
13 | #include "src/__support/CPP/optional.h" |
14 | #include "src/__support/FPUtil/FEnvImpl.h" |
15 | #include "src/__support/FPUtil/FPBits.h" |
16 | #include "src/__support/FPUtil/PolyEval.h" |
17 | #include "src/__support/FPUtil/double_double.h" |
18 | #include "src/__support/FPUtil/dyadic_float.h" |
19 | #include "src/__support/FPUtil/multiply_add.h" |
20 | #include "src/__support/FPUtil/nearest_integer.h" |
21 | #include "src/__support/FPUtil/rounding_mode.h" |
22 | #include "src/__support/FPUtil/triple_double.h" |
23 | #include "src/__support/common.h" |
24 | #include "src/__support/integer_literals.h" |
25 | #include "src/__support/macros/config.h" |
26 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
27 | |
28 | namespace LIBC_NAMESPACE_DECL { |
29 | |
30 | using fputil::DoubleDouble; |
31 | using fputil::TripleDouble; |
32 | using Float128 = typename fputil::DyadicFloat<128>; |
33 | |
34 | using LIBC_NAMESPACE::operator""_u128 ; |
35 | |
36 | // log2(e) |
37 | constexpr double LOG2_E = 0x1.71547652b82fep+0; |
38 | |
39 | // Error bounds: |
40 | // Errors when using double precision. |
41 | constexpr double ERR_D = 0x1.8p-63; |
42 | |
43 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
44 | // Errors when using double-double precision. |
45 | constexpr double ERR_DD = 0x1.0p-99; |
46 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
47 | |
48 | // -2^-12 * log(2) |
49 | // > a = -2^-12 * log(2); |
50 | // > b = round(a, 30, RN); |
51 | // > c = round(a - b, 30, RN); |
52 | // > d = round(a - b - c, D, RN); |
53 | // Errors < 1.5 * 2^-133 |
54 | constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13; |
55 | constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47; |
56 | |
57 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
58 | constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47; |
59 | constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79; |
60 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
61 | |
62 | namespace { |
63 | |
64 | // Polynomial approximations with double precision: |
65 | // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. |
66 | // For |dx| < 2^-13 + 2^-30: |
67 | // | output - expm1(dx) / dx | < 2^-51. |
68 | LIBC_INLINE double poly_approx_d(double dx) { |
69 | // dx^2 |
70 | double dx2 = dx * dx; |
71 | // c0 = 1 + dx / 2 |
72 | double c0 = fputil::multiply_add(dx, 0.5, 1.0); |
73 | // c1 = 1/6 + dx / 24 |
74 | double c1 = |
75 | fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3); |
76 | // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24 |
77 | double p = fputil::multiply_add(dx2, c1, c0); |
78 | return p; |
79 | } |
80 | |
81 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
82 | // Polynomial approximation with double-double precision: |
83 | // Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^6 / 720 |
84 | // For |dx| < 2^-13 + 2^-30: |
85 | // | output - exp(dx) | < 2^-101 |
86 | DoubleDouble poly_approx_dd(const DoubleDouble &dx) { |
87 | // Taylor polynomial. |
88 | constexpr DoubleDouble COEFFS[] = { |
89 | {0, 0x1p0}, // 1 |
90 | {0, 0x1p0}, // 1 |
91 | {0, 0x1p-1}, // 1/2 |
92 | {0x1.5555555555555p-57, 0x1.5555555555555p-3}, // 1/6 |
93 | {0x1.5555555555555p-59, 0x1.5555555555555p-5}, // 1/24 |
94 | {0x1.1111111111111p-63, 0x1.1111111111111p-7}, // 1/120 |
95 | {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720 |
96 | }; |
97 | |
98 | DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], |
99 | COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); |
100 | return p; |
101 | } |
102 | |
103 | // Polynomial approximation with 128-bit precision: |
104 | // Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^7 / 5040 |
105 | // For |dx| < 2^-13 + 2^-30: |
106 | // | output - exp(dx) | < 2^-126. |
107 | Float128 poly_approx_f128(const Float128 &dx) { |
108 | constexpr Float128 COEFFS_128[]{ |
109 | {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 |
110 | {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 |
111 | {Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5 |
112 | {Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6 |
113 | {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24 |
114 | {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120 |
115 | {Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720 |
116 | {Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040 |
117 | }; |
118 | |
119 | Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], |
