1 | //===- Symbols.h ------------------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines various types of Symbols. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLD_ELF_SYMBOLS_H |
14 | #define LLD_ELF_SYMBOLS_H |
15 | |
16 | #include "Config.h" |
17 | #include "lld/Common/LLVM.h" |
18 | #include "lld/Common/Memory.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/Object/ELF.h" |
21 | #include "llvm/Support/Compiler.h" |
22 | #include <tuple> |
23 | |
24 | namespace lld { |
25 | namespace elf { |
26 | class Symbol; |
27 | } |
28 | // Returns a string representation for a symbol for diagnostics. |
29 | std::string toString(const elf::Symbol &); |
30 | |
31 | namespace elf { |
32 | class CommonSymbol; |
33 | class Defined; |
34 | class OutputSection; |
35 | class SectionBase; |
36 | class InputSectionBase; |
37 | class SharedSymbol; |
38 | class Symbol; |
39 | class Undefined; |
40 | class LazySymbol; |
41 | class InputFile; |
42 | |
43 | void printTraceSymbol(const Symbol &sym, StringRef name); |
44 | |
45 | enum { |
46 | NEEDS_GOT = 1 << 0, |
47 | NEEDS_PLT = 1 << 1, |
48 | HAS_DIRECT_RELOC = 1 << 2, |
49 | // True if this symbol needs a canonical PLT entry, or (during |
50 | // postScanRelocations) a copy relocation. |
51 | NEEDS_COPY = 1 << 3, |
52 | NEEDS_TLSDESC = 1 << 4, |
53 | NEEDS_TLSGD = 1 << 5, |
54 | NEEDS_TLSGD_TO_IE = 1 << 6, |
55 | NEEDS_GOT_DTPREL = 1 << 7, |
56 | NEEDS_TLSIE = 1 << 8, |
57 | }; |
58 | |
59 | // Some index properties of a symbol are stored separately in this auxiliary |
60 | // struct to decrease sizeof(SymbolUnion) in the majority of cases. |
61 | struct SymbolAux { |
62 | uint32_t gotIdx = -1; |
63 | uint32_t pltIdx = -1; |
64 | uint32_t tlsDescIdx = -1; |
65 | uint32_t tlsGdIdx = -1; |
66 | }; |
67 | |
68 | LLVM_LIBRARY_VISIBILITY extern SmallVector<SymbolAux, 0> symAux; |
69 | |
70 | // The base class for real symbol classes. |
71 | class Symbol { |
72 | public: |
73 | enum Kind { |
74 | PlaceholderKind, |
75 | DefinedKind, |
76 | CommonKind, |
77 | SharedKind, |
78 | UndefinedKind, |
79 | LazyKind, |
80 | }; |
81 | |
82 | Kind kind() const { return static_cast<Kind>(symbolKind); } |
83 | |
84 | // The file from which this symbol was created. |
85 | InputFile *file; |
86 | |
87 | // The default copy constructor is deleted due to atomic flags. Define one for |
88 | // places where no atomic is needed. |
89 | Symbol(const Symbol &o) { memcpy(dest: this, src: &o, n: sizeof(o)); } |
90 | |
91 | protected: |
92 | const char *nameData; |
93 | // 32-bit size saves space. |
94 | uint32_t nameSize; |
95 | |
96 | public: |
97 | // The next three fields have the same meaning as the ELF symbol attributes. |
98 | // type and binding are placed in this order to optimize generating st_info, |
99 | // which is defined as (binding << 4) + (type & 0xf), on a little-endian |
100 | // system. |
101 | uint8_t type : 4; // symbol type |
102 | |
103 | // Symbol binding. This is not overwritten by replace() to track |
104 | // changes during resolution. In particular: |
105 | // - An undefined weak is still weak when it resolves to a shared library. |
106 | // - An undefined weak will not extract archive members, but we have to |
107 | // remember it is weak. |
108 | uint8_t binding : 4; |
109 | |
110 | uint8_t stOther; // st_other field value |
111 | |
112 | uint8_t symbolKind; |
113 | |
114 | // The partition whose dynamic symbol table contains this symbol's definition. |
115 | uint8_t partition; |
116 | |
117 | // True if this symbol is preemptible at load time. |
118 | uint8_t isPreemptible : 1; |
119 | |
120 | // True if the symbol was used for linking and thus need to be added to the |
121 | // output file's symbol table. This is true for all symbols except for |
122 | // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that |
123 | // are unreferenced except by other bitcode objects. |
