1 | //===- SyntheticSections.cpp ---------------------------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "SyntheticSections.h" |
10 | #include "ConcatOutputSection.h" |
11 | #include "Config.h" |
12 | #include "ExportTrie.h" |
13 | #include "ICF.h" |
14 | #include "InputFiles.h" |
15 | #include "ObjC.h" |
16 | #include "OutputSegment.h" |
17 | #include "SectionPriorities.h" |
18 | #include "SymbolTable.h" |
19 | #include "Symbols.h" |
20 | |
21 | #include "lld/Common/CommonLinkerContext.h" |
22 | #include "llvm/ADT/STLExtras.h" |
23 | #include "llvm/Config/llvm-config.h" |
24 | #include "llvm/Support/FileSystem.h" |
25 | #include "llvm/Support/LEB128.h" |
26 | #include "llvm/Support/Parallel.h" |
27 | #include "llvm/Support/xxhash.h" |
28 | |
29 | #if defined(__APPLE__) |
30 | #include <sys/mman.h> |
31 | |
32 | #define COMMON_DIGEST_FOR_OPENSSL |
33 | #include <CommonCrypto/CommonDigest.h> |
34 | #else |
35 | #include "llvm/Support/SHA256.h" |
36 | #endif |
37 | |
38 | using namespace llvm; |
39 | using namespace llvm::MachO; |
40 | using namespace llvm::support; |
41 | using namespace llvm::support::endian; |
42 | using namespace lld; |
43 | using namespace lld::macho; |
44 | |
45 | // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`. |
46 | static void sha256(const uint8_t *data, size_t len, uint8_t *output) { |
47 | #if defined(__APPLE__) |
48 | // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121 |
49 | // for some notes on this. |
50 | CC_SHA256(data, len, output); |
51 | #else |
52 | ArrayRef<uint8_t> block(data, len); |
53 | std::array<uint8_t, 32> hash = SHA256::hash(Data: block); |
54 | static_assert(hash.size() == CodeSignatureSection::hashSize); |
55 | memcpy(dest: output, src: hash.data(), n: hash.size()); |
56 | #endif |
57 | } |
58 | |
59 | InStruct macho::in; |
60 | std::vector<SyntheticSection *> macho::syntheticSections; |
61 | |
62 | SyntheticSection::SyntheticSection(const char *segname, const char *name) |
63 | : OutputSection(SyntheticKind, name) { |
64 | std::tie(args&: this->segname, args&: this->name) = maybeRenameSection(key: {segname, name}); |
65 | isec = makeSyntheticInputSection(segName: segname, sectName: name); |
66 | isec->parent = this; |
67 | syntheticSections.push_back(x: this); |
68 | } |
69 | |
70 | // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts |
71 | // from the beginning of the file (i.e. the header). |
72 | MachHeaderSection::MachHeaderSection() |
73 | : SyntheticSection(segment_names::text, section_names::header) { |
74 | // XXX: This is a hack. (See D97007) |
75 | // Setting the index to 1 to pretend that this section is the text |
76 | // section. |
77 | index = 1; |
78 | isec->isFinal = true; |
79 | } |
80 | |
81 | void MachHeaderSection::addLoadCommand(LoadCommand *lc) { |
82 | loadCommands.push_back(x: lc); |
83 | sizeOfCmds += lc->getSize(); |
84 | } |
85 | |
86 | uint64_t MachHeaderSection::getSize() const { |
87 | uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; |
88 | // If we are emitting an encryptable binary, our load commands must have a |
89 | // separate (non-encrypted) page to themselves. |
90 | if (config->emitEncryptionInfo) |
91 | size = alignToPowerOf2(Value: size, Align: target->getPageSize()); |
92 | return size; |
93 | } |
94 | |
95 | static uint32_t cpuSubtype() { |
96 | uint32_t subtype = target->cpuSubtype; |
97 | |
98 | if (config->outputType == MH_EXECUTE && !config->staticLink && |
99 | target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && |
100 | config->platform() == PLATFORM_MACOS && |
101 | config->platformInfo.target.MinDeployment >= VersionTuple(10, 5)) |
102 | subtype |= CPU_SUBTYPE_LIB64; |
103 | |
104 | return subtype; |
105 | } |
106 | |
107 | static bool hasWeakBinding() { |
108 | return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding() |
109 | : in.weakBinding->hasEntry(); |
110 | } |
111 | |
112 | static bool hasNonWeakDefinition() { |
113 | return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition() |
114 | : in.weakBinding->hasNonWeakDefinition(); |
115 | } |
116 | |
117 | void MachHeaderSection::writeTo(uint8_t *buf) const { |
118 | auto *hdr = reinterpret_cast<mach_header *>(buf); |
119 | hdr->magic = target->magic; |
120 | hdr->cputype = target->cpuType; |
121 | hdr->cpusubtype = cpuSubtype(); |
122 | hdr->filetype = config->outputType; |
123 | hdr->ncmds = loadCommands.size(); |
124 | hdr->sizeofcmds = sizeOfCmds; |
125 | hdr->flags = MH_DYLDLINK; |
126 | |
127 | if (config->namespaceKind == NamespaceKind::twolevel) |
128 | hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; |
129 | |
130 | if (config->outputType == MH_DYLIB && !config->hasReexports) |
131 | hdr->flags |= MH_NO_REEXPORTED_DYLIBS; |
132 | |
133 | if (config->markDeadStrippableDylib) |
134 | hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; |
135 | |
136 | if (config->outputType == MH_EXECUTE && config->isPic) |
137 | hdr->flags |= MH_PIE; |
138 | |
139 | if (config->outputType == MH_DYLIB && config->applicationExtension) |
140 | hdr->flags |= MH_APP_EXTENSION_SAFE; |
141 | |
142 | if (in.exports->hasWeakSymbol || hasNonWeakDefinition()) |
143 | hdr->flags |= MH_WEAK_DEFINES; |
144 | |
145 | if (in.exports->hasWeakSymbol || hasWeakBinding()) |
146 | hdr->flags |= MH_BINDS_TO_WEAK; |
147 | |
148 | for (const OutputSegment *seg : outputSegments) { |
149 | for (const OutputSection *osec : seg->getSections()) { |
150 | if (isThreadLocalVariables(flags: osec->flags)) { |
151 | hdr->flags |= MH_HAS_TLV_DESCRIPTORS; |
152 | break; |
153 | } |
154 | } |
155 | } |
156 | |
157 | uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; |
158 | for (const LoadCommand *lc : loadCommands) { |
159 | lc->writeTo(buf: p); |
160 | p += lc->getSize(); |
161 | } |
162 | } |
163 | |
164 | PageZeroSection::PageZeroSection() |
165 | : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} |
166 | |
167 | RebaseSection::RebaseSection() |
168 | : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} |
169 | |
170 | namespace { |
171 | struct RebaseState { |
172 | uint64_t sequenceLength; |
173 | uint64_t skipLength; |
174 | }; |
175 | } // namespace |
176 | |
177 | static void emitIncrement(uint64_t incr, raw_svector_ostream &os) { |
178 | assert(incr != 0); |
179 | |
180 | if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK && |
181 | (incr % target->wordSize) == 0) { |
182 | os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED | |
183 | (incr >> target->p2WordSize)); |
184 | } else { |
185 | os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); |
186 | encodeULEB128(Value: incr, OS&: os); |
187 | } |
188 | } |
189 | |
190 | static void flushRebase(const RebaseState &state, raw_svector_ostream &os) { |
191 | assert(state.sequenceLength > 0); |
192 | |
193 | if (state.skipLength == target->wordSize) { |
194 | if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) { |
195 | os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | |
196 | state.sequenceLength); |
197 | } else { |
198 | os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); |
199 | encodeULEB128(Value: state.sequenceLength, OS&: os); |
200 | } |
201 | } else if (state.sequenceLength == 1) { |
202 | os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB); |
203 | encodeULEB128(Value: state.skipLength - target->wordSize, OS&: os); |
204 | } else { |
205 | os << static_cast<uint8_t>( |
206 | REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB); |
207 | encodeULEB128(Value: state.sequenceLength, OS&: os); |
208 | encodeULEB128(Value: state.skipLength - target->wordSize, OS&: os); |
209 | } |
210 | } |
211 | |
212 | // Rebases are communicated to dyld using a bytecode, whose opcodes cause the |
213 | // memory location at a specific address to be rebased and/or the address to be |
214 | // incremented. |
215 | // |
216 | // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic |
217 | // one, encoding a series of evenly spaced addresses. This algorithm works by |
218 | // splitting up the sorted list of addresses into such chunks. If the locations |
219 | // are consecutive or the sequence consists of a single location, flushRebase |
220 | // will use a smaller, more specialized encoding. |
221 | static void encodeRebases(const OutputSegment *seg, |
222 | MutableArrayRef<Location> locations, |
223 | raw_svector_ostream &os) { |
224 | // dyld operates on segments. Translate section offsets into segment offsets. |
225 | for (Location &loc : locations) |
226 | loc.offset = |
227 | loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(off: loc.offset); |
228 | // The algorithm assumes that locations are unique. |
229 | Location *end = |
230 | llvm::unique(R&: locations, P: [](const Location &a, const Location &b) { |
231 | return a.offset == b.offset; |
232 | }); |
233 | size_t count = end - locations.begin(); |
234 | |
235 | os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
236 | seg->index); |
237 | assert(!locations.empty()); |
238 | uint64_t offset = locations[0].offset; |
239 | encodeULEB128(Value: offset, OS&: os); |
240 | |
241 | RebaseState state{.sequenceLength: 1, .skipLength: target->wordSize}; |
242 | |
243 | for (size_t i = 1; i < count; ++i) { |
244 | offset = locations[i].offset; |
245 | |
246 | uint64_t skip = offset - locations[i - 1].offset; |
247 | assert(skip != 0 && "duplicate locations should have been weeded out"); |
248 | |
249 | if (skip == state.skipLength) { |
250 | ++state.sequenceLength; |
251 | } else if (state.sequenceLength == 1) { |
252 | ++state.sequenceLength; |
253 | state.skipLength = skip; |
254 | } else if (skip < state.skipLength) { |
255 | // The address is lower than what the rebase pointer would be if the last |
256 | // location would be part of a sequence. We start a new sequence from the |
257 | // previous location. |
258 | --state.sequenceLength; |
259 | flushRebase(state, os); |
260 | |
261 | state.sequenceLength = 2; |
262 | state.skipLength = skip; |
263 | } else { |
264 | // The address is at some positive offset from the rebase pointer. We |
265 | // start a new sequence which begins with the current location. |
266 | flushRebase(state, os); |
267 | emitIncrement(incr: skip - state.skipLength, os); |
268 | state.sequenceLength = 1; |
269 | state.skipLength = target->wordSize; |
270 | } |
271 | } |
272 | flushRebase(state, os); |
273 | } |
274 | |
275 | void RebaseSection::finalizeContents() { |
276 | if (locations.empty()) |
277 | return; |
278 | |
279 | raw_svector_ostream os{contents}; |
280 | os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); |
281 | |
282 | llvm::sort(C&: locations, Comp: [](const Location &a, const Location &b) { |
283 | return a.isec->getVA(off: a.offset) < b.isec->getVA(off: b.offset); |
284 | }); |
285 | |
286 | for (size_t i = 0, count = locations.size(); i < count;) { |
287 | const OutputSegment *seg = locations[i].isec->parent->parent; |
288 | size_t j = i + 1; |
289 | while (j < count && locations[j].isec->parent->parent == seg) |
290 | ++j; |
291 | encodeRebases(seg, locations: {locations.data() + i, locations.data() + j}, os); |
292 | i = j; |
293 | } |
294 | os << static_cast<uint8_t>(REBASE_OPCODE_DONE); |
295 | } |
296 | |
297 | void RebaseSection::writeTo(uint8_t *buf) const { |
298 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
299 | } |
300 | |
301 | NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, |
302 | const char *name) |
303 | : SyntheticSection(segname, name) { |
304 | align = target->wordSize; |
305 | } |
306 | |
307 | void macho::addNonLazyBindingEntries(const Symbol *sym, |
308 | const InputSection *isec, uint64_t offset, |
309 | int64_t addend) { |
310 | if (config->emitChainedFixups) { |
311 | if (needsBinding(sym)) |
312 | in.chainedFixups->addBinding(dysym: sym, isec, offset, addend); |
313 | else if (isa<Defined>(Val: sym)) |
314 | in.chainedFixups->addRebase(isec, offset); |
315 | else |
316 | llvm_unreachable("cannot bind to an undefined symbol"); |
317 | return; |
318 | } |
319 | |
320 | if (const auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
321 | in.binding->addEntry(dysym, isec, offset, addend); |
322 | if (dysym->isWeakDef()) |
323 | in.weakBinding->addEntry(symbol: sym, isec, offset, addend); |
324 | } else if (const auto *defined = dyn_cast<Defined>(Val: sym)) { |
325 | in.rebase->addEntry(isec, offset); |
326 | if (defined->isExternalWeakDef()) |
327 | in.weakBinding->addEntry(symbol: sym, isec, offset, addend); |
328 | else if (defined->interposable) |
329 | in.binding->addEntry(dysym: sym, isec, offset, addend); |
330 | } else { |
331 | // Undefined symbols are filtered out in scanRelocations(); we should never |
332 | // get here |
333 | llvm_unreachable("cannot bind to an undefined symbol"); |
334 | } |
335 | } |
336 | |
337 | void NonLazyPointerSectionBase::addEntry(Symbol *sym) { |
338 | if (entries.insert(X: sym)) { |
339 | assert(!sym->isInGot()); |
340 | sym->gotIndex = entries.size() - 1; |
341 | |
342 | addNonLazyBindingEntries(sym, isec, offset: sym->gotIndex * target->wordSize); |
343 | } |
344 | } |
345 | |
346 | void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) { |
347 | assert(config->emitChainedFixups); |
348 | assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); |
349 | auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf); |
350 | rebase->target = targetVA & 0xf'ffff'ffff; |
351 | rebase->high8 = (targetVA >> 56); |
352 | rebase->reserved = 0; |
353 | rebase->next = 0; |
354 | rebase->bind = 0; |
355 | |
356 | // The fixup format places a 64 GiB limit on the output's size. |
357 | // Should we handle this gracefully? |
358 | uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56); |
359 | if (encodedVA != targetVA) |
360 | error(msg: "rebase target address 0x"+ Twine::utohexstr(Val: targetVA) + |
