| 1 | //===-- Utility class to test different flavors of ldexp --------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H |
| 10 | #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H |
| 11 | |
| 12 | #include "src/__support/CPP/limits.h" // INT_MAX |
| 13 | #include "src/__support/FPUtil/FPBits.h" |
| 14 | #include "src/__support/FPUtil/NormalFloat.h" |
| 15 | #include "test/UnitTest/FEnvSafeTest.h" |
| 16 | #include "test/UnitTest/FPMatcher.h" |
| 17 | #include "test/UnitTest/Test.h" |
| 18 | |
| 19 | #include "hdr/math_macros.h" |
| 20 | #include <stdint.h> |
| 21 | |
| 22 | using LIBC_NAMESPACE::Sign; |
| 23 | |
| 24 | template <typename T> |
| 25 | class LdExpTestTemplate : public LIBC_NAMESPACE::testing::FEnvSafeTest { |
| 26 | using FPBits = LIBC_NAMESPACE::fputil::FPBits<T>; |
| 27 | using NormalFloat = LIBC_NAMESPACE::fputil::NormalFloat<T>; |
| 28 | using StorageType = typename FPBits::StorageType; |
| 29 | |
| 30 | const T inf = FPBits::inf(Sign::POS).get_val(); |
| 31 | const T neg_inf = FPBits::inf(Sign::NEG).get_val(); |
| 32 | const T zero = FPBits::zero(Sign::POS).get_val(); |
| 33 | const T neg_zero = FPBits::zero(Sign::NEG).get_val(); |
| 34 | const T nan = FPBits::quiet_nan().get_val(); |
| 35 | |
| 36 | // A normalized mantissa to be used with tests. |
| 37 | static constexpr StorageType MANTISSA = NormalFloat::ONE + 0x1234; |
| 38 | |
| 39 | public: |
| 40 | typedef T (*LdExpFunc)(T, int); |
| 41 | |
| 42 | void testSpecialNumbers(LdExpFunc func) { |
| 43 | int exp_array[5] = {-INT_MAX - 1, -10, 0, 10, INT_MAX}; |
| 44 | for (int exp : exp_array) { |
| 45 | ASSERT_FP_EQ(zero, func(zero, exp)); |
| 46 | ASSERT_FP_EQ(neg_zero, func(neg_zero, exp)); |
| 47 | ASSERT_FP_EQ(inf, func(inf, exp)); |
| 48 | ASSERT_FP_EQ(neg_inf, func(neg_inf, exp)); |
| 49 | ASSERT_FP_EQ(nan, func(nan, exp)); |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | void testPowersOfTwo(LdExpFunc func) { |
| 54 | int32_t exp_array[5] = {1, 2, 3, 4, 5}; |
| 55 | int32_t val_array[6] = {1, 2, 4, 8, 16, 32}; |
| 56 | for (int32_t exp : exp_array) { |
| 57 | for (int32_t val : val_array) { |
| 58 | ASSERT_FP_EQ(T(val << exp), func(T(val), exp)); |
| 59 | ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp)); |
| 60 | } |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | void testOverflow(LdExpFunc func) { |
| 65 | NormalFloat x(Sign::POS, FPBits::MAX_BIASED_EXPONENT - 10, |
| 66 | NormalFloat::ONE + 0xF00BA); |
| 67 | for (int32_t exp = 10; exp < 100; ++exp) { |
| 68 | ASSERT_FP_EQ(inf, func(T(x), exp)); |
| 69 | ASSERT_FP_EQ(neg_inf, func(-T(x), exp)); |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | void testUnderflowToZeroOnNormal(LdExpFunc func) { |
| 74 | // In this test, we pass a normal nubmer to func and expect zero |
| 75 | // to be returned due to underflow. |
| 76 | int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN; |
| 77 | int32_t exp_array[] = {base_exponent + 5, base_exponent + 4, |
| 78 | base_exponent + 3, base_exponent + 2, |
| 79 | base_exponent + 1}; |
| 80 | T x = NormalFloat(Sign::POS, 0, MANTISSA); |
| 81 | for (int32_t exp : exp_array) { |
| 82 | ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero); |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | void testUnderflowToZeroOnSubnormal(LdExpFunc func) { |
| 87 | // In this test, we pass a normal nubmer to func and expect zero |
| 88 | // to be returned due to underflow. |
| 89 | int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN; |
| 90 | int32_t exp_array[] = {base_exponent + 5, base_exponent + 4, |
| 91 | base_exponent + 3, base_exponent + 2, |
| 92 | base_exponent + 1}; |
| 93 | T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA); |
| 94 | for (int32_t exp : exp_array) { |