124 | uint8_t isUsedInRegularObj : 1; |
125 | |
126 | // True if an undefined or shared symbol is used from a live section. |
127 | // |
128 | // NOTE: In Writer.cpp the field is used to mark local defined symbols |
129 | // which are referenced by relocations when -r or --emit-relocs is given. |
130 | uint8_t used : 1; |
131 | |
132 | // Used by a Defined symbol with protected or default visibility, to record |
133 | // whether it is required to be exported into .dynsym. This is set when any of |
134 | // the following conditions hold: |
135 | // |
136 | // - If there is an interposable symbol from a DSO. Note: We also do this for |
137 | // STV_PROTECTED symbols which can't be interposed (to match BFD behavior). |
138 | // - If -shared or --export-dynamic is specified, any symbol in an object |
139 | // file/bitcode sets this property, unless suppressed by LTO |
140 | // canBeOmittedFromSymbolTable(). |
141 | uint8_t exportDynamic : 1; |
142 | |
143 | // True if the symbol is in the --dynamic-list file. A Defined symbol with |
144 | // protected or default visibility with this property is required to be |
145 | // exported into .dynsym. |
146 | uint8_t inDynamicList : 1; |
147 | |
148 | // Used to track if there has been at least one undefined reference to the |
149 | // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK |
150 | // if the first undefined reference from a non-shared object is weak. |
151 | uint8_t referenced : 1; |
152 | |
153 | // Used to track if this symbol will be referenced after wrapping is performed |
154 | // (i.e. this will be true for foo if __real_foo is referenced, and will be |
155 | // true for __wrap_foo if foo is referenced). |
156 | uint8_t referencedAfterWrap : 1; |
157 | |
158 | // True if this symbol is specified by --trace-symbol option. |
159 | uint8_t traced : 1; |
160 | |
161 | // True if the name contains '@'. |
162 | uint8_t hasVersionSuffix : 1; |
163 | |
164 | // Symbol visibility. This is the computed minimum visibility of all |
165 | // observed non-DSO symbols. |
166 | uint8_t visibility() const { return stOther & 3; } |
167 | void setVisibility(uint8_t visibility) { |
168 | stOther = (stOther & ~3) | visibility; |
169 | } |
170 | |
171 | bool includeInDynsym() const; |
172 | uint8_t computeBinding() const; |
173 | bool isGlobal() const { return binding == llvm::ELF::STB_GLOBAL; } |
174 | bool isWeak() const { return binding == llvm::ELF::STB_WEAK; } |
175 | |
176 | bool isUndefined() const { return symbolKind == UndefinedKind; } |
177 | bool isCommon() const { return symbolKind == CommonKind; } |
178 | bool isDefined() const { return symbolKind == DefinedKind; } |
179 | bool isShared() const { return symbolKind == SharedKind; } |
180 | bool isPlaceholder() const { return symbolKind == PlaceholderKind; } |
181 | |
182 | bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; } |
183 | |
184 | bool isLazy() const { return symbolKind == LazyKind; } |
185 | |
186 | // True if this is an undefined weak symbol. This only works once |
187 | // all input files have been added. |
188 | bool isUndefWeak() const { return isWeak() && isUndefined(); } |
189 | |
190 | StringRef getName() const { return {nameData, nameSize}; } |
191 | |
192 | void setName(StringRef s) { |
193 | nameData = s.data(); |
194 | nameSize = s.size(); |
195 | } |
196 | |
197 | void parseSymbolVersion(); |
198 | |
199 | // Get the NUL-terminated version suffix ("", "@...", or "@@..."). |
200 | // |
201 | // For @@, the name has been truncated by insert(). For @, the name has been |
202 | // truncated by Symbol::parseSymbolVersion(). |
203 | const char *getVersionSuffix() const { return nameData + nameSize; } |
204 | |
205 | uint32_t getGotIdx() const { return symAux[auxIdx].gotIdx; } |
206 | uint32_t getPltIdx() const { return symAux[auxIdx].pltIdx; } |
207 | uint32_t getTlsDescIdx() const { return symAux[auxIdx].tlsDescIdx; } |
