| 1 | //===-- Double-precision e^x function -------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "src/math/exp.h" |
| 10 | #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. |
| 11 | #include "explogxf.h" // ziv_test_denorm. |
| 12 | #include "src/__support/CPP/bit.h" |
| 13 | #include "src/__support/CPP/optional.h" |
| 14 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 15 | #include "src/__support/FPUtil/FPBits.h" |
| 16 | #include "src/__support/FPUtil/PolyEval.h" |
| 17 | #include "src/__support/FPUtil/double_double.h" |
| 18 | #include "src/__support/FPUtil/dyadic_float.h" |
| 19 | #include "src/__support/FPUtil/multiply_add.h" |
| 20 | #include "src/__support/FPUtil/nearest_integer.h" |
| 21 | #include "src/__support/FPUtil/rounding_mode.h" |
| 22 | #include "src/__support/FPUtil/triple_double.h" |
| 23 | #include "src/__support/common.h" |
| 24 | #include "src/__support/integer_literals.h" |
| 25 | #include "src/__support/macros/config.h" |
| 26 | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| 27 | |
| 28 | namespace LIBC_NAMESPACE_DECL { |
| 29 | |
| 30 | using fputil::DoubleDouble; |
| 31 | using fputil::TripleDouble; |
| 32 | using Float128 = typename fputil::DyadicFloat<128>; |
| 33 | |
| 34 | using LIBC_NAMESPACE::operator""_u128 ; |
| 35 | |
| 36 | // log2(e) |
| 37 | constexpr double LOG2_E = 0x1.71547652b82fep+0; |
| 38 | |
| 39 | // Error bounds: |
| 40 | // Errors when using double precision. |
| 41 | constexpr double ERR_D = 0x1.8p-63; |
| 42 | |
| 43 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 44 | // Errors when using double-double precision. |
| 45 | constexpr double ERR_DD = 0x1.0p-99; |
| 46 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 47 | |
| 48 | // -2^-12 * log(2) |
| 49 | // > a = -2^-12 * log(2); |
| 50 | // > b = round(a, 30, RN); |
| 51 | // > c = round(a - b, 30, RN); |
| 52 | // > d = round(a - b - c, D, RN); |
| 53 | // Errors < 1.5 * 2^-133 |
| 54 | constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13; |
| 55 | constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47; |
| 56 | |
| 57 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 58 | constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47; |
| 59 | constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79; |
| 60 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 61 | |
| 62 | namespace { |
| 63 | |
| 64 | // Polynomial approximations with double precision: |
| 65 | // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. |
| 66 | // For |dx| < 2^-13 + 2^-30: |
| 67 | // | output - expm1(dx) / dx | < 2^-51. |
| 68 | LIBC_INLINE double poly_approx_d(double dx) { |
| 69 | // dx^2 |
| 70 | double dx2 = dx * dx; |
| 71 | // c0 = 1 + dx / 2 |
| 72 | double c0 = fputil::multiply_add(dx, 0.5, 1.0); |
| 73 | // c1 = 1/6 + dx / 24 |
| 74 | double c1 = |
| 75 | fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3); |
| 76 | // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24 |
| 77 | double p = fputil::multiply_add(dx2, c1, c0); |
| 78 | return p; |
| 79 | } |
| 80 | |
| 81 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 82 | // Polynomial approximation with double-double precision: |
| 83 | // Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^6 / 720 |
| 84 | // For |dx| < 2^-13 + 2^-30: |
| 85 | // | output - exp(dx) | < 2^-101 |
| 86 | DoubleDouble poly_approx_dd(const DoubleDouble &dx) { |
| 87 | // Taylor polynomial. |
| 88 | constexpr DoubleDouble COEFFS[] = { |
| 89 | {0, 0x1p0}, // 1 |
| 90 | {0, 0x1p0}, // 1 |
| 91 | {0, 0x1p-1}, // 1/2 |
| 92 | {0x1.5555555555555p-57, 0x1.5555555555555p-3}, // 1/6 |
| 93 | {0x1.5555555555555p-59, 0x1.5555555555555p-5}, // 1/24 |
| 94 | {0x1.1111111111111p-63, 0x1.1111111111111p-7}, // 1/120 |
| 95 | {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720 |
| 96 | }; |
| 97 | |
| 98 | DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], |
| 99 | COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); |
| 100 | return p; |
| 101 | } |
| 102 | |
| 103 | // Polynomial approximation with 128-bit precision: |
| 104 | // Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^7 / 5040 |
| 105 | // For |dx| < 2^-13 + 2^-30: |
| 106 | // | output - exp(dx) | < 2^-126. |
| 107 | Float128 poly_approx_f128(const Float128 &dx) { |
| 108 | constexpr Float128 COEFFS_128[]{ |
| 109 | {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 |
| 110 | {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 |
| 111 | {Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5 |
| 112 | {Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6 |
| 113 | {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24 |
| 114 | {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120 |
| 115 | {Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720 |
