| 1 | //===- Relocations.h -------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLD_ELF_RELOCATIONS_H |
| 10 | #define LLD_ELF_RELOCATIONS_H |
| 11 | |
| 12 | #include "lld/Common/LLVM.h" |
| 13 | #include "llvm/ADT/DenseMap.h" |
| 14 | #include "llvm/ADT/STLExtras.h" |
| 15 | #include "llvm/Object/ELFTypes.h" |
| 16 | #include <vector> |
| 17 | |
| 18 | namespace lld::elf { |
| 19 | struct Ctx; |
| 20 | class Defined; |
| 21 | class Symbol; |
| 22 | class InputSection; |
| 23 | class InputSectionBase; |
| 24 | class OutputSection; |
| 25 | class RelocationBaseSection; |
| 26 | class SectionBase; |
| 27 | |
| 28 | // Represents a relocation type, such as R_X86_64_PC32 or R_ARM_THM_CALL. |
| 29 | struct RelType { |
| 30 | uint32_t v = 0; |
| 31 | /*implicit*/ constexpr RelType(uint32_t v = 0) : v(v) {} |
| 32 | /*implicit*/ operator uint32_t() const { return v; } |
| 33 | }; |
| 34 | |
| 35 | using JumpModType = uint32_t; |
| 36 | |
| 37 | // List of target-independent relocation types. Relocations read |
| 38 | // from files are converted to these types so that the main code |
| 39 | // doesn't have to know about architecture-specific details. |
| 40 | enum RelExpr { |
| 41 | R_ABS, |
| 42 | R_ADDEND, |
| 43 | R_DTPREL, |
| 44 | R_GOT, |
| 45 | R_GOT_OFF, |
| 46 | R_GOT_PC, |
| 47 | R_GOTONLY_PC, |
| 48 | R_GOTPLTONLY_PC, |
| 49 | R_GOTPLT, |
| 50 | R_GOTPLTREL, |
| 51 | R_GOTREL, |
| 52 | R_GOTPLT_GOTREL, |
| 53 | R_GOTPLT_PC, |
| 54 | R_NONE, |
| 55 | R_PC, |
| 56 | R_PLT, |
| 57 | R_PLT_PC, |
| 58 | R_PLT_GOTPLT, |
| 59 | R_PLT_GOTREL, |
| 60 | R_RELAX_HINT, |
| 61 | R_RELAX_GOT_PC, |
| 62 | R_RELAX_GOT_PC_NOPIC, |
| 63 | R_RELAX_TLS_GD_TO_IE, |
| 64 | R_RELAX_TLS_GD_TO_IE_ABS, |
| 65 | R_RELAX_TLS_GD_TO_IE_GOT_OFF, |
| 66 | R_RELAX_TLS_GD_TO_IE_GOTPLT, |
| 67 | R_RELAX_TLS_GD_TO_LE, |
| 68 | R_RELAX_TLS_GD_TO_LE_NEG, |
| 69 | R_RELAX_TLS_IE_TO_LE, |
| 70 | R_RELAX_TLS_LD_TO_LE, |
| 71 | R_RELAX_TLS_LD_TO_LE_ABS, |
| 72 | R_SIZE, |
| 73 | R_TPREL, |
| 74 | R_TPREL_NEG, |
| 75 | R_TLSDESC, |
| 76 | R_TLSDESC_CALL, |
| 77 | R_TLSDESC_PC, |
| 78 | R_TLSDESC_GOTPLT, |
| 79 | R_TLSGD_GOT, |
| 80 | R_TLSGD_GOTPLT, |
| 81 | R_TLSGD_PC, |
| 82 | R_TLSIE_HINT, |
| 83 | R_TLSLD_GOT, |
| 84 | R_TLSLD_GOTPLT, |
| 85 | R_TLSLD_GOT_OFF, |
| 86 | R_TLSLD_HINT, |
| 87 | R_TLSLD_PC, |
| 88 | |
| 89 | // The following is abstract relocation types used for only one target. |
| 90 | // |
| 91 | // Even though RelExpr is intended to be a target-neutral representation |
| 92 | // of a relocation type, there are some relocations whose semantics are |
| 93 | // unique to a target. Such relocation are marked with RE_<TARGET_NAME>. |
| 94 | RE_AARCH64_GOT_PAGE_PC, |
| 95 | RE_AARCH64_AUTH_GOT_PAGE_PC, |
| 96 | RE_AARCH64_GOT_PAGE, |
| 97 | RE_AARCH64_AUTH_GOT, |
| 98 | RE_AARCH64_AUTH_GOT_PC, |
| 99 | RE_AARCH64_PAGE_PC, |