208 | uint32_t getTlsGdIdx() const { return symAux[auxIdx].tlsGdIdx; } |
209 | |
210 | bool isInGot() const { return getGotIdx() != uint32_t(-1); } |
211 | bool isInPlt() const { return getPltIdx() != uint32_t(-1); } |
212 | |
213 | uint64_t getVA(int64_t addend = 0) const; |
214 | |
215 | uint64_t getGotOffset() const; |
216 | uint64_t getGotVA() const; |
217 | uint64_t getGotPltOffset() const; |
218 | uint64_t getGotPltVA() const; |
219 | uint64_t getPltVA() const; |
220 | uint64_t getSize() const; |
221 | OutputSection *getOutputSection() const; |
222 | |
223 | // The following two functions are used for symbol resolution. |
224 | // |
225 | // You are expected to call mergeProperties for all symbols in input |
226 | // files so that attributes that are attached to names rather than |
227 | // indivisual symbol (such as visibility) are merged together. |
228 | // |
229 | // Every time you read a new symbol from an input, you are supposed |
230 | // to call resolve() with the new symbol. That function replaces |
231 | // "this" object as a result of name resolution if the new symbol is |
232 | // more appropriate to be included in the output. |
233 | // |
234 | // For example, if "this" is an undefined symbol and a new symbol is |
235 | // a defined symbol, "this" is replaced with the new symbol. |
236 | void mergeProperties(const Symbol &other); |
237 | void resolve(const Undefined &other); |
238 | void resolve(const CommonSymbol &other); |
239 | void resolve(const Defined &other); |
240 | void resolve(const LazySymbol &other); |
241 | void resolve(const SharedSymbol &other); |
242 | |
243 | // If this is a lazy symbol, extract an input file and add the symbol |
244 | // in the file to the symbol table. Calling this function on |
245 | // non-lazy object causes a runtime error. |
246 | void () const; |
247 | |
248 | void checkDuplicate(const Defined &other) const; |
249 | |
250 | private: |
251 | bool shouldReplace(const Defined &other) const; |
252 | |
253 | protected: |
254 | Symbol(Kind k, InputFile *file, StringRef name, uint8_t binding, |
255 | uint8_t stOther, uint8_t type) |
256 | : file(file), nameData(name.data()), nameSize(name.size()), type(type), |
257 | binding(binding), stOther(stOther), symbolKind(k), exportDynamic(false), |
258 | archSpecificBit(false) {} |
259 | |
260 | void overwrite(Symbol &sym, Kind k) const { |
261 | if (sym.traced) |
262 | printTraceSymbol(sym: *this, name: sym.getName()); |
263 | sym.file = file; |
264 | sym.type = type; |
265 | sym.binding = binding; |
266 | sym.stOther = (stOther & ~3) | sym.visibility(); |
267 | sym.symbolKind = k; |
268 | } |
269 | |
270 | public: |
271 | // True if this symbol is in the Iplt sub-section of the Plt and the Igot |
272 | // sub-section of the .got.plt or .got. |
273 | uint8_t isInIplt : 1; |
274 | |
275 | // True if this symbol needs a GOT entry and its GOT entry is actually in |
276 | // Igot. This will be true only for certain non-preemptible ifuncs. |
277 | uint8_t gotInIgot : 1; |
278 | |
279 | // True if defined relative to a section discarded by ICF. |
280 | uint8_t folded : 1; |
281 | |
282 | // Allow reuse of a bit between architecture-exclusive symbol flags. |
283 | // - needsTocRestore(): On PPC64, true if a call to this symbol needs to be |
284 | // followed by a restore of the toc pointer. |
285 | // - isTagged(): On AArch64, true if the symbol needs special relocation and |
286 | // metadata semantics because it's tagged, under the AArch64 MemtagABI. |
287 | uint8_t archSpecificBit : 1; |
288 | bool needsTocRestore() const { return archSpecificBit; } |
289 | bool isTagged() const { return archSpecificBit; } |
290 | void setNeedsTocRestore(bool v) { archSpecificBit = v; } |
291 | void setIsTagged(bool v) { |
292 | archSpecificBit = v; |
293 | } |
294 | |
295 | // True if this symbol is defined by a symbol assignment or wrapped by --wrap. |
