1 | //===- InputFiles.cpp -----------------------------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "InputFiles.h" |
10 | #include "COFFLinkerContext.h" |
11 | #include "Chunks.h" |
12 | #include "Config.h" |
13 | #include "DebugTypes.h" |
14 | #include "Driver.h" |
15 | #include "SymbolTable.h" |
16 | #include "Symbols.h" |
17 | #include "lld/Common/DWARF.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/ADT/Twine.h" |
20 | #include "llvm/BinaryFormat/COFF.h" |
21 | #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" |
22 | #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" |
23 | #include "llvm/DebugInfo/CodeView/SymbolRecord.h" |
24 | #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" |
25 | #include "llvm/DebugInfo/PDB/Native/NativeSession.h" |
26 | #include "llvm/DebugInfo/PDB/Native/PDBFile.h" |
27 | #include "llvm/IR/Mangler.h" |
28 | #include "llvm/LTO/LTO.h" |
29 | #include "llvm/Object/Binary.h" |
30 | #include "llvm/Object/COFF.h" |
31 | #include "llvm/Object/COFFImportFile.h" |
32 | #include "llvm/Support/Casting.h" |
33 | #include "llvm/Support/Endian.h" |
34 | #include "llvm/Support/Error.h" |
35 | #include "llvm/Support/FileSystem.h" |
36 | #include "llvm/Support/Path.h" |
37 | #include "llvm/TargetParser/Triple.h" |
38 | #include <cstring> |
39 | #include <optional> |
40 | #include <utility> |
41 | |
42 | using namespace llvm; |
43 | using namespace llvm::COFF; |
44 | using namespace llvm::codeview; |
45 | using namespace llvm::object; |
46 | using namespace llvm::support::endian; |
47 | using namespace lld; |
48 | using namespace lld::coff; |
49 | |
50 | using llvm::Triple; |
51 | using llvm::support::ulittle32_t; |
52 | |
53 | // Returns the last element of a path, which is supposed to be a filename. |
54 | static StringRef getBasename(StringRef path) { |
55 | return sys::path::filename(path, style: sys::path::Style::windows); |
56 | } |
57 | |
58 | // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". |
59 | std::string lld::toString(const coff::InputFile *file) { |
60 | if (!file) |
61 | return "<internal>"; |
62 | if (file->parentName.empty()) |
63 | return std::string(file->getName()); |
64 | |
65 | return (getBasename(path: file->parentName) + "("+ getBasename(path: file->getName()) + |
66 | ")") |
67 | .str(); |
68 | } |
69 | |
70 | const COFFSyncStream &coff::operator<<(const COFFSyncStream &s, |
71 | const InputFile *f) { |
72 | return s << toString(file: f); |
73 | } |
74 | |
75 | /// Checks that Source is compatible with being a weak alias to Target. |
76 | /// If Source is Undefined and has no weak alias set, makes it a weak |
77 | /// alias to Target. |
78 | static void checkAndSetWeakAlias(SymbolTable &symtab, InputFile *f, |
79 | Symbol *source, Symbol *target, |
80 | bool isAntiDep) { |
81 | if (auto *u = dyn_cast<Undefined>(Val: source)) { |
82 | if (u->weakAlias && u->weakAlias != target) { |
83 | // Ignore duplicated anti-dependency symbols. |
84 | if (isAntiDep) |
85 | return; |
86 | if (!u->isAntiDep) { |
87 | // Weak aliases as produced by GCC are named in the form |
88 | // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name |
89 | // of another symbol emitted near the weak symbol. |
90 | // Just use the definition from the first object file that defined |
91 | // this weak symbol. |
92 | if (symtab.ctx.config.allowDuplicateWeak) |
93 | return; |
94 | symtab.reportDuplicate(existing: source, newFile: f); |
95 | } |
96 | } |
97 | u->setWeakAlias(sym: target, antiDep: isAntiDep); |
98 | } |
99 | } |
100 | |
101 | static bool ignoredSymbolName(StringRef name) { |
102 | return name == "@feat.00"|| name == "@comp.id"; |
103 | } |
104 | |
105 | static coff_symbol_generic *cloneSymbol(COFFSymbolRef sym) { |
106 | if (sym.isBigObj()) { |
107 | auto *copy = make<coff_symbol32>( |
108 | args: *reinterpret_cast<const coff_symbol32 *>(sym.getRawPtr())); |
109 | return reinterpret_cast<coff_symbol_generic *>(copy); |
110 | } else { |
111 | auto *copy = make<coff_symbol16>( |
112 | args: *reinterpret_cast<const coff_symbol16 *>(sym.getRawPtr())); |
113 | return reinterpret_cast<coff_symbol_generic *>(copy); |
114 | } |
115 | } |
116 | |
117 | ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m) |
118 | : InputFile(ctx.symtab, ArchiveKind, m) {} |
119 | |
120 | void ArchiveFile::parse() { |
121 | COFFLinkerContext &ctx = symtab.ctx; |
122 | SymbolTable *archiveSymtab = &symtab; |
123 | |
124 | // Parse a MemoryBufferRef as an archive file. |
125 | file = CHECK(Archive::create(mb), this); |
126 | |
127 | // Try to read symbols from ECSYMBOLS section on ARM64EC. |
128 | if (ctx.symtab.isEC()) { |
129 | iterator_range<Archive::symbol_iterator> symbols = |
130 | CHECK(file->ec_symbols(), this); |
131 | if (!symbols.empty()) { |
132 | for (const Archive::Symbol &sym : symbols) |
133 | ctx.symtab.addLazyArchive(f: this, sym); |
134 | |
135 | // Read both EC and native symbols on ARM64X. |
136 | archiveSymtab = &*ctx.hybridSymtab; |
137 | } else { |
138 | // If the ECSYMBOLS section is missing in the archive, the archive could |
139 | // be either a native-only ARM64 or x86_64 archive. Check the machine type |
140 | // of the object containing a symbol to determine which symbol table to |
141 | // use. |
142 | Archive::symbol_iterator sym = file->symbol_begin(); |
143 | if (sym != file->symbol_end()) { |
144 | MachineTypes machine = IMAGE_FILE_MACHINE_UNKNOWN; |
145 | Archive::Child child = |
146 | CHECK(sym->getMember(), |
147 | file->getFileName() + |
148 | ": could not get the buffer for a child of the archive"); |
149 | MemoryBufferRef mb = CHECK( |
150 | child.getMemoryBufferRef(), |
151 | file->getFileName() + |
152 | ": could not get the buffer for a child buffer of the archive"); |
153 | switch (identify_magic(magic: mb.getBuffer())) { |
154 | case file_magic::coff_object: { |
155 | std::unique_ptr<COFFObjectFile> obj = |
156 | CHECK(COFFObjectFile::create(mb), |
157 | check(child.getName()) + ":"+ ": not a valid COFF file"); |
158 | machine = MachineTypes(obj->getMachine()); |
159 | break; |
160 | } |
161 | case file_magic::coff_import_library: |
162 | machine = MachineTypes(COFFImportFile(mb).getMachine()); |
163 | break; |
164 | case file_magic::bitcode: { |
165 | std::unique_ptr<lto::InputFile> obj = |
166 | check(e: lto::InputFile::create(Object: mb)); |
167 | machine = BitcodeFile::getMachineType(obj: obj.get()); |
168 | break; |
169 | } |
170 | default: |
171 | break; |
172 | } |
173 | archiveSymtab = &ctx.getSymtab(machine); |
174 | } |
175 | } |
176 | } |
177 | |
178 | // Read the symbol table to construct Lazy objects. |
179 | for (const Archive::Symbol &sym : file->symbols()) |
180 | archiveSymtab->addLazyArchive(f: this, sym); |
181 | } |
182 | |
183 | // Returns a buffer pointing to a member file containing a given symbol. |
184 | void ArchiveFile::addMember(const Archive::Symbol &sym) { |
185 | const Archive::Child &c = |
186 | CHECK(sym.getMember(), "could not get the member for symbol "+ |
187 | toCOFFString(symtab.ctx, sym)); |
188 | |
189 | // Return an empty buffer if we have already returned the same buffer. |
190 | // FIXME: Remove this once we resolve all defineds before all undefineds in |
191 | // ObjFile::initializeSymbols(). |
192 | if (!seen.insert(V: c.getChildOffset()).second) |
193 | return; |
194 | |
195 | symtab.ctx.driver.enqueueArchiveMember(c, sym, parentName: getName()); |
196 | } |
197 | |
198 | std::vector<MemoryBufferRef> |
199 | lld::coff::getArchiveMembers(COFFLinkerContext &ctx, Archive *file) { |
200 | std::vector<MemoryBufferRef> v; |
201 | Error err = Error::success(); |
202 | |
203 | // Thin archives refer to .o files, so --reproduces needs the .o files too. |
204 | bool addToTar = file->isThin() && ctx.driver.tar; |
205 | |
206 | for (const Archive::Child &c : file->children(Err&: err)) { |
207 | MemoryBufferRef mbref = |
208 | CHECK(c.getMemoryBufferRef(), |
209 | file->getFileName() + |
210 | ": could not get the buffer for a child of the archive"); |
211 | if (addToTar) { |
212 | ctx.driver.tar->append(Path: relativeToRoot(path: check(e: c.getFullName())), |
213 | Data: mbref.getBuffer()); |
214 | } |
215 | v.push_back(x: mbref); |
216 | } |
217 | if (err) |
218 | Fatal(ctx) << file->getFileName() |
219 | << ": Archive::children failed: "<< toString(E: std::move(err)); |