| 100 | RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC, |
| 101 | RE_AARCH64_TLSDESC_PAGE, |
| 102 | RE_AARCH64_AUTH_TLSDESC_PAGE, |
| 103 | RE_AARCH64_AUTH_TLSDESC, |
| 104 | RE_AARCH64_AUTH, |
| 105 | RE_ARM_PCA, |
| 106 | RE_ARM_SBREL, |
| 107 | RE_MIPS_GOTREL, |
| 108 | RE_MIPS_GOT_GP, |
| 109 | RE_MIPS_GOT_GP_PC, |
| 110 | RE_MIPS_GOT_LOCAL_PAGE, |
| 111 | RE_MIPS_GOT_OFF, |
| 112 | RE_MIPS_GOT_OFF32, |
| 113 | RE_MIPS_TLSGD, |
| 114 | RE_MIPS_TLSLD, |
| 115 | RE_PPC32_PLTREL, |
| 116 | RE_PPC64_CALL, |
| 117 | RE_PPC64_CALL_PLT, |
| 118 | RE_PPC64_RELAX_TOC, |
| 119 | RE_PPC64_TOCBASE, |
| 120 | RE_PPC64_RELAX_GOT_PC, |
| 121 | RE_RISCV_ADD, |
| 122 | RE_RISCV_LEB128, |
| 123 | RE_RISCV_PC_INDIRECT, |
| 124 | // Same as R_PC but with page-aligned semantics. |
| 125 | RE_LOONGARCH_PAGE_PC, |
| 126 | // Same as R_PLT_PC but with page-aligned semantics. |
| 127 | RE_LOONGARCH_PLT_PAGE_PC, |
| 128 | // In addition to having page-aligned semantics, LoongArch GOT relocs are |
| 129 | // also reused for TLS, making the semantics differ from other architectures. |
| 130 | RE_LOONGARCH_GOT, |
| 131 | RE_LOONGARCH_GOT_PAGE_PC, |
| 132 | RE_LOONGARCH_TLSGD_PAGE_PC, |
| 133 | RE_LOONGARCH_TLSDESC_PAGE_PC, |
| 134 | }; |
| 135 | |
| 136 | // Architecture-neutral representation of relocation. |
| 137 | struct Relocation { |
| 138 | RelExpr expr; |
| 139 | RelType type; |
| 140 | uint64_t offset; |
| 141 | int64_t addend; |
| 142 | Symbol *sym; |
| 143 | }; |
| 144 | |
| 145 | // Manipulate jump instructions with these modifiers. These are used to relax |
| 146 | // jump instruction opcodes at basic block boundaries and are particularly |
| 147 | // useful when basic block sections are enabled. |
| 148 | struct JumpInstrMod { |
| 149 | uint64_t offset; |
| 150 | JumpModType original; |
| 151 | unsigned size; |
| 152 | }; |
| 153 | |
| 154 | // This function writes undefined symbol diagnostics to an internal buffer. |
| 155 | // Call reportUndefinedSymbols() after calling scanRelocations() to emit |
| 156 | // the diagnostics. |
| 157 | template <class ELFT> void scanRelocations(Ctx &ctx); |
| 158 | template <class ELFT> void checkNoCrossRefs(Ctx &ctx); |
| 159 | void reportUndefinedSymbols(Ctx &); |
| 160 | void postScanRelocations(Ctx &ctx); |
| 161 | void addGotEntry(Ctx &ctx, Symbol &sym); |
| 162 | |
| 163 | void hexagonTLSSymbolUpdate(Ctx &ctx); |
| 164 | bool hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections); |
| 165 | |
| 166 | class ThunkSection; |
| 167 | class Thunk; |
| 168 | class InputSectionDescription; |
| 169 | |
| 170 | class ThunkCreator { |
| 171 | public: |
| 172 | // Thunk may be incomplete. Avoid inline ctor/dtor. |
| 173 | ThunkCreator(Ctx &ctx); |
| 174 | ~ThunkCreator(); |
| 175 | // Return true if Thunks have been added to OutputSections |