296 | // |
297 | // LTO shouldn't inline the symbol because it doesn't know the final content |
298 | // of the symbol. |
299 | uint8_t scriptDefined : 1; |
300 | |
301 | // True if defined in a DSO. There may also be a definition in a relocatable |
302 | // object file. |
303 | uint8_t dsoDefined : 1; |
304 | |
305 | // True if defined in a DSO as protected visibility. |
306 | uint8_t dsoProtected : 1; |
307 | |
308 | // Temporary flags used to communicate which symbol entries need PLT and GOT |
309 | // entries during postScanRelocations(); |
310 | std::atomic<uint16_t> flags; |
311 | |
312 | // A symAux index used to access GOT/PLT entry indexes. This is allocated in |
313 | // postScanRelocations(). |
314 | uint32_t auxIdx; |
315 | uint32_t dynsymIndex; |
316 | |
317 | // If `file` is SharedFile (for SharedSymbol or copy-relocated Defined), this |
318 | // represents the Verdef index within the input DSO, which will be converted |
319 | // to a Verneed index in the output. Otherwise, this represents the Verdef |
320 | // index (VER_NDX_LOCAL, VER_NDX_GLOBAL, or a named version). |
321 | uint16_t versionId; |
322 | uint8_t versionScriptAssigned : 1; |
323 | |
324 | // True if targeted by a range extension thunk. |
325 | uint8_t thunkAccessed : 1; |
326 | |
327 | void setFlags(uint16_t bits) { |
328 | flags.fetch_or(i: bits, m: std::memory_order_relaxed); |
329 | } |
330 | bool hasFlag(uint16_t bit) const { |
331 | assert(bit && (bit & (bit - 1)) == 0 && "bit must be a power of 2" ); |
332 | return flags.load(m: std::memory_order_relaxed) & bit; |
333 | } |
334 | |
335 | bool needsDynReloc() const { |
336 | return flags.load(m: std::memory_order_relaxed) & |
337 | (NEEDS_COPY | NEEDS_GOT | NEEDS_PLT | NEEDS_TLSDESC | NEEDS_TLSGD | |
338 | NEEDS_TLSGD_TO_IE | NEEDS_GOT_DTPREL | NEEDS_TLSIE); |
339 | } |
340 | void allocateAux() { |
341 | assert(auxIdx == 0); |
342 | auxIdx = symAux.size(); |
343 | symAux.emplace_back(); |
344 | } |
345 | |
346 | bool isSection() const { return type == llvm::ELF::STT_SECTION; } |
347 | bool isTls() const { return type == llvm::ELF::STT_TLS; } |
348 | bool isFunc() const { return type == llvm::ELF::STT_FUNC; } |
349 | bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; } |
350 | bool isObject() const { return type == llvm::ELF::STT_OBJECT; } |
351 | bool isFile() const { return type == llvm::ELF::STT_FILE; } |
352 | }; |
353 | |
354 | // Represents a symbol that is defined in the current output file. |
355 | class Defined : public Symbol { |
356 | public: |
357 | Defined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther, |
358 | uint8_t type, uint64_t value, uint64_t size, SectionBase *section) |
359 | : Symbol(DefinedKind, file, name, binding, stOther, type), value(value), |
360 | size(size), section(section) { |
361 | exportDynamic = config->exportDynamic; |
362 | } |
363 | void overwrite(Symbol &sym) const; |
364 | |
365 | static bool classof(const Symbol *s) { return s->isDefined(); } |
366 | |
367 | uint64_t value; |
368 | uint64_t size; |
369 | SectionBase *section; |
370 | }; |
371 | |
372 | // Represents a common symbol. |
373 | // |
374 | // On Unix, it is traditionally allowed to write variable definitions |
375 | // without initialization expressions (such as "int foo;") to header |
376 | // files. Such definition is called "tentative definition". |
377 | // |
378 | // Using tentative definition is usually considered a bad practice |
379 | // because you should write only declarations (such as "extern int |
380 | // foo;") to header files. Nevertheless, the linker and the compiler |
381 | // have to do something to support bad code by allowing duplicate |
382 | // definitions for this particular case. |
383 | // |
384 | // Common symbols represent variable definitions without initializations. |