220 | return v; |
221 | } |
222 | |
223 | ObjFile::ObjFile(SymbolTable &symtab, COFFObjectFile *coffObj, bool lazy) |
224 | : InputFile(symtab, ObjectKind, coffObj->getMemoryBufferRef(), lazy), |
225 | coffObj(coffObj) {} |
226 | |
227 | ObjFile *ObjFile::create(COFFLinkerContext &ctx, MemoryBufferRef m, bool lazy) { |
228 | // Parse a memory buffer as a COFF file. |
229 | Expected<std::unique_ptr<Binary>> bin = createBinary(Source: m); |
230 | if (!bin) |
231 | Fatal(ctx) << "Could not parse "<< m.getBufferIdentifier(); |
232 | |
233 | auto *obj = dyn_cast<COFFObjectFile>(Val: bin->get()); |
234 | if (!obj) |
235 | Fatal(ctx) << m.getBufferIdentifier() << " is not a COFF file"; |
236 | |
237 | bin->release(); |
238 | return make<ObjFile>(args&: ctx.getSymtab(machine: MachineTypes(obj->getMachine())), args&: obj, |
239 | args&: lazy); |
240 | } |
241 | |
242 | void ObjFile::parseLazy() { |
243 | // Native object file. |
244 | uint32_t numSymbols = coffObj->getNumberOfSymbols(); |
245 | for (uint32_t i = 0; i < numSymbols; ++i) { |
246 | COFFSymbolRef coffSym = check(e: coffObj->getSymbol(index: i)); |
247 | if (coffSym.isUndefined() || !coffSym.isExternal() || |
248 | coffSym.isWeakExternal()) |
249 | continue; |
250 | StringRef name = check(e: coffObj->getSymbolName(Symbol: coffSym)); |
251 | if (coffSym.isAbsolute() && ignoredSymbolName(name)) |
252 | continue; |
253 | symtab.addLazyObject(f: this, n: name); |
254 | if (!lazy) |
255 | return; |
256 | i += coffSym.getNumberOfAuxSymbols(); |
257 | } |
258 | } |
259 | |
260 | struct ECMapEntry { |
261 | ulittle32_t src; |
262 | ulittle32_t dst; |
263 | ulittle32_t type; |
264 | }; |
265 | |
266 | void ObjFile::initializeECThunks() { |
267 | for (SectionChunk *chunk : hybmpChunks) { |
268 | if (chunk->getContents().size() % sizeof(ECMapEntry)) { |
269 | Err(ctx&: symtab.ctx) << "Invalid .hybmp chunk size " |
270 | << chunk->getContents().size(); |
271 | continue; |
272 | } |
273 | |
274 | const uint8_t *end = |
275 | chunk->getContents().data() + chunk->getContents().size(); |
276 | for (const uint8_t *iter = chunk->getContents().data(); iter != end; |
277 | iter += sizeof(ECMapEntry)) { |
278 | auto entry = reinterpret_cast<const ECMapEntry *>(iter); |
279 | switch (entry->type) { |
280 | case Arm64ECThunkType::Entry: |
281 | symtab.addEntryThunk(from: getSymbol(symbolIndex: entry->src), to: getSymbol(symbolIndex: entry->dst)); |
282 | break; |
283 | case Arm64ECThunkType::Exit: |
284 | symtab.addExitThunk(from: getSymbol(symbolIndex: entry->src), to: getSymbol(symbolIndex: entry->dst)); |
285 | break; |
286 | case Arm64ECThunkType::GuestExit: |
287 | break; |
288 | default: |
289 | Warn(ctx&: symtab.ctx) << "Ignoring unknown EC thunk type "<< entry->type; |
290 | } |
291 | } |
292 | } |
293 | } |
294 | |
295 | void ObjFile::parse() { |
296 | // Read section and symbol tables. |
297 | initializeChunks(); |
298 | initializeSymbols(); |
299 | initializeFlags(); |
300 | initializeDependencies(); |
301 | initializeECThunks(); |
302 | } |
303 | |
304 | const coff_section *ObjFile::getSection(uint32_t i) { |
305 | auto sec = coffObj->getSection(index: i); |
306 | if (!sec) |
307 | Fatal(ctx&: symtab.ctx) << "getSection failed: #"<< i << ": "<< sec.takeError(); |
308 | return *sec; |
309 | } |
310 | |
311 | // We set SectionChunk pointers in the SparseChunks vector to this value |
312 | // temporarily to mark comdat sections as having an unknown resolution. As we |
313 | // walk the object file's symbol table, once we visit either a leader symbol or |
314 | // an associative section definition together with the parent comdat's leader, |
315 | // we set the pointer to either nullptr (to mark the section as discarded) or a |
316 | // valid SectionChunk for that section. |
317 | static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); |
318 | |
319 | void ObjFile::initializeChunks() { |
320 | uint32_t numSections = coffObj->getNumberOfSections(); |
321 | sparseChunks.resize(new_size: numSections + 1); |
322 | for (uint32_t i = 1; i < numSections + 1; ++i) { |
323 | const coff_section *sec = getSection(i); |
324 | if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) |
325 | sparseChunks[i] = pendingComdat; |
326 | else |
327 | sparseChunks[i] = readSection(sectionNumber: i, def: nullptr, leaderName: ""); |
328 | } |
329 | } |
330 | |
331 | SectionChunk *ObjFile::readSection(uint32_t sectionNumber, |
332 | const coff_aux_section_definition *def, |
333 | StringRef leaderName) { |
334 | const coff_section *sec = getSection(i: sectionNumber); |
335 | |
336 | StringRef name; |
337 | if (Expected<StringRef> e = coffObj->getSectionName(Sec: sec)) |
338 | name = *e; |
339 | else |
340 | Fatal(ctx&: symtab.ctx) << "getSectionName failed: #"<< sectionNumber << ": " |
341 | << e.takeError(); |
342 | |
343 | if (name == ".drectve") { |
344 | ArrayRef<uint8_t> data; |
345 | cantFail(Err: coffObj->getSectionContents(Sec: sec, Res&: data)); |
346 | directives = StringRef((const char *)data.data(), data.size()); |
347 | return nullptr; |
348 | } |
349 | |
350 | if (name == ".llvm_addrsig") { |
351 | addrsigSec = sec; |
352 | return nullptr; |
353 | } |
354 | |
355 | if (name == ".llvm.call-graph-profile") { |
356 | callgraphSec = sec; |
357 | return nullptr; |
358 | } |
359 | |
360 | // Object files may have DWARF debug info or MS CodeView debug info |
361 | // (or both). |
362 | // |
363 | // DWARF sections don't need any special handling from the perspective |
364 | // of the linker; they are just a data section containing relocations. |
365 | // We can just link them to complete debug info. |
366 | // |
367 | // CodeView needs linker support. We need to interpret debug info, |
368 | // and then write it to a separate .pdb file. |
369 | |
370 | // Ignore DWARF debug info unless requested to be included. |
371 | if (!symtab.ctx.config.includeDwarfChunks && name.starts_with(Prefix: ".debug_")) |
372 | return nullptr; |
373 | |
374 | if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) |
375 | return nullptr; |
376 | SectionChunk *c; |
377 | if (isArm64EC(Machine: getMachineType())) |
378 | c = make<SectionChunkEC>(args: this, args&: sec); |
379 | else |
380 | c = make<SectionChunk>(args: this, args&: sec); |
381 | if (def) |
382 | c->checksum = def->CheckSum; |
383 | |
384 | // CodeView sections are stored to a different vector because they are not |
385 | // linked in the regular manner. |
386 | if (c->isCodeView()) |
387 | debugChunks.push_back(x: c); |
388 | else if (name == ".gfids$y") |
389 | guardFidChunks.push_back(x: c); |
390 | else if (name == ".giats$y") |
391 | guardIATChunks.push_back(x: c); |
392 | else if (name == ".gljmp$y") |
393 | guardLJmpChunks.push_back(x: c); |
394 | else if (name == ".gehcont$y") |
395 | guardEHContChunks.push_back(x: c); |
396 | else if (name == ".sxdata") |
397 | sxDataChunks.push_back(x: c); |
398 | else if (isArm64EC(Machine: getMachineType()) && name == ".hybmp$x") |
399 | hybmpChunks.push_back(x: c); |
400 | else if (symtab.ctx.config.tailMerge && sec->NumberOfRelocations == 0 && |
401 | name == ".rdata"&& leaderName.starts_with(Prefix: "??_C@")) |
402 | // COFF sections that look like string literal sections (i.e. no |
403 | // relocations, in .rdata, leader symbol name matches the MSVC name mangling |
404 | // for string literals) are subject to string tail merging. |
405 | MergeChunk::addSection(ctx&: symtab.ctx, c); |
406 | else if (name == ".rsrc"|| name.starts_with(Prefix: ".rsrc$")) |
407 | resourceChunks.push_back(x: c); |
408 | else if (!(sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_INFO)) |
409 | chunks.push_back(x: c); |
410 | |
411 | return c; |
412 | } |
413 | |
414 | void ObjFile::includeResourceChunks() { |
415 | chunks.insert(position: chunks.end(), first: resourceChunks.begin(), last: resourceChunks.end()); |
416 | } |
417 | |
418 | void ObjFile::readAssociativeDefinition( |
419 | COFFSymbolRef sym, const coff_aux_section_definition *def) { |
420 | readAssociativeDefinition(coffSym: sym, def, parentSection: def->getNumber(IsBigObj: sym.isBigObj())); |
421 | } |
422 | |
423 | void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, |
424 | const coff_aux_section_definition *def, |
425 | uint32_t parentIndex) { |