120 | COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], |
121 | COEFFS_128[6], COEFFS_128[7]); |
122 | return p; |
123 | } |
124 | |
125 | // Compute exp(x) using 128-bit precision. |
126 | // TODO(lntue): investigate triple-double precision implementation for this |
127 | // step. |
128 | Float128 exp_f128(double x, double kd, int idx1, int idx2) { |
129 | // Recalculate dx: |
130 | |
131 | double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact |
132 | double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact |
133 | double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-133 |
134 | |
135 | Float128 dx = fputil::quick_add( |
136 | Float128(t1), fputil::quick_add(Float128(t2), Float128(t3))); |
137 | |
138 | // TODO: Skip recalculating exp_mid1 and exp_mid2. |
139 | Float128 exp_mid1 = |
140 | fputil::quick_add(Float128(EXP2_MID1[idx1].hi), |
141 | fputil::quick_add(Float128(EXP2_MID1[idx1].mid), |
142 | Float128(EXP2_MID1[idx1].lo))); |
143 | |
144 | Float128 exp_mid2 = |
145 | fputil::quick_add(Float128(EXP2_MID2[idx2].hi), |
146 | fputil::quick_add(Float128(EXP2_MID2[idx2].mid), |
147 | Float128(EXP2_MID2[idx2].lo))); |
148 | |
149 | Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); |
150 | |
151 | Float128 p = poly_approx_f128(dx); |
152 | |
153 | Float128 r = fputil::quick_mul(exp_mid, p); |
154 | |
155 | r.exponent += static_cast<int>(kd) >> 12; |
156 | |
157 | return r; |
158 | } |
159 | |
160 | // Compute exp(x) with double-double precision. |
161 | DoubleDouble exp_double_double(double x, double kd, |
162 | const DoubleDouble &exp_mid) { |
163 | // Recalculate dx: |
164 | // dx = x - k * 2^-12 * log(2) |
165 | double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact |
166 | double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact |
167 | double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-130 |
168 | |
169 | DoubleDouble dx = fputil::exact_add(t1, t2); |
170 | dx.lo += t3; |
171 | |
172 | // Degree-6 Taylor polynomial approximation in double-double precision. |
173 | // | p - exp(x) | < 2^-100. |
174 | DoubleDouble p = poly_approx_dd(dx); |
175 | |
176 | // Error bounds: 2^-99. |
177 | DoubleDouble r = fputil::quick_mult(exp_mid, p); |
178 | |
179 | return r; |
180 | } |
181 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
182 | |
183 | // Check for exceptional cases when |
184 | // |x| <= 2^-53 or x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9 |
185 | double set_exceptional(double x) { |
186 | using FPBits = typename fputil::FPBits<double>; |
187 | FPBits xbits(x); |
188 | |
189 | uint64_t x_u = xbits.uintval(); |
190 | uint64_t x_abs = xbits.abs().uintval(); |
191 | |
192 | // |x| <= 2^-53 |
193 | if (x_abs <= 0x3ca0'0000'0000'0000ULL) { |
194 | // exp(x) ~ 1 + x |
195 | return 1 + x; |
196 | } |
197 | |
198 | // x <= log(2^-1075) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan. |
199 | |
200 | // x <= log(2^-1075) or -inf/nan |
201 | if (x_u >= 0xc087'4910'd52d'3052ULL) { |
202 | // exp(-Inf) = 0 |
203 | if (xbits.is_inf()) |
204 | return 0.0; |
205 | |
206 | // exp(nan) = nan |
207 | if (xbits.is_nan()) |
208 | return x; |
209 | |
210 | if (fputil::quick_get_round() == FE_UPWARD) |
211 | return FPBits::min_subnormal().get_val(); |
212 | fputil::set_errno_if_required(ERANGE); |
213 | fputil::raise_except_if_required(FE_UNDERFLOW); |
214 | return 0.0; |
215 | } |
216 | |
217 | // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan |
218 | // x is finite |
219 | if (x_u < 0x7ff0'0000'0000'0000ULL) { |
220 | int rounding = fputil::quick_get_round(); |
221 | if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) |
222 | return FPBits::max_normal().get_val(); |
223 | |
224 | fputil::set_errno_if_required(ERANGE); |
225 | fputil::raise_except_if_required(FE_OVERFLOW); |
226 | } |
227 | // x is +inf or nan |
228 | return x + FPBits::inf().get_val(); |
229 | } |
230 | |
231 | } // namespace |
232 | |
233 | LLVM_LIBC_FUNCTION(double, exp, (double x)) { |
234 | using FPBits = typename fputil::FPBits<double>; |
235 | FPBits xbits(x); |
236 | |
237 | uint64_t x_u = xbits.uintval(); |
238 | |
239 | // Upper bound: max normal number = 2^1023 * (2 - 2^-52) |
240 | // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9 |
241 | // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9 |
242 | // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9 |
243 | // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty |
244 | |
245 | // Lower bound: min denormal number / 2 = 2^-1075 |
