| 1 | //===-- IRMemoryMap.cpp ---------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "lldb/Expression/IRMemoryMap.h" |
| 10 | #include "lldb/Target/MemoryRegionInfo.h" |
| 11 | #include "lldb/Target/Process.h" |
| 12 | #include "lldb/Target/Target.h" |
| 13 | #include "lldb/Utility/DataBufferHeap.h" |
| 14 | #include "lldb/Utility/DataExtractor.h" |
| 15 | #include "lldb/Utility/LLDBAssert.h" |
| 16 | #include "lldb/Utility/LLDBLog.h" |
| 17 | #include "lldb/Utility/Log.h" |
| 18 | #include "lldb/Utility/Scalar.h" |
| 19 | #include "lldb/Utility/Status.h" |
| 20 | |
| 21 | using namespace lldb_private; |
| 22 | |
| 23 | IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) { |
| 24 | if (target_sp) |
| 25 | m_process_wp = target_sp->GetProcessSP(); |
| 26 | } |
| 27 | |
| 28 | IRMemoryMap::~IRMemoryMap() { |
| 29 | lldb::ProcessSP process_sp = m_process_wp.lock(); |
| 30 | |
| 31 | if (process_sp) { |
| 32 | AllocationMap::iterator iter; |
| 33 | |
| 34 | Status err; |
| 35 | |
| 36 | while ((iter = m_allocations.begin()) != m_allocations.end()) { |
| 37 | err.Clear(); |
| 38 | if (iter->second.m_leak) |
| 39 | m_allocations.erase(position: iter); |
| 40 | else |
| 41 | Free(process_address: iter->first, error&: err); |
| 42 | } |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | lldb::addr_t IRMemoryMap::FindSpace(size_t size) { |
| 47 | // The FindSpace algorithm's job is to find a region of memory that the |
| 48 | // underlying process is unlikely to be using. |
| 49 | // |
| 50 | // The memory returned by this function will never be written to. The only |
| 51 | // point is that it should not shadow process memory if possible, so that |
| 52 | // expressions processing real values from the process do not use the wrong |
| 53 | // data. |
| 54 | // |
| 55 | // If the process can in fact allocate memory (CanJIT() lets us know this) |
| 56 | // then this can be accomplished just be allocating memory in the inferior. |
| 57 | // Then no guessing is required. |
| 58 | |
| 59 | lldb::TargetSP target_sp = m_target_wp.lock(); |
| 60 | lldb::ProcessSP process_sp = m_process_wp.lock(); |
| 61 | |
| 62 | const bool process_is_alive = process_sp && process_sp->IsAlive(); |
| 63 | |
| 64 | lldb::addr_t ret = LLDB_INVALID_ADDRESS; |
| 65 | if (size == 0) |
| 66 | return ret; |
| 67 | |
| 68 | if (process_is_alive && process_sp->CanJIT()) { |
| 69 | Status alloc_error; |
| 70 | |
| 71 | ret = process_sp->AllocateMemory(size, permissions: lldb::ePermissionsReadable | |
| 72 | lldb::ePermissionsWritable, |
| 73 | error&: alloc_error); |
| 74 | |
| 75 | if (!alloc_error.Success()) |
| 76 | return LLDB_INVALID_ADDRESS; |
| 77 | else |
| 78 | return ret; |
| 79 | } |
| 80 | |
| 81 | // At this point we know that we need to hunt. |
| 82 | // |
| 83 | // First, go to the end of the existing allocations we've made if there are |
| 84 | // any allocations. Otherwise start at the beginning of memory. |
| 85 | |
| 86 | if (m_allocations.empty()) { |
| 87 | ret = 0; |
| 88 | } else { |
| 89 | auto back = m_allocations.rbegin(); |
| 90 | lldb::addr_t addr = back->first; |
| 91 | size_t alloc_size = back->second.m_size; |
| 92 | ret = llvm::alignTo(Value: addr + alloc_size, Align: 4096); |
| 93 | } |
| 94 | |
| 95 | uint64_t end_of_memory; |
| 96 | switch (GetAddressByteSize()) { |
| 97 | case 2: |
| 98 | end_of_memory = 0xffffull; |
| 99 | break; |
| 100 | case 4: |
| 101 | end_of_memory = 0xffffffffull; |
| 102 | break; |
| 103 | case 8: |
| 104 | end_of_memory = 0xffffffffffffffffull; |
| 105 | break; |
| 106 | default: |
| 107 | lldbassert(false && "Invalid address size." ); |
| 108 | return LLDB_INVALID_ADDRESS; |
