| 1 | //===-- Implementation of exp2m1f function --------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "src/math/exp2m1f.h" |
| 10 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 11 | #include "src/__support/FPUtil/FPBits.h" |
| 12 | #include "src/__support/FPUtil/PolyEval.h" |
| 13 | #include "src/__support/FPUtil/except_value_utils.h" |
| 14 | #include "src/__support/FPUtil/multiply_add.h" |
| 15 | #include "src/__support/FPUtil/rounding_mode.h" |
| 16 | #include "src/__support/common.h" |
| 17 | #include "src/__support/libc_errno.h" |
| 18 | #include "src/__support/macros/config.h" |
| 19 | #include "src/__support/macros/optimization.h" |
| 20 | #include "src/__support/macros/properties/cpu_features.h" |
| 21 | |
| 22 | #include "explogxf.h" |
| 23 | |
| 24 | namespace LIBC_NAMESPACE_DECL { |
| 25 | |
| 26 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 27 | static constexpr size_t N_EXCEPTS_LO = 8; |
| 28 | |
| 29 | static constexpr fputil::ExceptValues<float, N_EXCEPTS_LO> EXP2M1F_EXCEPTS_LO = |
| 30 | {{ |
| 31 | // (input, RZ output, RU offset, RD offset, RN offset) |
| 32 | // x = 0x1.36dc8ep-36, exp2m1f(x) = 0x1.aef212p-37 (RZ) |
| 33 | {0x2d9b'6e47U, 0x2d57'7909U, 1U, 0U, 0U}, |
| 34 | // x = 0x1.224936p-19, exp2m1f(x) = 0x1.926c0ep-20 (RZ) |
| 35 | {0x3611'249bU, 0x35c9'3607U, 1U, 0U, 1U}, |
| 36 | // x = 0x1.d16d2p-20, exp2m1f(x) = 0x1.429becp-20 (RZ) |
| 37 | {0x35e8'b690U, 0x35a1'4df6U, 1U, 0U, 1U}, |
| 38 | // x = 0x1.17949ep-14, exp2m1f(x) = 0x1.8397p-15 (RZ) |
| 39 | {0x388b'ca4fU, 0x3841'cb80U, 1U, 0U, 1U}, |
| 40 | // x = -0x1.9c3e1ep-38, exp2m1f(x) = -0x1.1dbeacp-38 (RZ) |
| 41 | {0xacce'1f0fU, 0xac8e'df56U, 0U, 1U, 0U}, |
| 42 | // x = -0x1.4d89b4p-32, exp2m1f(x) = -0x1.ce61b6p-33 (RZ) |
| 43 | {0xafa6'c4daU, 0xaf67'30dbU, 0U, 1U, 1U}, |
| 44 | // x = -0x1.a6eac4p-10, exp2m1f(x) = -0x1.24fadap-10 (RZ) |
| 45 | {0xbad3'7562U, 0xba92'7d6dU, 0U, 1U, 1U}, |
| 46 | // x = -0x1.e7526ep-6, exp2m1f(x) = -0x1.4e53dep-6 (RZ) |
| 47 | {0xbcf3'a937U, 0xbca7'29efU, 0U, 1U, 1U}, |
| 48 | }}; |
| 49 | |
| 50 | static constexpr size_t N_EXCEPTS_HI = 3; |
| 51 | |
| 52 | static constexpr fputil::ExceptValues<float, N_EXCEPTS_HI> EXP2M1F_EXCEPTS_HI = |
| 53 | {{ |
| 54 | // (input, RZ output, RU offset, RD offset, RN offset) |
| 55 | // x = 0x1.16a972p-1, exp2m1f(x) = 0x1.d545b2p-2 (RZ) |
| 56 | {0x3f0b'54b9U, 0x3eea'a2d9U, 1U, 0U, 0U}, |
| 57 | // x = -0x1.9f12acp-5, exp2m1f(x) = -0x1.1ab68cp-5 (RZ) |
| 58 | {0xbd4f'8956U, 0xbd0d'5b46U, 0U, 1U, 0U}, |
| 59 | // x = -0x1.de7b9cp-5, exp2m1f(x) = -0x1.4508f4p-5 (RZ) |
| 60 | {0xbd6f'3dceU, 0xbd22'847aU, 0U, 1U, 1U}, |
| 61 | }}; |
| 62 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 63 | |
| 64 | LLVM_LIBC_FUNCTION(float, exp2m1f, (float x)) { |