246 | // > round(log(2^-1075), D, RN) = -0x1.74910d52d3052p9 |
247 | |
248 | // Another lower bound: min normal number = 2^-1022 |
249 | // > round(log(2^-1022), D, RN) = -0x1.6232bdd7abcd2p9 |
250 | |
251 | // x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9 or |x| < 2^-53. |
252 | if (LIBC_UNLIKELY(x_u >= 0xc0874910d52d3052 || |
253 | (x_u < 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) || |
254 | x_u < 0x3ca0000000000000)) { |
255 | return set_exceptional(x); |
256 | } |
257 | |
258 | // Now log(2^-1075) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52)) |
259 | |
260 | // Range reduction: |
261 | // Let x = log(2) * (hi + mid1 + mid2) + lo |
262 | // in which: |
263 | // hi is an integer |
264 | // mid1 * 2^6 is an integer |
265 | // mid2 * 2^12 is an integer |
266 | // then: |
267 | // exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo). |
268 | // With this formula: |
269 | // - multiplying by 2^hi is exact and cheap, simply by adding the exponent |
270 | // field. |
271 | // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. |
272 | // - exp(lo) ~ 1 + lo + a0 * lo^2 + ... |
273 | // |
274 | // They can be defined by: |
275 | // hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x) |
276 | // If we store L2E = round(log2(e), D, RN), then: |
277 | // log2(e) - L2E ~ 1.5 * 2^(-56) |
278 | // So the errors when computing in double precision is: |
279 | // | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <= |
280 | // <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | + |
281 | // + | x * 2^12 * L2E - D(x * 2^12 * L2E) | |
282 | // <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x)) for RN |
283 | // 2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes. |
284 | // So if: |
285 | // hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely |
286 | // in double precision, the reduced argument: |
287 | // lo = x - log(2) * (hi + mid1 + mid2) is bounded by: |
288 | // |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x)) |
289 | // < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52)) |
290 | // < 2^-13 + 2^-41 |
291 | // |
292 | |
293 | // The following trick computes the round(x * L2E) more efficiently |
294 | // than using the rounding instructions, with the tradeoff for less accuracy, |
295 | // and hence a slightly larger range for the reduced argument `lo`. |
296 | // |
297 | // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9, |
298 | // |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23, |
299 | // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t. |
300 | // Thus, the goal is to be able to use an additional addition and fixed width |
301 | // shift to get an int32_t representing round(x * 2^12 * L2E). |
302 | // |
303 | // Assuming int32_t using 2-complement representation, since the mantissa part |
304 | // of a double precision is unsigned with the leading bit hidden, if we add an |
305 | // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the |
306 | // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be |
307 | // considered as a proper 2-complement representations of x*2^12*L2E. |
308 | // |
309 | // One small problem with this approach is that the sum (x*2^12*L2E + C) in |
310 | // double precision is rounded to the least significant bit of the dorminant |
311 | // factor C. In order to minimize the rounding errors from this addition, we |
312 | // want to minimize e1. Another constraint that we want is that after |
313 | // shifting the mantissa so that the least significant bit of int32_t |
314 | // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without |
315 | // any adjustment. So combining these 2 requirements, we can choose |
316 | // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence |
317 | // after right shifting the mantissa, the resulting int32_t has correct sign. |
318 | // With this choice of C, the number of mantissa bits we need to shift to the |
319 | // right is: 52 - 33 = 19. |
320 | // |
321 | // Moreover, since the integer right shifts are equivalent to rounding down, |
322 | // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- |
323 | // +infinity. So in particular, we can compute: |
324 | // hmm = x * 2^12 * L2E + C, |
325 | // where C = 2^33 + 2^32 + 2^-1, then if |
326 | // k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19), |
327 | // the reduced argument: |
328 | // lo = x - log(2) * 2^-12 * k is bounded by: |
329 | // |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19 |