426 | SectionChunk *parent = sparseChunks[parentIndex]; |
427 | int32_t sectionNumber = sym.getSectionNumber(); |
428 | |
429 | auto diag = [&]() { |
430 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
431 | |
432 | StringRef parentName; |
433 | const coff_section *parentSec = getSection(i: parentIndex); |
434 | if (Expected<StringRef> e = coffObj->getSectionName(Sec: parentSec)) |
435 | parentName = *e; |
436 | Err(ctx&: symtab.ctx) << toString(file: this) << ": associative comdat "<< name |
437 | << " (sec "<< sectionNumber |
438 | << ") has invalid reference to section "<< parentName |
439 | << " (sec "<< parentIndex << ")"; |
440 | }; |
441 | |
442 | if (parent == pendingComdat) { |
443 | // This can happen if an associative comdat refers to another associative |
444 | // comdat that appears after it (invalid per COFF spec) or to a section |
445 | // without any symbols. |
446 | diag(); |
447 | return; |
448 | } |
449 | |
450 | // Check whether the parent is prevailing. If it is, so are we, and we read |
451 | // the section; otherwise mark it as discarded. |
452 | if (parent) { |
453 | SectionChunk *c = readSection(sectionNumber, def, leaderName: ""); |
454 | sparseChunks[sectionNumber] = c; |
455 | if (c) { |
456 | c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; |
457 | parent->addAssociative(child: c); |
458 | } |
459 | } else { |
460 | sparseChunks[sectionNumber] = nullptr; |
461 | } |
462 | } |
463 | |
464 | void ObjFile::recordPrevailingSymbolForMingw( |
465 | COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { |
466 | // For comdat symbols in executable sections, where this is the copy |
467 | // of the section chunk we actually include instead of discarding it, |
468 | // add the symbol to a map to allow using it for implicitly |
469 | // associating .[px]data$<func> sections to it. |
470 | // Use the suffix from the .text$<func> instead of the leader symbol |
471 | // name, for cases where the names differ (i386 mangling/decorations, |
472 | // cases where the leader is a weak symbol named .weak.func.default*). |
473 | int32_t sectionNumber = sym.getSectionNumber(); |
474 | SectionChunk *sc = sparseChunks[sectionNumber]; |
475 | if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { |
476 | StringRef name = sc->getSectionName().split(Separator: '$').second; |
477 | prevailingSectionMap[name] = sectionNumber; |
478 | } |
479 | } |
480 | |
481 | void ObjFile::maybeAssociateSEHForMingw( |
482 | COFFSymbolRef sym, const coff_aux_section_definition *def, |
483 | const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { |
484 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
485 | if (name.consume_front(Prefix: ".pdata$") || name.consume_front(Prefix: ".xdata$") || |
486 | name.consume_front(Prefix: ".eh_frame$")) { |
487 | // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly |
488 | // associative to the symbol <func>. |
489 | auto parentSym = prevailingSectionMap.find(Val: name); |
490 | if (parentSym != prevailingSectionMap.end()) |
491 | readAssociativeDefinition(sym, def, parentIndex: parentSym->second); |
492 | } |
493 | } |
494 | |
495 | Symbol *ObjFile::createRegular(COFFSymbolRef sym) { |
496 | SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; |
497 | if (sym.isExternal()) { |
498 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
499 | if (sc) |
500 | return symtab.addRegular(f: this, n: name, s: sym.getGeneric(), c: sc, |
501 | sectionOffset: sym.getValue()); |
502 | // For MinGW symbols named .weak.* that point to a discarded section, |
503 | // don't create an Undefined symbol. If nothing ever refers to the symbol, |
504 | // everything should be fine. If something actually refers to the symbol |
505 | // (e.g. the undefined weak alias), linking will fail due to undefined |
506 | // references at the end. |
507 | if (symtab.ctx.config.mingw && name.starts_with(Prefix: ".weak.")) |
508 | return nullptr; |
509 | return symtab.addUndefined(name, f: this, overrideLazy: false); |
510 | } |
511 | if (sc) { |
512 | const coff_symbol_generic *symGen = sym.getGeneric(); |
513 | if (sym.isSection()) { |
514 | auto *customSymGen = cloneSymbol(sym); |
515 | customSymGen->Value = 0; |
516 | symGen = customSymGen; |
517 | } |
518 | return make<DefinedRegular>(args: this, /*Name*/ args: "", /*IsCOMDAT*/ args: false, |
519 | /*IsExternal*/ args: false, args&: symGen, args&: sc); |
520 | } |
521 | return nullptr; |
522 | } |
523 | |
524 | void ObjFile::initializeSymbols() { |
525 | uint32_t numSymbols = coffObj->getNumberOfSymbols(); |
526 | symbols.resize(new_size: numSymbols); |
527 | |
528 | SmallVector<std::pair<Symbol *, const coff_aux_weak_external *>, 8> |
529 | weakAliases; |
530 | std::vector<uint32_t> pendingIndexes; |
531 | pendingIndexes.reserve(n: numSymbols); |
532 | |
533 | DenseMap<StringRef, uint32_t> prevailingSectionMap; |
534 | std::vector<const coff_aux_section_definition *> comdatDefs( |
535 | coffObj->getNumberOfSections() + 1); |
536 | COFFLinkerContext &ctx = symtab.ctx; |
537 | |
538 | for (uint32_t i = 0; i < numSymbols; ++i) { |
539 | COFFSymbolRef coffSym = check(e: coffObj->getSymbol(index: i)); |
540 | bool prevailingComdat; |
541 | if (coffSym.isUndefined()) { |
542 | symbols[i] = createUndefined(sym: coffSym, overrideLazy: false); |
543 | } else if (coffSym.isWeakExternal()) { |
544 | auto aux = coffSym.getAux<coff_aux_weak_external>(); |
545 | bool overrideLazy = true; |
546 | |
547 | // On ARM64EC, external function calls emit a pair of weak-dependency |
548 | // aliases: func to #func and #func to the func guess exit thunk |
549 | // (instead of a single undefined func symbol, which would be emitted on |
550 | // other targets). Allow such aliases to be overridden by lazy archive |
551 | // symbols, just as we would for undefined symbols. |
552 | if (isArm64EC(Machine: getMachineType()) && |
553 | aux->Characteristics == IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY) { |
554 | COFFSymbolRef targetSym = check(e: coffObj->getSymbol(index: aux->TagIndex)); |
555 | if (!targetSym.isAnyUndefined()) { |
556 | // If the target is defined, it may be either a guess exit thunk or |
557 | // the actual implementation. If it's the latter, consider the alias |
558 | // to be part of the implementation and override potential lazy |
559 | // archive symbols. |
560 | StringRef targetName = check(e: coffObj->getSymbolName(Symbol: targetSym)); |
561 | StringRef name = check(e: coffObj->getSymbolName(Symbol: coffSym)); |
562 | std::optional<std::string> mangledName = |
563 | getArm64ECMangledFunctionName(Name: name); |
564 | overrideLazy = mangledName == targetName; |
565 | } else { |
566 | overrideLazy = false; |
567 | } |
568 | } |
569 | symbols[i] = createUndefined(sym: coffSym, overrideLazy); |
570 | weakAliases.emplace_back(Args&: symbols[i], Args&: aux); |
571 | } else if (std::optional<Symbol *> optSym = |
572 | createDefined(sym: coffSym, comdatDefs, prevailingComdat)) { |
573 | symbols[i] = *optSym; |
574 | if (ctx.config.mingw && prevailingComdat) |
575 | recordPrevailingSymbolForMingw(sym: coffSym, prevailingSectionMap); |
576 | } else { |
577 | // createDefined() returns std::nullopt if a symbol belongs to a section |
578 | // that was pending at the point when the symbol was read. This can happen |
579 | // in two cases: |
580 | // 1) section definition symbol for a comdat leader; |
581 | // 2) symbol belongs to a comdat section associated with another section. |
582 | // In both of these cases, we can expect the section to be resolved by |
583 | // the time we finish visiting the remaining symbols in the symbol |
584 | // table. So we postpone the handling of this symbol until that time. |
585 | pendingIndexes.push_back(x: i); |
586 | } |
587 | i += coffSym.getNumberOfAuxSymbols(); |
588 | } |
589 | |
590 | for (uint32_t i : pendingIndexes) { |
591 | COFFSymbolRef sym = check(e: coffObj->getSymbol(index: i)); |
592 | if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { |
593 | if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) |
594 | readAssociativeDefinition(sym, def); |
595 | else if (ctx.config.mingw) |
596 | maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); |
597 | } |
598 | if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { |
