| 1 | //===-- Utility class to test different flavors of [l|ll]round --*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H |
| 10 | #define LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H |
| 11 | |
| 12 | #include "src/__support/CPP/algorithm.h" |
| 13 | #include "src/__support/FPUtil/FEnvImpl.h" |
| 14 | #include "src/__support/FPUtil/FPBits.h" |
| 15 | #include "src/__support/macros/properties/architectures.h" |
| 16 | #include "test/UnitTest/FEnvSafeTest.h" |
| 17 | #include "test/UnitTest/FPMatcher.h" |
| 18 | #include "test/UnitTest/Test.h" |
| 19 | #include "utils/MPFRWrapper/MPFRUtils.h" |
| 20 | |
| 21 | #include "hdr/math_macros.h" |
| 22 | |
| 23 | namespace mpfr = LIBC_NAMESPACE::testing::mpfr; |
| 24 | using LIBC_NAMESPACE::Sign; |
| 25 | |
| 26 | static constexpr int ROUNDING_MODES[4] = {FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO, |
| 27 | FE_TONEAREST}; |
| 28 | |
| 29 | template <typename FloatType, typename IntType, bool TestModes = false> |
| 30 | class RoundToIntegerTestTemplate |
| 31 | : public LIBC_NAMESPACE::testing::FEnvSafeTest { |
| 32 | public: |
| 33 | typedef IntType (*RoundToIntegerFunc)(FloatType); |
| 34 | |
| 35 | private: |
| 36 | using FPBits = LIBC_NAMESPACE::fputil::FPBits<FloatType>; |
| 37 | using StorageType = typename FPBits::StorageType; |
| 38 | |
| 39 | const FloatType zero = FPBits::zero().get_val(); |
| 40 | const FloatType neg_zero = FPBits::zero(Sign::NEG).get_val(); |
| 41 | const FloatType inf = FPBits::inf().get_val(); |
| 42 | const FloatType neg_inf = FPBits::inf(Sign::NEG).get_val(); |
| 43 | const FloatType nan = FPBits::quiet_nan().get_val(); |
| 44 | |
| 45 | static constexpr StorageType MAX_NORMAL = FPBits::max_normal().uintval(); |
| 46 | static constexpr StorageType MIN_NORMAL = FPBits::min_normal().uintval(); |
| 47 | static constexpr StorageType MAX_SUBNORMAL = |
| 48 | FPBits::max_subnormal().uintval(); |
| 49 | static constexpr StorageType MIN_SUBNORMAL = |
| 50 | FPBits::min_subnormal().uintval(); |
| 51 | |
| 52 | static constexpr IntType INTEGER_MIN = IntType(1) |
| 53 | << (sizeof(IntType) * 8 - 1); |
| 54 | static constexpr IntType INTEGER_MAX = -(INTEGER_MIN + 1); |
| 55 | |
| 56 | void test_one_input(RoundToIntegerFunc func, FloatType input, |
| 57 | IntType expected, bool expectError) { |
| 58 | libc_errno = 0; |
| 59 | LIBC_NAMESPACE::fputil::clear_except(FE_ALL_EXCEPT); |
| 60 | |
| 61 | ASSERT_EQ(func(input), expected); |
| 62 | |
| 63 | // TODO: Handle the !expectError case. It used to expect |
| 64 | // 0 for errno and exceptions, but this doesn't hold for |
| 65 | // all math functions using RoundToInteger test: |
| 66 | // https://github.com/llvm/llvm-project/pull/88816 |
| 67 | if (expectError) { |
| 68 | ASSERT_FP_EXCEPTION(FE_INVALID); |
| 69 | ASSERT_MATH_ERRNO(EDOM); |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | static inline mpfr::RoundingMode to_mpfr_rounding_mode(int mode) { |
| 74 | switch (mode) { |
| 75 | case FE_UPWARD: |
| 76 | return mpfr::RoundingMode::Upward; |
| 77 | case FE_DOWNWARD: |
| 78 | return mpfr::RoundingMode::Downward; |
| 79 | case FE_TOWARDZERO: |
| 80 | return mpfr::RoundingMode::TowardZero; |
| 81 | case FE_TONEAREST: |
| 82 | return mpfr::RoundingMode::Nearest; |
| 83 | default: |
| 84 | __builtin_unreachable(); |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | public: |
| 89 | void SetUp() override { |
| 90 | LIBC_NAMESPACE::testing::FEnvSafeTest::SetUp(); |
| 91 | |
| 92 | if (math_errhandling & MATH_ERREXCEPT) { |
| 93 | // We will disable all exceptions so that the test will not |
| 94 | // crash with SIGFPE. We can still use fetestexcept to check |
| 95 | // if the appropriate flag was raised. |
| 96 | LIBC_NAMESPACE::fputil::disable_except(FE_ALL_EXCEPT); |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | void do_infinity_and_na_n_test(RoundToIntegerFunc func) { |
