1 | //===-- Utility class to test different flavors of [l|ll]round --*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H |
10 | #define LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H |
11 | |
12 | #include "src/__support/CPP/algorithm.h" |
13 | #include "src/__support/FPUtil/FEnvImpl.h" |
14 | #include "src/__support/FPUtil/FPBits.h" |
15 | #include "src/__support/macros/properties/architectures.h" |
16 | #include "test/UnitTest/FEnvSafeTest.h" |
17 | #include "test/UnitTest/FPMatcher.h" |
18 | #include "test/UnitTest/Test.h" |
19 | #include "utils/MPFRWrapper/MPFRUtils.h" |
20 | |
21 | #include "hdr/math_macros.h" |
22 | |
23 | namespace mpfr = LIBC_NAMESPACE::testing::mpfr; |
24 | using LIBC_NAMESPACE::Sign; |
25 | |
26 | static constexpr int ROUNDING_MODES[4] = {FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO, |
27 | FE_TONEAREST}; |
28 | |
29 | template <typename FloatType, typename IntType, bool TestModes = false> |
30 | class RoundToIntegerTestTemplate |
31 | : public LIBC_NAMESPACE::testing::FEnvSafeTest { |
32 | public: |
33 | typedef IntType (*RoundToIntegerFunc)(FloatType); |
34 | |
35 | private: |
36 | using FPBits = LIBC_NAMESPACE::fputil::FPBits<FloatType>; |
37 | using StorageType = typename FPBits::StorageType; |
38 | |
39 | const FloatType zero = FPBits::zero().get_val(); |
40 | const FloatType neg_zero = FPBits::zero(Sign::NEG).get_val(); |
41 | const FloatType inf = FPBits::inf().get_val(); |
42 | const FloatType neg_inf = FPBits::inf(Sign::NEG).get_val(); |
43 | const FloatType nan = FPBits::quiet_nan().get_val(); |
44 | |
45 | static constexpr StorageType MAX_NORMAL = FPBits::max_normal().uintval(); |
46 | static constexpr StorageType MIN_NORMAL = FPBits::min_normal().uintval(); |
47 | static constexpr StorageType MAX_SUBNORMAL = |
48 | FPBits::max_subnormal().uintval(); |
49 | static constexpr StorageType MIN_SUBNORMAL = |
50 | FPBits::min_subnormal().uintval(); |
51 | |
52 | static constexpr IntType INTEGER_MIN = IntType(1) |
53 | << (sizeof(IntType) * 8 - 1); |
54 | static constexpr IntType INTEGER_MAX = -(INTEGER_MIN + 1); |
55 | |
56 | void test_one_input(RoundToIntegerFunc func, FloatType input, |
57 | IntType expected, bool expectError) { |
58 | libc_errno = 0; |
59 | LIBC_NAMESPACE::fputil::clear_except(FE_ALL_EXCEPT); |
60 | |
61 | ASSERT_EQ(func(input), expected); |
62 | |
63 | // TODO: Handle the !expectError case. It used to expect |
64 | // 0 for errno and exceptions, but this doesn't hold for |
65 | // all math functions using RoundToInteger test: |
66 | // https://github.com/llvm/llvm-project/pull/88816 |
67 | if (expectError) { |
68 | ASSERT_FP_EXCEPTION(FE_INVALID); |
69 | ASSERT_MATH_ERRNO(EDOM); |
70 | } |
71 | } |
72 | |
73 | static inline mpfr::RoundingMode to_mpfr_rounding_mode(int mode) { |
74 | switch (mode) { |
75 | case FE_UPWARD: |
76 | return mpfr::RoundingMode::Upward; |
77 | case FE_DOWNWARD: |
78 | return mpfr::RoundingMode::Downward; |
79 | case FE_TOWARDZERO: |
80 | return mpfr::RoundingMode::TowardZero; |
81 | case FE_TONEAREST: |
82 | return mpfr::RoundingMode::Nearest; |
83 | default: |
84 | __builtin_unreachable(); |
85 | } |
86 | } |
87 | |
88 | public: |
89 | void SetUp() override { |
90 | LIBC_NAMESPACE::testing::FEnvSafeTest::SetUp(); |
91 | |
92 | if (math_errhandling & MATH_ERREXCEPT) { |
93 | // We will disable all exceptions so that the test will not |
94 | // crash with SIGFPE. We can still use fetestexcept to check |
95 | // if the appropriate flag was raised. |
96 | LIBC_NAMESPACE::fputil::disable_except(FE_ALL_EXCEPT); |
97 | } |
98 | } |
99 | |
