1 | //===-- Utility class to test different flavors of ldexp --------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H |
10 | #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H |
11 | |
12 | #include "src/__support/CPP/limits.h" // INT_MAX |
13 | #include "src/__support/FPUtil/FPBits.h" |
14 | #include "src/__support/FPUtil/NormalFloat.h" |
15 | #include "test/UnitTest/FEnvSafeTest.h" |
16 | #include "test/UnitTest/FPMatcher.h" |
17 | #include "test/UnitTest/Test.h" |
18 | |
19 | #include "hdr/math_macros.h" |
20 | #include <stdint.h> |
21 | |
22 | using LIBC_NAMESPACE::Sign; |
23 | |
24 | template <typename T> |
25 | class LdExpTestTemplate : public LIBC_NAMESPACE::testing::FEnvSafeTest { |
26 | using FPBits = LIBC_NAMESPACE::fputil::FPBits<T>; |
27 | using NormalFloat = LIBC_NAMESPACE::fputil::NormalFloat<T>; |
28 | using StorageType = typename FPBits::StorageType; |
29 | |
30 | const T inf = FPBits::inf(Sign::POS).get_val(); |
31 | const T neg_inf = FPBits::inf(Sign::NEG).get_val(); |
32 | const T zero = FPBits::zero(Sign::POS).get_val(); |
33 | const T neg_zero = FPBits::zero(Sign::NEG).get_val(); |
34 | const T nan = FPBits::quiet_nan().get_val(); |
35 | |
36 | // A normalized mantissa to be used with tests. |
37 | static constexpr StorageType MANTISSA = NormalFloat::ONE + 0x1234; |
38 | |
39 | public: |
40 | typedef T (*LdExpFunc)(T, int); |
41 | |
42 | void testSpecialNumbers(LdExpFunc func) { |
43 | int exp_array[5] = {-INT_MAX - 1, -10, 0, 10, INT_MAX}; |
44 | for (int exp : exp_array) { |
45 | ASSERT_FP_EQ(zero, func(zero, exp)); |
46 | ASSERT_FP_EQ(neg_zero, func(neg_zero, exp)); |
47 | ASSERT_FP_EQ(inf, func(inf, exp)); |
48 | ASSERT_FP_EQ(neg_inf, func(neg_inf, exp)); |
49 | ASSERT_FP_EQ(nan, func(nan, exp)); |
50 | } |
51 | } |
52 | |
53 | void testPowersOfTwo(LdExpFunc func) { |
54 | int32_t exp_array[5] = {1, 2, 3, 4, 5}; |
55 | int32_t val_array[6] = {1, 2, 4, 8, 16, 32}; |
56 | for (int32_t exp : exp_array) { |
57 | for (int32_t val : val_array) { |
58 | ASSERT_FP_EQ(T(val << exp), func(T(val), exp)); |
59 | ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp)); |
60 | } |
61 | } |
62 | } |
63 | |
64 | void testOverflow(LdExpFunc func) { |
65 | NormalFloat x(Sign::POS, FPBits::MAX_BIASED_EXPONENT - 10, |
66 | NormalFloat::ONE + 0xF00BA); |
67 | for (int32_t exp = 10; exp < 100; ++exp) { |
68 | ASSERT_FP_EQ(inf, func(T(x), exp)); |
69 | ASSERT_FP_EQ(neg_inf, func(-T(x), exp)); |
70 | } |
71 | } |
72 | |
73 | void testUnderflowToZeroOnNormal(LdExpFunc func) { |
74 | // In this test, we pass a normal nubmer to func and expect zero |
75 | // to be returned due to underflow. |
76 | int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN; |
77 | int32_t exp_array[] = {base_exponent + 5, base_exponent + 4, |
78 | base_exponent + 3, base_exponent + 2, |
79 | base_exponent + 1}; |
80 | T x = NormalFloat(Sign::POS, 0, MANTISSA); |
81 | for (int32_t exp : exp_array) { |
82 | ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero); |
83 | } |
84 | } |
85 | |
86 | void testUnderflowToZeroOnSubnormal(LdExpFunc func) { |
87 | // In this test, we pass a normal nubmer to func and expect zero |
88 | // to be returned due to underflow. |
89 | int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN; |
90 | int32_t exp_array[] = {base_exponent + 5, base_exponent + 4, |
91 | base_exponent + 3, base_exponent + 2, |
92 | base_exponent + 1}; |
93 | T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA); |
94 | for (int32_t exp : exp_array) { |
95 | ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero); |