| 116 | {Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040 |
| 117 | }; |
| 118 | |
| 119 | Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], |
| 120 | COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], |
| 121 | COEFFS_128[6], COEFFS_128[7]); |
| 122 | return p; |
| 123 | } |
| 124 | |
| 125 | // Compute exp(x) using 128-bit precision. |
| 126 | // TODO(lntue): investigate triple-double precision implementation for this |
| 127 | // step. |
| 128 | Float128 exp_f128(double x, double kd, int idx1, int idx2) { |
| 129 | // Recalculate dx: |
| 130 | |
| 131 | double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact |
| 132 | double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact |
| 133 | double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-133 |
| 134 | |
| 135 | Float128 dx = fputil::quick_add( |
| 136 | Float128(t1), fputil::quick_add(Float128(t2), Float128(t3))); |
| 137 | |
| 138 | // TODO: Skip recalculating exp_mid1 and exp_mid2. |
| 139 | Float128 exp_mid1 = |
| 140 | fputil::quick_add(Float128(EXP2_MID1[idx1].hi), |
| 141 | fputil::quick_add(Float128(EXP2_MID1[idx1].mid), |
| 142 | Float128(EXP2_MID1[idx1].lo))); |
| 143 | |
| 144 | Float128 exp_mid2 = |
| 145 | fputil::quick_add(Float128(EXP2_MID2[idx2].hi), |
| 146 | fputil::quick_add(Float128(EXP2_MID2[idx2].mid), |
| 147 | Float128(EXP2_MID2[idx2].lo))); |
| 148 | |
| 149 | Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); |
| 150 | |
| 151 | Float128 p = poly_approx_f128(dx); |
| 152 | |
| 153 | Float128 r = fputil::quick_mul(exp_mid, p); |
| 154 | |
| 155 | r.exponent += static_cast<int>(kd) >> 12; |
| 156 | |
| 157 | return r; |
| 158 | } |
| 159 | |
| 160 | // Compute exp(x) with double-double precision. |
| 161 | DoubleDouble exp_double_double(double x, double kd, |
| 162 | const DoubleDouble &exp_mid) { |
| 163 | // Recalculate dx: |
| 164 | // dx = x - k * 2^-12 * log(2) |
| 165 | double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact |
| 166 | double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact |
| 167 | double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-130 |
| 168 | |
| 169 | DoubleDouble dx = fputil::exact_add(t1, t2); |
| 170 | dx.lo += t3; |
| 171 | |
| 172 | // Degree-6 Taylor polynomial approximation in double-double precision. |
| 173 | // | p - exp(x) | < 2^-100. |
| 174 | DoubleDouble p = poly_approx_dd(dx); |
| 175 | |
| 176 | // Error bounds: 2^-99. |
| 177 | DoubleDouble r = fputil::quick_mult(exp_mid, p); |
| 178 | |
| 179 | return r; |
| 180 | } |
| 181 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 182 | |
| 183 | // Check for exceptional cases when |
| 184 | // |x| <= 2^-53 or x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9 |
| 185 | double set_exceptional(double x) { |
| 186 | using FPBits = typename fputil::FPBits<double>; |
| 187 | FPBits xbits(x); |
| 188 | |
| 189 | uint64_t x_u = xbits.uintval(); |
| 190 | uint64_t x_abs = xbits.abs().uintval(); |
| 191 | |
| 192 | // |x| <= 2^-53 |
| 193 | if (x_abs <= 0x3ca0'0000'0000'0000ULL) { |
| 194 | // exp(x) ~ 1 + x |
| 195 | return 1 + x; |
| 196 | } |
| 197 | |
| 198 | // x <= log(2^-1075) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan. |
| 199 | |
| 200 | // x <= log(2^-1075) or -inf/nan |
| 201 | if (x_u >= 0xc087'4910'd52d'3052ULL) { |
| 202 | // exp(-Inf) = 0 |
| 203 | if (xbits.is_inf()) |
| 204 | return 0.0; |
| 205 | |
| 206 | // exp(nan) = nan |
| 207 | if (xbits.is_nan()) |
| 208 | return x; |
| 209 | |
| 210 | if (fputil::quick_get_round() == FE_UPWARD) |
| 211 | return FPBits::min_subnormal().get_val(); |
| 212 | fputil::set_errno_if_required(ERANGE); |
| 213 | fputil::raise_except_if_required(FE_UNDERFLOW); |
| 214 | return 0.0; |
| 215 | } |
| 216 | |
| 217 | // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan |
| 218 | // x is finite |
| 219 | if (x_u < 0x7ff0'0000'0000'0000ULL) { |
| 220 | int rounding = fputil::quick_get_round(); |
| 221 | if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) |
| 222 | return FPBits::max_normal().get_val(); |
| 223 | |
| 224 | fputil::set_errno_if_required(ERANGE); |
| 225 | fputil::raise_except_if_required(FE_OVERFLOW); |
| 226 | } |
| 227 | // x is +inf or nan |
| 228 | return x + FPBits::inf().get_val(); |
| 229 | } |
| 230 | |
| 231 | } // namespace |
| 232 | |
| 233 | LLVM_LIBC_FUNCTION(double, exp, (double x)) { |
| 234 | using FPBits = typename fputil::FPBits<double>; |
| 235 | FPBits xbits(x); |
| 236 | |
| 237 | uint64_t x_u = xbits.uintval(); |
| 238 | |
| 239 | // Upper bound: max normal number = 2^1023 * (2 - 2^-52) |
| 240 | // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9 |
| 241 | // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9 |