| 95 | ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | void testNormalOperation(LdExpFunc func) { |
| 100 | T val_array[] = {// Normal numbers |
| 101 | NormalFloat(Sign::POS, 100, MANTISSA), |
| 102 | NormalFloat(Sign::POS, -100, MANTISSA), |
| 103 | NormalFloat(Sign::NEG, 100, MANTISSA), |
| 104 | NormalFloat(Sign::NEG, -100, MANTISSA), |
| 105 | // Subnormal numbers |
| 106 | NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA), |
| 107 | NormalFloat(Sign::NEG, -FPBits::EXP_BIAS, MANTISSA)}; |
| 108 | for (int32_t exp = 0; exp <= FPBits::FRACTION_LEN; ++exp) { |
| 109 | for (T x : val_array) { |
| 110 | // We compare the result of ldexp with the result |
| 111 | // of the native multiplication/division instruction. |
| 112 | |
| 113 | // We need to use a NormalFloat here (instead of 1 << exp), because |
| 114 | // there are 32 bit systems that don't support 128bit long ints but |
| 115 | // support long doubles. This test can do 1 << 64, which would fail |
| 116 | // in these systems. |
| 117 | NormalFloat two_to_exp = NormalFloat(static_cast<T>(1.L)); |
| 118 | two_to_exp = two_to_exp.mul2(exp); |
| 119 | |
| 120 | ASSERT_FP_EQ(func(x, exp), x * two_to_exp); |
| 121 | ASSERT_FP_EQ(func(x, -exp), x / two_to_exp); |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | // Normal which trigger mantissa overflow. |
| 126 | T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, |
| 127 | StorageType(2) * NormalFloat::ONE - StorageType(1)); |
| 128 | ASSERT_FP_EQ(func(x, -1), x / 2); |
| 129 | ASSERT_FP_EQ(func(-x, -1), -x / 2); |
| 130 | |
| 131 | // Start with a normal number high exponent but pass a very low number for |
| 132 | // exp. The result should be a subnormal number. |
| 133 | x = NormalFloat(Sign::POS, FPBits::EXP_BIAS, NormalFloat::ONE); |
| 134 | int exp = -FPBits::MAX_BIASED_EXPONENT - 5; |
| 135 | T result = func(x, exp); |
| 136 | FPBits result_bits(result); |
| 137 | ASSERT_FALSE(result_bits.is_zero()); |
| 138 | // Verify that the result is indeed subnormal. |
| 139 | ASSERT_EQ(result_bits.get_biased_exponent(), uint16_t(0)); |
| 140 | // But if the exp is so less that normalization leads to zero, then |
| 141 | // the result should be zero. |
| 142 | result = func(x, -FPBits::MAX_BIASED_EXPONENT - FPBits::FRACTION_LEN - 5); |
| 143 | ASSERT_TRUE(FPBits(result).is_zero()); |
| 144 | |
| 145 | // Start with a subnormal number but pass a very high number for exponent. |
| 146 | // The result should not be infinity. |
| 147 | x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, NormalFloat::ONE >> 10); |
| 148 | exp = FPBits::MAX_BIASED_EXPONENT + 5; |
| 149 | ASSERT_FALSE(FPBits(func(x, exp)).is_inf()); |
| 150 | // But if the exp is large enough to oversome than the normalization shift, |
| 151 | // then it should result in infinity. |
| 152 | exp = FPBits::MAX_BIASED_EXPONENT + 15; |
| 153 | ASSERT_FP_EQ(func(x, exp), inf); |
| 154 | } |
| 155 | }; |
| 156 | |
| 157 | #define LIST_LDEXP_TESTS(T, func) \ |
| 158 | using LlvmLibcLdExpTest = LdExpTestTemplate<T>; \ |
| 159 | TEST_F(LlvmLibcLdExpTest, SpecialNumbers) { testSpecialNumbers(&func); } \ |
| 160 | TEST_F(LlvmLibcLdExpTest, PowersOfTwo) { testPowersOfTwo(&func); } \ |
| 161 | TEST_F(LlvmLibcLdExpTest, OverFlow) { testOverflow(&func); } \ |
| 162 | TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnNormal) { \ |
| 163 | testUnderflowToZeroOnNormal(&func); \ |
| 164 | } \ |
| 165 | TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnSubnormal) { \ |
| 166 | testUnderflowToZeroOnSubnormal(&func); \ |
| 167 | } \ |
| 168 | TEST_F(LlvmLibcLdExpTest, NormalOperation) { testNormalOperation(&func); } |
| 169 | |
| 170 | #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H |
| 171 | |