| 176 | bool createThunks(uint32_t pass, ArrayRef<OutputSection *> outputSections); |
| 177 | |
| 178 | private: |
| 179 | void mergeThunks(ArrayRef<OutputSection *> outputSections); |
| 180 | |
| 181 | ThunkSection *getISDThunkSec(OutputSection *os, InputSection *isec, |
| 182 | InputSectionDescription *isd, |
| 183 | const Relocation &rel, uint64_t src); |
| 184 | |
| 185 | ThunkSection *getISThunkSec(InputSection *isec); |
| 186 | |
| 187 | void createInitialThunkSections(ArrayRef<OutputSection *> outputSections); |
| 188 | |
| 189 | std::pair<Thunk *, bool> getThunk(InputSection *isec, Relocation &rel, |
| 190 | uint64_t src); |
| 191 | |
| 192 | std::pair<Thunk *, bool> getSyntheticLandingPad(Defined &d, int64_t a); |
| 193 | |
| 194 | ThunkSection *addThunkSection(OutputSection *os, InputSectionDescription *, |
| 195 | uint64_t off); |
| 196 | |
| 197 | bool normalizeExistingThunk(Relocation &rel, uint64_t src); |
| 198 | |
| 199 | bool addSyntheticLandingPads(); |
| 200 | |
| 201 | Ctx &ctx; |
| 202 | |
| 203 | // Record all the available Thunks for a (Symbol, addend) pair, where Symbol |
| 204 | // is represented as a (section, offset) pair. There may be multiple |
| 205 | // relocations sharing the same (section, offset + addend) pair. We may revert |
| 206 | // a relocation back to its original non-Thunk target, and restore the |
| 207 | // original addend, so we cannot fold offset + addend. A nested pair is used |
| 208 | // because DenseMapInfo is not specialized for std::tuple. |
| 209 | llvm::DenseMap<std::pair<std::pair<SectionBase *, uint64_t>, int64_t>, |
| 210 | SmallVector<std::unique_ptr<Thunk>, 0>> |
| 211 | thunkedSymbolsBySectionAndAddend; |
| 212 | llvm::DenseMap<std::pair<Symbol *, int64_t>, |
| 213 | SmallVector<std::unique_ptr<Thunk>, 0>> |
| 214 | thunkedSymbols; |
| 215 | |
| 216 | // Find a Thunk from the Thunks symbol definition, we can use this to find |
| 217 | // the Thunk from a relocation to the Thunks symbol definition. |
| 218 | llvm::DenseMap<Symbol *, Thunk *> thunks; |
| 219 | |
| 220 | // Track InputSections that have an inline ThunkSection placed in front |
| 221 | // an inline ThunkSection may have control fall through to the section below |
| 222 | // so we need to make sure that there is only one of them. |
| 223 | // The Mips LA25 Thunk is an example of an inline ThunkSection, as is |
| 224 | // the AArch64BTLandingPadThunk. |
| 225 | llvm::DenseMap<InputSection *, ThunkSection *> thunkedSections; |
| 226 | |
| 227 | // Record landing pads, generated for a section + offset destination. |
| 228 | // Landling pads are alternative entry points for destinations that need |
| 229 | // to be reached via thunks that use indirect branches. A destination |
| 230 | // needs at most one landing pad as that can be reused by all callers. |