100 | void do_infinity_and_na_n_test(RoundToIntegerFunc func) { |
101 | test_one_input(func, inf, INTEGER_MAX, true); |
102 | test_one_input(func, neg_inf, INTEGER_MIN, true); |
103 | // This is currently never enabled, the |
104 | // LLVM_LIBC_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR CMake option in |
105 | // libc/CMakeLists.txt is not forwarded to C++. |
106 | #if LIBC_COPT_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR |
107 | // Result is not well-defined, we always returns INTEGER_MAX |
108 | test_one_input(func, nan, INTEGER_MAX, true); |
109 | #endif // LIBC_COPT_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR |
110 | } |
111 | |
112 | void testInfinityAndNaN(RoundToIntegerFunc func) { |
113 | if (TestModes) { |
114 | for (int mode : ROUNDING_MODES) { |
115 | LIBC_NAMESPACE::fputil::set_round(mode); |
116 | do_infinity_and_na_n_test(func); |
117 | } |
118 | } else { |
119 | do_infinity_and_na_n_test(func); |
120 | } |
121 | } |
122 | |
123 | void do_round_numbers_test(RoundToIntegerFunc func) { |
124 | test_one_input(func, zero, IntType(0), false); |
125 | test_one_input(func, neg_zero, IntType(0), false); |
126 | test_one_input(func, input: FloatType(1.0), expected: IntType(1), expectError: false); |
127 | test_one_input(func, input: FloatType(-1.0), expected: IntType(-1), expectError: false); |
128 | test_one_input(func, input: FloatType(10.0), expected: IntType(10), expectError: false); |
129 | test_one_input(func, input: FloatType(-10.0), expected: IntType(-10), expectError: false); |
130 | test_one_input(func, input: FloatType(1234.0), expected: IntType(1234), expectError: false); |
131 | test_one_input(func, input: FloatType(-1234.0), expected: IntType(-1234), expectError: false); |
132 | |
133 | // The rest of this function compares with an equivalent MPFR function |
134 | // which rounds floating point numbers to long values. There is no MPFR |
135 | // function to round to long long or wider integer values. So, we will |
136 | // the remaining tests only if the width of IntType less than equal to that |
137 | // of long. |
138 | if (sizeof(IntType) > sizeof(long)) |
139 | return; |
140 | |
141 | constexpr int EXPONENT_LIMIT = sizeof(IntType) * 8 - 1; |
142 | constexpr int BIASED_EXPONENT_LIMIT = EXPONENT_LIMIT + FPBits::EXP_BIAS; |
143 | if (BIASED_EXPONENT_LIMIT > FPBits::MAX_BIASED_EXPONENT) |
144 | return; |
145 | // We start with 1.0 so that the implicit bit for x86 long doubles |
146 | // is set. |
147 | FPBits bits(FloatType(1.0)); |
148 | bits.set_biased_exponent(BIASED_EXPONENT_LIMIT); |
149 | bits.set_sign(Sign::NEG); |
150 | bits.set_mantissa(0); |
151 | |
152 | FloatType x = bits.get_val(); |
153 | long mpfr_result; |
154 | bool erangeflag = mpfr::round_to_long(x, mpfr_result); |
155 | ASSERT_FALSE(erangeflag); |
156 | test_one_input(func, input: x, expected: mpfr_result, expectError: false); |
157 | } |
158 | |
159 | void testRoundNumbers(RoundToIntegerFunc func) { |
160 | if (TestModes) { |
161 | for (int mode : ROUNDING_MODES) { |
162 | LIBC_NAMESPACE::fputil::set_round(mode); |
163 | do_round_numbers_test(func); |
164 | } |
165 | } else { |
166 | do_round_numbers_test(func); |
167 | } |
168 | } |
169 | |
170 | void do_fractions_test(RoundToIntegerFunc func, int mode) { |
171 | constexpr FloatType FRACTIONS[] = { |
172 | FloatType(0.5), FloatType(-0.5), FloatType(0.115), |
173 | FloatType(-0.115), FloatType(0.715), FloatType(-0.715), |
174 | }; |
175 | for (FloatType x : FRACTIONS) { |
176 | long mpfr_long_result; |
177 | bool erangeflag; |
178 | if (TestModes) |
179 | erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(mode), |