361 | " does not fit into chained fixup. Re-link with -no_fixup_chains"); |
362 | } |
363 | |
364 | static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) { |
365 | assert(config->emitChainedFixups); |
366 | assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); |
367 | auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf); |
368 | auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend); |
369 | bind->ordinal = ordinal; |
370 | bind->addend = inlineAddend; |
371 | bind->reserved = 0; |
372 | bind->next = 0; |
373 | bind->bind = 1; |
374 | } |
375 | |
376 | void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) { |
377 | if (needsBinding(sym)) |
378 | writeChainedBind(buf, sym, addend); |
379 | else |
380 | writeChainedRebase(buf, targetVA: sym->getVA() + addend); |
381 | } |
382 | |
383 | void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { |
384 | if (config->emitChainedFixups) { |
385 | for (const auto &[i, entry] : llvm::enumerate(First: entries)) |
386 | writeChainedFixup(buf: &buf[i * target->wordSize], sym: entry, addend: 0); |
387 | } else { |
388 | for (const auto &[i, entry] : llvm::enumerate(First: entries)) |
389 | if (auto *defined = dyn_cast<Defined>(Val: entry)) |
390 | write64le(P: &buf[i * target->wordSize], V: defined->getVA()); |
391 | } |
392 | } |
393 | |
394 | GotSection::GotSection() |
395 | : NonLazyPointerSectionBase(segment_names::data, section_names::got) { |
396 | flags = S_NON_LAZY_SYMBOL_POINTERS; |
397 | } |
398 | |
399 | TlvPointerSection::TlvPointerSection() |
400 | : NonLazyPointerSectionBase(segment_names::data, |
401 | section_names::threadPtrs) { |
402 | flags = S_THREAD_LOCAL_VARIABLE_POINTERS; |
403 | } |
404 | |
405 | BindingSection::BindingSection() |
406 | : LinkEditSection(segment_names::linkEdit, section_names::binding) {} |
407 | |
408 | namespace { |
409 | struct Binding { |
410 | OutputSegment *segment = nullptr; |
411 | uint64_t offset = 0; |
412 | int64_t addend = 0; |
413 | }; |
414 | struct BindIR { |
415 | // Default value of 0xF0 is not valid opcode and should make the program |
416 | // scream instead of accidentally writing "valid" values. |
417 | uint8_t opcode = 0xF0; |
418 | uint64_t data = 0; |
419 | uint64_t consecutiveCount = 0; |
420 | }; |
421 | } // namespace |
422 | |
423 | // Encode a sequence of opcodes that tell dyld to write the address of symbol + |
424 | // addend at osec->addr + outSecOff. |
425 | // |
426 | // The bind opcode "interpreter" remembers the values of each binding field, so |
427 | // we only need to encode the differences between bindings. Hence the use of |
428 | // lastBinding. |
429 | static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, |
430 | int64_t addend, Binding &lastBinding, |
431 | std::vector<BindIR> &opcodes) { |
432 | OutputSegment *seg = osec->parent; |
433 | uint64_t offset = osec->getSegmentOffset() + outSecOff; |
434 | if (lastBinding.segment != seg) { |
435 | opcodes.push_back( |
436 | x: {.opcode: static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
437 | seg->index), |
438 | .data: offset}); |
439 | lastBinding.segment = seg; |
440 | lastBinding.offset = offset; |
441 | } else if (lastBinding.offset != offset) { |
442 | opcodes.push_back(x: {.opcode: BIND_OPCODE_ADD_ADDR_ULEB, .data: offset - lastBinding.offset}); |
443 | lastBinding.offset = offset; |
444 | } |
445 | |
446 | if (lastBinding.addend != addend) { |
447 | opcodes.push_back( |
448 | x: {.opcode: BIND_OPCODE_SET_ADDEND_SLEB, .data: static_cast<uint64_t>(addend)}); |
449 | lastBinding.addend = addend; |
450 | } |
451 | |
452 | opcodes.push_back(x: {.opcode: BIND_OPCODE_DO_BIND, .data: 0}); |
453 | // DO_BIND causes dyld to both perform the binding and increment the offset |
454 | lastBinding.offset += target->wordSize; |
455 | } |
456 | |
457 | static void optimizeOpcodes(std::vector<BindIR> &opcodes) { |
458 | // Pass 1: Combine bind/add pairs |
459 | size_t i; |
460 | int pWrite = 0; |
461 | for (i = 1; i < opcodes.size(); ++i, ++pWrite) { |
462 | if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && |
463 | (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { |
464 | opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; |
465 | opcodes[pWrite].data = opcodes[i].data; |
466 | ++i; |
467 | } else { |
468 | opcodes[pWrite] = opcodes[i - 1]; |
469 | } |
470 | } |
471 | if (i == opcodes.size()) |
472 | opcodes[pWrite] = opcodes[i - 1]; |
473 | opcodes.resize(new_size: pWrite + 1); |
474 | |
475 | // Pass 2: Compress two or more bind_add opcodes |
476 | pWrite = 0; |
477 | for (i = 1; i < opcodes.size(); ++i, ++pWrite) { |
478 | if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
479 | (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
480 | (opcodes[i].data == opcodes[i - 1].data)) { |
481 | opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; |
482 | opcodes[pWrite].consecutiveCount = 2; |
483 | opcodes[pWrite].data = opcodes[i].data; |
484 | ++i; |
485 | while (i < opcodes.size() && |
486 | (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
487 | (opcodes[i].data == opcodes[i - 1].data)) { |
488 | opcodes[pWrite].consecutiveCount++; |
489 | ++i; |
490 | } |
491 | } else { |
492 | opcodes[pWrite] = opcodes[i - 1]; |
493 | } |
494 | } |
495 | if (i == opcodes.size()) |
496 | opcodes[pWrite] = opcodes[i - 1]; |
497 | opcodes.resize(new_size: pWrite + 1); |
498 | |
499 | // Pass 3: Use immediate encodings |
500 | // Every binding is the size of one pointer. If the next binding is a |
501 | // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the |
502 | // opcode can be scaled by wordSize into a single byte and dyld will |
503 | // expand it to the correct address. |
504 | for (auto &p : opcodes) { |
505 | // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, |
506 | // but ld64 currently does this. This could be a potential bug, but |
507 | // for now, perform the same behavior to prevent mysterious bugs. |
508 | if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
509 | ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && |
510 | ((p.data % target->wordSize) == 0)) { |
511 | p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; |
512 | p.data /= target->wordSize; |
513 | } |
514 | } |
515 | } |
516 | |
517 | static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { |
518 | uint8_t opcode = op.opcode & BIND_OPCODE_MASK; |
519 | switch (opcode) { |
520 | case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: |
521 | case BIND_OPCODE_ADD_ADDR_ULEB: |
522 | case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: |
523 | os << op.opcode; |
524 | encodeULEB128(Value: op.data, OS&: os); |
525 | break; |
526 | case BIND_OPCODE_SET_ADDEND_SLEB: |
527 | os << op.opcode; |
528 | encodeSLEB128(Value: static_cast<int64_t>(op.data), OS&: os); |
529 | break; |
530 | case BIND_OPCODE_DO_BIND: |
531 | os << op.opcode; |
532 | break; |
533 | case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: |
534 | os << op.opcode; |
535 | encodeULEB128(Value: op.consecutiveCount, OS&: os); |
536 | encodeULEB128(Value: op.data, OS&: os); |
537 | break; |
538 | case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: |
539 | os << static_cast<uint8_t>(op.opcode | op.data); |
540 | break; |
541 | default: |
542 | llvm_unreachable("cannot bind to an unrecognized symbol"); |
543 | } |
544 | } |
545 | |
546 | static bool needsWeakBind(const Symbol &sym) { |
547 | if (auto *dysym = dyn_cast<DylibSymbol>(Val: &sym)) |
548 | return dysym->isWeakDef(); |
549 | if (auto *defined = dyn_cast<Defined>(Val: &sym)) |
550 | return defined->isExternalWeakDef(); |
551 | return false; |
552 | } |
553 | |
554 | // Non-weak bindings need to have their dylib ordinal encoded as well. |
555 | static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { |
556 | if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) |
557 | return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); |
558 | assert(dysym.getFile()->isReferenced()); |
559 | return dysym.getFile()->ordinal; |
560 | } |
561 | |
562 | static int16_t ordinalForSymbol(const Symbol &sym) { |
563 | if (config->emitChainedFixups && needsWeakBind(sym)) |
564 | return BIND_SPECIAL_DYLIB_WEAK_LOOKUP; |
565 | if (const auto *dysym = dyn_cast<DylibSymbol>(Val: &sym)) |
566 | return ordinalForDylibSymbol(dysym: *dysym); |
567 | assert(cast<Defined>(&sym)->interposable); |
568 | return BIND_SPECIAL_DYLIB_FLAT_LOOKUP; |
569 | } |
570 | |
571 | static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { |
572 | if (ordinal <= 0) { |
573 | os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | |
574 | (ordinal & BIND_IMMEDIATE_MASK)); |
575 | } else if (ordinal <= BIND_IMMEDIATE_MASK) { |
576 | os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); |
577 | } else { |
578 | os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); |
579 | encodeULEB128(Value: ordinal, OS&: os); |
580 | } |
581 | } |
582 | |
583 | static void encodeWeakOverride(const Defined *defined, |
584 | raw_svector_ostream &os) { |
585 | os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | |
586 | BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) |
587 | << defined->getName() << '\0'; |
588 | } |
589 | |
590 | // Organize the bindings so we can encoded them with fewer opcodes. |
591 | // |
592 | // First, all bindings for a given symbol should be grouped together. |
593 | // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it |
594 | // has an associated symbol string), so we only want to emit it once per symbol. |
595 | // |
596 | // Within each group, we sort the bindings by address. Since bindings are |
597 | // delta-encoded, sorting them allows for a more compact result. Note that |
598 | // sorting by address alone ensures that bindings for the same segment / section |
599 | // are located together, minimizing the number of times we have to emit |
600 | // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. |
601 | // |
602 | // Finally, we sort the symbols by the address of their first binding, again |
603 | // to facilitate the delta-encoding process. |
604 | template <class Sym> |
605 | std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> |
606 | sortBindings(const BindingsMap<const Sym *> &bindingsMap) { |
607 | std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( |
608 | bindingsMap.begin(), bindingsMap.end()); |
609 | for (auto &p : bindingsVec) { |
610 | std::vector<BindingEntry> &bindings = p.second; |
611 | llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { |
612 | return a.target.getVA() < b.target.getVA(); |
613 | }); |
614 | } |
615 | llvm::sort(bindingsVec, [](const auto &a, const auto &b) { |
616 | return a.second[0].target.getVA() < b.second[0].target.getVA(); |
617 | }); |
618 | return bindingsVec; |
619 | } |
620 | |
621 | // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld |
622 | // interprets to update a record with the following fields: |
623 | // * segment index (of the segment to write the symbol addresses to, typically |
624 | // the __DATA_CONST segment which contains the GOT) |
625 | // * offset within the segment, indicating the next location to write a binding |
626 | // * symbol type |
627 | // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) |
628 | // * symbol name |
629 | // * addend |
630 | // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind |
631 | // a symbol in the GOT, and increments the segment offset to point to the next |
632 | // entry. It does *not* clear the record state after doing the bind, so |
633 | // subsequent opcodes only need to encode the differences between bindings. |
634 | void BindingSection::finalizeContents() { |
635 | raw_svector_ostream os{contents}; |
636 | Binding lastBinding; |
637 | int16_t lastOrdinal = 0; |
638 | |
639 | for (auto &p : sortBindings(bindingsMap)) { |
640 | const Symbol *sym = p.first; |
641 | std::vector<BindingEntry> &bindings = p.second; |
642 | uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; |
643 | if (sym->isWeakRef()) |
644 | flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; |
645 | os << flags << sym->getName() << '\0' |
646 | << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); |
647 | int16_t ordinal = ordinalForSymbol(sym: *sym); |
648 | if (ordinal != lastOrdinal) { |
649 | encodeDylibOrdinal(ordinal, os); |
650 | lastOrdinal = ordinal; |
651 | } |
652 | std::vector<BindIR> opcodes; |
653 | for (const BindingEntry &b : bindings) |
654 | encodeBinding(osec: b.target.isec->parent, |
655 | outSecOff: b.target.isec->getOffset(off: b.target.offset), addend: b.addend, |
656 | lastBinding, opcodes); |
657 | if (config->optimize > 1) |
658 | optimizeOpcodes(opcodes); |
659 | for (const auto &op : opcodes) |
660 | flushOpcodes(op, os); |
661 | } |
662 | if (!bindingsMap.empty()) |
663 | os << static_cast<uint8_t>(BIND_OPCODE_DONE); |
664 | } |
665 | |
666 | void BindingSection::writeTo(uint8_t *buf) const { |
667 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
668 | } |
669 | |
670 | WeakBindingSection::WeakBindingSection() |
671 | : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} |
672 | |
673 | void WeakBindingSection::finalizeContents() { |
674 | raw_svector_ostream os{contents}; |
675 | Binding lastBinding; |
676 | |
677 | for (const Defined *defined : definitions) |
678 | encodeWeakOverride(defined, os); |
679 | |
680 | for (auto &p : sortBindings(bindingsMap)) { |
681 | const Symbol *sym = p.first; |
682 | std::vector<BindingEntry> &bindings = p.second; |
683 | os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) |
684 | << sym->getName() << '\0' |
685 | << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); |
686 | std::vector<BindIR> opcodes; |
687 | for (const BindingEntry &b : bindings) |