599 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
600 | Log(ctx) << "comdat section "<< name |
601 | << " without leader and unassociated, discarding"; |
602 | continue; |
603 | } |
604 | symbols[i] = createRegular(sym); |
605 | } |
606 | |
607 | for (auto &kv : weakAliases) { |
608 | Symbol *sym = kv.first; |
609 | const coff_aux_weak_external *aux = kv.second; |
610 | checkAndSetWeakAlias(symtab, f: this, source: sym, target: symbols[aux->TagIndex], |
611 | isAntiDep: aux->Characteristics == |
612 | IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY); |
613 | } |
614 | |
615 | // Free the memory used by sparseChunks now that symbol loading is finished. |
616 | decltype(sparseChunks)().swap(x&: sparseChunks); |
617 | } |
618 | |
619 | Symbol *ObjFile::createUndefined(COFFSymbolRef sym, bool overrideLazy) { |
620 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
621 | Symbol *s = symtab.addUndefined(name, f: this, overrideLazy); |
622 | |
623 | // Add an anti-dependency alias for undefined AMD64 symbols on the ARM64EC |
624 | // target. |
625 | if (symtab.isEC() && getMachineType() == AMD64) { |
626 | auto u = dyn_cast<Undefined>(Val: s); |
627 | if (u && !u->weakAlias) { |
628 | if (std::optional<std::string> mangledName = |
629 | getArm64ECMangledFunctionName(Name: name)) { |
630 | Symbol *m = symtab.addUndefined(name: saver().save(S: *mangledName), f: this, |
631 | /*overrideLazy=*/false); |
632 | u->setWeakAlias(sym: m, /*antiDep=*/true); |
633 | } |
634 | } |
635 | } |
636 | return s; |
637 | } |
638 | |
639 | static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, |
640 | int32_t section) { |
641 | uint32_t numSymbols = obj->getNumberOfSymbols(); |
642 | for (uint32_t i = 0; i < numSymbols; ++i) { |
643 | COFFSymbolRef sym = check(e: obj->getSymbol(index: i)); |
644 | if (sym.getSectionNumber() != section) |
645 | continue; |
646 | if (const coff_aux_section_definition *def = sym.getSectionDefinition()) |
647 | return def; |
648 | } |
649 | return nullptr; |
650 | } |
651 | |
652 | void ObjFile::handleComdatSelection( |
653 | COFFSymbolRef sym, COMDATType &selection, bool &prevailing, |
654 | DefinedRegular *leader, |
655 | const llvm::object::coff_aux_section_definition *def) { |
656 | if (prevailing) |
657 | return; |
658 | // There's already an existing comdat for this symbol: `Leader`. |
659 | // Use the comdats's selection field to determine if the new |
660 | // symbol in `Sym` should be discarded, produce a duplicate symbol |
661 | // error, etc. |
662 | |
663 | SectionChunk *leaderChunk = leader->getChunk(); |
664 | COMDATType leaderSelection = leaderChunk->selection; |
665 | COFFLinkerContext &ctx = symtab.ctx; |
666 | |
667 | assert(leader->data && "Comdat leader without SectionChunk?"); |
668 | if (isa<BitcodeFile>(Val: leader->file)) { |
669 | // If the leader is only a LTO symbol, we don't know e.g. its final size |
670 | // yet, so we can't do the full strict comdat selection checking yet. |
671 | selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY; |
672 | } |
673 | |
674 | if ((selection == IMAGE_COMDAT_SELECT_ANY && |
675 | leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || |
676 | (selection == IMAGE_COMDAT_SELECT_LARGEST && |
677 | leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { |
678 | // cl.exe picks "any" for vftables when building with /GR- and |
679 | // "largest" when building with /GR. To be able to link object files |
680 | // compiled with each flag, "any" and "largest" are merged as "largest". |
681 | leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; |
682 | } |
683 | |
684 | // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". |
685 | // Clang on the other hand picks "any". To be able to link two object files |
686 | // with a __declspec(selectany) declaration, one compiled with gcc and the |
687 | // other with clang, we merge them as proper "same size as" |
688 | if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && |
689 | leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || |
690 | (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && |
691 | leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { |
692 | leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; |
693 | } |
694 | |
695 | // Other than that, comdat selections must match. This is a bit more |
696 | // strict than link.exe which allows merging "any" and "largest" if "any" |
697 | // is the first symbol the linker sees, and it allows merging "largest" |
698 | // with everything (!) if "largest" is the first symbol the linker sees. |
699 | // Making this symmetric independent of which selection is seen first |
700 | // seems better though. |
701 | // (This behavior matches ModuleLinker::getComdatResult().) |
702 | if (selection != leaderSelection) { |
703 | Log(ctx) << "conflicting comdat type for "<< symtab.printSymbol(sym: leader) |
704 | << ": "<< (int)leaderSelection << " in "<< leader->getFile() |
705 | << " and "<< (int)selection << " in "<< this; |
706 | symtab.reportDuplicate(existing: leader, newFile: this); |
707 | return; |
708 | } |
709 | |
710 | switch (selection) { |
711 | case IMAGE_COMDAT_SELECT_NODUPLICATES: |
712 | symtab.reportDuplicate(existing: leader, newFile: this); |
713 | break; |
714 | |
715 | case IMAGE_COMDAT_SELECT_ANY: |
716 | // Nothing to do. |
717 | break; |
718 | |
719 | case IMAGE_COMDAT_SELECT_SAME_SIZE: |
720 | if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { |
721 | if (!ctx.config.mingw) { |
722 | symtab.reportDuplicate(existing: leader, newFile: this); |
723 | } else { |
724 | const coff_aux_section_definition *leaderDef = nullptr; |
725 | if (leaderChunk->file) |
726 | leaderDef = findSectionDef(obj: leaderChunk->file->getCOFFObj(), |
727 | section: leaderChunk->getSectionNumber()); |
728 | if (!leaderDef || leaderDef->Length != def->Length) |
729 | symtab.reportDuplicate(existing: leader, newFile: this); |
730 | } |
731 | } |
732 | break; |
733 | |
734 | case IMAGE_COMDAT_SELECT_EXACT_MATCH: { |
735 | SectionChunk newChunk(this, getSection(sym)); |
736 | // link.exe only compares section contents here and doesn't complain |
737 | // if the two comdat sections have e.g. different alignment. |
738 | // Match that. |
739 | if (leaderChunk->getContents() != newChunk.getContents()) |
740 | symtab.reportDuplicate(existing: leader, newFile: this, newSc: &newChunk, newSectionOffset: sym.getValue()); |
741 | break; |
742 | } |
743 | |
744 | case IMAGE_COMDAT_SELECT_ASSOCIATIVE: |
745 | // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. |
746 | // (This means lld-link doesn't produce duplicate symbol errors for |
747 | // associative comdats while link.exe does, but associate comdats |
748 | // are never extern in practice.) |
749 | llvm_unreachable("createDefined not called for associative comdats"); |
750 | |
751 | case IMAGE_COMDAT_SELECT_LARGEST: |
752 | if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { |
753 | // Replace the existing comdat symbol with the new one. |
754 | StringRef name = check(e: coffObj->getSymbolName(Symbol: sym)); |
755 | // FIXME: This is incorrect: With /opt:noref, the previous sections |
756 | // make it into the final executable as well. Correct handling would |
757 | // be to undo reading of the whole old section that's being replaced, |
758 | // or doing one pass that determines what the final largest comdat |
759 | // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading |
760 | // only the largest one. |
761 | replaceSymbol<DefinedRegular>(s: leader, arg: this, arg&: name, /*IsCOMDAT*/ arg: true, |
762 | /*IsExternal*/ arg: true, arg: sym.getGeneric(), |
763 | arg: nullptr); |
764 | prevailing = true; |
765 | } |
766 | break; |
767 | |
768 | case IMAGE_COMDAT_SELECT_NEWEST: |
769 | llvm_unreachable("should have been rejected earlier"); |
770 | } |
771 | } |
772 | |
773 | std::optional<Symbol *> ObjFile::createDefined( |
774 | COFFSymbolRef sym, |
775 | std::vector<const coff_aux_section_definition *> &comdatDefs, |
776 | bool &prevailing) { |
777 | prevailing = false; |
778 | auto getName = [&]() { return check(e: coffObj->getSymbolName(Symbol: sym)); }; |
779 | |
780 | if (sym.isCommon()) { |
781 | auto *c = make<CommonChunk>(args&: sym); |
782 | chunks.push_back(x: c); |