385 | // The compiler creates common symbols when it sees variable definitions |
386 | // without initialization (you can suppress this behavior and let the |
387 | // compiler create a regular defined symbol by -fno-common). |
388 | // |
389 | // The linker allows common symbols to be replaced by regular defined |
390 | // symbols. If there are remaining common symbols after name resolution is |
391 | // complete, they are converted to regular defined symbols in a .bss |
392 | // section. (Therefore, the later passes don't see any CommonSymbols.) |
393 | class CommonSymbol : public Symbol { |
394 | public: |
395 | CommonSymbol(InputFile *file, StringRef name, uint8_t binding, |
396 | uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size) |
397 | : Symbol(CommonKind, file, name, binding, stOther, type), |
398 | alignment(alignment), size(size) { |
399 | exportDynamic = config->exportDynamic; |
400 | } |
401 | void overwrite(Symbol &sym) const { |
402 | Symbol::overwrite(sym, k: CommonKind); |
403 | auto &s = static_cast<CommonSymbol &>(sym); |
404 | s.alignment = alignment; |
405 | s.size = size; |
406 | } |
407 | |
408 | static bool classof(const Symbol *s) { return s->isCommon(); } |
409 | |
410 | uint32_t alignment; |
411 | uint64_t size; |
412 | }; |
413 | |
414 | class Undefined : public Symbol { |
415 | public: |
416 | Undefined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther, |
417 | uint8_t type, uint32_t discardedSecIdx = 0) |
418 | : Symbol(UndefinedKind, file, name, binding, stOther, type), |
419 | discardedSecIdx(discardedSecIdx) {} |
420 | void overwrite(Symbol &sym) const { |
421 | Symbol::overwrite(sym, k: UndefinedKind); |
422 | auto &s = static_cast<Undefined &>(sym); |
423 | s.discardedSecIdx = discardedSecIdx; |
424 | s.nonPrevailing = nonPrevailing; |
425 | } |
426 | |
427 | static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; } |
428 | |
429 | // The section index if in a discarded section, 0 otherwise. |
430 | uint32_t discardedSecIdx; |
431 | bool nonPrevailing = false; |
432 | }; |
433 | |
434 | class SharedSymbol : public Symbol { |
435 | public: |
436 | static bool classof(const Symbol *s) { return s->kind() == SharedKind; } |
437 | |
438 | SharedSymbol(InputFile &file, StringRef name, uint8_t binding, |
439 | uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, |
440 | uint32_t alignment) |
441 | : Symbol(SharedKind, &file, name, binding, stOther, type), value(value), |
442 | size(size), alignment(alignment) { |
443 | exportDynamic = true; |
444 | dsoProtected = visibility() == llvm::ELF::STV_PROTECTED; |
445 | // GNU ifunc is a mechanism to allow user-supplied functions to |
446 | // resolve PLT slot values at load-time. This is contrary to the |
447 | // regular symbol resolution scheme in which symbols are resolved just |
448 | // by name. Using this hook, you can program how symbols are solved |
449 | // for you program. For example, you can make "memcpy" to be resolved |
450 | // to a SSE-enabled version of memcpy only when a machine running the |
451 | // program supports the SSE instruction set. |
452 | // |
453 | // Naturally, such symbols should always be called through their PLT |
454 | // slots. What GNU ifunc symbols point to are resolver functions, and |
455 | // calling them directly doesn't make sense (unless you are writing a |
456 | // loader). |
457 | // |
458 | // For DSO symbols, we always call them through PLT slots anyway. |
459 | // So there's no difference between GNU ifunc and regular function |
460 | // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. |
461 | if (this->type == llvm::ELF::STT_GNU_IFUNC) |
462 | this->type = llvm::ELF::STT_FUNC; |
463 | } |
464 | void overwrite(Symbol &sym) const { |
465 | Symbol::overwrite(sym, k: SharedKind); |
466 | auto &s = static_cast<SharedSymbol &>(sym); |
467 | s.dsoProtected = dsoProtected; |
468 | s.value = value; |
469 | s.size = size; |