688 | encodeBinding(osec: b.target.isec->parent, |
689 | outSecOff: b.target.isec->getOffset(off: b.target.offset), addend: b.addend, |
690 | lastBinding, opcodes); |
691 | if (config->optimize > 1) |
692 | optimizeOpcodes(opcodes); |
693 | for (const auto &op : opcodes) |
694 | flushOpcodes(op, os); |
695 | } |
696 | if (!bindingsMap.empty() || !definitions.empty()) |
697 | os << static_cast<uint8_t>(BIND_OPCODE_DONE); |
698 | } |
699 | |
700 | void WeakBindingSection::writeTo(uint8_t *buf) const { |
701 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
702 | } |
703 | |
704 | StubsSection::StubsSection() |
705 | : SyntheticSection(segment_names::text, section_names::stubs) { |
706 | flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
707 | // The stubs section comprises machine instructions, which are aligned to |
708 | // 4 bytes on the archs we care about. |
709 | align = 4; |
710 | reserved2 = target->stubSize; |
711 | } |
712 | |
713 | uint64_t StubsSection::getSize() const { |
714 | return entries.size() * target->stubSize; |
715 | } |
716 | |
717 | void StubsSection::writeTo(uint8_t *buf) const { |
718 | size_t off = 0; |
719 | for (const Symbol *sym : entries) { |
720 | uint64_t pointerVA = |
721 | config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA(); |
722 | target->writeStub(buf: buf + off, *sym, pointerVA); |
723 | off += target->stubSize; |
724 | } |
725 | } |
726 | |
727 | void StubsSection::finalize() { isFinal = true; } |
728 | |
729 | static void addBindingsForStub(Symbol *sym) { |
730 | assert(!config->emitChainedFixups); |
731 | if (auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
732 | if (sym->isWeakDef()) { |
733 | in.binding->addEntry(dysym, isec: in.lazyPointers->isec, |
734 | offset: sym->stubsIndex * target->wordSize); |
735 | in.weakBinding->addEntry(symbol: sym, isec: in.lazyPointers->isec, |
736 | offset: sym->stubsIndex * target->wordSize); |
737 | } else { |
738 | in.lazyBinding->addEntry(dysym); |
739 | } |
740 | } else if (auto *defined = dyn_cast<Defined>(Val: sym)) { |
741 | if (defined->isExternalWeakDef()) { |
742 | in.rebase->addEntry(isec: in.lazyPointers->isec, |
743 | offset: sym->stubsIndex * target->wordSize); |
744 | in.weakBinding->addEntry(symbol: sym, isec: in.lazyPointers->isec, |
745 | offset: sym->stubsIndex * target->wordSize); |
746 | } else if (defined->interposable) { |
747 | in.lazyBinding->addEntry(dysym: sym); |
748 | } else { |
749 | llvm_unreachable("invalid stub target"); |
750 | } |
751 | } else { |
752 | llvm_unreachable("invalid stub target symbol type"); |
753 | } |
754 | } |
755 | |
756 | void StubsSection::addEntry(Symbol *sym) { |
757 | bool inserted = entries.insert(X: sym); |
758 | if (inserted) { |
759 | sym->stubsIndex = entries.size() - 1; |
760 | |
761 | if (config->emitChainedFixups) |
762 | in.got->addEntry(sym); |
763 | else |
764 | addBindingsForStub(sym); |
765 | } |
766 | } |
767 | |
768 | StubHelperSection::StubHelperSection() |
769 | : SyntheticSection(segment_names::text, section_names::stubHelper) { |
770 | flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
771 | align = 4; // This section comprises machine instructions |
772 | } |
773 | |
774 | uint64_t StubHelperSection::getSize() const { |
775 | return target->stubHelperHeaderSize + |
776 | in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; |
777 | } |
778 | |
779 | bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } |
780 | |
781 | void StubHelperSection::writeTo(uint8_t *buf) const { |
782 | target->writeStubHelperHeader(buf); |
783 | size_t off = target->stubHelperHeaderSize; |
784 | for (const Symbol *sym : in.lazyBinding->getEntries()) { |
785 | target->writeStubHelperEntry(buf: buf + off, *sym, entryAddr: addr + off); |
786 | off += target->stubHelperEntrySize; |
787 | } |
788 | } |
789 | |
790 | void StubHelperSection::setUp() { |
791 | Symbol *binder = symtab->addUndefined(name: "dyld_stub_binder", /*file=*/nullptr, |
792 | /*isWeakRef=*/false); |
793 | if (auto *undefined = dyn_cast<Undefined>(Val: binder)) |
794 | treatUndefinedSymbol(*undefined, |
795 | source: "lazy binding (normally in libSystem.dylib)"); |
796 | |
797 | // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. |
798 | stubBinder = dyn_cast_or_null<DylibSymbol>(Val: binder); |
799 | if (stubBinder == nullptr) |
800 | return; |
801 | |
802 | in.got->addEntry(sym: stubBinder); |
803 | |
804 | in.imageLoaderCache->parent = |
805 | ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); |
806 | addInputSection(inputSection: in.imageLoaderCache); |
807 | // Since this isn't in the symbol table or in any input file, the noDeadStrip |
808 | // argument doesn't matter. |
809 | dyldPrivate = |
810 | make<Defined>(args: "__dyld_private", args: nullptr, args&: in.imageLoaderCache, args: 0, args: 0, |
811 | /*isWeakDef=*/args: false, |
812 | /*isExternal=*/args: false, /*isPrivateExtern=*/args: false, |
813 | /*includeInSymtab=*/args: true, |
814 | /*isReferencedDynamically=*/args: false, |
815 | /*noDeadStrip=*/args: false); |
816 | dyldPrivate->used = true; |
817 | } |
818 | |
819 | llvm::DenseMap<llvm::CachedHashStringRef, ConcatInputSection *> |
820 | ObjCSelRefsHelper::methnameToSelref; |
821 | void ObjCSelRefsHelper::initialize() { |
822 | // Do not fold selrefs without ICF. |
823 | if (config->icfLevel == ICFLevel::none) |
824 | return; |
825 | |
826 | // Search methnames already referenced in __objc_selrefs |
827 | // Map the name to the corresponding selref entry |
828 | // which we will reuse when creating objc stubs. |
829 | for (ConcatInputSection *isec : inputSections) { |
830 | if (isec->shouldOmitFromOutput()) |
831 | continue; |
832 | if (isec->getName() != section_names::objcSelrefs) |
833 | continue; |
834 | // We expect a single relocation per selref entry to __objc_methname that |
835 | // might be aggregated. |
836 | assert(isec->relocs.size() == 1); |
837 | auto Reloc = isec->relocs[0]; |
838 | if (const auto *sym = Reloc.referent.dyn_cast<Symbol *>()) { |
839 | if (const auto *d = dyn_cast<Defined>(Val: sym)) { |
840 | auto *cisec = cast<CStringInputSection>(Val: d->isec()); |
841 | auto methname = cisec->getStringRefAtOffset(off: d->value); |
842 | methnameToSelref[CachedHashStringRef(methname)] = isec; |
843 | } |
844 | } |
845 | } |
846 | } |
847 | |
848 | void ObjCSelRefsHelper::cleanup() { methnameToSelref.clear(); } |
849 | |
850 | ConcatInputSection *ObjCSelRefsHelper::makeSelRef(StringRef methname) { |
851 | auto methnameOffset = |
852 | in.objcMethnameSection->getStringOffset(str: methname).outSecOff; |
853 | |
854 | size_t wordSize = target->wordSize; |
855 | uint8_t *selrefData = bAlloc().Allocate<uint8_t>(Num: wordSize); |
856 | write64le(P: selrefData, V: methnameOffset); |
857 | ConcatInputSection *objcSelref = |
858 | makeSyntheticInputSection(segName: segment_names::data, sectName: section_names::objcSelrefs, |
859 | flags: S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP, |
860 | data: ArrayRef<uint8_t>{selrefData, wordSize}, |
861 | /*align=*/wordSize); |
862 | assert(objcSelref->live); |
863 | objcSelref->relocs.push_back(x: {/*type=*/target->unsignedRelocType, |
864 | /*pcrel=*/false, /*length=*/3, |
865 | /*offset=*/0, |
866 | /*addend=*/static_cast<int64_t>(methnameOffset), |
867 | /*referent=*/in.objcMethnameSection->isec}); |
868 | objcSelref->parent = ConcatOutputSection::getOrCreateForInput(objcSelref); |
869 | addInputSection(inputSection: objcSelref); |
870 | objcSelref->isFinal = true; |
871 | methnameToSelref[CachedHashStringRef(methname)] = objcSelref; |
872 | return objcSelref; |
873 | } |
874 | |
875 | ConcatInputSection *ObjCSelRefsHelper::getSelRef(StringRef methname) { |
876 | auto it = methnameToSelref.find(Val: CachedHashStringRef(methname)); |
877 | if (it == methnameToSelref.end()) |
878 | return nullptr; |
879 | return it->second; |
880 | } |
881 | |
882 | ObjCStubsSection::ObjCStubsSection() |
883 | : SyntheticSection(segment_names::text, section_names::objcStubs) { |
884 | flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
885 | align = config->objcStubsMode == ObjCStubsMode::fast |
886 | ? target->objcStubsFastAlignment |
887 | : target->objcStubsSmallAlignment; |
888 | } |
889 | |
890 | bool ObjCStubsSection::isObjCStubSymbol(Symbol *sym) { |
891 | return sym->getName().starts_with(Prefix: symbolPrefix); |
892 | } |
893 | |
894 | StringRef ObjCStubsSection::getMethname(Symbol *sym) { |
895 | assert(isObjCStubSymbol(sym) && "not an objc stub"); |
896 | auto name = sym->getName(); |
897 | StringRef methname = name.drop_front(N: symbolPrefix.size()); |
898 | return methname; |
899 | } |
900 | |
901 | void ObjCStubsSection::addEntry(Symbol *sym) { |
902 | StringRef methname = getMethname(sym); |
903 | // We create a selref entry for each unique methname. |
904 | if (!ObjCSelRefsHelper::getSelRef(methname)) |
905 | ObjCSelRefsHelper::makeSelRef(methname); |
906 | |
907 | auto stubSize = config->objcStubsMode == ObjCStubsMode::fast |
908 | ? target->objcStubsFastSize |
909 | : target->objcStubsSmallSize; |
910 | Defined *newSym = replaceSymbol<Defined>( |
911 | s: sym, arg: sym->getName(), arg: nullptr, arg&: isec, |
912 | /*value=*/arg: symbols.size() * stubSize, |
913 | /*size=*/arg&: stubSize, |
914 | /*isWeakDef=*/arg: false, /*isExternal=*/arg: true, /*isPrivateExtern=*/arg: true, |
915 | /*includeInSymtab=*/arg: true, /*isReferencedDynamically=*/arg: false, |
916 | /*noDeadStrip=*/arg: false); |
917 | symbols.push_back(x: newSym); |
918 | } |
919 | |
920 | void ObjCStubsSection::setUp() { |
921 | objcMsgSend = symtab->addUndefined(name: "_objc_msgSend", /*file=*/nullptr, |
922 | /*isWeakRef=*/false); |
923 | if (auto *undefined = dyn_cast<Undefined>(Val: objcMsgSend)) |
924 | treatUndefinedSymbol(*undefined, |
925 | source: "lazy binding (normally in libobjc.dylib)"); |
926 | objcMsgSend->used = true; |
927 | if (config->objcStubsMode == ObjCStubsMode::fast) { |
928 | in.got->addEntry(sym: objcMsgSend); |
929 | assert(objcMsgSend->isInGot()); |
930 | } else { |
931 | assert(config->objcStubsMode == ObjCStubsMode::small); |
932 | // In line with ld64's behavior, when objc_msgSend is a direct symbol, |
933 | // we directly reference it. |
934 | // In other cases, typically when binding in libobjc.dylib, |
935 | // we generate a stub to invoke objc_msgSend. |
936 | if (!isa<Defined>(Val: objcMsgSend)) |
937 | in.stubs->addEntry(sym: objcMsgSend); |
938 | } |
939 | } |
940 | |
941 | uint64_t ObjCStubsSection::getSize() const { |
942 | auto stubSize = config->objcStubsMode == ObjCStubsMode::fast |
943 | ? target->objcStubsFastSize |
944 | : target->objcStubsSmallSize; |
945 | return stubSize * symbols.size(); |
946 | } |
947 | |
948 | void ObjCStubsSection::writeTo(uint8_t *buf) const { |
949 | uint64_t stubOffset = 0; |
950 | for (size_t i = 0, n = symbols.size(); i < n; ++i) { |
951 | Defined *sym = symbols[i]; |
952 | |
953 | auto methname = getMethname(sym); |
954 | InputSection *selRef = ObjCSelRefsHelper::getSelRef(methname); |
955 | assert(selRef != nullptr && "no selref for methname"); |
956 | auto selrefAddr = selRef->getVA(off: 0); |
957 | target->writeObjCMsgSendStub(buf: buf + stubOffset, sym, stubsAddr: in.objcStubs->addr, |
958 | stubOffset, selrefVA: selrefAddr, objcMsgSend); |
959 | } |
960 | } |
961 | |
962 | LazyPointerSection::LazyPointerSection() |
963 | : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { |
964 | align = target->wordSize; |
965 | flags = S_LAZY_SYMBOL_POINTERS; |
966 | } |
967 | |
968 | uint64_t LazyPointerSection::getSize() const { |
969 | return in.stubs->getEntries().size() * target->wordSize; |
970 | } |
971 | |
972 | bool LazyPointerSection::isNeeded() const { |
973 | return !in.stubs->getEntries().empty(); |
974 | } |
975 | |
976 | void LazyPointerSection::writeTo(uint8_t *buf) const { |
977 | size_t off = 0; |
978 | for (const Symbol *sym : in.stubs->getEntries()) { |
979 | if (const auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
980 | if (dysym->hasStubsHelper()) { |
981 | uint64_t stubHelperOffset = |
982 | target->stubHelperHeaderSize + |
983 | dysym->stubsHelperIndex * target->stubHelperEntrySize; |
984 | write64le(P: buf + off, V: in.stubHelper->addr + stubHelperOffset); |
985 | } |
986 | } else { |
987 | write64le(P: buf + off, V: sym->getVA()); |
988 | } |
989 | off += target->wordSize; |
990 | } |
991 | } |
992 | |
993 | LazyBindingSection::LazyBindingSection() |
994 | : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} |
995 | |
996 | void LazyBindingSection::finalizeContents() { |
997 | // TODO: Just precompute output size here instead of writing to a temporary |
998 | // buffer |
999 | for (Symbol *sym : entries) |
1000 | sym->lazyBindOffset = encode(*sym); |
1001 | } |
1002 | |
1003 | void LazyBindingSection::writeTo(uint8_t *buf) const { |
1004 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
1005 | } |
1006 | |
1007 | void LazyBindingSection::addEntry(Symbol *sym) { |
1008 | assert(!config->emitChainedFixups && "Chained fixups always bind eagerly"); |
1009 | if (entries.insert(X: sym)) { |
1010 | sym->stubsHelperIndex = entries.size() - 1; |
1011 | in.rebase->addEntry(isec: in.lazyPointers->isec, |
1012 | offset: sym->stubsIndex * target->wordSize); |
1013 | } |
1014 | } |
1015 | |
1016 | // Unlike the non-lazy binding section, the bind opcodes in this section aren't |
1017 | // interpreted all at once. Rather, dyld will start interpreting opcodes at a |
1018 | // given offset, typically only binding a single symbol before it finds a |
1019 | // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, |
1020 | // we cannot encode just the differences between symbols; we have to emit the |
1021 | // complete bind information for each symbol. |