783 | return symtab.addCommon(f: this, n: getName(), size: sym.getValue(), s: sym.getGeneric(), |
784 | c); |
785 | } |
786 | |
787 | COFFLinkerContext &ctx = symtab.ctx; |
788 | if (sym.isAbsolute()) { |
789 | StringRef name = getName(); |
790 | |
791 | if (name == "@feat.00") |
792 | feat00Flags = sym.getValue(); |
793 | // Skip special symbols. |
794 | if (ignoredSymbolName(name)) |
795 | return nullptr; |
796 | |
797 | if (sym.isExternal()) |
798 | return symtab.addAbsolute(n: name, s: sym); |
799 | return make<DefinedAbsolute>(args&: ctx, args&: name, args&: sym); |
800 | } |
801 | |
802 | int32_t sectionNumber = sym.getSectionNumber(); |
803 | if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) |
804 | return nullptr; |
805 | |
806 | if (sym.isEmptySectionDeclaration()) { |
807 | // As there is no coff_section in the object file for these, make a |
808 | // new virtual one, with everything zeroed out (i.e. an empty section), |
809 | // with only the name and characteristics set. |
810 | StringRef name = getName(); |
811 | auto *hdr = make<coff_section>(); |
812 | memset(s: hdr, c: 0, n: sizeof(*hdr)); |
813 | strncpy(dest: hdr->Name, src: name.data(), |
814 | n: std::min(a: name.size(), b: (size_t)COFF::NameSize)); |
815 | // The Value field in a section symbol may contain the characteristics, |
816 | // or it may be zero, where we make something up (that matches what is |
817 | // used in .idata sections in the regular object files in import libraries). |
818 | if (sym.getValue()) |
819 | hdr->Characteristics = sym.getValue() | IMAGE_SCN_ALIGN_4BYTES; |
820 | else |
821 | hdr->Characteristics = IMAGE_SCN_CNT_INITIALIZED_DATA | |
822 | IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE | |
823 | IMAGE_SCN_ALIGN_4BYTES; |
824 | auto *sc = make<SectionChunk>(args: this, args&: hdr); |
825 | chunks.push_back(x: sc); |
826 | |
827 | auto *symGen = cloneSymbol(sym); |
828 | // Ignore the Value offset of these symbols, as it may be a bitmask. |
829 | symGen->Value = 0; |
830 | return make<DefinedRegular>(args: this, /*name=*/args: "", /*isCOMDAT=*/args: false, |
831 | /*isExternal=*/args: false, args&: symGen, args&: sc); |
832 | } |
833 | |
834 | if (llvm::COFF::isReservedSectionNumber(SectionNumber: sectionNumber)) |
835 | Fatal(ctx) << toString(file: this) << ": "<< getName() |
836 | << " should not refer to special section " |
837 | << Twine(sectionNumber); |
838 | |
839 | if ((uint32_t)sectionNumber >= sparseChunks.size()) |
840 | Fatal(ctx) << toString(file: this) << ": "<< getName() |
841 | << " should not refer to non-existent section " |
842 | << Twine(sectionNumber); |
843 | |
844 | // Comdat handling. |
845 | // A comdat symbol consists of two symbol table entries. |
846 | // The first symbol entry has the name of the section (e.g. .text), fixed |
847 | // values for the other fields, and one auxiliary record. |
848 | // The second symbol entry has the name of the comdat symbol, called the |
849 | // "comdat leader". |
850 | // When this function is called for the first symbol entry of a comdat, |
851 | // it sets comdatDefs and returns std::nullopt, and when it's called for the |
852 | // second symbol entry it reads comdatDefs and then sets it back to nullptr. |
853 | |
854 | // Handle comdat leader. |
855 | if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { |
856 | comdatDefs[sectionNumber] = nullptr; |
857 | DefinedRegular *leader; |
858 | |
859 | if (sym.isExternal()) { |
860 | std::tie(args&: leader, args&: prevailing) = |
861 | symtab.addComdat(f: this, n: getName(), s: sym.getGeneric()); |
862 | } else { |
863 | leader = make<DefinedRegular>(args: this, /*Name*/ args: "", /*IsCOMDAT*/ args: false, |
864 | /*IsExternal*/ args: false, args: sym.getGeneric()); |
865 | prevailing = true; |
866 | } |
867 | |
868 | if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || |
869 | // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe |
870 | // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. |
871 | def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { |
872 | Fatal(ctx) << "unknown comdat type " |
873 | << std::to_string(val: (int)def->Selection) << " for "<< getName() |
874 | << " in "<< toString(file: this); |
875 | } |
876 | COMDATType selection = (COMDATType)def->Selection; |
877 | |
878 | if (leader->isCOMDAT) |
879 | handleComdatSelection(sym, selection, prevailing, leader, def); |
880 | |
881 | if (prevailing) { |
882 | SectionChunk *c = readSection(sectionNumber, def, leaderName: getName()); |
883 | sparseChunks[sectionNumber] = c; |
884 | if (!c) |
885 | return nullptr; |
886 | c->sym = cast<DefinedRegular>(Val: leader); |
887 | c->selection = selection; |
888 | cast<DefinedRegular>(Val: leader)->data = &c->repl; |
889 | } else { |
890 | sparseChunks[sectionNumber] = nullptr; |
891 | } |
892 | return leader; |
893 | } |
894 | |
895 | // Prepare to handle the comdat leader symbol by setting the section's |
896 | // ComdatDefs pointer if we encounter a non-associative comdat. |
897 | if (sparseChunks[sectionNumber] == pendingComdat) { |
898 | if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { |
899 | if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) |
900 | comdatDefs[sectionNumber] = def; |
901 | } |
902 | return std::nullopt; |
903 | } |
904 | |
905 | return createRegular(sym); |
906 | } |
907 | |
908 | MachineTypes ObjFile::getMachineType() const { |
909 | return static_cast<MachineTypes>(coffObj->getMachine()); |
910 | } |
911 | |
912 | ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { |
913 | if (SectionChunk *sec = SectionChunk::findByName(sections: debugChunks, name: secName)) |
914 | return sec->consumeDebugMagic(); |
915 | return {}; |
916 | } |
917 | |
918 | // OBJ files systematically store critical information in a .debug$S stream, |
919 | // even if the TU was compiled with no debug info. At least two records are |
920 | // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the |
921 | // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is |
922 | // currently used to initialize the hotPatchable member. |
923 | void ObjFile::initializeFlags() { |
924 | ArrayRef<uint8_t> data = getDebugSection(secName: ".debug$S"); |
925 | if (data.empty()) |
926 | return; |
927 | |
928 | DebugSubsectionArray subsections; |
929 | |
930 | BinaryStreamReader reader(data, llvm::endianness::little); |
931 | ExitOnError exitOnErr; |
932 | exitOnErr(reader.readArray(Array&: subsections, Size: data.size())); |
933 | |
934 | for (const DebugSubsectionRecord &ss : subsections) { |
935 | if (ss.kind() != DebugSubsectionKind::Symbols) |
936 | continue; |
937 | |
938 | unsigned offset = 0; |
939 | |
940 | // Only parse the first two records. We are only looking for S_OBJNAME |
941 | // and S_COMPILE3, and they usually appear at the beginning of the |
942 | // stream. |
943 | for (unsigned i = 0; i < 2; ++i) { |
944 | Expected<CVSymbol> sym = readSymbolFromStream(Stream: ss.getRecordData(), Offset: offset); |
945 | if (!sym) { |
946 | consumeError(Err: sym.takeError()); |
947 | return; |
948 | } |
949 | if (sym->kind() == SymbolKind::S_COMPILE3) { |
950 | auto cs = |
951 | cantFail(ValOrErr: SymbolDeserializer::deserializeAs<Compile3Sym>(Symbol: sym.get())); |
952 | hotPatchable = |
953 | (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; |
954 | } |
955 | if (sym->kind() == SymbolKind::S_OBJNAME) { |
956 | auto objName = cantFail(ValOrErr: SymbolDeserializer::deserializeAs<ObjNameSym>( |
957 | Symbol: sym.get())); |
958 | if (objName.Signature) |
959 | pchSignature = objName.Signature; |
960 | } |
961 | offset += sym->length(); |
962 | } |
963 | } |
964 | } |
965 | |
966 | // Depending on the compilation flags, OBJs can refer to external files, |
967 | // necessary to merge this OBJ into the final PDB. We currently support two |
968 | // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. |
969 | // And PDB type servers, when compiling with /Zi. This function extracts these |
970 | // dependencies and makes them available as a TpiSource interface (see |
971 | // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular |
972 | // output even with /Yc and /Yu and with /Zi. |
973 | void ObjFile::initializeDependencies() { |
974 | COFFLinkerContext &ctx = symtab.ctx; |
975 | if (!ctx.config.debug) |
976 | return; |
977 | |