| 101 | test_one_input(func, inf, INTEGER_MAX, true); |
| 102 | test_one_input(func, neg_inf, INTEGER_MIN, true); |
| 103 | // This is currently never enabled, the |
| 104 | // LLVM_LIBC_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR CMake option in |
| 105 | // libc/CMakeLists.txt is not forwarded to C++. |
| 106 | #if LIBC_COPT_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR |
| 107 | // Result is not well-defined, we always returns INTEGER_MAX |
| 108 | test_one_input(func, nan, INTEGER_MAX, true); |
| 109 | #endif // LIBC_COPT_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR |
| 110 | } |
| 111 | |
| 112 | void testInfinityAndNaN(RoundToIntegerFunc func) { |
| 113 | if (TestModes) { |
| 114 | for (int mode : ROUNDING_MODES) { |
| 115 | LIBC_NAMESPACE::fputil::set_round(mode); |
| 116 | do_infinity_and_na_n_test(func); |
| 117 | } |
| 118 | } else { |
| 119 | do_infinity_and_na_n_test(func); |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | void do_round_numbers_test(RoundToIntegerFunc func) { |
| 124 | test_one_input(func, zero, IntType(0), false); |
| 125 | test_one_input(func, neg_zero, IntType(0), false); |
| 126 | test_one_input(func, input: FloatType(1.0), expected: IntType(1), expectError: false); |
| 127 | test_one_input(func, input: FloatType(-1.0), expected: IntType(-1), expectError: false); |
| 128 | test_one_input(func, input: FloatType(10.0), expected: IntType(10), expectError: false); |
| 129 | test_one_input(func, input: FloatType(-10.0), expected: IntType(-10), expectError: false); |
| 130 | test_one_input(func, input: FloatType(1234.0), expected: IntType(1234), expectError: false); |
| 131 | test_one_input(func, input: FloatType(-1234.0), expected: IntType(-1234), expectError: false); |
| 132 | |
| 133 | // The rest of this function compares with an equivalent MPFR function |
| 134 | // which rounds floating point numbers to long values. There is no MPFR |
| 135 | // function to round to long long or wider integer values. So, we will |
| 136 | // the remaining tests only if the width of IntType less than equal to that |
| 137 | // of long. |
| 138 | if (sizeof(IntType) > sizeof(long)) |
| 139 | return; |
| 140 | |
| 141 | constexpr int EXPONENT_LIMIT = sizeof(IntType) * 8 - 1; |
| 142 | constexpr int BIASED_EXPONENT_LIMIT = EXPONENT_LIMIT + FPBits::EXP_BIAS; |
| 143 | if (BIASED_EXPONENT_LIMIT > FPBits::MAX_BIASED_EXPONENT) |
| 144 | return; |
| 145 | // We start with 1.0 so that the implicit bit for x86 long doubles |
| 146 | // is set. |
| 147 | FPBits bits(FloatType(1.0)); |
| 148 | bits.set_biased_exponent(BIASED_EXPONENT_LIMIT); |
| 149 | bits.set_sign(Sign::NEG); |
| 150 | bits.set_mantissa(0); |
| 151 | |
| 152 | FloatType x = bits.get_val(); |
| 153 | long mpfr_result; |
| 154 | bool erangeflag = mpfr::round_to_long(x, mpfr_result); |
| 155 | ASSERT_FALSE(erangeflag); |
| 156 | test_one_input(func, input: x, expected: mpfr_result, expectError: false); |
| 157 | } |
| 158 | |
| 159 | void testRoundNumbers(RoundToIntegerFunc func) { |
| 160 | if (TestModes) { |
| 161 | for (int mode : ROUNDING_MODES) { |
| 162 | LIBC_NAMESPACE::fputil::set_round(mode); |
| 163 | do_round_numbers_test(func); |
| 164 | } |
| 165 | } else { |
| 166 | do_round_numbers_test(func); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | void do_fractions_test(RoundToIntegerFunc func, int mode) { |
| 171 | constexpr FloatType FRACTIONS[] = { |
| 172 | FloatType(0.5), FloatType(-0.5), FloatType(0.115), |
| 173 | FloatType(-0.115), FloatType(0.715), FloatType(-0.715), |
| 174 | }; |
| 175 | for (FloatType x : FRACTIONS) { |
| 176 | long mpfr_long_result; |
| 177 | bool erangeflag; |
| 178 | if (TestModes) |
| 179 | erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(mode), |