1022 | uint32_t LazyBindingSection::encode(const Symbol &sym) { |
1023 | uint32_t opstreamOffset = contents.size(); |
1024 | OutputSegment *dataSeg = in.lazyPointers->parent; |
1025 | os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
1026 | dataSeg->index); |
1027 | uint64_t offset = |
1028 | in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize; |
1029 | encodeULEB128(Value: offset, OS&: os); |
1030 | encodeDylibOrdinal(ordinal: ordinalForSymbol(sym), os); |
1031 | |
1032 | uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; |
1033 | if (sym.isWeakRef()) |
1034 | flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; |
1035 | |
1036 | os << flags << sym.getName() << '\0' |
1037 | << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) |
1038 | << static_cast<uint8_t>(BIND_OPCODE_DONE); |
1039 | return opstreamOffset; |
1040 | } |
1041 | |
1042 | ExportSection::ExportSection() |
1043 | : LinkEditSection(segment_names::linkEdit, section_names::export_) {} |
1044 | |
1045 | void ExportSection::finalizeContents() { |
1046 | trieBuilder.setImageBase(in.header->addr); |
1047 | for (const Symbol *sym : symtab->getSymbols()) { |
1048 | if (const auto *defined = dyn_cast<Defined>(Val: sym)) { |
1049 | if (defined->privateExtern || !defined->isLive()) |
1050 | continue; |
1051 | trieBuilder.addSymbol(sym: *defined); |
1052 | hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); |
1053 | } else if (auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
1054 | if (dysym->shouldReexport) |
1055 | trieBuilder.addSymbol(sym: *dysym); |
1056 | } |
1057 | } |
1058 | size = trieBuilder.build(); |
1059 | } |
1060 | |
1061 | void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } |
1062 | |
1063 | DataInCodeSection::DataInCodeSection() |
1064 | : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} |
1065 | |
1066 | template <class LP> |
1067 | static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { |
1068 | std::vector<MachO::data_in_code_entry> dataInCodeEntries; |
1069 | for (const InputFile *inputFile : inputFiles) { |
1070 | if (!isa<ObjFile>(Val: inputFile)) |
1071 | continue; |
1072 | const ObjFile *objFile = cast<ObjFile>(Val: inputFile); |
1073 | ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode(); |
1074 | if (entries.empty()) |
1075 | continue; |
1076 | |
1077 | std::vector<MachO::data_in_code_entry> sortedEntries; |
1078 | sortedEntries.assign(first: entries.begin(), last: entries.end()); |
1079 | llvm::sort(sortedEntries, [](const data_in_code_entry &lhs, |
1080 | const data_in_code_entry &rhs) { |
1081 | return lhs.offset < rhs.offset; |
1082 | }); |
1083 | |
1084 | // For each code subsection find 'data in code' entries residing in it. |
1085 | // Compute the new offset values as |
1086 | // <offset within subsection> + <subsection address> - <__TEXT address>. |
1087 | for (const Section *section : objFile->sections) { |
1088 | for (const Subsection &subsec : section->subsections) { |
1089 | const InputSection *isec = subsec.isec; |
1090 | if (!isCodeSection(isec)) |
1091 | continue; |
1092 | if (cast<ConcatInputSection>(Val: isec)->shouldOmitFromOutput()) |
1093 | continue; |
1094 | const uint64_t beginAddr = section->addr + subsec.offset; |
1095 | auto it = llvm::lower_bound( |
1096 | sortedEntries, beginAddr, |
1097 | [](const MachO::data_in_code_entry &entry, uint64_t addr) { |
1098 | return entry.offset < addr; |
1099 | }); |
1100 | const uint64_t endAddr = beginAddr + isec->getSize(); |
1101 | for (const auto end = sortedEntries.end(); |
1102 | it != end && it->offset + it->length <= endAddr; ++it) |
1103 | dataInCodeEntries.push_back( |
1104 | {static_cast<uint32_t>(isec->getVA(off: it->offset - beginAddr) - |
1105 | in.header->addr), |
1106 | it->length, it->kind}); |
1107 | } |
1108 | } |
1109 | } |
1110 | |
1111 | // ld64 emits the table in sorted order too. |
1112 | llvm::sort(dataInCodeEntries, |
1113 | [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) { |
1114 | return lhs.offset < rhs.offset; |
1115 | }); |
1116 | return dataInCodeEntries; |
1117 | } |
1118 | |
1119 | void DataInCodeSection::finalizeContents() { |
1120 | entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() |
1121 | : collectDataInCodeEntries<ILP32>(); |
1122 | } |
1123 | |
1124 | void DataInCodeSection::writeTo(uint8_t *buf) const { |
1125 | if (!entries.empty()) |
1126 | memcpy(dest: buf, src: entries.data(), n: getRawSize()); |
1127 | } |
1128 | |
1129 | FunctionStartsSection::FunctionStartsSection() |
1130 | : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} |
1131 | |
1132 | void FunctionStartsSection::finalizeContents() { |
1133 | raw_svector_ostream os{contents}; |
1134 | std::vector<uint64_t> addrs; |
1135 | for (const InputFile *file : inputFiles) { |
1136 | if (auto *objFile = dyn_cast<ObjFile>(Val: file)) { |
1137 | for (const Symbol *sym : objFile->symbols) { |
1138 | if (const auto *defined = dyn_cast_or_null<Defined>(Val: sym)) { |
1139 | if (!defined->isec() || !isCodeSection(defined->isec()) || |
1140 | !defined->isLive()) |
1141 | continue; |
1142 | addrs.push_back(x: defined->getVA()); |
1143 | } |
1144 | } |
1145 | } |
1146 | } |
1147 | llvm::sort(C&: addrs); |
1148 | uint64_t addr = in.header->addr; |
1149 | for (uint64_t nextAddr : addrs) { |
1150 | uint64_t delta = nextAddr - addr; |
1151 | if (delta == 0) |
1152 | continue; |
1153 | encodeULEB128(Value: delta, OS&: os); |
1154 | addr = nextAddr; |
1155 | } |
1156 | os << '\0'; |
1157 | } |
1158 | |
1159 | void FunctionStartsSection::writeTo(uint8_t *buf) const { |
1160 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
1161 | } |
1162 | |
1163 | SymtabSection::SymtabSection(StringTableSection &stringTableSection) |
1164 | : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), |
1165 | stringTableSection(stringTableSection) {} |
1166 | |
1167 | void SymtabSection::emitBeginSourceStab(StringRef sourceFile) { |
1168 | StabsEntry stab(N_SO); |
1169 | stab.strx = stringTableSection.addString(saver().save(S: sourceFile)); |
1170 | stabs.emplace_back(args: std::move(stab)); |
1171 | } |
1172 | |
1173 | void SymtabSection::emitEndSourceStab() { |
1174 | StabsEntry stab(N_SO); |
1175 | stab.sect = 1; |
1176 | stabs.emplace_back(args: std::move(stab)); |
1177 | } |
1178 | |
1179 | void SymtabSection::emitObjectFileStab(ObjFile *file) { |
1180 | StabsEntry stab(N_OSO); |
1181 | stab.sect = target->cpuSubtype; |
1182 | SmallString<261> path(!file->archiveName.empty() ? file->archiveName |
1183 | : file->getName()); |
1184 | std::error_code ec = sys::fs::make_absolute(path); |
1185 | if (ec) |
1186 | fatal(msg: "failed to get absolute path for "+ path); |
1187 | |
1188 | if (!file->archiveName.empty()) |
1189 | path.append(Refs: {"(", file->getName(), ")"}); |
1190 | |
1191 | StringRef adjustedPath = saver().save(S: path.str()); |
1192 | adjustedPath.consume_front(Prefix: config->osoPrefix); |
1193 | |
1194 | stab.strx = stringTableSection.addString(adjustedPath); |
1195 | stab.desc = 1; |
1196 | stab.value = file->modTime; |
1197 | stabs.emplace_back(args: std::move(stab)); |
1198 | } |
1199 | |
1200 | void SymtabSection::emitEndFunStab(Defined *defined) { |
1201 | StabsEntry stab(N_FUN); |
1202 | stab.value = defined->size; |
1203 | stabs.emplace_back(args: std::move(stab)); |
1204 | } |
1205 | |
1206 | void SymtabSection::emitStabs() { |
1207 | if (config->omitDebugInfo) |
1208 | return; |
1209 | |
1210 | for (const std::string &s : config->astPaths) { |
1211 | StabsEntry astStab(N_AST); |
1212 | astStab.strx = stringTableSection.addString(s); |
1213 | stabs.emplace_back(args: std::move(astStab)); |
1214 | } |
1215 | |
1216 | // Cache the file ID for each symbol in an std::pair for faster sorting. |
1217 | using SortingPair = std::pair<Defined *, int>; |
1218 | std::vector<SortingPair> symbolsNeedingStabs; |
1219 | for (const SymtabEntry &entry : |
1220 | concat<SymtabEntry>(Ranges&: localSymbols, Ranges&: externalSymbols)) { |
1221 | Symbol *sym = entry.sym; |
1222 | assert(sym->isLive() && |
1223 | "dead symbols should not be in localSymbols, externalSymbols"); |
1224 | if (auto *defined = dyn_cast<Defined>(Val: sym)) { |
1225 | // Excluded symbols should have been filtered out in finalizeContents(). |
1226 | assert(defined->includeInSymtab); |
1227 | |
1228 | if (defined->isAbsolute()) |
1229 | continue; |
1230 | |
1231 | // Constant-folded symbols go in the executable's symbol table, but don't |
1232 | // get a stabs entry unless --keep-icf-stabs flag is specified. |
1233 | if (!config->keepICFStabs && |
1234 | defined->identicalCodeFoldingKind != Symbol::ICFFoldKind::None) |
1235 | continue; |
1236 | |
1237 | ObjFile *file = defined->getObjectFile(); |
1238 | if (!file || !file->compileUnit) |
1239 | continue; |
1240 | |
1241 | // We use the symbol's original InputSection to get the file id, |
1242 | // even for ICF folded symbols, to ensure STABS entries point to the |
1243 | // correct object file where the symbol was originally defined |
1244 | symbolsNeedingStabs.emplace_back(args&: defined, |
1245 | args: defined->originalIsec->getFile()->id); |
1246 | } |
1247 | } |
1248 | |
1249 | llvm::stable_sort(Range&: symbolsNeedingStabs, C: llvm::less_second()); |
1250 | |
1251 | // Emit STABS symbols so that dsymutil and/or the debugger can map address |
1252 | // regions in the final binary to the source and object files from which they |
1253 | // originated. |
1254 | InputFile *lastFile = nullptr; |
1255 | for (SortingPair &pair : symbolsNeedingStabs) { |
1256 | Defined *defined = pair.first; |
1257 | // When emitting STABS entries for a symbol, always use the original |
1258 | // InputSection of the defined symbol, not the section of the function body |
1259 | // (which might be a different function entirely if ICF folded this |
1260 | // function). This ensures STABS entries point back to the original object |
1261 | // file. |
1262 | InputSection *isec = defined->originalIsec; |
1263 | ObjFile *file = cast<ObjFile>(Val: isec->getFile()); |
1264 | |
1265 | if (lastFile == nullptr || lastFile != file) { |
1266 | if (lastFile != nullptr) |
1267 | emitEndSourceStab(); |
1268 | lastFile = file; |
1269 | |
1270 | emitBeginSourceStab(sourceFile: file->sourceFile()); |
1271 | emitObjectFileStab(file); |
1272 | } |
1273 | |
1274 | StabsEntry symStab; |
1275 | symStab.sect = isec->parent->index; |
1276 | symStab.strx = stringTableSection.addString(defined->getName()); |
1277 | |
1278 | // When using --keep-icf-stabs, we need to use the VA of the actual function |
1279 | // body that the linker will place in the binary. This is the function that |
1280 | // the symbol refers to after ICF folding. |
1281 | if (defined->identicalCodeFoldingKind == Symbol::ICFFoldKind::Thunk) { |
1282 | // For thunks, we need to get the function they point to |
1283 | Defined *target = getBodyForThunkFoldedSym(foldedSym: defined); |
1284 | symStab.value = target->getVA(); |
1285 | } else { |
1286 | symStab.value = defined->getVA(); |
1287 | } |
1288 | |
1289 | if (isCodeSection(isec)) { |
1290 | symStab.type = N_FUN; |
1291 | stabs.emplace_back(args: std::move(symStab)); |
1292 | // For the end function marker in STABS, we need to use the size of the |
1293 | // actual function body that exists in the output binary |
1294 | if (defined->identicalCodeFoldingKind == Symbol::ICFFoldKind::Thunk) { |
1295 | // For thunks, we use the target's size |
1296 | Defined *target = getBodyForThunkFoldedSym(foldedSym: defined); |
1297 | emitEndFunStab(defined: target); |
1298 | } else { |
1299 | emitEndFunStab(defined); |
1300 | } |
1301 | } else { |
1302 | symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; |
1303 | stabs.emplace_back(args: std::move(symStab)); |
1304 | } |
1305 | } |
1306 | |
1307 | if (!stabs.empty()) |
1308 | emitEndSourceStab(); |
1309 | } |
1310 | |
1311 | void SymtabSection::finalizeContents() { |
1312 | auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { |
1313 | uint32_t strx = stringTableSection.addString(sym->getName()); |
1314 | symbols.push_back(x: {.sym: sym, .strx: strx}); |
1315 | }; |
1316 | |
1317 | std::function<void(Symbol *)> localSymbolsHandler; |
1318 | switch (config->localSymbolsPresence) { |
1319 | case SymtabPresence::All: |
1320 | localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); }; |
1321 | break; |
1322 | case SymtabPresence::None: |
1323 | localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ }; |
1324 | break; |
1325 | case SymtabPresence::SelectivelyIncluded: |
1326 | localSymbolsHandler = [&](Symbol *sym) { |
1327 | if (config->localSymbolPatterns.match(symbolName: sym->getName())) |
1328 | addSymbol(localSymbols, sym); |
1329 | }; |
1330 | break; |
1331 | case SymtabPresence::SelectivelyExcluded: |
1332 | localSymbolsHandler = [&](Symbol *sym) { |
1333 | if (!config->localSymbolPatterns.match(symbolName: sym->getName())) |
1334 | addSymbol(localSymbols, sym); |
1335 | }; |
1336 | break; |
1337 | } |
1338 | |
1339 | // Local symbols aren't in the SymbolTable, so we walk the list of object |
1340 | // files to gather them. |
1341 | // But if `-x` is set, then we don't need to. localSymbolsHandler() will do |
1342 | // the right thing regardless, but this check is a perf optimization because |
1343 | // iterating through all the input files and their symbols is expensive. |
1344 | if (config->localSymbolsPresence != SymtabPresence::None) { |
1345 | for (const InputFile *file : inputFiles) { |
1346 | if (auto *objFile = dyn_cast<ObjFile>(Val: file)) { |
1347 | for (Symbol *sym : objFile->symbols) { |
1348 | if (auto *defined = dyn_cast_or_null<Defined>(Val: sym)) { |
1349 | if (defined->isExternal() || !defined->isLive() || |
1350 | !defined->includeInSymtab) |
1351 | continue; |