| 65 | using FPBits = fputil::FPBits<float>; |
| 66 | FPBits xbits(x); |
| 67 | |
| 68 | uint32_t x_u = xbits.uintval(); |
| 69 | uint32_t x_abs = x_u & 0x7fff'ffffU; |
| 70 | |
| 71 | // When |x| >= 128, or x is nan, or |x| <= 2^-5 |
| 72 | if (LIBC_UNLIKELY(x_abs >= 0x4300'0000U || x_abs <= 0x3d00'0000U)) { |
| 73 | // |x| <= 2^-5 |
| 74 | if (x_abs <= 0x3d00'0000U) { |
| 75 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 76 | if (auto r = EXP2M1F_EXCEPTS_LO.lookup(x_u); LIBC_UNLIKELY(r.has_value())) |
| 77 | return r.value(); |
| 78 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 79 | |
| 80 | // Minimax polynomial generated by Sollya with: |
| 81 | // > display = hexadecimal; |
| 82 | // > fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]); |
| 83 | constexpr double COEFFS[] = { |
| 84 | 0x1.62e42fefa39f3p-1, 0x1.ebfbdff82c57bp-3, 0x1.c6b08d6f2d7aap-5, |
| 85 | 0x1.3b2ab6fc92f5dp-7, 0x1.5d897cfe27125p-10, 0x1.43090e61e6af1p-13}; |
| 86 | double xd = x; |
| 87 | double xsq = xd * xd; |
| 88 | double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]); |
| 89 | double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]); |
| 90 | double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]); |
| 91 | double p = fputil::polyeval(xsq, c0, c1, c2); |
| 92 | return static_cast<float>(p * xd); |
| 93 | } |
| 94 | |
| 95 | // x >= 128, or x is nan |
| 96 | if (xbits.is_pos()) { |
| 97 | if (xbits.is_finite()) { |
| 98 | int rounding = fputil::quick_get_round(); |
| 99 | if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) |
| 100 | return FPBits::max_normal().get_val(); |
| 101 | |
| 102 | fputil::set_errno_if_required(ERANGE); |
| 103 | fputil::raise_except_if_required(FE_OVERFLOW); |
| 104 | } |
| 105 | |
| 106 | // x >= 128 and 2^x - 1 rounds to +inf, or x is +inf or nan |
| 107 | return x + FPBits::inf().get_val(); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | if (LIBC_UNLIKELY(x <= -25.0f)) { |
| 112 | // 2^(-inf) - 1 = -1 |
| 113 | if (xbits.is_inf()) |
| 114 | return -1.0f; |
| 115 | // 2^nan - 1 = nan |
| 116 | if (xbits.is_nan()) |
| 117 | return x; |
| 118 | |
| 119 | int rounding = fputil::quick_get_round(); |
| 120 | if (rounding == FE_UPWARD || rounding == FE_TOWARDZERO) |
| 121 | return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f |
| 122 | |
| 123 | fputil::set_errno_if_required(ERANGE); |
| 124 | fputil::raise_except_if_required(FE_UNDERFLOW); |
| 125 | return -1.0f; |
| 126 | } |
| 127 | |
| 128 | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 129 | if (auto r = EXP2M1F_EXCEPTS_HI.lookup(x_u); LIBC_UNLIKELY(r.has_value())) |
| 130 | return r.value(); |
| 131 | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| 132 | |
| 133 | // For -25 < x < 128, to compute 2^x, we perform the following range |