470 | s.alignment = alignment; |
471 | } |
472 | |
473 | uint64_t value; // st_value |
474 | uint64_t size; // st_size |
475 | uint32_t alignment; |
476 | }; |
477 | |
478 | // LazySymbol symbols represent symbols in object files between --start-lib and |
479 | // --end-lib options. LLD also handles traditional archives as if all the files |
480 | // in the archive are surrounded by --start-lib and --end-lib. |
481 | // |
482 | // A special complication is the handling of weak undefined symbols. They should |
483 | // not load a file, but we have to remember we have seen both the weak undefined |
484 | // and the lazy. We represent that with a lazy symbol with a weak binding. This |
485 | // means that code looking for undefined symbols normally also has to take lazy |
486 | // symbols into consideration. |
487 | class LazySymbol : public Symbol { |
488 | public: |
489 | LazySymbol(InputFile &file) |
490 | : Symbol(LazyKind, &file, {}, llvm::ELF::STB_GLOBAL, |
491 | llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {} |
492 | void overwrite(Symbol &sym) const { Symbol::overwrite(sym, k: LazyKind); } |
493 | |
494 | static bool classof(const Symbol *s) { return s->kind() == LazyKind; } |
495 | }; |
496 | |
497 | // Some linker-generated symbols need to be created as |
498 | // Defined symbols. |
499 | struct ElfSym { |
500 | // __bss_start |
501 | static Defined *bss; |
502 | |
503 | // etext and _etext |
504 | static Defined *etext1; |
505 | static Defined *etext2; |
506 | |
507 | // edata and _edata |
508 | static Defined *edata1; |
509 | static Defined *edata2; |
510 | |
511 | // end and _end |
512 | static Defined *end1; |
513 | static Defined *end2; |
514 | |
515 | // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to |
516 | // be at some offset from the base of the .got section, usually 0 or |
517 | // the end of the .got. |
518 | static Defined *globalOffsetTable; |
519 | |
520 | // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS. |
521 | static Defined *mipsGp; |
522 | static Defined *mipsGpDisp; |
523 | static Defined *mipsLocalGp; |
524 | |
525 | // __global_pointer$ for RISC-V. |
526 | static Defined *riscvGlobalPointer; |
527 | |
528 | // __rel{,a}_iplt_{start,end} symbols. |
529 | static Defined *relaIpltStart; |
530 | static Defined *relaIpltEnd; |
531 | |
532 | // _TLS_MODULE_BASE_ on targets that support TLSDESC. |
533 | static Defined *tlsModuleBase; |
534 | }; |
535 | |
536 | // A buffer class that is large enough to hold any Symbol-derived |
537 | // object. We allocate memory using this class and instantiate a symbol |
538 | // using the placement new. |
539 | |
540 | // It is important to keep the size of SymbolUnion small for performance and |
541 | // memory usage reasons. 64 bytes is a soft limit based on the size of Defined |
542 | // on a 64-bit system. This is enforced by a static_assert in Symbols.cpp. |
543 | union SymbolUnion { |
544 | alignas(Defined) char a[sizeof(Defined)]; |
545 | alignas(CommonSymbol) char b[sizeof(CommonSymbol)]; |
546 | alignas(Undefined) char c[sizeof(Undefined)]; |
547 | alignas(SharedSymbol) char d[sizeof(SharedSymbol)]; |
548 | alignas(LazySymbol) char e[sizeof(LazySymbol)]; |
549 | }; |
550 | |
551 | template <typename... T> Defined *makeDefined(T &&...args) { |
552 | auto *sym = getSpecificAllocSingleton<SymbolUnion>().Allocate(); |
553 | memset(s: sym, c: 0, n: sizeof(Symbol)); |
554 | auto &s = *new (reinterpret_cast<Defined *>(sym)) Defined(std::forward<T>(args)...); |
555 | return &s; |
556 | } |
557 | |
558 | void reportDuplicate(const Symbol &sym, const InputFile *newFile, |
559 | InputSectionBase *errSec, uint64_t errOffset); |
560 | void maybeWarnUnorderableSymbol(const Symbol *sym); |
561 | bool computeIsPreemptible(const Symbol &sym); |
562 | |
563 | } // namespace elf |
564 | } // namespace lld |
565 | |
566 | #endif |
567 | |