| 109 | } |
| 110 | |
| 111 | // Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped |
| 112 | // regions, walk forward through memory until a region is found that has |
| 113 | // adequate space for our allocation. |
| 114 | if (process_is_alive) { |
| 115 | MemoryRegionInfo region_info; |
| 116 | Status err = process_sp->GetMemoryRegionInfo(load_addr: ret, range_info&: region_info); |
| 117 | if (err.Success()) { |
| 118 | while (true) { |
| 119 | if (region_info.GetRange().GetRangeBase() == 0 && |
| 120 | region_info.GetRange().GetRangeEnd() < end_of_memory) { |
| 121 | // Don't use a region that starts at address 0, |
| 122 | // it can make it harder to debug null dereference crashes |
| 123 | // in the inferior. |
| 124 | ret = region_info.GetRange().GetRangeEnd(); |
| 125 | } else if (region_info.GetReadable() != |
| 126 | MemoryRegionInfo::OptionalBool::eNo || |
| 127 | region_info.GetWritable() != |
| 128 | MemoryRegionInfo::OptionalBool::eNo || |
| 129 | region_info.GetExecutable() != |
| 130 | MemoryRegionInfo::OptionalBool::eNo) { |
| 131 | if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) { |
| 132 | ret = LLDB_INVALID_ADDRESS; |
| 133 | break; |
| 134 | } else { |
| 135 | ret = region_info.GetRange().GetRangeEnd(); |
| 136 | } |
| 137 | } else if (ret + size < region_info.GetRange().GetRangeEnd()) { |
| 138 | return ret; |
| 139 | } else { |
| 140 | // ret stays the same. We just need to walk a bit further. |
| 141 | } |
| 142 | |
| 143 | err = process_sp->GetMemoryRegionInfo( |
| 144 | load_addr: region_info.GetRange().GetRangeEnd(), range_info&: region_info); |
| 145 | if (err.Fail()) { |
| 146 | lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed" ); |
| 147 | ret = LLDB_INVALID_ADDRESS; |
| 148 | break; |
| 149 | } |
| 150 | } |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | // We've tried our algorithm, and it didn't work. Now we have to reset back |
| 155 | // to the end of the allocations we've already reported, or use a 'sensible' |
| 156 | // default if this is our first allocation. |
| 157 | if (m_allocations.empty()) { |
| 158 | uint64_t alloc_address = target_sp->GetExprAllocAddress(); |
| 159 | if (alloc_address > 0) { |
| 160 | if (alloc_address >= end_of_memory) { |
| 161 | lldbassert(0 && "The allocation address for expression evaluation must " |
| 162 | "be within process address space" ); |
| 163 | return LLDB_INVALID_ADDRESS; |
| 164 | } |
| 165 | ret = alloc_address; |
| 166 | } else { |
| 167 | uint32_t address_byte_size = GetAddressByteSize(); |
| 168 | if (address_byte_size != UINT32_MAX) { |
| 169 | switch (address_byte_size) { |
| 170 | case 2: |
| 171 | ret = 0x8000ull; |
| 172 | break; |
| 173 | case 4: |
| 174 | ret = 0xee000000ull; |
| 175 | break; |
| 176 | case 8: |
| 177 | ret = 0xdead0fff00000000ull; |
| 178 | break; |
| 179 | default: |
| 180 | lldbassert(false && "Invalid address size." ); |
| 181 | return LLDB_INVALID_ADDRESS; |
| 182 | } |
| 183 | } |
| 184 | } |
| 185 | } else { |
| 186 | auto back = m_allocations.rbegin(); |
| 187 | lldb::addr_t addr = back->first; |
| 188 | size_t alloc_size = back->second.m_size; |
| 189 | uint64_t align = target_sp->GetExprAllocAlign(); |
| 190 | if (align == 0) |
| 191 | align = 4096; |
| 192 | ret = llvm::alignTo(Value: addr + alloc_size, Align: align); |
| 193 | } |
| 194 | |
| 195 | return ret; |
| 196 | } |
| 197 | |
| 198 | IRMemoryMap::AllocationMap::iterator |
| 199 | IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) { |
| 200 | if (addr == LLDB_INVALID_ADDRESS) |
| 201 | return m_allocations.end(); |
| 202 | |
| 203 | AllocationMap::iterator iter = m_allocations.lower_bound(x: addr); |