330 | // = 2^-13 + 2^-31 + 2^-41. |
331 | // |
332 | // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the |
333 | // exponent 2^12 is not needed. So we can simply define |
334 | // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and |
335 | // k = int32_t(lower 51 bits of double(x * L2E + C) >> 19). |
336 | |
337 | // Rounding errors <= 2^-31 + 2^-41. |
338 | double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21); |
339 | int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19); |
340 | double kd = static_cast<double>(k); |
341 | |
342 | uint32_t idx1 = (k >> 6) & 0x3f; |
343 | uint32_t idx2 = k & 0x3f; |
344 | int hi = k >> 12; |
345 | |
346 | bool denorm = (hi <= -1022); |
347 | |
348 | DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; |
349 | DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; |
350 | |
351 | DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); |
352 | |
353 | // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo) |
354 | // = 2^11 * 2^-13 * 2^-52 |
355 | // = 2^-54. |
356 | // |dx| < 2^-13 + 2^-30. |
357 | double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact |
358 | double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h); |
359 | |
360 | // We use the degree-4 Taylor polynomial to approximate exp(lo): |
361 | // exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo) |
362 | // So that the errors are bounded by: |
363 | // |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 |
364 | // Let P_ be an evaluation of P where all intermediate computations are in |
365 | // double precision. Using either Horner's or Estrin's schemes, the evaluated |
366 | // errors can be bounded by: |
367 | // |P_(dx) - P(dx)| < 2^-51 |
368 | // => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64 |
369 | // => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63. |
370 | // Since we approximate |
371 | // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, |
372 | // We use the expression: |
373 | // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ |
374 | // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) |
375 | // with errors bounded by 1.5 * 2^-63. |
376 | |
377 | double mid_lo = dx * exp_mid.hi; |
378 | |
379 | // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. |
380 | double p = poly_approx_d(dx); |
381 | |
382 | double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); |
383 | |
384 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
385 | if (LIBC_UNLIKELY(denorm)) { |
386 | return ziv_test_denorm</*SKIP_ZIV_TEST=*/true>(hi, exp_mid.hi, lo, ERR_D) |
387 | .value(); |
388 | } else { |
389 | // to multiply by 2^hi, a fast way is to simply add hi to the exponent |
390 | // field. |
391 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
392 | double r = |
393 | cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(exp_mid.hi + lo)); |
394 | return r; |
395 | } |
396 | #else |
397 | if (LIBC_UNLIKELY(denorm)) { |
398 | if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D); |
399 | LIBC_LIKELY(r.has_value())) |
400 | return r.value(); |
401 | } else { |
402 | double upper = exp_mid.hi + (lo + ERR_D); |
403 | double lower = exp_mid.hi + (lo - ERR_D); |
404 | |
405 | if (LIBC_LIKELY(upper == lower)) { |
406 | // to multiply by 2^hi, a fast way is to simply add hi to the exponent |
407 | // field. |
408 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
409 | double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper)); |
410 | return r; |
411 | } |
412 | } |
413 | |
414 | // Use double-double |
415 | DoubleDouble r_dd = exp_double_double(x, kd, exp_mid); |
416 | |
417 | if (LIBC_UNLIKELY(denorm)) { |
418 | if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD); |
419 | LIBC_LIKELY(r.has_value())) |
420 | return r.value(); |
421 | } else { |
422 | double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD); |
423 | double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD); |
424 | |
425 | if (LIBC_LIKELY(upper_dd == lower_dd)) { |
426 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
427 | double r = |
428 | cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd)); |
429 | return r; |
430 | } |
431 | } |
432 | |
433 | // Use 128-bit precision |
434 | Float128 r_f128 = exp_f128(x, kd, idx1, idx2); |
435 | |
436 | return static_cast<double>(r_f128); |
437 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
438 | } |
439 | |
440 | } // namespace LIBC_NAMESPACE_DECL |
441 | |