| 134 | // reduction: find hi, mid, lo such that: |
| 135 | // x = hi + mid + lo, in which: |
| 136 | // hi is an integer, |
| 137 | // 0 <= mid * 2^5 < 32 is an integer, |
| 138 | // -2^(-6) <= lo <= 2^(-6). |
| 139 | // In particular, |
| 140 | // hi + mid = round(x * 2^5) * 2^(-5). |
| 141 | // Then, |
| 142 | // 2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo. |
| 143 | // 2^mid is stored in the lookup table of 32 elements. |
| 144 | // 2^lo is computed using a degree-4 minimax polynomial generated by Sollya. |
| 145 | // We perform 2^hi * 2^mid by simply add hi to the exponent field of 2^mid. |
| 146 | |
| 147 | // kf = (hi + mid) * 2^5 = round(x * 2^5) |
| 148 | float kf; |
| 149 | int k; |
| 150 | #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT |
| 151 | kf = fputil::nearest_integer(x * 32.0f); |
| 152 | k = static_cast<int>(kf); |
| 153 | #else |
| 154 | constexpr float HALF[2] = {0.5f, -0.5f}; |
| 155 | k = static_cast<int>(fputil::multiply_add(x, 32.0f, HALF[x < 0.0f])); |
| 156 | kf = static_cast<float>(k); |
| 157 | #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT |
| 158 | |
| 159 | // lo = x - (hi + mid) = x - kf * 2^(-5) |
| 160 | double lo = fputil::multiply_add(-0x1.0p-5f, kf, x); |
| 161 | |
| 162 | // hi = floor(kf * 2^(-4)) |
| 163 | // exp2_hi = shift hi to the exponent field of double precision. |
| 164 | int64_t exp2_hi = |
| 165 | static_cast<int64_t>(static_cast<uint64_t>(k >> ExpBase::MID_BITS) |
| 166 | << fputil::FPBits<double>::FRACTION_LEN); |
| 167 | // mh = 2^hi * 2^mid |
| 168 | // mh_bits = bit field of mh |
| 169 | int64_t mh_bits = ExpBase::EXP_2_MID[k & ExpBase::MID_MASK] + exp2_hi; |
| 170 | double mh = fputil::FPBits<double>(static_cast<uint64_t>(mh_bits)).get_val(); |
| 171 | |
| 172 | // Degree-4 polynomial approximating (2^x - 1)/x generated by Sollya with: |
| 173 | // > display = hexadecimal; |
| 174 | // > fpminimax((2^x - 1)/x, 4, [|D...|], [-2^-6, 2^-6]); |
| 175 | constexpr double COEFFS[5] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff8131c4p-3, |
| 176 | 0x1.c6b08d7061695p-5, 0x1.3b2b1bee74b2ap-7, |
| 177 | 0x1.5d88091198529p-10}; |
| 178 | double lo_sq = lo * lo; |
| 179 | double c1 = fputil::multiply_add(lo, COEFFS[0], 1.0); |
| 180 | double c2 = fputil::multiply_add(lo, COEFFS[2], COEFFS[1]); |
| 181 | double c3 = fputil::multiply_add(lo, COEFFS[4], COEFFS[3]); |
| 182 | double exp2_lo = fputil::polyeval(lo_sq, c1, c2, c3); |
| 183 | // 2^x - 1 = 2^(hi + mid + lo) - 1 |
| 184 | // = 2^(hi + mid) * 2^lo - 1 |
| 185 | // ~ mh * (1 + lo * P(lo)) - 1 |
| 186 | // = mh * exp2_lo - 1 |
| 187 | return static_cast<float>(fputil::multiply_add(exp2_lo, mh, -1.0)); |
| 188 | } |
| 189 | |
| 190 | } // namespace LIBC_NAMESPACE_DECL |
| 191 | |