180 | mpfr_long_result); |
181 | else |
182 | erangeflag = mpfr::round_to_long(x, mpfr_long_result); |
183 | ASSERT_FALSE(erangeflag); |
184 | IntType mpfr_result = mpfr_long_result; |
185 | test_one_input(func, input: x, expected: mpfr_result, expectError: false); |
186 | } |
187 | } |
188 | |
189 | void testFractions(RoundToIntegerFunc func) { |
190 | if (TestModes) { |
191 | for (int mode : ROUNDING_MODES) { |
192 | LIBC_NAMESPACE::fputil::set_round(mode); |
193 | do_fractions_test(func, mode: mode); |
194 | } |
195 | } else { |
196 | // Passing 0 for mode has no effect as it is not used in doFractionsTest |
197 | // when `TestModes` is false; |
198 | do_fractions_test(func, mode: 0); |
199 | } |
200 | } |
201 | |
202 | void testIntegerOverflow(RoundToIntegerFunc func) { |
203 | // This function compares with an equivalent MPFR function which rounds |
204 | // floating point numbers to long values. There is no MPFR function to |
205 | // round to long long or wider integer values. So, we will peform the |
206 | // comparisons in this function only if the width of IntType less than equal |
207 | // to that of long. |
208 | if (sizeof(IntType) > sizeof(long)) |
209 | return; |
210 | |
211 | constexpr int EXPONENT_LIMIT = sizeof(IntType) * 8 - 1; |
212 | constexpr int BIASED_EXPONENT_LIMIT = EXPONENT_LIMIT + FPBits::EXP_BIAS; |
213 | if (BIASED_EXPONENT_LIMIT > FPBits::MAX_BIASED_EXPONENT) |
214 | return; |
215 | // We start with 1.0 so that the implicit bit for x86 long doubles |
216 | // is set. |
217 | FPBits bits(FloatType(1.0)); |
218 | bits.set_biased_exponent(BIASED_EXPONENT_LIMIT); |
219 | bits.set_sign(Sign::NEG); |
220 | bits.set_mantissa(FPBits::FRACTION_MASK); |
221 | |
222 | FloatType x = bits.get_val(); |
223 | if (TestModes) { |
224 | for (int m : ROUNDING_MODES) { |
225 | LIBC_NAMESPACE::fputil::set_round(m); |
226 | long mpfr_long_result; |
227 | bool erangeflag = |
228 | mpfr::round_to_long(x, to_mpfr_rounding_mode(m), mpfr_long_result); |
229 | ASSERT_TRUE(erangeflag); |
230 | test_one_input(func, input: x, expected: INTEGER_MIN, expectError: true); |
231 | } |
232 | } else { |
233 | long mpfr_long_result; |
234 | bool erangeflag = mpfr::round_to_long(x, mpfr_long_result); |
235 | ASSERT_TRUE(erangeflag); |
236 | test_one_input(func, input: x, expected: INTEGER_MIN, expectError: true); |
237 | } |
238 | } |
239 | |
240 | void testSubnormalRange(RoundToIntegerFunc func) { |
241 | constexpr int COUNT = 1'000'001; |
242 | constexpr StorageType STEP = LIBC_NAMESPACE::cpp::max( |
243 | static_cast<StorageType>((MAX_SUBNORMAL - MIN_SUBNORMAL) / COUNT), |
244 | StorageType(1)); |
245 | for (StorageType i = MIN_SUBNORMAL; i <= MAX_SUBNORMAL; i += STEP) { |
246 | FloatType x = FPBits(i).get_val(); |
247 | if (x == FloatType(0.0)) |
248 | continue; |
249 | // All subnormal numbers should round to zero. |
250 | if (TestModes) { |
251 | if (x > 0) { |
252 | LIBC_NAMESPACE::fputil::set_round(FE_UPWARD); |
253 | test_one_input(func, input: x, expected: IntType(1), expectError: false); |
254 | LIBC_NAMESPACE::fputil::set_round(FE_DOWNWARD); |
255 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
256 | LIBC_NAMESPACE::fputil::set_round(FE_TOWARDZERO); |
257 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
258 | LIBC_NAMESPACE::fputil::set_round(FE_TONEAREST); |
259 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
260 | } else { |
261 | LIBC_NAMESPACE::fputil::set_round(FE_UPWARD); |
262 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
263 | LIBC_NAMESPACE::fputil::set_round(FE_DOWNWARD); |
264 | test_one_input(func, input: x, expected: IntType(-1), expectError: false); |