| 204 | |
| 205 | if (iter == m_allocations.end() || iter->first > addr) { |
| 206 | if (iter == m_allocations.begin()) |
| 207 | return m_allocations.end(); |
| 208 | iter--; |
| 209 | } |
| 210 | |
| 211 | if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size) |
| 212 | return iter; |
| 213 | |
| 214 | return m_allocations.end(); |
| 215 | } |
| 216 | |
| 217 | bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const { |
| 218 | if (addr == LLDB_INVALID_ADDRESS) |
| 219 | return false; |
| 220 | |
| 221 | AllocationMap::const_iterator iter = m_allocations.lower_bound(x: addr); |
| 222 | |
| 223 | // Since we only know that the returned interval begins at a location greater |
| 224 | // than or equal to where the given interval begins, it's possible that the |
| 225 | // given interval intersects either the returned interval or the previous |
| 226 | // interval. Thus, we need to check both. Note that we only need to check |
| 227 | // these two intervals. Since all intervals are disjoint it is not possible |
| 228 | // that an adjacent interval does not intersect, but a non-adjacent interval |
| 229 | // does intersect. |
| 230 | if (iter != m_allocations.end()) { |
| 231 | if (AllocationsIntersect(addr1: addr, size1: size, addr2: iter->second.m_process_start, |
| 232 | size2: iter->second.m_size)) |
| 233 | return true; |
| 234 | } |
| 235 | |
| 236 | if (iter != m_allocations.begin()) { |
| 237 | --iter; |
| 238 | if (AllocationsIntersect(addr1: addr, size1: size, addr2: iter->second.m_process_start, |
| 239 | size2: iter->second.m_size)) |
| 240 | return true; |
| 241 | } |
| 242 | |
| 243 | return false; |
| 244 | } |
| 245 | |
| 246 | bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1, |
| 247 | lldb::addr_t addr2, size_t size2) { |
| 248 | // Given two half open intervals [A, B) and [X, Y), the only 6 permutations |
| 249 | // that satisfy A<B and X<Y are the following: |
| 250 | // A B X Y |
| 251 | // A X B Y (intersects) |
| 252 | // A X Y B (intersects) |
| 253 | // X A B Y (intersects) |
| 254 | // X A Y B (intersects) |
| 255 | // X Y A B |
| 256 | // The first is B <= X, and the last is Y <= A. So the condition is !(B <= X |
| 257 | // || Y <= A)), or (X < B && A < Y) |
| 258 | return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2)); |
| 259 | } |
| 260 | |
| 261 | lldb::ByteOrder IRMemoryMap::GetByteOrder() { |
| 262 | lldb::ProcessSP process_sp = m_process_wp.lock(); |
| 263 | |
| 264 | if (process_sp) |
| 265 | return process_sp->GetByteOrder(); |
| 266 | |
| 267 | lldb::TargetSP target_sp = m_target_wp.lock(); |
| 268 | |
| 269 | if (target_sp) |
| 270 | return target_sp->GetArchitecture().GetByteOrder(); |
| 271 | |
| 272 | return lldb::eByteOrderInvalid; |
| 273 | } |
| 274 | |
| 275 | uint32_t IRMemoryMap::GetAddressByteSize() { |
| 276 | lldb::ProcessSP process_sp = m_process_wp.lock(); |
| 277 | |
| 278 | if (process_sp) |
| 279 | return process_sp->GetAddressByteSize(); |
| 280 | |
| 281 | lldb::TargetSP target_sp = m_target_wp.lock(); |
| 282 | |
| 283 | if (target_sp) |
| 284 | return target_sp->GetArchitecture().GetAddressByteSize(); |
| 285 | |
| 286 | return UINT32_MAX; |
| 287 | } |
| 288 | |
| 289 | ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const { |
| 290 | lldb::ProcessSP process_sp = m_process_wp.lock(); |
| 291 | |
| 292 | if (process_sp) |
| 293 | return process_sp.get(); |
| 294 | |
| 295 | lldb::TargetSP target_sp = m_target_wp.lock(); |
| 296 | |
| 297 | if (target_sp) |
| 298 | return target_sp.get(); |
| 299 | |
| 300 | return nullptr; |
| 301 | } |
| 302 | |
| 303 | IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc, |