96 | } |
97 | } |
98 | |
99 | void testNormalOperation(LdExpFunc func) { |
100 | T val_array[] = {// Normal numbers |
101 | NormalFloat(Sign::POS, 100, MANTISSA), |
102 | NormalFloat(Sign::POS, -100, MANTISSA), |
103 | NormalFloat(Sign::NEG, 100, MANTISSA), |
104 | NormalFloat(Sign::NEG, -100, MANTISSA), |
105 | // Subnormal numbers |
106 | NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA), |
107 | NormalFloat(Sign::NEG, -FPBits::EXP_BIAS, MANTISSA)}; |
108 | for (int32_t exp = 0; exp <= FPBits::FRACTION_LEN; ++exp) { |
109 | for (T x : val_array) { |
110 | // We compare the result of ldexp with the result |
111 | // of the native multiplication/division instruction. |
112 | |
113 | // We need to use a NormalFloat here (instead of 1 << exp), because |
114 | // there are 32 bit systems that don't support 128bit long ints but |
115 | // support long doubles. This test can do 1 << 64, which would fail |
116 | // in these systems. |
117 | NormalFloat two_to_exp = NormalFloat(static_cast<T>(1.L)); |
118 | two_to_exp = two_to_exp.mul2(exp); |
119 | |
120 | ASSERT_FP_EQ(func(x, exp), x * two_to_exp); |
121 | ASSERT_FP_EQ(func(x, -exp), x / two_to_exp); |
122 | } |
123 | } |
124 | |
125 | // Normal which trigger mantissa overflow. |
126 | T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, |
127 | StorageType(2) * NormalFloat::ONE - StorageType(1)); |
128 | ASSERT_FP_EQ(func(x, -1), x / 2); |
129 | ASSERT_FP_EQ(func(-x, -1), -x / 2); |
130 | |
131 | // Start with a normal number high exponent but pass a very low number for |
132 | // exp. The result should be a subnormal number. |
133 | x = NormalFloat(Sign::POS, FPBits::EXP_BIAS, NormalFloat::ONE); |
134 | int exp = -FPBits::MAX_BIASED_EXPONENT - 5; |
135 | T result = func(x, exp); |
136 | FPBits result_bits(result); |
137 | ASSERT_FALSE(result_bits.is_zero()); |
138 | // Verify that the result is indeed subnormal. |
139 | ASSERT_EQ(result_bits.get_biased_exponent(), uint16_t(0)); |
140 | // But if the exp is so less that normalization leads to zero, then |
141 | // the result should be zero. |
142 | result = func(x, -FPBits::MAX_BIASED_EXPONENT - FPBits::FRACTION_LEN - 5); |
143 | ASSERT_TRUE(FPBits(result).is_zero()); |
144 | |
145 | // Start with a subnormal number but pass a very high number for exponent. |
146 | // The result should not be infinity. |
147 | x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, NormalFloat::ONE >> 10); |
148 | exp = FPBits::MAX_BIASED_EXPONENT + 5; |
149 | ASSERT_FALSE(FPBits(func(x, exp)).is_inf()); |
150 | // But if the exp is large enough to oversome than the normalization shift, |
151 | // then it should result in infinity. |
152 | exp = FPBits::MAX_BIASED_EXPONENT + 15; |
153 | ASSERT_FP_EQ(func(x, exp), inf); |
154 | } |
155 | }; |
156 | |
157 | #define LIST_LDEXP_TESTS(T, func) \ |
158 | using LlvmLibcLdExpTest = LdExpTestTemplate<T>; \ |
159 | TEST_F(LlvmLibcLdExpTest, SpecialNumbers) { testSpecialNumbers(&func); } \ |
160 | TEST_F(LlvmLibcLdExpTest, PowersOfTwo) { testPowersOfTwo(&func); } \ |
161 | TEST_F(LlvmLibcLdExpTest, OverFlow) { testOverflow(&func); } \ |
162 | TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnNormal) { \ |
163 | testUnderflowToZeroOnNormal(&func); \ |
164 | } \ |
165 | TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnSubnormal) { \ |
166 | testUnderflowToZeroOnSubnormal(&func); \ |
167 | } \ |
168 | TEST_F(LlvmLibcLdExpTest, NormalOperation) { testNormalOperation(&func); } |
169 | |
170 | #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H |
171 | |