978 | bool isPCH = false; |
979 | |
980 | ArrayRef<uint8_t> data = getDebugSection(secName: ".debug$P"); |
981 | if (!data.empty()) |
982 | isPCH = true; |
983 | else |
984 | data = getDebugSection(secName: ".debug$T"); |
985 | |
986 | // symbols but no types, make a plain, empty TpiSource anyway, because it |
987 | // simplifies adding the symbols later. |
988 | if (data.empty()) { |
989 | if (!debugChunks.empty()) |
990 | debugTypesObj = makeTpiSource(ctx, f: this); |
991 | return; |
992 | } |
993 | |
994 | // Get the first type record. It will indicate if this object uses a type |
995 | // server (/Zi) or a PCH file (/Yu). |
996 | CVTypeArray types; |
997 | BinaryStreamReader reader(data, llvm::endianness::little); |
998 | cantFail(Err: reader.readArray(Array&: types, Size: reader.getLength())); |
999 | CVTypeArray::Iterator firstType = types.begin(); |
1000 | if (firstType == types.end()) |
1001 | return; |
1002 | |
1003 | // Remember the .debug$T or .debug$P section. |
1004 | debugTypes = data; |
1005 | |
1006 | // This object file is a PCH file that others will depend on. |
1007 | if (isPCH) { |
1008 | debugTypesObj = makePrecompSource(ctx, file: this); |
1009 | return; |
1010 | } |
1011 | |
1012 | // This object file was compiled with /Zi. Enqueue the PDB dependency. |
1013 | if (firstType->kind() == LF_TYPESERVER2) { |
1014 | TypeServer2Record ts = cantFail( |
1015 | ValOrErr: TypeDeserializer::deserializeAs<TypeServer2Record>(Data: firstType->data())); |
1016 | debugTypesObj = makeUseTypeServerSource(ctx, file: this, ts); |
1017 | enqueuePdbFile(path: ts.getName(), fromFile: this); |
1018 | return; |
1019 | } |
1020 | |
1021 | // This object was compiled with /Yu. It uses types from another object file |
1022 | // with a matching signature. |
1023 | if (firstType->kind() == LF_PRECOMP) { |
1024 | PrecompRecord precomp = cantFail( |
1025 | ValOrErr: TypeDeserializer::deserializeAs<PrecompRecord>(Data: firstType->data())); |
1026 | // We're better off trusting the LF_PRECOMP signature. In some cases the |
1027 | // S_OBJNAME record doesn't contain a valid PCH signature. |
1028 | if (precomp.Signature) |
1029 | pchSignature = precomp.Signature; |
1030 | debugTypesObj = makeUsePrecompSource(ctx, file: this, ts: precomp); |
1031 | // Drop the LF_PRECOMP record from the input stream. |
1032 | debugTypes = debugTypes.drop_front(N: firstType->RecordData.size()); |
1033 | return; |
1034 | } |
1035 | |
1036 | // This is a plain old object file. |
1037 | debugTypesObj = makeTpiSource(ctx, f: this); |
1038 | } |
1039 | |
1040 | // The casing of the PDB path stamped in the OBJ can differ from the actual path |
1041 | // on disk. With this, we ensure to always use lowercase as a key for the |
1042 | // pdbInputFileInstances map, at least on Windows. |
1043 | static std::string normalizePdbPath(StringRef path) { |
1044 | #if defined(_WIN32) |
1045 | return path.lower(); |
1046 | #else // LINUX |
1047 | return std::string(path); |
1048 | #endif |
1049 | } |
1050 | |
1051 | // If existing, return the actual PDB path on disk. |
1052 | static std::optional<std::string> |
1053 | findPdbPath(StringRef pdbPath, ObjFile *dependentFile, StringRef outputPath) { |
1054 | // Ensure the file exists before anything else. In some cases, if the path |
1055 | // points to a removable device, Driver::enqueuePath() would fail with an |
1056 | // error (EAGAIN, "resource unavailable try again") which we want to skip |
1057 | // silently. |
1058 | if (llvm::sys::fs::exists(Path: pdbPath)) |
1059 | return normalizePdbPath(path: pdbPath); |
1060 | |
1061 | StringRef objPath = !dependentFile->parentName.empty() |
1062 | ? dependentFile->parentName |
1063 | : dependentFile->getName(); |
1064 | |
1065 | // Currently, type server PDBs are only created by MSVC cl, which only runs |
1066 | // on Windows, so we can assume type server paths are Windows style. |
1067 | StringRef pdbName = sys::path::filename(path: pdbPath, style: sys::path::Style::windows); |
1068 | |
1069 | // Check if the PDB is in the same folder as the OBJ. |
1070 | SmallString<128> path; |
1071 | sys::path::append(path, a: sys::path::parent_path(path: objPath), b: pdbName); |
1072 | if (llvm::sys::fs::exists(Path: path)) |
1073 | return normalizePdbPath(path); |
1074 | |
1075 | // Check if the PDB is in the output folder. |
1076 | path.clear(); |
1077 | sys::path::append(path, a: sys::path::parent_path(path: outputPath), b: pdbName); |
1078 | if (llvm::sys::fs::exists(Path: path)) |
1079 | return normalizePdbPath(path); |
1080 | |
1081 | return std::nullopt; |
1082 | } |
1083 | |
1084 | PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m) |
1085 | : InputFile(ctx.symtab, PDBKind, m) {} |
1086 | |
1087 | PDBInputFile::~PDBInputFile() = default; |
1088 | |
1089 | PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx, |
1090 | StringRef path, |
1091 | ObjFile *fromFile) { |
1092 | auto p = findPdbPath(pdbPath: path.str(), dependentFile: fromFile, outputPath: ctx.config.outputFile); |
1093 | if (!p) |
1094 | return nullptr; |
1095 | auto it = ctx.pdbInputFileInstances.find(x: *p); |
1096 | if (it != ctx.pdbInputFileInstances.end()) |
1097 | return it->second; |
1098 | return nullptr; |
1099 | } |
1100 | |
1101 | void PDBInputFile::parse() { |
1102 | symtab.ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this; |
1103 | |
1104 | std::unique_ptr<pdb::IPDBSession> thisSession; |
1105 | Error E = pdb::NativeSession::createFromPdb( |
1106 | MB: MemoryBuffer::getMemBuffer(Ref: mb, RequiresNullTerminator: false), Session&: thisSession); |
1107 | if (E) { |
1108 | loadErrorStr.emplace(args: toString(E: std::move(E))); |
1109 | return; // fail silently at this point - the error will be handled later, |
1110 | // when merging the debug type stream |
1111 | } |
1112 | |
1113 | session.reset(p: static_cast<pdb::NativeSession *>(thisSession.release())); |
1114 | |
1115 | pdb::PDBFile &pdbFile = session->getPDBFile(); |
1116 | auto expectedInfo = pdbFile.getPDBInfoStream(); |
1117 | // All PDB Files should have an Info stream. |
1118 | if (!expectedInfo) { |
1119 | loadErrorStr.emplace(args: toString(E: expectedInfo.takeError())); |
1120 | return; |
1121 | } |
1122 | debugTypesObj = makeTypeServerSource(ctx&: symtab.ctx, pdbInputFile: this); |
1123 | } |
1124 | |
1125 | // Used only for DWARF debug info, which is not common (except in MinGW |
1126 | // environments). This returns an optional pair of file name and line |
1127 | // number for where the variable was defined. |
1128 | std::optional<std::pair<StringRef, uint32_t>> |
1129 | ObjFile::getVariableLocation(StringRef var) { |
1130 | if (!dwarf) { |
1131 | dwarf = make<DWARFCache>(args: DWARFContext::create(Obj: *getCOFFObj())); |
1132 | if (!dwarf) |
1133 | return std::nullopt; |
1134 | } |
1135 | if (symtab.machine == I386) |
1136 | var.consume_front(Prefix: "_"); |
1137 | std::optional<std::pair<std::string, unsigned>> ret = |
1138 | dwarf->getVariableLoc(name: var); |
1139 | if (!ret) |
1140 | return std::nullopt; |
1141 | return std::make_pair(x: saver().save(S: ret->first), y&: ret->second); |
1142 | } |
1143 | |
1144 | // Used only for DWARF debug info, which is not common (except in MinGW |
1145 | // environments). |
1146 | std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, |
1147 | uint32_t sectionIndex) { |
1148 | if (!dwarf) { |
1149 | dwarf = make<DWARFCache>(args: DWARFContext::create(Obj: *getCOFFObj())); |
1150 | if (!dwarf) |
1151 | return std::nullopt; |
1152 | } |
1153 | |
1154 | return dwarf->getDILineInfo(offset, sectionIndex); |
1155 | } |
1156 | |
1157 | void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) { |
1158 | auto p = findPdbPath(pdbPath: path.str(), dependentFile: fromFile, outputPath: symtab.ctx.config.outputFile); |
1159 | if (!p) |
1160 | return; |
1161 | auto it = symtab.ctx.pdbInputFileInstances.emplace(args&: *p, args: nullptr); |
1162 | if (!it.second) |
1163 | return; // already scheduled for load |
1164 | symtab.ctx.driver.enqueuePDB(Path: *p); |
1165 | } |
1166 | |
1167 | ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m) |
1168 | : InputFile(ctx.getSymtab(machine: getMachineType(m)), ImportKind, m), |
1169 | live(!ctx.config.doGC) {} |
1170 | |
1171 | MachineTypes ImportFile::getMachineType(MemoryBufferRef m) { |