| 304 | lldb::addr_t process_start, size_t size, |
| 305 | uint32_t permissions, uint8_t alignment, |
| 306 | AllocationPolicy policy) |
| 307 | : m_process_alloc(process_alloc), m_process_start(process_start), |
| 308 | m_size(size), m_policy(policy), m_leak(false), m_permissions(permissions), |
| 309 | m_alignment(alignment) { |
| 310 | switch (policy) { |
| 311 | default: |
| 312 | llvm_unreachable("Invalid AllocationPolicy" ); |
| 313 | case eAllocationPolicyHostOnly: |
| 314 | case eAllocationPolicyMirror: |
| 315 | m_data.SetByteSize(size); |
| 316 | break; |
| 317 | case eAllocationPolicyProcessOnly: |
| 318 | break; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment, |
| 323 | uint32_t permissions, AllocationPolicy policy, |
| 324 | bool zero_memory, Status &error) { |
| 325 | lldb_private::Log *log(GetLog(mask: LLDBLog::Expressions)); |
| 326 | error.Clear(); |
| 327 | |
| 328 | lldb::ProcessSP process_sp; |
| 329 | lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS; |
| 330 | lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS; |
| 331 | |
| 332 | size_t allocation_size; |
| 333 | |
| 334 | if (size == 0) { |
| 335 | // FIXME: Malloc(0) should either return an invalid address or assert, in |
| 336 | // order to cut down on unnecessary allocations. |
| 337 | allocation_size = alignment; |
| 338 | } else { |
| 339 | // Round up the requested size to an aligned value. |
| 340 | allocation_size = llvm::alignTo(Value: size, Align: alignment); |
| 341 | |
| 342 | // The process page cache does not see the requested alignment. We can't |
| 343 | // assume its result will be any more than 1-byte aligned. To work around |
| 344 | // this, request `alignment - 1` additional bytes. |
| 345 | allocation_size += alignment - 1; |
| 346 | } |
| 347 | |
| 348 | switch (policy) { |
| 349 | default: |
| 350 | error = |
| 351 | Status::FromErrorString(str: "Couldn't malloc: invalid allocation policy" ); |
| 352 | return LLDB_INVALID_ADDRESS; |
| 353 | case eAllocationPolicyHostOnly: |
| 354 | allocation_address = FindSpace(size: allocation_size); |
| 355 | if (allocation_address == LLDB_INVALID_ADDRESS) { |
| 356 | error = Status::FromErrorString(str: "Couldn't malloc: address space is full" ); |
| 357 | return LLDB_INVALID_ADDRESS; |
| 358 | } |
| 359 | break; |
| 360 | case eAllocationPolicyMirror: |
| 361 | process_sp = m_process_wp.lock(); |
| 362 | LLDB_LOGF(log, |
| 363 | "IRMemoryMap::%s process_sp=0x%" PRIxPTR |
| 364 | ", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s" , |
| 365 | __FUNCTION__, reinterpret_cast<uintptr_t>(process_sp.get()), |
| 366 | process_sp && process_sp->CanJIT() ? "true" : "false" , |
| 367 | process_sp && process_sp->IsAlive() ? "true" : "false" ); |
| 368 | if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) { |
| 369 | if (!zero_memory) |
| 370 | allocation_address = |
| 371 | process_sp->AllocateMemory(size: allocation_size, permissions, error); |
| 372 | else |
| 373 | allocation_address = |
| 374 | process_sp->CallocateMemory(size: allocation_size, permissions, error); |
| 375 | |
| 376 | if (!error.Success()) |
| 377 | return LLDB_INVALID_ADDRESS; |
| 378 | } else { |
| 379 | LLDB_LOGF(log, |
| 380 | "IRMemoryMap::%s switching to eAllocationPolicyHostOnly " |
| 381 | "due to failed condition (see previous expr log message)" , |
| 382 | __FUNCTION__); |
| 383 | policy = eAllocationPolicyHostOnly; |
| 384 | allocation_address = FindSpace(size: allocation_size); |
| 385 | if (allocation_address == LLDB_INVALID_ADDRESS) { |
| 386 | error = |
| 387 | Status::FromErrorString(str: "Couldn't malloc: address space is full" ); |
| 388 | return LLDB_INVALID_ADDRESS; |