| 242 | // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9 |
| 243 | // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty |
| 244 | |
| 245 | // Lower bound: min denormal number / 2 = 2^-1075 |
| 246 | // > round(log(2^-1075), D, RN) = -0x1.74910d52d3052p9 |
| 247 | |
| 248 | // Another lower bound: min normal number = 2^-1022 |
| 249 | // > round(log(2^-1022), D, RN) = -0x1.6232bdd7abcd2p9 |
| 250 | |
| 251 | // x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9 or |x| < 2^-53. |
| 252 | if (LIBC_UNLIKELY(x_u >= 0xc0874910d52d3052 || |
| 253 | (x_u < 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) || |
| 254 | x_u < 0x3ca0000000000000)) { |
| 255 | return set_exceptional(x); |
| 256 | } |
| 257 | |
| 258 | // Now log(2^-1075) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52)) |
| 259 | |
| 260 | // Range reduction: |
| 261 | // Let x = log(2) * (hi + mid1 + mid2) + lo |
| 262 | // in which: |
| 263 | // hi is an integer |
| 264 | // mid1 * 2^6 is an integer |
| 265 | // mid2 * 2^12 is an integer |
| 266 | // then: |
| 267 | // exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo). |
| 268 | // With this formula: |
| 269 | // - multiplying by 2^hi is exact and cheap, simply by adding the exponent |
| 270 | // field. |
| 271 | // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. |
| 272 | // - exp(lo) ~ 1 + lo + a0 * lo^2 + ... |
| 273 | // |
| 274 | // They can be defined by: |
| 275 | // hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x) |
| 276 | // If we store L2E = round(log2(e), D, RN), then: |
| 277 | // log2(e) - L2E ~ 1.5 * 2^(-56) |
| 278 | // So the errors when computing in double precision is: |
| 279 | // | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <= |
| 280 | // <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | + |
| 281 | // + | x * 2^12 * L2E - D(x * 2^12 * L2E) | |
| 282 | // <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x)) for RN |
| 283 | // 2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes. |
| 284 | // So if: |
| 285 | // hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely |
| 286 | // in double precision, the reduced argument: |
| 287 | // lo = x - log(2) * (hi + mid1 + mid2) is bounded by: |
| 288 | // |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x)) |
| 289 | // < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52)) |
| 290 | // < 2^-13 + 2^-41 |
| 291 | // |
| 292 | |
| 293 | // The following trick computes the round(x * L2E) more efficiently |
| 294 | // than using the rounding instructions, with the tradeoff for less accuracy, |
| 295 | // and hence a slightly larger range for the reduced argument `lo`. |
| 296 | // |
| 297 | // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9, |
| 298 | // |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23, |
| 299 | // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t. |
| 300 | // Thus, the goal is to be able to use an additional addition and fixed width |
| 301 | // shift to get an int32_t representing round(x * 2^12 * L2E). |
| 302 | // |
| 303 | // Assuming int32_t using 2-complement representation, since the mantissa part |
| 304 | // of a double precision is unsigned with the leading bit hidden, if we add an |
| 305 | // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the |
| 306 | // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be |
| 307 | // considered as a proper 2-complement representations of x*2^12*L2E. |
| 308 | // |
| 309 | // One small problem with this approach is that the sum (x*2^12*L2E + C) in |
| 310 | // double precision is rounded to the least significant bit of the dorminant |
| 311 | // factor C. In order to minimize the rounding errors from this addition, we |
| 312 | // want to minimize e1. Another constraint that we want is that after |
| 313 | // shifting the mantissa so that the least significant bit of int32_t |
| 314 | // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without |
| 315 | // any adjustment. So combining these 2 requirements, we can choose |
| 316 | // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence |
| 317 | // after right shifting the mantissa, the resulting int32_t has correct sign. |
| 318 | // With this choice of C, the number of mantissa bits we need to shift to the |
| 319 | // right is: 52 - 33 = 19. |
| 320 | // |
| 321 | // Moreover, since the integer right shifts are equivalent to rounding down, |
| 322 | // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- |
| 323 | // +infinity. So in particular, we can compute: |
| 324 | // hmm = x * 2^12 * L2E + C, |
| 325 | // where C = 2^33 + 2^32 + 2^-1, then if |
| 326 | // k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19), |
| 327 | // the reduced argument: |
| 328 | // lo = x - log(2) * 2^-12 * k is bounded by: |