1352 | localSymbolsHandler(sym); |
1353 | } |
1354 | } |
1355 | } |
1356 | } |
1357 | } |
1358 | |
1359 | // __dyld_private is a local symbol too. It's linker-created and doesn't |
1360 | // exist in any object file. |
1361 | if (in.stubHelper && in.stubHelper->dyldPrivate) |
1362 | localSymbolsHandler(in.stubHelper->dyldPrivate); |
1363 | |
1364 | for (Symbol *sym : symtab->getSymbols()) { |
1365 | if (!sym->isLive()) |
1366 | continue; |
1367 | if (auto *defined = dyn_cast<Defined>(Val: sym)) { |
1368 | if (!defined->includeInSymtab) |
1369 | continue; |
1370 | assert(defined->isExternal()); |
1371 | if (defined->privateExtern) |
1372 | localSymbolsHandler(defined); |
1373 | else |
1374 | addSymbol(externalSymbols, defined); |
1375 | } else if (auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
1376 | if (dysym->isReferenced()) |
1377 | addSymbol(undefinedSymbols, sym); |
1378 | } |
1379 | } |
1380 | |
1381 | emitStabs(); |
1382 | uint32_t symtabIndex = stabs.size(); |
1383 | for (const SymtabEntry &entry : |
1384 | concat<SymtabEntry>(Ranges&: localSymbols, Ranges&: externalSymbols, Ranges&: undefinedSymbols)) { |
1385 | entry.sym->symtabIndex = symtabIndex++; |
1386 | } |
1387 | } |
1388 | |
1389 | uint32_t SymtabSection::getNumSymbols() const { |
1390 | return stabs.size() + localSymbols.size() + externalSymbols.size() + |
1391 | undefinedSymbols.size(); |
1392 | } |
1393 | |
1394 | // This serves to hide (type-erase) the template parameter from SymtabSection. |
1395 | template <class LP> class SymtabSectionImpl final : public SymtabSection { |
1396 | public: |
1397 | SymtabSectionImpl(StringTableSection &stringTableSection) |
1398 | : SymtabSection(stringTableSection) {} |
1399 | uint64_t getRawSize() const override; |
1400 | void writeTo(uint8_t *buf) const override; |
1401 | }; |
1402 | |
1403 | template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { |
1404 | return getNumSymbols() * sizeof(typename LP::nlist); |
1405 | } |
1406 | |
1407 | template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { |
1408 | auto *nList = reinterpret_cast<typename LP::nlist *>(buf); |
1409 | // Emit the stabs entries before the "real" symbols. We cannot emit them |
1410 | // after as that would render Symbol::symtabIndex inaccurate. |
1411 | for (const StabsEntry &entry : stabs) { |
1412 | nList->n_strx = entry.strx; |
1413 | nList->n_type = entry.type; |
1414 | nList->n_sect = entry.sect; |
1415 | nList->n_desc = entry.desc; |
1416 | nList->n_value = entry.value; |
1417 | ++nList; |
1418 | } |
1419 | |
1420 | for (const SymtabEntry &entry : concat<const SymtabEntry>( |
1421 | localSymbols, externalSymbols, undefinedSymbols)) { |
1422 | nList->n_strx = entry.strx; |
1423 | // TODO populate n_desc with more flags |
1424 | if (auto *defined = dyn_cast<Defined>(Val: entry.sym)) { |
1425 | uint8_t scope = 0; |
1426 | if (defined->privateExtern) { |
1427 | // Private external -- dylib scoped symbol. |
1428 | // Promote to non-external at link time. |
1429 | scope = N_PEXT; |
1430 | } else if (defined->isExternal()) { |
1431 | // Normal global symbol. |
1432 | scope = N_EXT; |
1433 | } else { |
1434 | // TU-local symbol from localSymbols. |
1435 | scope = 0; |
1436 | } |
1437 | |
1438 | if (defined->isAbsolute()) { |
1439 | nList->n_type = scope | N_ABS; |
1440 | nList->n_sect = NO_SECT; |
1441 | nList->n_value = defined->value; |
1442 | } else { |
1443 | nList->n_type = scope | N_SECT; |
1444 | nList->n_sect = defined->isec()->parent->index; |
1445 | // For the N_SECT symbol type, n_value is the address of the symbol |
1446 | nList->n_value = defined->getVA(); |
1447 | } |
1448 | nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; |
1449 | nList->n_desc |= |
1450 | defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; |
1451 | } else if (auto *dysym = dyn_cast<DylibSymbol>(Val: entry.sym)) { |
1452 | uint16_t n_desc = nList->n_desc; |
1453 | int16_t ordinal = ordinalForDylibSymbol(dysym: *dysym); |
1454 | if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) |
1455 | SET_LIBRARY_ORDINAL(n_desc, ordinal: DYNAMIC_LOOKUP_ORDINAL); |
1456 | else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) |
1457 | SET_LIBRARY_ORDINAL(n_desc, ordinal: EXECUTABLE_ORDINAL); |
1458 | else { |
1459 | assert(ordinal > 0); |
1460 | SET_LIBRARY_ORDINAL(n_desc, ordinal: static_cast<uint8_t>(ordinal)); |
1461 | } |
1462 | |
1463 | nList->n_type = N_EXT; |
1464 | n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; |
1465 | n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; |
1466 | nList->n_desc = n_desc; |
1467 | } |
1468 | ++nList; |
1469 | } |
1470 | } |
1471 | |
1472 | template <class LP> |
1473 | SymtabSection * |
1474 | macho::makeSymtabSection(StringTableSection &stringTableSection) { |
1475 | return make<SymtabSectionImpl<LP>>(stringTableSection); |
1476 | } |
1477 | |
1478 | IndirectSymtabSection::IndirectSymtabSection() |
1479 | : LinkEditSection(segment_names::linkEdit, |
1480 | section_names::indirectSymbolTable) {} |
1481 | |
1482 | uint32_t IndirectSymtabSection::getNumSymbols() const { |
1483 | uint32_t size = in.got->getEntries().size() + |
1484 | in.tlvPointers->getEntries().size() + |
1485 | in.stubs->getEntries().size(); |
1486 | if (!config->emitChainedFixups) |
1487 | size += in.stubs->getEntries().size(); |
1488 | return size; |
1489 | } |
1490 | |
1491 | bool IndirectSymtabSection::isNeeded() const { |
1492 | return in.got->isNeeded() || in.tlvPointers->isNeeded() || |
1493 | in.stubs->isNeeded(); |
1494 | } |
1495 | |
1496 | void IndirectSymtabSection::finalizeContents() { |
1497 | uint32_t off = 0; |
1498 | in.got->reserved1 = off; |
1499 | off += in.got->getEntries().size(); |
1500 | in.tlvPointers->reserved1 = off; |
1501 | off += in.tlvPointers->getEntries().size(); |
1502 | in.stubs->reserved1 = off; |
1503 | if (in.lazyPointers) { |
1504 | off += in.stubs->getEntries().size(); |
1505 | in.lazyPointers->reserved1 = off; |
1506 | } |
1507 | } |
1508 | |
1509 | static uint32_t indirectValue(const Symbol *sym) { |
1510 | if (sym->symtabIndex == UINT32_MAX || !needsBinding(sym)) |
1511 | return INDIRECT_SYMBOL_LOCAL; |
1512 | return sym->symtabIndex; |
1513 | } |
1514 | |
1515 | void IndirectSymtabSection::writeTo(uint8_t *buf) const { |
1516 | uint32_t off = 0; |
1517 | for (const Symbol *sym : in.got->getEntries()) { |
1518 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
1519 | ++off; |
1520 | } |
1521 | for (const Symbol *sym : in.tlvPointers->getEntries()) { |
1522 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
1523 | ++off; |
1524 | } |
1525 | for (const Symbol *sym : in.stubs->getEntries()) { |
1526 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
1527 | ++off; |
1528 | } |
1529 | |
1530 | if (in.lazyPointers) { |
1531 | // There is a 1:1 correspondence between stubs and LazyPointerSection |
1532 | // entries. But giving __stubs and __la_symbol_ptr the same reserved1 |
1533 | // (the offset into the indirect symbol table) so that they both refer |
1534 | // to the same range of offsets confuses `strip`, so write the stubs |
1535 | // symbol table offsets a second time. |
1536 | for (const Symbol *sym : in.stubs->getEntries()) { |
1537 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
1538 | ++off; |
1539 | } |
1540 | } |
1541 | } |
1542 | |
1543 | StringTableSection::StringTableSection() |
1544 | : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} |
1545 | |
1546 | uint32_t StringTableSection::addString(StringRef str) { |
1547 | uint32_t strx = size; |
1548 | if (config->dedupSymbolStrings) { |
1549 | llvm::CachedHashStringRef hashedStr(str); |
1550 | auto [it, inserted] = stringMap.try_emplace(Key: hashedStr, Args&: strx); |
1551 | if (!inserted) |
1552 | return it->second; |
1553 | } |
1554 | |
1555 | strings.push_back(x: str); |
1556 | size += str.size() + 1; // account for null terminator |
1557 | return strx; |
1558 | } |
1559 | |
1560 | void StringTableSection::writeTo(uint8_t *buf) const { |
1561 | uint32_t off = 0; |
1562 | for (StringRef str : strings) { |
1563 | memcpy(dest: buf + off, src: str.data(), n: str.size()); |
1564 | off += str.size() + 1; // account for null terminator |
1565 | } |
1566 | } |
1567 | |
1568 | static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0); |
1569 | static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0); |
1570 | |
1571 | CodeSignatureSection::CodeSignatureSection() |
1572 | : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { |
1573 | align = 16; // required by libstuff |
1574 | |
1575 | // XXX: This mimics LD64, where it uses the install-name as codesign |
1576 | // identifier, if available. |
1577 | if (!config->installName.empty()) |
1578 | fileName = config->installName; |
1579 | else |
1580 | // FIXME: Consider using finalOutput instead of outputFile. |
1581 | fileName = config->outputFile; |
1582 | |
1583 | size_t slashIndex = fileName.rfind(Str: "/"); |
1584 | if (slashIndex != std::string::npos) |
1585 | fileName = fileName.drop_front(N: slashIndex + 1); |
1586 | |
1587 | // NOTE: Any changes to these calculations should be repeated |
1588 | // in llvm-objcopy's MachOLayoutBuilder::layoutTail. |
1589 | allHeadersSize = alignTo<16>(Value: fixedHeadersSize + fileName.size() + 1); |
1590 | fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); |
1591 | } |
1592 | |
1593 | uint32_t CodeSignatureSection::getBlockCount() const { |
1594 | return (fileOff + blockSize - 1) / blockSize; |
1595 | } |
1596 | |
1597 | uint64_t CodeSignatureSection::getRawSize() const { |
1598 | return allHeadersSize + getBlockCount() * hashSize; |
1599 | } |
1600 | |
1601 | void CodeSignatureSection::writeHashes(uint8_t *buf) const { |
1602 | // NOTE: Changes to this functionality should be repeated in llvm-objcopy's |
1603 | // MachOWriter::writeSignatureData. |
1604 | uint8_t *hashes = buf + fileOff + allHeadersSize; |
1605 | parallelFor(Begin: 0, End: getBlockCount(), Fn: [&](size_t i) { |
1606 | sha256(data: buf + i * blockSize, |
1607 | len: std::min(a: static_cast<size_t>(fileOff - i * blockSize), b: blockSize), |
1608 | output: hashes + i * hashSize); |
1609 | }); |
1610 | #if defined(__APPLE__) |
1611 | // This is macOS-specific work-around and makes no sense for any |
1612 | // other host OS. See https://openradar.appspot.com/FB8914231 |
1613 | // |
1614 | // The macOS kernel maintains a signature-verification cache to |
1615 | // quickly validate applications at time of execve(2). The trouble |
1616 | // is that for the kernel creates the cache entry at the time of the |
1617 | // mmap(2) call, before we have a chance to write either the code to |
1618 | // sign or the signature header+hashes. The fix is to invalidate |
1619 | // all cached data associated with the output file, thus discarding |
1620 | // the bogus prematurely-cached signature. |
1621 | msync(buf, fileOff + getSize(), MS_INVALIDATE); |
1622 | #endif |
1623 | } |
1624 | |
1625 | void CodeSignatureSection::writeTo(uint8_t *buf) const { |
1626 | // NOTE: Changes to this functionality should be repeated in llvm-objcopy's |
1627 | // MachOWriter::writeSignatureData. |
1628 | uint32_t signatureSize = static_cast<uint32_t>(getSize()); |
1629 | auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); |
1630 | write32be(P: &superBlob->magic, V: CSMAGIC_EMBEDDED_SIGNATURE); |
1631 | write32be(P: &superBlob->length, V: signatureSize); |
1632 | write32be(P: &superBlob->count, V: 1); |
1633 | auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); |
1634 | write32be(P: &blobIndex->type, V: CSSLOT_CODEDIRECTORY); |
1635 | write32be(P: &blobIndex->offset, V: blobHeadersSize); |
1636 | auto *codeDirectory = |
1637 | reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); |
1638 | write32be(P: &codeDirectory->magic, V: CSMAGIC_CODEDIRECTORY); |
1639 | write32be(P: &codeDirectory->length, V: signatureSize - blobHeadersSize); |
1640 | write32be(P: &codeDirectory->version, V: CS_SUPPORTSEXECSEG); |
1641 | write32be(P: &codeDirectory->flags, V: CS_ADHOC | CS_LINKER_SIGNED); |
1642 | write32be(P: &codeDirectory->hashOffset, |
1643 | V: sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); |
1644 | write32be(P: &codeDirectory->identOffset, V: sizeof(CS_CodeDirectory)); |
1645 | codeDirectory->nSpecialSlots = 0; |
1646 | write32be(P: &codeDirectory->nCodeSlots, V: getBlockCount()); |
1647 | write32be(P: &codeDirectory->codeLimit, V: fileOff); |
1648 | codeDirectory->hashSize = static_cast<uint8_t>(hashSize); |
1649 | codeDirectory->hashType = kSecCodeSignatureHashSHA256; |
1650 | codeDirectory->platform = 0; |
1651 | codeDirectory->pageSize = blockSizeShift; |
1652 | codeDirectory->spare2 = 0; |
1653 | codeDirectory->scatterOffset = 0; |
1654 | codeDirectory->teamOffset = 0; |
1655 | codeDirectory->spare3 = 0; |
1656 | codeDirectory->codeLimit64 = 0; |
1657 | OutputSegment *textSeg = getOrCreateOutputSegment(name: segment_names::text); |
1658 | write64be(P: &codeDirectory->execSegBase, V: textSeg->fileOff); |
1659 | write64be(P: &codeDirectory->execSegLimit, V: textSeg->fileSize); |
1660 | write64be(P: &codeDirectory->execSegFlags, |
1661 | V: config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); |
1662 | auto *id = reinterpret_cast<char *>(&codeDirectory[1]); |
1663 | memcpy(dest: id, src: fileName.begin(), n: fileName.size()); |
1664 | memset(s: id + fileName.size(), c: 0, n: fileNamePad); |
1665 | } |
1666 | |
1667 | CStringSection::CStringSection(const char *name) |
1668 | : SyntheticSection(segment_names::text, name) { |
1669 | flags = S_CSTRING_LITERALS; |
1670 | } |
1671 | |
1672 | void CStringSection::addInput(CStringInputSection *isec) { |
1673 | isec->parent = this; |
1674 | inputs.push_back(x: isec); |
1675 | if (isec->align > align) |
1676 | align = isec->align; |
1677 | } |