| 389 | } |
| 390 | } |
| 391 | break; |
| 392 | case eAllocationPolicyProcessOnly: |
| 393 | process_sp = m_process_wp.lock(); |
| 394 | if (process_sp) { |
| 395 | if (process_sp->CanJIT() && process_sp->IsAlive()) { |
| 396 | if (!zero_memory) |
| 397 | allocation_address = |
| 398 | process_sp->AllocateMemory(size: allocation_size, permissions, error); |
| 399 | else |
| 400 | allocation_address = |
| 401 | process_sp->CallocateMemory(size: allocation_size, permissions, error); |
| 402 | |
| 403 | if (!error.Success()) |
| 404 | return LLDB_INVALID_ADDRESS; |
| 405 | } else { |
| 406 | error = Status::FromErrorString( |
| 407 | str: "Couldn't malloc: process doesn't support allocating memory" ); |
| 408 | return LLDB_INVALID_ADDRESS; |
| 409 | } |
| 410 | } else { |
| 411 | error = Status::FromErrorString( |
| 412 | str: "Couldn't malloc: process doesn't exist, and this " |
| 413 | "memory must be in the process" ); |
| 414 | return LLDB_INVALID_ADDRESS; |
| 415 | } |
| 416 | break; |
| 417 | } |
| 418 | |
| 419 | lldb::addr_t mask = alignment - 1; |
| 420 | aligned_address = (allocation_address + mask) & (~mask); |
| 421 | |
| 422 | m_allocations.emplace( |
| 423 | args: std::piecewise_construct, args: std::forward_as_tuple(args&: aligned_address), |
| 424 | args: std::forward_as_tuple(args&: allocation_address, args&: aligned_address, |
| 425 | args&: allocation_size, args&: permissions, args&: alignment, args&: policy)); |
| 426 | |
| 427 | if (zero_memory) { |
| 428 | Status write_error; |
| 429 | std::vector<uint8_t> zero_buf(size, 0); |
| 430 | WriteMemory(process_address: aligned_address, bytes: zero_buf.data(), size, error&: write_error); |
| 431 | } |
| 432 | |
| 433 | if (log) { |
| 434 | const char *policy_string; |
| 435 | |
| 436 | switch (policy) { |
| 437 | default: |
| 438 | policy_string = "<invalid policy>" ; |
| 439 | break; |
| 440 | case eAllocationPolicyHostOnly: |
| 441 | policy_string = "eAllocationPolicyHostOnly" ; |
| 442 | break; |
| 443 | case eAllocationPolicyProcessOnly: |
| 444 | policy_string = "eAllocationPolicyProcessOnly" ; |
| 445 | break; |
| 446 | case eAllocationPolicyMirror: |
| 447 | policy_string = "eAllocationPolicyMirror" ; |
| 448 | break; |
| 449 | } |
| 450 | |
| 451 | LLDB_LOGF(log, |
| 452 | "IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64 |
| 453 | ", %s) -> 0x%" PRIx64, |
| 454 | (uint64_t)allocation_size, (uint64_t)alignment, |
| 455 | (uint64_t)permissions, policy_string, aligned_address); |
| 456 | } |
| 457 | |
| 458 | return aligned_address; |
| 459 | } |
| 460 | |
| 461 | void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) { |
| 462 | error.Clear(); |
| 463 | |
| 464 | AllocationMap::iterator iter = m_allocations.find(x: process_address); |
| 465 | |
| 466 | if (iter == m_allocations.end()) { |
| 467 | error = Status::FromErrorString(str: "Couldn't leak: allocation doesn't exist" ); |
| 468 | return; |
| 469 | } |
| 470 | |
| 471 | Allocation &allocation = iter->second; |
| 472 | |
| 473 | allocation.m_leak = true; |
| 474 | } |
| 475 | |
| 476 | void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) { |
| 477 | error.Clear(); |
| 478 | |
| 479 | AllocationMap::iterator iter = m_allocations.find(x: process_address); |
| 480 | |
| 481 | if (iter == m_allocations.end()) { |
| 482 | error = Status::FromErrorString(str: "Couldn't free: allocation doesn't exist" ); |
| 483 | return; |
| 484 | } |
| 485 | |
| 486 | Allocation &allocation = iter->second; |
| 487 | |
| 488 | switch (allocation.m_policy) { |
| 489 | default: |
| 490 | case eAllocationPolicyHostOnly: { |
| 491 | lldb::ProcessSP process_sp = m_process_wp.lock(); |