| 180 | mpfr_long_result); |
| 181 | else |
| 182 | erangeflag = mpfr::round_to_long(x, mpfr_long_result); |
| 183 | ASSERT_FALSE(erangeflag); |
| 184 | IntType mpfr_result = mpfr_long_result; |
| 185 | test_one_input(func, input: x, expected: mpfr_result, expectError: false); |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | void testFractions(RoundToIntegerFunc func) { |
| 190 | if (TestModes) { |
| 191 | for (int mode : ROUNDING_MODES) { |
| 192 | LIBC_NAMESPACE::fputil::set_round(mode); |
| 193 | do_fractions_test(func, mode: mode); |
| 194 | } |
| 195 | } else { |
| 196 | // Passing 0 for mode has no effect as it is not used in doFractionsTest |
| 197 | // when `TestModes` is false; |
| 198 | do_fractions_test(func, mode: 0); |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | void testIntegerOverflow(RoundToIntegerFunc func) { |
| 203 | // This function compares with an equivalent MPFR function which rounds |
| 204 | // floating point numbers to long values. There is no MPFR function to |
| 205 | // round to long long or wider integer values. So, we will peform the |
| 206 | // comparisons in this function only if the width of IntType less than equal |
| 207 | // to that of long. |
| 208 | if (sizeof(IntType) > sizeof(long)) |
| 209 | return; |
| 210 | |
| 211 | constexpr int EXPONENT_LIMIT = sizeof(IntType) * 8 - 1; |
| 212 | constexpr int BIASED_EXPONENT_LIMIT = EXPONENT_LIMIT + FPBits::EXP_BIAS; |
| 213 | if (BIASED_EXPONENT_LIMIT > FPBits::MAX_BIASED_EXPONENT) |
| 214 | return; |
| 215 | // We start with 1.0 so that the implicit bit for x86 long doubles |
| 216 | // is set. |
| 217 | FPBits bits(FloatType(1.0)); |
| 218 | bits.set_biased_exponent(BIASED_EXPONENT_LIMIT); |
| 219 | bits.set_sign(Sign::NEG); |
| 220 | bits.set_mantissa(FPBits::FRACTION_MASK); |
| 221 | |
| 222 | FloatType x = bits.get_val(); |
| 223 | if (TestModes) { |
| 224 | for (int m : ROUNDING_MODES) { |
| 225 | LIBC_NAMESPACE::fputil::set_round(m); |
| 226 | long mpfr_long_result; |
| 227 | bool erangeflag = |
| 228 | mpfr::round_to_long(x, to_mpfr_rounding_mode(m), mpfr_long_result); |
| 229 | ASSERT_TRUE(erangeflag); |
| 230 | test_one_input(func, input: x, expected: INTEGER_MIN, expectError: true); |
| 231 | } |
| 232 | } else { |
| 233 | long mpfr_long_result; |
| 234 | bool erangeflag = mpfr::round_to_long(x, mpfr_long_result); |
| 235 | ASSERT_TRUE(erangeflag); |
| 236 | test_one_input(func, input: x, expected: INTEGER_MIN, expectError: true); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | void testSubnormalRange(RoundToIntegerFunc func) { |
| 241 | constexpr int COUNT = 1'000'001; |
| 242 | constexpr StorageType STEP = LIBC_NAMESPACE::cpp::max( |
| 243 | static_cast<StorageType>((MAX_SUBNORMAL - MIN_SUBNORMAL) / COUNT), |
| 244 | StorageType(1)); |
| 245 | for (StorageType i = MIN_SUBNORMAL; i <= MAX_SUBNORMAL; i += STEP) { |
| 246 | FloatType x = FPBits(i).get_val(); |
| 247 | if (x == FloatType(0.0)) |
| 248 | continue; |
| 249 | // All subnormal numbers should round to zero. |
| 250 | if (TestModes) { |
| 251 | if (x > 0) { |
| 252 | LIBC_NAMESPACE::fputil::set_round(FE_UPWARD); |
| 253 | test_one_input(func, input: x, expected: IntType(1), expectError: false); |
| 254 | LIBC_NAMESPACE::fputil::set_round(FE_DOWNWARD); |
| 255 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
| 256 | LIBC_NAMESPACE::fputil::set_round(FE_TOWARDZERO); |
| 257 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
| 258 | LIBC_NAMESPACE::fputil::set_round(FE_TONEAREST); |
| 259 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
| 260 | } else { |
| 261 | LIBC_NAMESPACE::fputil::set_round(FE_UPWARD); |
| 262 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
| 263 | LIBC_NAMESPACE::fputil::set_round(FE_DOWNWARD); |