1678 | |
1679 | void CStringSection::writeTo(uint8_t *buf) const { |
1680 | for (const CStringInputSection *isec : inputs) { |
1681 | for (const auto &[i, piece] : llvm::enumerate(First: isec->pieces)) { |
1682 | if (!piece.live) |
1683 | continue; |
1684 | StringRef string = isec->getStringRef(i); |
1685 | memcpy(dest: buf + piece.outSecOff, src: string.data(), n: string.size()); |
1686 | } |
1687 | } |
1688 | } |
1689 | |
1690 | void CStringSection::finalizeContents() { |
1691 | uint64_t offset = 0; |
1692 | for (CStringInputSection *isec : inputs) { |
1693 | for (const auto &[i, piece] : llvm::enumerate(First&: isec->pieces)) { |
1694 | if (!piece.live) |
1695 | continue; |
1696 | // See comment above DeduplicatedCStringSection for how alignment is |
1697 | // handled. |
1698 | uint32_t pieceAlign = 1 |
1699 | << llvm::countr_zero(Val: isec->align | piece.inSecOff); |
1700 | offset = alignToPowerOf2(Value: offset, Align: pieceAlign); |
1701 | piece.outSecOff = offset; |
1702 | isec->isFinal = true; |
1703 | StringRef string = isec->getStringRef(i); |
1704 | offset += string.size() + 1; // account for null terminator |
1705 | } |
1706 | } |
1707 | size = offset; |
1708 | } |
1709 | |
1710 | // Mergeable cstring literals are found under the __TEXT,__cstring section. In |
1711 | // contrast to ELF, which puts strings that need different alignments into |
1712 | // different sections, clang's Mach-O backend puts them all in one section. |
1713 | // Strings that need to be aligned have the .p2align directive emitted before |
1714 | // them, which simply translates into zero padding in the object file. In other |
1715 | // words, we have to infer the desired alignment of these cstrings from their |
1716 | // addresses. |
1717 | // |
1718 | // We differ slightly from ld64 in how we've chosen to align these cstrings. |
1719 | // Both LLD and ld64 preserve the number of trailing zeros in each cstring's |
1720 | // address in the input object files. When deduplicating identical cstrings, |
1721 | // both linkers pick the cstring whose address has more trailing zeros, and |
1722 | // preserve the alignment of that address in the final binary. However, ld64 |
1723 | // goes a step further and also preserves the offset of the cstring from the |
1724 | // last section-aligned address. I.e. if a cstring is at offset 18 in the |
1725 | // input, with a section alignment of 16, then both LLD and ld64 will ensure the |
1726 | // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also |
1727 | // ensure that the final address is of the form 16 * k + 2 for some k. |
1728 | // |
1729 | // Note that ld64's heuristic means that a dedup'ed cstring's final address is |
1730 | // dependent on the order of the input object files. E.g. if in addition to the |
1731 | // cstring at offset 18 above, we have a duplicate one in another file with a |
1732 | // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick |
1733 | // the cstring from the object file earlier on the command line (since both have |
1734 | // the same number of trailing zeros in their address). So the final cstring may |
1735 | // either be at some address `16 * k + 2` or at some address `2 * k`. |
1736 | // |
1737 | // I've opted not to follow this behavior primarily for implementation |
1738 | // simplicity, and secondarily to save a few more bytes. It's not clear to me |
1739 | // that preserving the section alignment + offset is ever necessary, and there |
1740 | // are many cases that are clearly redundant. In particular, if an x86_64 object |
1741 | // file contains some strings that are accessed via SIMD instructions, then the |
1742 | // .cstring section in the object file will be 16-byte-aligned (since SIMD |
1743 | // requires its operand addresses to be 16-byte aligned). However, there will |
1744 | // typically also be other cstrings in the same file that aren't used via SIMD |
1745 | // and don't need this alignment. They will be emitted at some arbitrary address |
1746 | // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16 |
1747 | // % A`. |
1748 | void DeduplicatedCStringSection::finalizeContents() { |
1749 | // Find the largest alignment required for each string. |
1750 | for (const CStringInputSection *isec : inputs) { |
1751 | for (const auto &[i, piece] : llvm::enumerate(First: isec->pieces)) { |
1752 | if (!piece.live) |
1753 | continue; |
1754 | auto s = isec->getCachedHashStringRef(i); |
1755 | assert(isec->align != 0); |
1756 | uint8_t trailingZeros = llvm::countr_zero(Val: isec->align | piece.inSecOff); |
1757 | auto it = stringOffsetMap.insert( |
1758 | KV: std::make_pair(x&: s, y: StringOffset(trailingZeros))); |
1759 | if (!it.second && it.first->second.trailingZeros < trailingZeros) |
1760 | it.first->second.trailingZeros = trailingZeros; |
1761 | } |
1762 | } |
1763 | |
1764 | // Sort the strings for performance and compression size win, and then |
1765 | // assign an offset for each string and save it to the corresponding |
1766 | // StringPieces for easy access. |
1767 | for (auto &[isec, i] : priorityBuilder.buildCStringPriorities(inputs)) { |
1768 | auto &piece = isec->pieces[i]; |
1769 | auto s = isec->getCachedHashStringRef(i); |
1770 | auto it = stringOffsetMap.find(Val: s); |
1771 | assert(it != stringOffsetMap.end()); |
1772 | lld::macho::DeduplicatedCStringSection::StringOffset &offsetInfo = |
1773 | it->second; |
1774 | if (offsetInfo.outSecOff == UINT64_MAX) { |
1775 | offsetInfo.outSecOff = |
1776 | alignToPowerOf2(Value: size, Align: 1ULL << offsetInfo.trailingZeros); |
1777 | size = offsetInfo.outSecOff + s.size() + 1; // account for null terminator |
1778 | } |
1779 | piece.outSecOff = offsetInfo.outSecOff; |
1780 | } |
1781 | for (CStringInputSection *isec : inputs) |
1782 | isec->isFinal = true; |
1783 | } |
1784 | |
1785 | void DeduplicatedCStringSection::writeTo(uint8_t *buf) const { |
1786 | for (const auto &p : stringOffsetMap) { |
1787 | StringRef data = p.first.val(); |
1788 | uint64_t off = p.second.outSecOff; |
1789 | if (!data.empty()) |
1790 | memcpy(dest: buf + off, src: data.data(), n: data.size()); |
1791 | } |
1792 | } |
1793 | |
1794 | DeduplicatedCStringSection::StringOffset |
1795 | DeduplicatedCStringSection::getStringOffset(StringRef str) const { |
1796 | // StringPiece uses 31 bits to store the hashes, so we replicate that |
1797 | uint32_t hash = xxh3_64bits(data: str) & 0x7fffffff; |
1798 | auto offset = stringOffsetMap.find(Val: CachedHashStringRef(str, hash)); |
1799 | assert(offset != stringOffsetMap.end() && |
1800 | "Looked-up strings should always exist in section"); |
1801 | return offset->second; |
1802 | } |
1803 | |
1804 | // This section is actually emitted as __TEXT,__const by ld64, but clang may |
1805 | // emit input sections of that name, and LLD doesn't currently support mixing |
1806 | // synthetic and concat-type OutputSections. To work around this, I've given |
1807 | // our merged-literals section a different name. |
1808 | WordLiteralSection::WordLiteralSection() |
1809 | : SyntheticSection(segment_names::text, section_names::literals) { |
1810 | align = 16; |
1811 | } |
1812 | |
1813 | void WordLiteralSection::addInput(WordLiteralInputSection *isec) { |
1814 | isec->parent = this; |
1815 | inputs.push_back(x: isec); |
1816 | } |
1817 | |
1818 | void WordLiteralSection::finalizeContents() { |
1819 | for (WordLiteralInputSection *isec : inputs) { |
1820 | // We do all processing of the InputSection here, so it will be effectively |
1821 | // finalized. |
1822 | isec->isFinal = true; |
1823 | const uint8_t *buf = isec->data.data(); |
1824 | switch (sectionType(flags: isec->getFlags())) { |
1825 | case S_4BYTE_LITERALS: { |
1826 | for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { |
1827 | if (!isec->isLive(off)) |
1828 | continue; |
1829 | uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); |
1830 | literal4Map.emplace(args&: value, args: literal4Map.size()); |
1831 | } |
1832 | break; |
1833 | } |
1834 | case S_8BYTE_LITERALS: { |
1835 | for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { |
1836 | if (!isec->isLive(off)) |
1837 | continue; |
1838 | uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); |
1839 | literal8Map.emplace(args&: value, args: literal8Map.size()); |
1840 | } |
1841 | break; |
1842 | } |
1843 | case S_16BYTE_LITERALS: { |
1844 | for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { |
1845 | if (!isec->isLive(off)) |
1846 | continue; |
1847 | UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); |
1848 | literal16Map.emplace(args&: value, args: literal16Map.size()); |
1849 | } |
1850 | break; |
1851 | } |
1852 | default: |
1853 | llvm_unreachable("invalid literal section type"); |
1854 | } |
1855 | } |
1856 | } |
1857 | |
1858 | void WordLiteralSection::writeTo(uint8_t *buf) const { |
1859 | // Note that we don't attempt to do any endianness conversion in addInput(), |
1860 | // so we don't do it here either -- just write out the original value, |
1861 | // byte-for-byte. |
1862 | for (const auto &p : literal16Map) |
1863 | memcpy(dest: buf + p.second * 16, src: &p.first, n: 16); |
1864 | buf += literal16Map.size() * 16; |
1865 | |
1866 | for (const auto &p : literal8Map) |
1867 | memcpy(dest: buf + p.second * 8, src: &p.first, n: 8); |
1868 | buf += literal8Map.size() * 8; |
1869 | |
1870 | for (const auto &p : literal4Map) |
1871 | memcpy(dest: buf + p.second * 4, src: &p.first, n: 4); |
1872 | } |
1873 | |
1874 | ObjCImageInfoSection::ObjCImageInfoSection() |
1875 | : SyntheticSection(segment_names::data, section_names::objCImageInfo) {} |
1876 | |
1877 | ObjCImageInfoSection::ImageInfo |
1878 | ObjCImageInfoSection::parseImageInfo(const InputFile *file) { |
1879 | ImageInfo info; |
1880 | ArrayRef<uint8_t> data = file->objCImageInfo; |
1881 | // The image info struct has the following layout: |
1882 | // struct { |
1883 | // uint32_t version; |
1884 | // uint32_t flags; |
1885 | // }; |
1886 | if (data.size() < 8) { |
1887 | warn(msg: toString(file) + ": invalid __objc_imageinfo size"); |
1888 | return info; |
1889 | } |
1890 | |
1891 | auto *buf = reinterpret_cast<const uint32_t *>(data.data()); |
1892 | if (read32le(P: buf) != 0) { |
1893 | warn(msg: toString(file) + ": invalid __objc_imageinfo version"); |
1894 | return info; |
1895 | } |
1896 | |
1897 | uint32_t flags = read32le(P: buf + 1); |
1898 | info.swiftVersion = (flags >> 8) & 0xff; |
1899 | info.hasCategoryClassProperties = flags & 0x40; |
1900 | return info; |
1901 | } |
1902 | |
1903 | static std::string swiftVersionString(uint8_t version) { |
1904 | switch (version) { |
1905 | case 1: |
1906 | return "1.0"; |
1907 | case 2: |
1908 | return "1.1"; |
1909 | case 3: |
1910 | return "2.0"; |
1911 | case 4: |
1912 | return "3.0"; |
1913 | case 5: |
1914 | return "4.0"; |
1915 | default: |
1916 | return ("0x"+ Twine::utohexstr(Val: version)).str(); |
1917 | } |
1918 | } |
1919 | |
1920 | // Validate each object file's __objc_imageinfo and use them to generate the |
1921 | // image info for the output binary. Only two pieces of info are relevant: |
1922 | // 1. The Swift version (should be identical across inputs) |
1923 | // 2. `bool hasCategoryClassProperties` (true only if true for all inputs) |
1924 | void ObjCImageInfoSection::finalizeContents() { |
1925 | assert(files.size() != 0); // should have already been checked via isNeeded() |
1926 | |
1927 | info.hasCategoryClassProperties = true; |
1928 | const InputFile *firstFile; |
1929 | for (const InputFile *file : files) { |
1930 | ImageInfo inputInfo = parseImageInfo(file); |
1931 | info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties; |
1932 | |
1933 | // swiftVersion 0 means no Swift is present, so no version checking required |
1934 | if (inputInfo.swiftVersion == 0) |
1935 | continue; |
1936 | |
1937 | if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) { |
1938 | error(msg: "Swift version mismatch: "+ toString(file: firstFile) + " has version "+ |
1939 | swiftVersionString(version: info.swiftVersion) + " but "+ toString(file) + |
1940 | " has version "+ swiftVersionString(version: inputInfo.swiftVersion)); |
1941 | } else { |
1942 | info.swiftVersion = inputInfo.swiftVersion; |
1943 | firstFile = file; |
1944 | } |
1945 | } |
1946 | } |
1947 | |
1948 | void ObjCImageInfoSection::writeTo(uint8_t *buf) const { |
1949 | uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0; |
1950 | flags |= info.swiftVersion << 8; |
1951 | write32le(P: buf + 4, V: flags); |
1952 | } |
1953 | |
1954 | InitOffsetsSection::InitOffsetsSection() |
1955 | : SyntheticSection(segment_names::text, section_names::initOffsets) { |
1956 | flags = S_INIT_FUNC_OFFSETS; |
1957 | align = 4; // This section contains 32-bit integers. |
1958 | } |
1959 | |
1960 | uint64_t InitOffsetsSection::getSize() const { |
1961 | size_t count = 0; |
1962 | for (const ConcatInputSection *isec : sections) |
1963 | count += isec->relocs.size(); |
1964 | return count * sizeof(uint32_t); |
1965 | } |
1966 | |
1967 | void InitOffsetsSection::writeTo(uint8_t *buf) const { |
1968 | // FIXME: Add function specified by -init when that argument is implemented. |
1969 | for (ConcatInputSection *isec : sections) { |
1970 | for (const Reloc &rel : isec->relocs) { |
1971 | const Symbol *referent = cast<Symbol *>(Val: rel.referent); |
1972 | assert(referent && "section relocation should have been rejected"); |
1973 | uint64_t offset = referent->getVA() - in.header->addr; |
1974 | // FIXME: Can we handle this gracefully? |
1975 | if (offset > UINT32_MAX) |
1976 | fatal(msg: isec->getLocation(off: rel.offset) + ": offset to initializer "+ |
1977 | referent->getName() + " ("+ utohexstr(X: offset) + |
1978 | ") does not fit in 32 bits"); |
1979 | |