| 492 | if (process_sp) { |
| 493 | if (process_sp->CanJIT() && process_sp->IsAlive()) |
| 494 | process_sp->DeallocateMemory( |
| 495 | ptr: allocation.m_process_alloc); // FindSpace allocated this for real |
| 496 | } |
| 497 | |
| 498 | break; |
| 499 | } |
| 500 | case eAllocationPolicyMirror: |
| 501 | case eAllocationPolicyProcessOnly: { |
| 502 | lldb::ProcessSP process_sp = m_process_wp.lock(); |
| 503 | if (process_sp) |
| 504 | process_sp->DeallocateMemory(ptr: allocation.m_process_alloc); |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | if (lldb_private::Log *log = GetLog(mask: LLDBLog::Expressions)) { |
| 509 | LLDB_LOGF(log, |
| 510 | "IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64 |
| 511 | "..0x%" PRIx64 ")" , |
| 512 | (uint64_t)process_address, iter->second.m_process_start, |
| 513 | iter->second.m_process_start + iter->second.m_size); |
| 514 | } |
| 515 | |
| 516 | m_allocations.erase(position: iter); |
| 517 | } |
| 518 | |
| 519 | bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) { |
| 520 | AllocationMap::iterator iter = FindAllocation(addr: address, size); |
| 521 | if (iter == m_allocations.end()) |
| 522 | return false; |
| 523 | |
| 524 | Allocation &al = iter->second; |
| 525 | |
| 526 | if (address > (al.m_process_start + al.m_size)) { |
| 527 | size = 0; |
| 528 | return false; |
| 529 | } |
| 530 | |
| 531 | if (address > al.m_process_start) { |
| 532 | int dif = address - al.m_process_start; |
| 533 | size = al.m_size - dif; |
| 534 | return true; |
| 535 | } |
| 536 | |
| 537 | size = al.m_size; |
| 538 | return true; |
| 539 | } |
| 540 | |
| 541 | void IRMemoryMap::WriteMemory(lldb::addr_t process_address, |
| 542 | const uint8_t *bytes, size_t size, |
| 543 | Status &error) { |
| 544 | error.Clear(); |
| 545 | |
| 546 | AllocationMap::iterator iter = FindAllocation(addr: process_address, size); |
| 547 | |
| 548 | if (iter == m_allocations.end()) { |
| 549 | lldb::ProcessSP process_sp = m_process_wp.lock(); |
| 550 | |
| 551 | if (process_sp) { |
| 552 | process_sp->WriteMemory(vm_addr: process_address, buf: bytes, size, error); |
| 553 | return; |
| 554 | } |
| 555 | |
| 556 | error = Status::FromErrorString( |
| 557 | str: "Couldn't write: no allocation contains the target " |
| 558 | "range and the process doesn't exist" ); |
| 559 | return; |
| 560 | } |
| 561 | |
| 562 | Allocation &allocation = iter->second; |
| 563 | |
| 564 | uint64_t offset = process_address - allocation.m_process_start; |
| 565 | |
| 566 | lldb::ProcessSP process_sp; |
| 567 | |
| 568 | switch (allocation.m_policy) { |
| 569 | default: |
| 570 | error = |
| 571 | Status::FromErrorString(str: "Couldn't write: invalid allocation policy" ); |
| 572 | return; |
| 573 | case eAllocationPolicyHostOnly: |
| 574 | if (!allocation.m_data.GetByteSize()) { |
| 575 | error = Status::FromErrorString(str: "Couldn't write: data buffer is empty" ); |
| 576 | return; |
| 577 | } |
| 578 | ::memcpy(dest: allocation.m_data.GetBytes() + offset, src: bytes, n: size); |
| 579 | break; |
| 580 | case eAllocationPolicyMirror: |
| 581 | if (!allocation.m_data.GetByteSize()) { |
| 582 | error = Status::FromErrorString(str: "Couldn't write: data buffer is empty" ); |
| 583 | return; |
| 584 | } |
| 585 | ::memcpy(dest: allocation.m_data.GetBytes() + offset, src: bytes, n: size); |
| 586 | process_sp = m_process_wp.lock(); |
| 587 | if (process_sp) { |
| 588 | process_sp->WriteMemory(vm_addr: process_address, buf: bytes, size, error); |
| 589 | if (!error.Success()) |
| 590 | return; |
| 591 | } |
| 592 | break; |
| 593 | case eAllocationPolicyProcessOnly: |
| 594 | process_sp = m_process_wp.lock(); |