| 264 | test_one_input(func, input: x, expected: IntType(-1), expectError: false); |
| 265 | LIBC_NAMESPACE::fputil::set_round(FE_TOWARDZERO); |
| 266 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
| 267 | LIBC_NAMESPACE::fputil::set_round(FE_TONEAREST); |
| 268 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
| 269 | } |
| 270 | } else { |
| 271 | test_one_input(func, input: x, expected: 0L, expectError: false); |
| 272 | } |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | void testNormalRange(RoundToIntegerFunc func) { |
| 277 | // This function compares with an equivalent MPFR function which rounds |
| 278 | // floating point numbers to long values. There is no MPFR function to |
| 279 | // round to long long or wider integer values. So, we will peform the |
| 280 | // comparisons in this function only if the width of IntType less than equal |
| 281 | // to that of long. |
| 282 | if (sizeof(IntType) > sizeof(long)) |
| 283 | return; |
| 284 | |
| 285 | constexpr int COUNT = 1'000'001; |
| 286 | constexpr StorageType STEP = LIBC_NAMESPACE::cpp::max( |
| 287 | static_cast<StorageType>((MAX_NORMAL - MIN_NORMAL) / COUNT), |
| 288 | StorageType(1)); |
| 289 | for (StorageType i = MIN_NORMAL; i <= MAX_NORMAL; i += STEP) { |
| 290 | FPBits xbits(i); |
| 291 | FloatType x = xbits.get_val(); |
| 292 | // In normal range on x86 platforms, the long double implicit 1 bit can be |
| 293 | // zero making the numbers NaN. We will skip them. |
| 294 | if (xbits.is_nan()) |
| 295 | continue; |
| 296 | |
| 297 | if (TestModes) { |
| 298 | for (int m : ROUNDING_MODES) { |
| 299 | long mpfr_long_result; |
| 300 | bool erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(m), |
| 301 | mpfr_long_result); |
| 302 | IntType mpfr_result = mpfr_long_result; |
| 303 | LIBC_NAMESPACE::fputil::set_round(m); |
| 304 | if (erangeflag) |
| 305 | test_one_input(func, input: x, expected: x > 0 ? INTEGER_MAX : INTEGER_MIN, expectError: true); |
| 306 | else |
| 307 | test_one_input(func, input: x, expected: mpfr_result, expectError: false); |
| 308 | } |
| 309 | } else { |
| 310 | long mpfr_long_result; |
| 311 | bool erangeflag = mpfr::round_to_long(x, mpfr_long_result); |
| 312 | IntType mpfr_result = mpfr_long_result; |
| 313 | if (erangeflag) |
| 314 | test_one_input(func, input: x, expected: x > 0 ? INTEGER_MAX : INTEGER_MIN, expectError: true); |
| 315 | else |
| 316 | test_one_input(func, input: x, expected: mpfr_result, expectError: false); |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | }; |
| 321 | |
| 322 | #define LIST_ROUND_TO_INTEGER_TESTS_HELPER(FloatType, IntType, func, \ |
| 323 | TestModes) \ |
| 324 | using LlvmLibcRoundToIntegerTest = \ |
| 325 | RoundToIntegerTestTemplate<FloatType, IntType, TestModes>; \ |
| 326 | TEST_F(LlvmLibcRoundToIntegerTest, InfinityAndNaN) { \ |
| 327 | testInfinityAndNaN(&func); \ |
| 328 | } \ |
| 329 | TEST_F(LlvmLibcRoundToIntegerTest, RoundNumbers) { \ |
| 330 | testRoundNumbers(&func); \ |
| 331 | } \ |
| 332 | TEST_F(LlvmLibcRoundToIntegerTest, Fractions) { testFractions(&func); } \ |
| 333 | TEST_F(LlvmLibcRoundToIntegerTest, IntegerOverflow) { \ |
| 334 | testIntegerOverflow(&func); \ |
| 335 | } \ |
| 336 | TEST_F(LlvmLibcRoundToIntegerTest, SubnormalRange) { \ |
| 337 | testSubnormalRange(&func); \ |
| 338 | } \ |
| 339 | TEST_F(LlvmLibcRoundToIntegerTest, NormalRange) { testNormalRange(&func); } |
| 340 | |
| 341 | #define LIST_ROUND_TO_INTEGER_TESTS(FloatType, IntType, func) \ |
| 342 | LIST_ROUND_TO_INTEGER_TESTS_HELPER(FloatType, IntType, func, false) |
| 343 | |
| 344 | #define LIST_ROUND_TO_INTEGER_TESTS_WITH_MODES(FloatType, IntType, func) \ |
| 345 | LIST_ROUND_TO_INTEGER_TESTS_HELPER(FloatType, IntType, func, true) |
| 346 | |
| 347 | #endif // LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H |
| 348 | |