| 231 | llvm::DenseMap<std::pair<std::pair<SectionBase *, uint64_t>, int64_t>, |
| 232 | std::unique_ptr<Thunk>> |
| 233 | landingPadsBySectionAndAddend; |
| 234 | |
| 235 | // All the nonLandingPad thunks that have been created, in order of creation. |
| 236 | std::vector<Thunk *> allThunks; |
| 237 | |
| 238 | // The number of completed passes of createThunks this permits us |
| 239 | // to do one time initialization on Pass 0 and put a limit on the |
| 240 | // number of times it can be called to prevent infinite loops. |
| 241 | uint32_t pass = 0; |
| 242 | }; |
| 243 | |
| 244 | // Decode LEB128 without error checking. Only used by performance critical code |
| 245 | // like RelocsCrel. |
| 246 | inline uint64_t readLEB128(const uint8_t *&p, uint64_t leb) { |
| 247 | uint64_t acc = 0, shift = 0, byte; |
| 248 | do { |
| 249 | byte = *p++; |
| 250 | acc |= (byte - 128 * (byte >= leb)) << shift; |
| 251 | shift += 7; |
| 252 | } while (byte >= 128); |
| 253 | return acc; |
| 254 | } |
| 255 | inline uint64_t readULEB128(const uint8_t *&p) { return readLEB128(p, leb: 128); } |
| 256 | inline int64_t readSLEB128(const uint8_t *&p) { return readLEB128(p, leb: 64); } |
| 257 | |
| 258 | // This class implements a CREL iterator that does not allocate extra memory. |
| 259 | template <bool is64> struct RelocsCrel { |
| 260 | using uint = std::conditional_t<is64, uint64_t, uint32_t>; |
| 261 | struct const_iterator { |
| 262 | using iterator_category = std::forward_iterator_tag; |
| 263 | using value_type = llvm::object::Elf_Crel_Impl<is64>; |
| 264 | using difference_type = ptrdiff_t; |
| 265 | using pointer = value_type *; |
| 266 | using reference = const value_type &; |
| 267 | uint32_t count; |
| 268 | uint8_t flagBits, shift; |
| 269 | const uint8_t *p; |
| 270 | llvm::object::Elf_Crel_Impl<is64> crel{}; |
| 271 | const_iterator(size_t hdr, const uint8_t *p) |
| 272 | : count(hdr / 8), flagBits(hdr & 4 ? 3 : 2), shift(hdr % 4), p(p) { |
| 273 | if (count) |
| 274 | step(); |
| 275 | } |
| 276 | void step() { |
| 277 | // See object::decodeCrel. |
| 278 | const uint8_t b = *p++; |
| 279 | crel.r_offset += b >> flagBits << shift; |
| 280 | if (b >= 0x80) |
| 281 | crel.r_offset += |
| 282 | ((readULEB128(p) << (7 - flagBits)) - (0x80 >> flagBits)) << shift; |
| 283 | if (b & 1) |
| 284 | crel.r_symidx += readSLEB128(p); |
| 285 | if (b & 2) |
| 286 | crel.r_type += readSLEB128(p); |
| 287 | if (b & 4 && flagBits == 3) |
| 288 | crel.r_addend += static_cast<uint>(readSLEB128(p)); |
| 289 | } |
| 290 | llvm::object::Elf_Crel_Impl<is64> operator*() const { return crel; }; |
| 291 | const llvm::object::Elf_Crel_Impl<is64> *operator->() const { |
| 292 | return &crel; |
| 293 | } |
| 294 | // For llvm::enumerate. |
| 295 | bool operator==(const const_iterator &r) const { return count == r.count; } |