1172 | uint16_t machine = |
1173 | reinterpret_cast<const coff_import_header *>(m.getBufferStart())->Machine; |
1174 | return MachineTypes(machine); |
1175 | } |
1176 | |
1177 | bool ImportFile::isSameImport(const ImportFile *other) const { |
1178 | if (!externalName.empty()) |
1179 | return other->externalName == externalName; |
1180 | return hdr->OrdinalHint == other->hdr->OrdinalHint; |
1181 | } |
1182 | |
1183 | ImportThunkChunk *ImportFile::makeImportThunk() { |
1184 | switch (hdr->Machine) { |
1185 | case AMD64: |
1186 | return make<ImportThunkChunkX64>(args&: symtab.ctx, args&: impSym); |
1187 | case I386: |
1188 | return make<ImportThunkChunkX86>(args&: symtab.ctx, args&: impSym); |
1189 | case ARM64: |
1190 | return make<ImportThunkChunkARM64>(args&: symtab.ctx, args&: impSym, args: ARM64); |
1191 | case ARMNT: |
1192 | return make<ImportThunkChunkARM>(args&: symtab.ctx, args&: impSym); |
1193 | } |
1194 | llvm_unreachable("unknown machine type"); |
1195 | } |
1196 | |
1197 | void ImportFile::parse() { |
1198 | const auto *hdr = |
1199 | reinterpret_cast<const coff_import_header *>(mb.getBufferStart()); |
1200 | |
1201 | // Check if the total size is valid. |
1202 | if (mb.getBufferSize() < sizeof(*hdr) || |
1203 | mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) |
1204 | Fatal(ctx&: symtab.ctx) << "broken import library"; |
1205 | |
1206 | // Read names and create an __imp_ symbol. |
1207 | StringRef buf = mb.getBuffer().substr(Start: sizeof(*hdr)); |
1208 | auto split = buf.split(Separator: '\0'); |
1209 | buf = split.second; |
1210 | StringRef name; |
1211 | if (isArm64EC(Machine: hdr->Machine)) { |
1212 | if (std::optional<std::string> demangledName = |
1213 | getArm64ECDemangledFunctionName(Name: split.first)) |
1214 | name = saver().save(S: *demangledName); |
1215 | } |
1216 | if (name.empty()) |
1217 | name = saver().save(S: split.first); |
1218 | StringRef impName = saver().save(S: "__imp_"+ name); |
1219 | dllName = buf.split(Separator: '\0').first; |
1220 | StringRef extName; |
1221 | switch (hdr->getNameType()) { |
1222 | case IMPORT_ORDINAL: |
1223 | extName = ""; |
1224 | break; |
1225 | case IMPORT_NAME: |
1226 | extName = name; |
1227 | break; |
1228 | case IMPORT_NAME_NOPREFIX: |
1229 | extName = ltrim1(s: name, chars: "?@_"); |
1230 | break; |
1231 | case IMPORT_NAME_UNDECORATE: |
1232 | extName = ltrim1(s: name, chars: "?@_"); |
1233 | extName = extName.substr(Start: 0, N: extName.find(C: '@')); |
1234 | break; |
1235 | case IMPORT_NAME_EXPORTAS: |
1236 | extName = buf.substr(Start: dllName.size() + 1).split(Separator: '\0').first; |
1237 | break; |
1238 | } |
1239 | |
1240 | this->hdr = hdr; |
1241 | externalName = extName; |
1242 | |
1243 | bool isCode = hdr->getType() == llvm::COFF::IMPORT_CODE; |
1244 | |
1245 | if (!symtab.isEC()) { |
1246 | impSym = symtab.addImportData(n: impName, f: this, location); |
1247 | } else { |
1248 | // In addition to the regular IAT, ARM64EC also contains an auxiliary IAT, |
1249 | // which holds addresses that are guaranteed to be callable directly from |
1250 | // ARM64 code. Function symbol naming is swapped: __imp_ symbols refer to |
1251 | // the auxiliary IAT, while __imp_aux_ symbols refer to the regular IAT. For |
1252 | // data imports, the naming is reversed. |
1253 | StringRef auxImpName = saver().save(S: "__imp_aux_"+ name); |
1254 | if (isCode) { |
1255 | impSym = symtab.addImportData(n: auxImpName, f: this, location); |
1256 | impECSym = symtab.addImportData(n: impName, f: this, location&: auxLocation); |
1257 | } else { |
1258 | impSym = symtab.addImportData(n: impName, f: this, location); |
1259 | impECSym = symtab.addImportData(n: auxImpName, f: this, location&: auxLocation); |
1260 | } |
1261 | if (!impECSym) |
1262 | return; |
1263 | |
1264 | StringRef auxImpCopyName = saver().save(S: "__auximpcopy_"+ name); |
1265 | auxImpCopySym = symtab.addImportData(n: auxImpCopyName, f: this, location&: auxCopyLocation); |
1266 | if (!auxImpCopySym) |
1267 | return; |
1268 | } |
1269 | // If this was a duplicate, we logged an error but may continue; |
1270 | // in this case, impSym is nullptr. |
1271 | if (!impSym) |
1272 | return; |
1273 | |
1274 | if (hdr->getType() == llvm::COFF::IMPORT_CONST) |
1275 | static_cast<void>(symtab.addImportData(n: name, f: this, location)); |
1276 | |
1277 | // If type is function, we need to create a thunk which jump to an |
1278 | // address pointed by the __imp_ symbol. (This allows you to call |
1279 | // DLL functions just like regular non-DLL functions.) |
1280 | if (isCode) { |
1281 | if (!symtab.isEC()) { |
1282 | thunkSym = symtab.addImportThunk(name, s: impSym, chunk: makeImportThunk()); |
1283 | } else { |
1284 | thunkSym = symtab.addImportThunk( |
1285 | name, s: impSym, chunk: make<ImportThunkChunkX64>(args&: symtab.ctx, args&: impSym)); |
1286 | |
1287 | if (std::optional<std::string> mangledName = |
1288 | getArm64ECMangledFunctionName(Name: name)) { |
1289 | StringRef auxThunkName = saver().save(S: *mangledName); |
1290 | auxThunkSym = symtab.addImportThunk( |
1291 | name: auxThunkName, s: impECSym, |
1292 | chunk: make<ImportThunkChunkARM64>(args&: symtab.ctx, args&: impECSym, args: ARM64EC)); |
1293 | } |
1294 | |
1295 | StringRef impChkName = saver().save(S: "__impchk_"+ name); |
1296 | impchkThunk = make<ImportThunkChunkARM64EC>(args: this); |
1297 | impchkThunk->sym = symtab.addImportThunk(name: impChkName, s: impSym, chunk: impchkThunk); |
1298 | symtab.ctx.driver.pullArm64ECIcallHelper(); |
1299 | } |
1300 | } |
1301 | } |
1302 | |
1303 | BitcodeFile::BitcodeFile(SymbolTable &symtab, MemoryBufferRef mb, |
1304 | std::unique_ptr<lto::InputFile> &o, bool lazy) |
1305 | : InputFile(symtab, BitcodeKind, mb, lazy) { |
1306 | obj.swap(u&: o); |
1307 | } |
1308 | |
1309 | BitcodeFile *BitcodeFile::create(COFFLinkerContext &ctx, MemoryBufferRef mb, |
1310 | StringRef archiveName, |
1311 | uint64_t offsetInArchive, bool lazy) { |
1312 | std::string path = mb.getBufferIdentifier().str(); |
1313 | if (ctx.config.thinLTOIndexOnly) |
1314 | path = replaceThinLTOSuffix(path: mb.getBufferIdentifier(), |
1315 | suffix: ctx.config.thinLTOObjectSuffixReplace.first, |
1316 | repl: ctx.config.thinLTOObjectSuffixReplace.second); |
1317 | |
1318 | // ThinLTO assumes that all MemoryBufferRefs given to it have a unique |
1319 | // name. If two archives define two members with the same name, this |
1320 | // causes a collision which result in only one of the objects being taken |
1321 | // into consideration at LTO time (which very likely causes undefined |
1322 | // symbols later in the link stage). So we append file offset to make |
1323 | // filename unique. |
1324 | MemoryBufferRef mbref(mb.getBuffer(), |
1325 | saver().save(S: archiveName.empty() |
1326 | ? path |
1327 | : archiveName + |
1328 | sys::path::filename(path) + |
1329 | utostr(X: offsetInArchive))); |
1330 | |
1331 | std::unique_ptr<lto::InputFile> obj = check(e: lto::InputFile::create(Object: mbref)); |
1332 | return make<BitcodeFile>(args&: ctx.getSymtab(machine: getMachineType(obj: obj.get())), args&: mb, args&: obj, |
1333 | args&: lazy); |
1334 | } |
1335 | |
1336 | BitcodeFile::~BitcodeFile() = default; |
1337 | |
1338 | void BitcodeFile::parse() { |
1339 | llvm::StringSaver &saver = lld::saver(); |
1340 | |
1341 | std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); |
1342 | for (size_t i = 0; i != obj->getComdatTable().size(); ++i) |
1343 | // FIXME: Check nodeduplicate |
1344 | comdat[i] = |
1345 | symtab.addComdat(f: this, n: saver.save(S: obj->getComdatTable()[i].first)); |
1346 | for (const lto::InputFile::Symbol &objSym : obj->symbols()) { |
1347 | StringRef symName = saver.save(S: objSym.getName()); |
1348 | int comdatIndex = objSym.getComdatIndex(); |
1349 | Symbol *sym; |
1350 | SectionChunk *fakeSC = nullptr; |
1351 | if (objSym.isExecutable()) |
1352 | fakeSC = &symtab.ctx.ltoTextSectionChunk.chunk; |
1353 | else |
1354 | fakeSC = &symtab.ctx.ltoDataSectionChunk.chunk; |
1355 | if (objSym.isUndefined()) { |
1356 | sym = symtab.addUndefined(name: symName, f: this, overrideLazy: false); |
1357 | if (objSym.isWeak()) |
1358 | sym->deferUndefined = true; |
1359 | // If one LTO object file references (i.e. has an undefined reference to) |