265 | LIBC_NAMESPACE::fputil::set_round(FE_TOWARDZERO); |
266 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
267 | LIBC_NAMESPACE::fputil::set_round(FE_TONEAREST); |
268 | test_one_input(func, input: x, expected: IntType(0), expectError: false); |
269 | } |
270 | } else { |
271 | test_one_input(func, input: x, expected: 0L, expectError: false); |
272 | } |
273 | } |
274 | } |
275 | |
276 | void testNormalRange(RoundToIntegerFunc func) { |
277 | // This function compares with an equivalent MPFR function which rounds |
278 | // floating point numbers to long values. There is no MPFR function to |
279 | // round to long long or wider integer values. So, we will peform the |
280 | // comparisons in this function only if the width of IntType less than equal |
281 | // to that of long. |
282 | if (sizeof(IntType) > sizeof(long)) |
283 | return; |
284 | |
285 | constexpr int COUNT = 1'000'001; |
286 | constexpr StorageType STEP = LIBC_NAMESPACE::cpp::max( |
287 | static_cast<StorageType>((MAX_NORMAL - MIN_NORMAL) / COUNT), |
288 | StorageType(1)); |
289 | for (StorageType i = MIN_NORMAL; i <= MAX_NORMAL; i += STEP) { |
290 | FPBits xbits(i); |
291 | FloatType x = xbits.get_val(); |
292 | // In normal range on x86 platforms, the long double implicit 1 bit can be |
293 | // zero making the numbers NaN. We will skip them. |
294 | if (xbits.is_nan()) |
295 | continue; |
296 | |
297 | if (TestModes) { |
298 | for (int m : ROUNDING_MODES) { |
299 | long mpfr_long_result; |
300 | bool erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(m), |
301 | mpfr_long_result); |
302 | IntType mpfr_result = mpfr_long_result; |
303 | LIBC_NAMESPACE::fputil::set_round(m); |
304 | if (erangeflag) |
305 | test_one_input(func, input: x, expected: x > 0 ? INTEGER_MAX : INTEGER_MIN, expectError: true); |
306 | else |
307 | test_one_input(func, input: x, expected: mpfr_result, expectError: false); |
308 | } |
309 | } else { |
310 | long mpfr_long_result; |
311 | bool erangeflag = mpfr::round_to_long(x, mpfr_long_result); |
312 | IntType mpfr_result = mpfr_long_result; |
313 | if (erangeflag) |
314 | test_one_input(func, input: x, expected: x > 0 ? INTEGER_MAX : INTEGER_MIN, expectError: true); |
315 | else |
316 | test_one_input(func, input: x, expected: mpfr_result, expectError: false); |
317 | } |
318 | } |
319 | } |
320 | }; |
321 | |
322 | #define LIST_ROUND_TO_INTEGER_TESTS_HELPER(FloatType, IntType, func, \ |
323 | TestModes) \ |
324 | using LlvmLibcRoundToIntegerTest = \ |
325 | RoundToIntegerTestTemplate<FloatType, IntType, TestModes>; \ |
326 | TEST_F(LlvmLibcRoundToIntegerTest, InfinityAndNaN) { \ |
327 | testInfinityAndNaN(&func); \ |
328 | } \ |
329 | TEST_F(LlvmLibcRoundToIntegerTest, RoundNumbers) { \ |
330 | testRoundNumbers(&func); \ |
331 | } \ |
332 | TEST_F(LlvmLibcRoundToIntegerTest, Fractions) { testFractions(&func); } \ |
333 | TEST_F(LlvmLibcRoundToIntegerTest, IntegerOverflow) { \ |
334 | testIntegerOverflow(&func); \ |
335 | } \ |
336 | TEST_F(LlvmLibcRoundToIntegerTest, SubnormalRange) { \ |
337 | testSubnormalRange(&func); \ |
338 | } \ |
339 | TEST_F(LlvmLibcRoundToIntegerTest, NormalRange) { testNormalRange(&func); } |
340 | |
341 | #define LIST_ROUND_TO_INTEGER_TESTS(FloatType, IntType, func) \ |
342 | LIST_ROUND_TO_INTEGER_TESTS_HELPER(FloatType, IntType, func, false) |
343 | |
344 | #define LIST_ROUND_TO_INTEGER_TESTS_WITH_MODES(FloatType, IntType, func) \ |
345 | LIST_ROUND_TO_INTEGER_TESTS_HELPER(FloatType, IntType, func, true) |
346 | |
347 | #endif // LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H |
348 | |