| 296 | bool operator!=(const const_iterator &r) const { return count != r.count; } |
| 297 | const_iterator &operator++() { |
| 298 | if (--count) |
| 299 | step(); |
| 300 | return *this; |
| 301 | } |
| 302 | // For RelocationScanner::scanOne. |
| 303 | void operator+=(size_t n) { |
| 304 | for (; n; --n) |
| 305 | operator++(); |
| 306 | } |
| 307 | }; |
| 308 | |
| 309 | size_t hdr = 0; |
| 310 | const uint8_t *p = nullptr; |
| 311 | |
| 312 | constexpr RelocsCrel() = default; |
| 313 | RelocsCrel(const uint8_t *p) : hdr(readULEB128(p)) { this->p = p; } |
| 314 | size_t size() const { return hdr / 8; } |
| 315 | const_iterator begin() const { return {hdr, p}; } |
| 316 | const_iterator end() const { return {0, nullptr}; } |
| 317 | }; |
| 318 | |
| 319 | template <class RelTy> struct Relocs : ArrayRef<RelTy> { |
| 320 | Relocs() = default; |
| 321 | Relocs(ArrayRef<RelTy> a) : ArrayRef<RelTy>(a) {} |
| 322 | }; |
| 323 | |
| 324 | template <bool is64> |
| 325 | struct Relocs<llvm::object::Elf_Crel_Impl<is64>> : RelocsCrel<is64> { |
| 326 | using RelocsCrel<is64>::RelocsCrel; |
| 327 | }; |
| 328 | |
| 329 | // Return a int64_t to make sure we get the sign extension out of the way as |
| 330 | // early as possible. |
| 331 | template <class ELFT> |
| 332 | static inline int64_t getAddend(const typename ELFT::Rel &rel) { |
| 333 | return 0; |
| 334 | } |
| 335 | template <class ELFT> |
| 336 | static inline int64_t getAddend(const typename ELFT::Rela &rel) { |
| 337 | return rel.r_addend; |
| 338 | } |
| 339 | template <class ELFT> |
| 340 | static inline int64_t getAddend(const typename ELFT::Crel &rel) { |
| 341 | return rel.r_addend; |
| 342 | } |
| 343 | |
| 344 | template <typename RelTy> |
| 345 | inline Relocs<RelTy> sortRels(Relocs<RelTy> rels, |
| 346 | SmallVector<RelTy, 0> &storage) { |
| 347 | auto cmp = [](const RelTy &a, const RelTy &b) { |
| 348 | return a.r_offset < b.r_offset; |
| 349 | }; |
| 350 | if (!llvm::is_sorted(rels, cmp)) { |
| 351 | storage.assign(rels.begin(), rels.end()); |
| 352 | llvm::stable_sort(storage, cmp); |
| 353 | rels = Relocs<RelTy>(storage); |
| 354 | } |
| 355 | return rels; |
| 356 | } |
| 357 | |
| 358 | template <bool is64> |
| 359 | inline Relocs<llvm::object::Elf_Crel_Impl<is64>> |
| 360 | sortRels(Relocs<llvm::object::Elf_Crel_Impl<is64>> rels, |
| 361 | SmallVector<llvm::object::Elf_Crel_Impl<is64>, 0> &storage) { |
| 362 | return {}; |
| 363 | } |
| 364 | |
| 365 | RelocationBaseSection &getIRelativeSection(Ctx &ctx); |
| 366 | |
| 367 | // Returns true if Expr refers a GOT entry. Note that this function returns |
| 368 | // false for TLS variables even though they need GOT, because TLS variables uses |
| 369 | // GOT differently than the regular variables. |
| 370 | bool needsGot(RelExpr expr); |
| 371 | } // namespace lld::elf |
| 372 | |
| 373 | #endif |
| 374 | |