1980 | // Entries need to be added in the order they appear in the section, but |
1981 | // relocations aren't guaranteed to be sorted. |
1982 | size_t index = rel.offset >> target->p2WordSize; |
1983 | write32le(P: &buf[index * sizeof(uint32_t)], V: offset); |
1984 | } |
1985 | buf += isec->relocs.size() * sizeof(uint32_t); |
1986 | } |
1987 | } |
1988 | |
1989 | // The inputs are __mod_init_func sections, which contain pointers to |
1990 | // initializer functions, therefore all relocations should be of the UNSIGNED |
1991 | // type. InitOffsetsSection stores offsets, so if the initializer's address is |
1992 | // not known at link time, stub-indirection has to be used. |
1993 | void InitOffsetsSection::setUp() { |
1994 | for (const ConcatInputSection *isec : sections) { |
1995 | for (const Reloc &rel : isec->relocs) { |
1996 | RelocAttrs attrs = target->getRelocAttrs(type: rel.type); |
1997 | if (!attrs.hasAttr(b: RelocAttrBits::UNSIGNED)) |
1998 | error(msg: isec->getLocation(off: rel.offset) + |
1999 | ": unsupported relocation type: "+ attrs.name); |
2000 | if (rel.addend != 0) |
2001 | error(msg: isec->getLocation(off: rel.offset) + |
2002 | ": relocation addend is not representable in __init_offsets"); |
2003 | if (isa<InputSection *>(Val: rel.referent)) |
2004 | error(msg: isec->getLocation(off: rel.offset) + |
2005 | ": unexpected section relocation"); |
2006 | |
2007 | Symbol *sym = rel.referent.dyn_cast<Symbol *>(); |
2008 | if (auto *undefined = dyn_cast<Undefined>(Val: sym)) |
2009 | treatUndefinedSymbol(*undefined, isec, offset: rel.offset); |
2010 | if (needsBinding(sym)) |
2011 | in.stubs->addEntry(sym); |
2012 | } |
2013 | } |
2014 | } |
2015 | |
2016 | ObjCMethListSection::ObjCMethListSection() |
2017 | : SyntheticSection(segment_names::text, section_names::objcMethList) { |
2018 | flags = S_ATTR_NO_DEAD_STRIP; |
2019 | align = relativeOffsetSize; |
2020 | } |
2021 | |
2022 | // Go through all input method lists and ensure that we have selrefs for all |
2023 | // their method names. The selrefs will be needed later by ::writeTo. We need to |
2024 | // create them early on here to ensure they are processed correctly by the lld |
2025 | // pipeline. |
2026 | void ObjCMethListSection::setUp() { |
2027 | for (const ConcatInputSection *isec : inputs) { |
2028 | uint32_t structSizeAndFlags = 0, structCount = 0; |
2029 | readMethodListHeader(buf: isec->data.data(), structSizeAndFlags, structCount); |
2030 | uint32_t originalStructSize = structSizeAndFlags & structSizeMask; |
2031 | // Method name is immediately after header |
2032 | uint32_t methodNameOff = methodListHeaderSize; |
2033 | |
2034 | // Loop through all methods, and ensure a selref for each of them exists. |
2035 | while (methodNameOff < isec->data.size()) { |
2036 | const Reloc *reloc = isec->getRelocAt(off: methodNameOff); |
2037 | assert(reloc && "Relocation expected at method list name slot"); |
2038 | |
2039 | StringRef methname = reloc->getReferentString(); |
2040 | if (!ObjCSelRefsHelper::getSelRef(methname)) |
2041 | ObjCSelRefsHelper::makeSelRef(methname); |
2042 | |
2043 | // Jump to method name offset in next struct |
2044 | methodNameOff += originalStructSize; |
2045 | } |
2046 | } |
2047 | } |
2048 | |
2049 | // Calculate section size and final offsets for where InputSection's need to be |
2050 | // written. |
2051 | void ObjCMethListSection::finalize() { |
2052 | // sectionSize will be the total size of the __objc_methlist section |
2053 | sectionSize = 0; |
2054 | for (ConcatInputSection *isec : inputs) { |
2055 | // We can also use sectionSize as write offset for isec |
2056 | assert(sectionSize == alignToPowerOf2(sectionSize, relativeOffsetSize) && |
2057 | "expected __objc_methlist to be aligned by default with the " |
2058 | "required section alignment"); |
2059 | isec->outSecOff = sectionSize; |
2060 | |
2061 | isec->isFinal = true; |
2062 | uint32_t relativeListSize = |
2063 | computeRelativeMethodListSize(absoluteMethodListSize: isec->data.size()); |
2064 | sectionSize += relativeListSize; |
2065 | |
2066 | // If encoding the method list in relative offset format shrinks the size, |
2067 | // then we also need to adjust symbol sizes to match the new size. Note that |
2068 | // on 32bit platforms the size of the method list will remain the same when |
2069 | // encoded in relative offset format. |
2070 | if (relativeListSize != isec->data.size()) { |
2071 | for (Symbol *sym : isec->symbols) { |
2072 | assert(isa<Defined>(sym) && |
2073 | "Unexpected undefined symbol in ObjC method list"); |
2074 | auto *def = cast<Defined>(Val: sym); |
2075 | // There can be 0-size symbols, check if this is the case and ignore |
2076 | // them. |
2077 | if (def->size) { |
2078 | assert( |
2079 | def->size == isec->data.size() && |
2080 | "Invalid ObjC method list symbol size: expected symbol size to " |
2081 | "match isec size"); |
2082 | def->size = relativeListSize; |
2083 | } |
2084 | } |
2085 | } |
2086 | } |
2087 | } |
2088 | |
2089 | void ObjCMethListSection::writeTo(uint8_t *bufStart) const { |
2090 | uint8_t *buf = bufStart; |
2091 | for (const ConcatInputSection *isec : inputs) { |
2092 | assert(buf - bufStart == std::ptrdiff_t(isec->outSecOff) && |
2093 | "Writing at unexpected offset"); |
2094 | uint32_t writtenSize = writeRelativeMethodList(isec, buf); |
2095 | buf += writtenSize; |
2096 | } |
2097 | assert(buf - bufStart == std::ptrdiff_t(sectionSize) && |
2098 | "Written size does not match expected section size"); |
2099 | } |
2100 | |
2101 | // Check if an InputSection is a method list. To do this we scan the |
2102 | // InputSection for any symbols who's names match the patterns we expect clang |
2103 | // to generate for method lists. |
2104 | bool ObjCMethListSection::isMethodList(const ConcatInputSection *isec) { |
2105 | const char *symPrefixes[] = {objc::symbol_names::classMethods, |
2106 | objc::symbol_names::instanceMethods, |
2107 | objc::symbol_names::categoryInstanceMethods, |
2108 | objc::symbol_names::categoryClassMethods}; |
2109 | if (!isec) |
2110 | return false; |
2111 | for (const Symbol *sym : isec->symbols) { |
2112 | auto *def = dyn_cast_or_null<Defined>(Val: sym); |
2113 | if (!def) |
2114 | continue; |
2115 | for (const char *prefix : symPrefixes) { |
2116 | if (def->getName().starts_with(Prefix: prefix)) { |
2117 | assert(def->size == isec->data.size() && |
2118 | "Invalid ObjC method list symbol size: expected symbol size to " |
2119 | "match isec size"); |
2120 | assert(def->value == 0 && |
2121 | "Offset of ObjC method list symbol must be 0"); |
2122 | return true; |
2123 | } |
2124 | } |
2125 | } |
2126 | |
2127 | return false; |
2128 | } |
2129 | |
2130 | // Encode a single relative offset value. The input is the data/symbol at |
2131 | // (&isec->data[inSecOff]). The output is written to (&buf[outSecOff]). |
2132 | // 'createSelRef' indicates that we should not directly use the specified |
2133 | // symbol, but instead get the selRef for the symbol and use that instead. |
2134 | void ObjCMethListSection::writeRelativeOffsetForIsec( |
2135 | const ConcatInputSection *isec, uint8_t *buf, uint32_t &inSecOff, |
2136 | uint32_t &outSecOff, bool useSelRef) const { |
2137 | const Reloc *reloc = isec->getRelocAt(off: inSecOff); |
2138 | assert(reloc && "Relocation expected at __objc_methlist Offset"); |
2139 | |
2140 | uint32_t symVA = 0; |
2141 | if (useSelRef) { |
2142 | StringRef methname = reloc->getReferentString(); |
2143 | ConcatInputSection *selRef = ObjCSelRefsHelper::getSelRef(methname); |
2144 | assert(selRef && "Expected all selector names to already be already be " |
2145 | "present in __objc_selrefs"); |
2146 | symVA = selRef->getVA(); |
2147 | assert(selRef->data.size() == target->wordSize && |
2148 | "Expected one selref per ConcatInputSection"); |
2149 | } else if (auto *sym = dyn_cast<Symbol *>(Val: reloc->referent)) { |
2150 | auto *def = dyn_cast_or_null<Defined>(Val: sym); |
2151 | assert(def && "Expected all syms in __objc_methlist to be defined"); |
2152 | symVA = def->getVA(); |
2153 | } else { |
2154 | auto *isec = cast<InputSection *>(Val: reloc->referent); |
2155 | symVA = isec->getVA(off: reloc->addend); |
2156 | } |
2157 | |
2158 | uint32_t currentVA = isec->getVA() + outSecOff; |
2159 | uint32_t delta = symVA - currentVA; |
2160 | write32le(P: buf + outSecOff, V: delta); |
2161 | |
2162 | // Move one pointer forward in the absolute method list |
2163 | inSecOff += target->wordSize; |
2164 | // Move one relative offset forward in the relative method list (32 bits) |
2165 | outSecOff += relativeOffsetSize; |
2166 | } |
2167 | |
2168 | // Write a relative method list to buf, return the size of the written |
2169 | // information |
2170 | uint32_t |
2171 | ObjCMethListSection::writeRelativeMethodList(const ConcatInputSection *isec, |
2172 | uint8_t *buf) const { |
2173 | // Copy over the header, and add the "this is a relative method list" magic |
2174 | // value flag |
2175 | uint32_t structSizeAndFlags = 0, structCount = 0; |
2176 | readMethodListHeader(buf: isec->data.data(), structSizeAndFlags, structCount); |
2177 | // Set the struct size for the relative method list |
2178 | uint32_t relativeStructSizeAndFlags = |
2179 | (relativeOffsetSize * pointersPerStruct) & structSizeMask; |
2180 | // Carry over the old flags from the input struct |
2181 | relativeStructSizeAndFlags |= structSizeAndFlags & structFlagsMask; |
2182 | // Set the relative method list flag |
2183 | relativeStructSizeAndFlags |= relMethodHeaderFlag; |
2184 | |
2185 | writeMethodListHeader(buf, structSizeAndFlags: relativeStructSizeAndFlags, structCount); |
2186 | |
2187 | assert(methodListHeaderSize + |
2188 | (structCount * pointersPerStruct * target->wordSize) == |
2189 | isec->data.size() && |
2190 | "Invalid computed ObjC method list size"); |
2191 | |
2192 | uint32_t inSecOff = methodListHeaderSize; |
2193 | uint32_t outSecOff = methodListHeaderSize; |
2194 | |
2195 | // Go through the method list and encode input absolute pointers as relative |
2196 | // offsets. writeRelativeOffsetForIsec will be incrementing inSecOff and |
2197 | // outSecOff |
2198 | for (uint32_t i = 0; i < structCount; i++) { |
2199 | // Write the name of the method |
2200 | writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, useSelRef: true); |
2201 | // Write the type of the method |
2202 | writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, useSelRef: false); |
2203 | // Write reference to the selector of the method |
2204 | writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, useSelRef: false); |
2205 | } |
2206 | |
2207 | // Expecting to have read all the data in the isec |
2208 | assert(inSecOff == isec->data.size() && |
2209 | "Invalid actual ObjC method list size"); |
2210 | assert( |
2211 | outSecOff == computeRelativeMethodListSize(inSecOff) && |
2212 | "Mismatch between input & output size when writing relative method list"); |
2213 | return outSecOff; |
2214 | } |
2215 | |
2216 | // Given the size of an ObjC method list InputSection, return the size of the |
2217 | // method list when encoded in relative offsets format. We can do this without |
2218 | // decoding the actual data, as it can be directly inferred from the size of the |
2219 | // isec. |
2220 | uint32_t ObjCMethListSection::computeRelativeMethodListSize( |
2221 | uint32_t absoluteMethodListSize) const { |
2222 | uint32_t oldPointersSize = absoluteMethodListSize - methodListHeaderSize; |
2223 | uint32_t pointerCount = oldPointersSize / target->wordSize; |
2224 | assert(((pointerCount % pointersPerStruct) == 0) && |
2225 | "__objc_methlist expects method lists to have multiple-of-3 pointers"); |
2226 | |
2227 | uint32_t newPointersSize = pointerCount * relativeOffsetSize; |
2228 | uint32_t newTotalSize = methodListHeaderSize + newPointersSize; |
2229 | |
2230 | assert((newTotalSize <= absoluteMethodListSize) && |
2231 | "Expected relative method list size to be smaller or equal than " |
2232 | "original size"); |
2233 | return newTotalSize; |
2234 | } |
2235 | |
2236 | // Read a method list header from buf |
2237 | void ObjCMethListSection::readMethodListHeader(const uint8_t *buf, |
2238 | uint32_t &structSizeAndFlags, |
2239 | uint32_t &structCount) const { |
2240 | structSizeAndFlags = read32le(P: buf); |
2241 | structCount = read32le(P: buf + sizeof(uint32_t)); |
2242 | } |
2243 | |
2244 | // Write a method list header to buf |
2245 | void ObjCMethListSection::writeMethodListHeader(uint8_t *buf, |
2246 | uint32_t structSizeAndFlags, |
2247 | uint32_t structCount) const { |
2248 | write32le(P: buf, V: structSizeAndFlags); |
2249 | write32le(P: buf + sizeof(structSizeAndFlags), V: structCount); |
2250 | } |
2251 | |
2252 | void macho::createSyntheticSymbols() { |
2253 | auto addHeaderSymbol = [](const char *name) { |
2254 | symtab->addSynthetic(name, in.header->isec, /*value=*/0, |
2255 | /*isPrivateExtern=*/true, /*includeInSymtab=*/false, |
2256 | /*referencedDynamically=*/false); |
2257 | }; |
2258 | |
2259 | switch (config->outputType) { |
2260 | // FIXME: Assign the right address value for these symbols |
2261 | // (rather than 0). But we need to do that after assignAddresses(). |
2262 | case MH_EXECUTE: |
2263 | // If linking PIE, __mh_execute_header is a defined symbol in |
2264 | // __TEXT, __text) |
2265 | // Otherwise, it's an absolute symbol. |
2266 | if (config->isPic) |
2267 | symtab->addSynthetic(name: "__mh_execute_header", in.header->isec, /*value=*/0, |
2268 | /*isPrivateExtern=*/false, /*includeInSymtab=*/true, |
2269 | /*referencedDynamically=*/true); |
2270 | else |
2271 | symtab->addSynthetic(name: "__mh_execute_header", /*isec=*/nullptr, /*value=*/0, |
2272 | /*isPrivateExtern=*/false, /*includeInSymtab=*/true, |
2273 | /*referencedDynamically=*/true); |