1360 | // a symbol with an __imp_ prefix, the LTO compilation itself sees it |
1361 | // as unprefixed but with a dllimport attribute instead, and doesn't |
1362 | // understand the relation to a concrete IR symbol with the __imp_ prefix. |
1363 | // |
1364 | // For such cases, mark the symbol as used in a regular object (i.e. the |
1365 | // symbol must be retained) so that the linker can associate the |
1366 | // references in the end. If the symbol is defined in an import library |
1367 | // or in a regular object file, this has no effect, but if it is defined |
1368 | // in another LTO object file, this makes sure it is kept, to fulfill |
1369 | // the reference when linking the output of the LTO compilation. |
1370 | if (symName.starts_with(Prefix: "__imp_")) |
1371 | sym->isUsedInRegularObj = true; |
1372 | } else if (objSym.isCommon()) { |
1373 | sym = symtab.addCommon(f: this, n: symName, size: objSym.getCommonSize()); |
1374 | } else if (objSym.isWeak() && objSym.isIndirect()) { |
1375 | // Weak external. |
1376 | sym = symtab.addUndefined(name: symName, f: this, overrideLazy: true); |
1377 | std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); |
1378 | Symbol *alias = symtab.addUndefined(name: saver.save(S: fallback)); |
1379 | checkAndSetWeakAlias(symtab, f: this, source: sym, target: alias, isAntiDep: false); |
1380 | } else if (comdatIndex != -1) { |
1381 | if (symName == obj->getComdatTable()[comdatIndex].first) { |
1382 | sym = comdat[comdatIndex].first; |
1383 | if (cast<DefinedRegular>(Val: sym)->data == nullptr) |
1384 | cast<DefinedRegular>(Val: sym)->data = &fakeSC->repl; |
1385 | } else if (comdat[comdatIndex].second) { |
1386 | sym = symtab.addRegular(f: this, n: symName, s: nullptr, c: fakeSC); |
1387 | } else { |
1388 | sym = symtab.addUndefined(name: symName, f: this, overrideLazy: false); |
1389 | } |
1390 | } else { |
1391 | sym = |
1392 | symtab.addRegular(f: this, n: symName, s: nullptr, c: fakeSC, sectionOffset: 0, isWeak: objSym.isWeak()); |
1393 | } |
1394 | symbols.push_back(x: sym); |
1395 | if (objSym.isUsed()) |
1396 | symtab.ctx.config.gcroot.push_back(x: sym); |
1397 | } |
1398 | directives = saver.save(S: obj->getCOFFLinkerOpts()); |
1399 | } |
1400 | |
1401 | void BitcodeFile::parseLazy() { |
1402 | for (const lto::InputFile::Symbol &sym : obj->symbols()) |
1403 | if (!sym.isUndefined()) { |
1404 | symtab.addLazyObject(f: this, n: sym.getName()); |
1405 | if (!lazy) |
1406 | return; |
1407 | } |
1408 | } |
1409 | |
1410 | MachineTypes BitcodeFile::getMachineType(const llvm::lto::InputFile *obj) { |
1411 | Triple t(obj->getTargetTriple()); |
1412 | switch (t.getArch()) { |
1413 | case Triple::x86_64: |
1414 | return AMD64; |
1415 | case Triple::x86: |
1416 | return I386; |
1417 | case Triple::arm: |
1418 | case Triple::thumb: |
1419 | return ARMNT; |
1420 | case Triple::aarch64: |
1421 | return t.isWindowsArm64EC() ? ARM64EC : ARM64; |
1422 | default: |
1423 | return IMAGE_FILE_MACHINE_UNKNOWN; |
1424 | } |
1425 | } |
1426 | |
1427 | std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix, |
1428 | StringRef repl) { |
1429 | if (path.consume_back(Suffix: suffix)) |
1430 | return (path + repl).str(); |
1431 | return std::string(path); |
1432 | } |
1433 | |
1434 | static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) { |
1435 | for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) { |
1436 | const coff_section *sec = CHECK(coffObj->getSection(i), file); |
1437 | if (rva >= sec->VirtualAddress && |
1438 | rva <= sec->VirtualAddress + sec->VirtualSize) { |
1439 | return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0; |
1440 | } |
1441 | } |
1442 | return false; |
1443 | } |
1444 | |
1445 | void DLLFile::parse() { |
1446 | // Parse a memory buffer as a PE-COFF executable. |
1447 | std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); |
1448 | |
1449 | if (auto *obj = dyn_cast<COFFObjectFile>(Val: bin.get())) { |
1450 | bin.release(); |
1451 | coffObj.reset(p: obj); |
1452 | } else { |
1453 | Err(ctx&: symtab.ctx) << toString(file: this) << " is not a COFF file"; |
1454 | return; |
1455 | } |
1456 | |
1457 | if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) { |
1458 | Err(ctx&: symtab.ctx) << toString(file: this) << " is not a PE-COFF executable"; |
1459 | return; |
1460 | } |
1461 | |
1462 | for (const auto &exp : coffObj->export_directories()) { |
1463 | StringRef dllName, symbolName; |
1464 | uint32_t exportRVA; |
1465 | checkError(e: exp.getDllName(Result&: dllName)); |
1466 | checkError(e: exp.getSymbolName(Result&: symbolName)); |
1467 | checkError(e: exp.getExportRVA(Result&: exportRVA)); |
1468 | |
1469 | if (symbolName.empty()) |
1470 | continue; |
1471 | |
1472 | bool code = isRVACode(coffObj: coffObj.get(), rva: exportRVA, file: this); |
1473 | |
1474 | Symbol *s = make<Symbol>(); |
1475 | s->dllName = dllName; |
1476 | s->symbolName = symbolName; |
1477 | s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA; |
1478 | s->nameType = ImportNameType::IMPORT_NAME; |
1479 | |
1480 | if (coffObj->getMachine() == I386) { |
1481 | s->symbolName = symbolName = saver().save(S: "_"+ symbolName); |
1482 | s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX; |
1483 | } |
1484 | |
1485 | StringRef impName = saver().save(S: "__imp_"+ symbolName); |
1486 | symtab.addLazyDLLSymbol(f: this, sym: s, n: impName); |
1487 | if (code) |
1488 | symtab.addLazyDLLSymbol(f: this, sym: s, n: symbolName); |
1489 | if (symtab.isEC()) { |
1490 | StringRef impAuxName = saver().save(S: "__imp_aux_"+ symbolName); |
1491 | symtab.addLazyDLLSymbol(f: this, sym: s, n: impAuxName); |
1492 | |
1493 | if (code) { |
1494 | std::optional<std::string> mangledName = |
1495 | getArm64ECMangledFunctionName(Name: symbolName); |
1496 | if (mangledName) |
1497 | symtab.addLazyDLLSymbol(f: this, sym: s, n: *mangledName); |
1498 | } |
1499 | } |
1500 | } |
1501 | } |
1502 | |
1503 | MachineTypes DLLFile::getMachineType() const { |
1504 | if (coffObj) |
1505 | return static_cast<MachineTypes>(coffObj->getMachine()); |
1506 | return IMAGE_FILE_MACHINE_UNKNOWN; |
1507 | } |
1508 | |
1509 | void DLLFile::makeImport(DLLFile::Symbol *s) { |
1510 | if (!seen.insert(key: s->symbolName).second) |
1511 | return; |
1512 | |
1513 | size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs |
1514 | size_t size = sizeof(coff_import_header) + impSize; |
1515 | char *buf = bAlloc().Allocate<char>(Num: size); |
1516 | memset(s: buf, c: 0, n: size); |
1517 | char *p = buf; |
1518 | auto *imp = reinterpret_cast<coff_import_header *>(p); |
1519 | p += sizeof(*imp); |
1520 | imp->Sig2 = 0xFFFF; |
1521 | imp->Machine = coffObj->getMachine(); |
1522 | imp->SizeOfData = impSize; |
1523 | imp->OrdinalHint = 0; // Only linking by name |
1524 | imp->TypeInfo = (s->nameType << 2) | s->importType; |
1525 | |
1526 | // Write symbol name and DLL name. |
1527 | memcpy(dest: p, src: s->symbolName.data(), n: s->symbolName.size()); |
1528 | p += s->symbolName.size() + 1; |
1529 | memcpy(dest: p, src: s->dllName.data(), n: s->dllName.size()); |
1530 | MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName); |
1531 | ImportFile *impFile = make<ImportFile>(args&: symtab.ctx, args&: mbref); |
1532 | symtab.ctx.driver.addFile(file: impFile); |
1533 | } |
1534 |
Definitions
- getBasename
- toString
- operator<<
- checkAndSetWeakAlias
- ignoredSymbolName
- cloneSymbol
- ArchiveFile
- parse
- addMember
- getArchiveMembers
- ObjFile
- create
- parseLazy
- ECMapEntry
- initializeECThunks
- parse
- getSection
- pendingComdat
- initializeChunks
- readSection
- includeResourceChunks
- readAssociativeDefinition
- readAssociativeDefinition
- recordPrevailingSymbolForMingw
- maybeAssociateSEHForMingw
- createRegular
- initializeSymbols
- createUndefined
- findSectionDef
- handleComdatSelection
- createDefined
- getMachineType
- getDebugSection
- initializeFlags
- initializeDependencies
- normalizePdbPath
- findPdbPath
- PDBInputFile
- ~PDBInputFile
- findFromRecordPath
- parse
- getVariableLocation
- getDILineInfo
- enqueuePdbFile
- ImportFile
- getMachineType
- isSameImport
- makeImportThunk
- parse
- BitcodeFile
- create
- ~BitcodeFile
- parse
- parseLazy
- getMachineType
- replaceThinLTOSuffix
- isRVACode
- parse
- getMachineType
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more