| 329 | // |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19 |
| 330 | // = 2^-13 + 2^-31 + 2^-41. |
| 331 | // |
| 332 | // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the |
| 333 | // exponent 2^12 is not needed. So we can simply define |
| 334 | // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and |
| 335 | // k = int32_t(lower 51 bits of double(x * L2E + C) >> 19). |
| 336 | |
| 337 | // Rounding errors <= 2^-31 + 2^-41. |
| 338 | double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21); |
| 339 | int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19); |
| 340 | double kd = static_cast<double>(k); |
| 341 | |
| 342 | uint32_t idx1 = (k >> 6) & 0x3f; |
| 343 | uint32_t idx2 = k & 0x3f; |
| 344 | int hi = k >> 12; |
| 345 | |
| 346 | bool denorm = (hi <= -1022); |
| 347 | |
| 348 | DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; |
| 349 | DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; |
| 350 | |
| 351 | DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); |
| 352 | |
| 353 | // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo) |
| 354 | // = 2^11 * 2^-13 * 2^-52 |
| 355 | // = 2^-54. |
| 356 | // |dx| < 2^-13 + 2^-30. |
| 357 | double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact |
| 358 | double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h); |
| 359 | |
| 360 | // We use the degree-4 Taylor polynomial to approximate exp(lo): |
| 361 | // exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo) |
| 362 | // So that the errors are bounded by: |
| 363 | // |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 |
| 364 | // Let P_ be an evaluation of P where all intermediate computations are in |
| 365 | // double precision. Using either Horner's or Estrin's schemes, the evaluated |
| 366 | // errors can be bounded by: |
| 367 | // |P_(dx) - P(dx)| < 2^-51 |
| 368 | // => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64 |
| 369 | // => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63. |
| 370 | // Since we approximate |
| 371 | // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, |
| 372 | // We use the expression: |
| 373 | // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ |
| 374 | // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) |
| 375 | // with errors bounded by 1.5 * 2^-63. |
| 376 | |
| 377 | double mid_lo = dx * exp_mid.hi; |
| 378 | |
| 379 | // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. |
| 380 | double p = poly_approx_d(dx); |
| 381 | |
| 382 | double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); |
| 383 | |
| 384 | #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 385 | if (LIBC_UNLIKELY(denorm)) { |
| 386 | return ziv_test_denorm</*SKIP_ZIV_TEST=*/true>(hi, exp_mid.hi, lo, ERR_D) |
| 387 | .value(); |
| 388 | } else { |
| 389 | // to multiply by 2^hi, a fast way is to simply add hi to the exponent |
| 390 | // field. |
| 391 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
| 392 | double r = |
| 393 | cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(exp_mid.hi + lo)); |
| 394 | return r; |
| 395 | } |
| 396 | #else |
| 397 | if (LIBC_UNLIKELY(denorm)) { |
| 398 | if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D); |
| 399 | LIBC_LIKELY(r.has_value())) |
| 400 | return r.value(); |
| 401 | } else { |
| 402 | double upper = exp_mid.hi + (lo + ERR_D); |
| 403 | double lower = exp_mid.hi + (lo - ERR_D); |
| 404 | |
| 405 | if (LIBC_LIKELY(upper == lower)) { |
| 406 | // to multiply by 2^hi, a fast way is to simply add hi to the exponent |
| 407 | // field. |
| 408 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
| 409 | double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper)); |
| 410 | return r; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | // Use double-double |
| 415 | DoubleDouble r_dd = exp_double_double(x, kd, exp_mid); |
| 416 | |
| 417 | if (LIBC_UNLIKELY(denorm)) { |
| 418 | if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD); |
| 419 | LIBC_LIKELY(r.has_value())) |
| 420 | return r.value(); |
| 421 | } else { |
| 422 | double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD); |
| 423 | double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD); |
| 424 | |
| 425 | if (LIBC_LIKELY(upper_dd == lower_dd)) { |
| 426 | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; |
| 427 | double r = |
| 428 | cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd)); |
| 429 | return r; |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | // Use 128-bit precision |
| 434 | Float128 r_f128 = exp_f128(x, kd, idx1, idx2); |
| 435 | |
| 436 | return static_cast<double>(r_f128); |
| 437 | #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 438 | } |
| 439 | |
| 440 | } // namespace LIBC_NAMESPACE_DECL |
| 441 | |