2274 | break; |
2275 | |
2276 | // The following symbols are N_SECT symbols, even though the header is not |
2277 | // part of any section and that they are private to the bundle/dylib/object |
2278 | // they are part of. |
2279 | case MH_BUNDLE: |
2280 | addHeaderSymbol("__mh_bundle_header"); |
2281 | break; |
2282 | case MH_DYLIB: |
2283 | addHeaderSymbol("__mh_dylib_header"); |
2284 | break; |
2285 | case MH_DYLINKER: |
2286 | addHeaderSymbol("__mh_dylinker_header"); |
2287 | break; |
2288 | case MH_OBJECT: |
2289 | addHeaderSymbol("__mh_object_header"); |
2290 | break; |
2291 | default: |
2292 | llvm_unreachable("unexpected outputType"); |
2293 | break; |
2294 | } |
2295 | |
2296 | // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit |
2297 | // which does e.g. cleanup of static global variables. The ABI document |
2298 | // says that the pointer can point to any address in one of the dylib's |
2299 | // segments, but in practice ld64 seems to set it to point to the header, |
2300 | // so that's what's implemented here. |
2301 | addHeaderSymbol("___dso_handle"); |
2302 | } |
2303 | |
2304 | ChainedFixupsSection::ChainedFixupsSection() |
2305 | : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {} |
2306 | |
2307 | bool ChainedFixupsSection::isNeeded() const { |
2308 | assert(config->emitChainedFixups); |
2309 | // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid |
2310 | // dyld_chained_fixups_header, so we create this section even if there aren't |
2311 | // any fixups. |
2312 | return true; |
2313 | } |
2314 | |
2315 | void ChainedFixupsSection::addBinding(const Symbol *sym, |
2316 | const InputSection *isec, uint64_t offset, |
2317 | int64_t addend) { |
2318 | locations.emplace_back(args&: isec, args&: offset); |
2319 | int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; |
2320 | auto [it, inserted] = bindings.insert( |
2321 | KV: {{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())}); |
2322 | |
2323 | if (inserted) { |
2324 | symtabSize += sym->getName().size() + 1; |
2325 | hasWeakBind = hasWeakBind || needsWeakBind(sym: *sym); |
2326 | if (!isInt<23>(x: outlineAddend)) |
2327 | needsLargeAddend = true; |
2328 | else if (outlineAddend != 0) |
2329 | needsAddend = true; |
2330 | } |
2331 | } |
2332 | |
2333 | std::pair<uint32_t, uint8_t> |
2334 | ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const { |
2335 | int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; |
2336 | auto it = bindings.find(Key: {sym, outlineAddend}); |
2337 | assert(it != bindings.end() && "binding not found in the imports table"); |
2338 | if (outlineAddend == 0) |
2339 | return {it->second, addend}; |
2340 | return {it->second, 0}; |
2341 | } |
2342 | |
2343 | static size_t writeImport(uint8_t *buf, int format, int16_t libOrdinal, |
2344 | bool weakRef, uint32_t nameOffset, int64_t addend) { |
2345 | switch (format) { |
2346 | case DYLD_CHAINED_IMPORT: { |
2347 | auto *import = reinterpret_cast<dyld_chained_import *>(buf); |
2348 | import->lib_ordinal = libOrdinal; |
2349 | import->weak_import = weakRef; |
2350 | import->name_offset = nameOffset; |
2351 | return sizeof(dyld_chained_import); |
2352 | } |
2353 | case DYLD_CHAINED_IMPORT_ADDEND: { |
2354 | auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf); |
2355 | import->lib_ordinal = libOrdinal; |
2356 | import->weak_import = weakRef; |
2357 | import->name_offset = nameOffset; |
2358 | import->addend = addend; |
2359 | return sizeof(dyld_chained_import_addend); |
2360 | } |
2361 | case DYLD_CHAINED_IMPORT_ADDEND64: { |
2362 | auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf); |
2363 | import->lib_ordinal = libOrdinal; |
2364 | import->weak_import = weakRef; |
2365 | import->name_offset = nameOffset; |
2366 | import->addend = addend; |
2367 | return sizeof(dyld_chained_import_addend64); |
2368 | } |
2369 | default: |
2370 | llvm_unreachable("Unknown import format"); |
2371 | } |
2372 | } |
2373 | |
2374 | size_t ChainedFixupsSection::SegmentInfo::getSize() const { |
2375 | assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?"); |
2376 | return alignTo<8>(Value: sizeof(dyld_chained_starts_in_segment) + |
2377 | pageStarts.back().first * sizeof(uint16_t)); |
2378 | } |
2379 | |
2380 | size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const { |
2381 | auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf); |
2382 | segInfo->size = getSize(); |
2383 | segInfo->page_size = target->getPageSize(); |
2384 | // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions. |
2385 | segInfo->pointer_format = DYLD_CHAINED_PTR_64; |
2386 | segInfo->segment_offset = oseg->addr - in.header->addr; |
2387 | segInfo->max_valid_pointer = 0; // not used on 64-bit |
2388 | segInfo->page_count = pageStarts.back().first + 1; |
2389 | |
2390 | uint16_t *starts = segInfo->page_start; |
2391 | for (size_t i = 0; i < segInfo->page_count; ++i) |
2392 | starts[i] = DYLD_CHAINED_PTR_START_NONE; |
2393 | |
2394 | for (auto [pageIdx, startAddr] : pageStarts) |
2395 | starts[pageIdx] = startAddr; |
2396 | return segInfo->size; |
2397 | } |
2398 | |
2399 | static size_t importEntrySize(int format) { |
2400 | switch (format) { |
2401 | case DYLD_CHAINED_IMPORT: |
2402 | return sizeof(dyld_chained_import); |
2403 | case DYLD_CHAINED_IMPORT_ADDEND: |
2404 | return sizeof(dyld_chained_import_addend); |
2405 | case DYLD_CHAINED_IMPORT_ADDEND64: |
2406 | return sizeof(dyld_chained_import_addend64); |
2407 | default: |
2408 | llvm_unreachable("Unknown import format"); |
2409 | } |
2410 | } |
2411 | |
2412 | // This is step 3 of the algorithm described in the class comment of |
2413 | // ChainedFixupsSection. |
2414 | // |
2415 | // LC_DYLD_CHAINED_FIXUPS data consists of (in this order): |
2416 | // * A dyld_chained_fixups_header |
2417 | // * A dyld_chained_starts_in_image |
2418 | // * One dyld_chained_starts_in_segment per segment |
2419 | // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or |
2420 | // dyld_chained_import_addend64) |
2421 | // * Names of imported symbols |
2422 | void ChainedFixupsSection::writeTo(uint8_t *buf) const { |
2423 | auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf); |
2424 | header->fixups_version = 0; |
2425 | header->imports_count = bindings.size(); |
2426 | header->imports_format = importFormat; |
2427 | header->symbols_format = 0; |
2428 | |
2429 | buf += alignTo<8>(Value: sizeof(*header)); |
2430 | |
2431 | auto curOffset = [&buf, &header]() -> uint32_t { |
2432 | return buf - reinterpret_cast<uint8_t *>(header); |
2433 | }; |
2434 | |
2435 | header->starts_offset = curOffset(); |
2436 | |
2437 | auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf); |
2438 | imageInfo->seg_count = outputSegments.size(); |
2439 | uint32_t *segStarts = imageInfo->seg_info_offset; |
2440 | |
2441 | // dyld_chained_starts_in_image ends in a flexible array member containing an |
2442 | // uint32_t for each segment. Leave room for it, and fill it via segStarts. |
2443 | buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + |
2444 | outputSegments.size() * sizeof(uint32_t)); |
2445 | |
2446 | // Initialize all offsets to 0, which indicates that the segment does not have |
2447 | // fixups. Those that do have them will be filled in below. |
2448 | for (size_t i = 0; i < outputSegments.size(); ++i) |
2449 | segStarts[i] = 0; |
2450 | |
2451 | for (const SegmentInfo &seg : fixupSegments) { |
2452 | segStarts[seg.oseg->index] = curOffset() - header->starts_offset; |
2453 | buf += seg.writeTo(buf); |
2454 | } |
2455 | |
2456 | // Write imports table. |
2457 | header->imports_offset = curOffset(); |
2458 | uint64_t nameOffset = 0; |
2459 | for (auto [import, idx] : bindings) { |
2460 | const Symbol &sym = *import.first; |
2461 | buf += writeImport(buf, format: importFormat, libOrdinal: ordinalForSymbol(sym), |
2462 | weakRef: sym.isWeakRef(), nameOffset, addend: import.second); |
2463 | nameOffset += sym.getName().size() + 1; |
2464 | } |
2465 | |
2466 | // Write imported symbol names. |
2467 | header->symbols_offset = curOffset(); |
2468 | for (auto [import, idx] : bindings) { |
2469 | StringRef name = import.first->getName(); |
2470 | memcpy(dest: buf, src: name.data(), n: name.size()); |
2471 | buf += name.size() + 1; // account for null terminator |
2472 | } |
2473 | |
2474 | assert(curOffset() == getRawSize()); |
2475 | } |
2476 | |
2477 | // This is step 2 of the algorithm described in the class comment of |
2478 | // ChainedFixupsSection. |
2479 | void ChainedFixupsSection::finalizeContents() { |
2480 | assert(target->wordSize == 8 && "Only 64-bit platforms are supported"); |
2481 | assert(config->emitChainedFixups); |
2482 | |
2483 | if (!isUInt<32>(x: symtabSize)) |
2484 | error(msg: "cannot encode chained fixups: imported symbols table size "+ |
2485 | Twine(symtabSize) + " exceeds 4 GiB"); |
2486 | |
2487 | bool needsLargeOrdinal = any_of(Range&: bindings, P: [](const auto &p) { |
2488 | // 0xF1 - 0xFF are reserved for special ordinals in the 8-bit encoding. |
2489 | return ordinalForSymbol(*p.first.first) > 0xF0; |
2490 | }); |
2491 | |
2492 | if (needsLargeAddend || !isUInt<23>(x: symtabSize) || needsLargeOrdinal) |
2493 | importFormat = DYLD_CHAINED_IMPORT_ADDEND64; |
2494 | else if (needsAddend) |
2495 | importFormat = DYLD_CHAINED_IMPORT_ADDEND; |
2496 | else |
2497 | importFormat = DYLD_CHAINED_IMPORT; |
2498 | |
2499 | for (Location &loc : locations) |
2500 | loc.offset = |
2501 | loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(off: loc.offset); |
2502 | |
2503 | llvm::sort(C&: locations, Comp: [](const Location &a, const Location &b) { |
2504 | const OutputSegment *segA = a.isec->parent->parent; |
2505 | const OutputSegment *segB = b.isec->parent->parent; |
2506 | if (segA == segB) |
2507 | return a.offset < b.offset; |
2508 | return segA->addr < segB->addr; |
2509 | }); |
2510 | |
2511 | auto sameSegment = [](const Location &a, const Location &b) { |
2512 | return a.isec->parent->parent == b.isec->parent->parent; |
2513 | }; |
2514 | |
2515 | const uint64_t pageSize = target->getPageSize(); |
2516 | for (size_t i = 0, count = locations.size(); i < count;) { |
2517 | const Location &firstLoc = locations[i]; |
2518 | fixupSegments.emplace_back(Args&: firstLoc.isec->parent->parent); |
2519 | while (i < count && sameSegment(locations[i], firstLoc)) { |
2520 | uint32_t pageIdx = locations[i].offset / pageSize; |
2521 | fixupSegments.back().pageStarts.emplace_back( |
2522 | Args&: pageIdx, Args: locations[i].offset % pageSize); |
2523 | ++i; |
2524 | while (i < count && sameSegment(locations[i], firstLoc) && |
2525 | locations[i].offset / pageSize == pageIdx) |
2526 | ++i; |
2527 | } |
2528 | } |
2529 | |
2530 | // Compute expected encoded size. |
2531 | size = alignTo<8>(Value: sizeof(dyld_chained_fixups_header)); |
2532 | size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + |
2533 | outputSegments.size() * sizeof(uint32_t)); |
2534 | for (const SegmentInfo &seg : fixupSegments) |
2535 | size += seg.getSize(); |
2536 | size += importEntrySize(format: importFormat) * bindings.size(); |
2537 | size += symtabSize; |
2538 | } |
2539 | |
2540 | template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); |
2541 | template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &); |
2542 |
Definitions
- sha256
- in
- syntheticSections
- SyntheticSection
- MachHeaderSection
- addLoadCommand
- getSize
- cpuSubtype
- hasWeakBinding
- hasNonWeakDefinition
- writeTo
- PageZeroSection
- RebaseSection
- RebaseState
- emitIncrement
- flushRebase
- encodeRebases
- finalizeContents
- writeTo
- NonLazyPointerSectionBase
- addNonLazyBindingEntries
- addEntry
- writeChainedRebase
- writeChainedBind
- writeChainedFixup
- writeTo
- GotSection
- TlvPointerSection
- BindingSection
- Binding
- BindIR
- encodeBinding
- optimizeOpcodes
- flushOpcodes
- needsWeakBind
- ordinalForDylibSymbol
- ordinalForSymbol
- encodeDylibOrdinal
- encodeWeakOverride
- sortBindings
- finalizeContents
- writeTo
- WeakBindingSection
- finalizeContents
- writeTo
- StubsSection
- getSize
- writeTo
- finalize
- addBindingsForStub
- addEntry
- StubHelperSection
- getSize
- isNeeded
- writeTo
- setUp
- methnameToSelref
- initialize
- cleanup
- makeSelRef
- getSelRef
- ObjCStubsSection
- isObjCStubSymbol
- getMethname
- addEntry
- setUp
- getSize
- writeTo
- LazyPointerSection
- getSize
- isNeeded
- writeTo
- LazyBindingSection
- finalizeContents
- writeTo
- addEntry
- encode
- ExportSection
- finalizeContents
- writeTo
- DataInCodeSection
- collectDataInCodeEntries
- finalizeContents
- writeTo
- FunctionStartsSection
- finalizeContents
- writeTo
- SymtabSection
- emitBeginSourceStab
- emitEndSourceStab
- emitObjectFileStab
- emitEndFunStab
- emitStabs
- finalizeContents
- getNumSymbols
- SymtabSectionImpl
- SymtabSectionImpl
- getRawSize
- writeTo
- makeSymtabSection
- IndirectSymtabSection
- getNumSymbols
- isNeeded
- finalizeContents
- indirectValue
- writeTo
- StringTableSection
- addString
- writeTo
- CodeSignatureSection
- getBlockCount
- getRawSize
- writeHashes
- writeTo
- CStringSection
- addInput
- writeTo
- finalizeContents
- finalizeContents
- writeTo
- getStringOffset
- WordLiteralSection
- addInput
- finalizeContents
- writeTo
- ObjCImageInfoSection
- parseImageInfo
- swiftVersionString
- finalizeContents
- writeTo
- InitOffsetsSection
- getSize
- writeTo
- setUp
- ObjCMethListSection
- setUp
- finalize
- writeTo
- isMethodList
- writeRelativeOffsetForIsec
- writeRelativeMethodList
- computeRelativeMethodListSize
- readMethodListHeader
- writeMethodListHeader
- createSyntheticSymbols
- ChainedFixupsSection
- isNeeded
- addBinding
- getBinding
- writeImport
- getSize
- writeTo
- importEntrySize
- writeTo
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more