| 595 | if (process_sp) { |
| 596 | process_sp->WriteMemory(vm_addr: process_address, buf: bytes, size, error); |
| 597 | if (!error.Success()) |
| 598 | return; |
| 599 | } |
| 600 | break; |
| 601 | } |
| 602 | |
| 603 | if (lldb_private::Log *log = GetLog(mask: LLDBLog::Expressions)) { |
| 604 | LLDB_LOGF(log, |
| 605 | "IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIxPTR |
| 606 | ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")" , |
| 607 | (uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size, |
| 608 | (uint64_t)allocation.m_process_start, |
| 609 | (uint64_t)allocation.m_process_start + |
| 610 | (uint64_t)allocation.m_size); |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address, |
| 615 | Scalar &scalar, size_t size, |
| 616 | Status &error) { |
| 617 | error.Clear(); |
| 618 | |
| 619 | if (size == UINT32_MAX) |
| 620 | size = scalar.GetByteSize(); |
| 621 | |
| 622 | if (size > 0) { |
| 623 | uint8_t buf[32]; |
| 624 | const size_t mem_size = |
| 625 | scalar.GetAsMemoryData(dst: buf, dst_len: size, dst_byte_order: GetByteOrder(), error); |
| 626 | if (mem_size > 0) { |
| 627 | return WriteMemory(process_address, bytes: buf, size: mem_size, error); |
| 628 | } else { |
| 629 | error = Status::FromErrorString( |
| 630 | str: "Couldn't write scalar: failed to get scalar as memory data" ); |
| 631 | } |
| 632 | } else { |
| 633 | error = Status::FromErrorString(str: "Couldn't write scalar: its size was zero" ); |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address, |
| 638 | lldb::addr_t address, Status &error) { |
| 639 | error.Clear(); |
| 640 | |
| 641 | Scalar scalar(address); |
| 642 | |
| 643 | WriteScalarToMemory(process_address, scalar, size: GetAddressByteSize(), error); |
| 644 | } |
| 645 | |
| 646 | void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address, |
| 647 | size_t size, Status &error) { |
| 648 | error.Clear(); |
| 649 | |
| 650 | AllocationMap::iterator iter = FindAllocation(addr: process_address, size); |
| 651 | |
| 652 | if (iter == m_allocations.end()) { |
| 653 | lldb::ProcessSP process_sp = m_process_wp.lock(); |
| 654 | |
| 655 | if (process_sp) { |
| 656 | process_sp->ReadMemory(vm_addr: process_address, buf: bytes, size, error); |
| 657 | return; |
| 658 | } |
| 659 | |
| 660 | lldb::TargetSP target_sp = m_target_wp.lock(); |
| 661 | |
| 662 | if (target_sp) { |
| 663 | Address absolute_address(process_address); |
| 664 | target_sp->ReadMemory(addr: absolute_address, dst: bytes, dst_len: size, error, force_live_memory: true); |
| 665 | return; |
| 666 | } |
| 667 | |
| 668 | error = Status::FromErrorString( |
| 669 | str: "Couldn't read: no allocation contains the target " |
| 670 | "range, and neither the process nor the target exist" ); |
| 671 | return; |
| 672 | } |
| 673 | |
| 674 | Allocation &allocation = iter->second; |
| 675 | |
| 676 | uint64_t offset = process_address - allocation.m_process_start; |
| 677 | |
| 678 | if (offset > allocation.m_size) { |
| 679 | error = |
| 680 | Status::FromErrorString(str: "Couldn't read: data is not in the allocation" ); |
| 681 | return; |
| 682 | } |
| 683 | |
| 684 | lldb::ProcessSP process_sp; |
| 685 | |
| 686 | switch (allocation.m_policy) { |
| 687 | default: |
| 688 | error = Status::FromErrorString(str: "Couldn't read: invalid allocation policy" ); |
| 689 | return; |
| 690 | case eAllocationPolicyHostOnly: |
| 691 | if (!allocation.m_data.GetByteSize()) { |
| 692 | error = Status::FromErrorString(str: "Couldn't read: data buffer is empty" ); |
| 693 | return; |
| 694 | } |
| 695 | if (allocation.m_data.GetByteSize() < offset + size) { |
| 696 | error = |
| 697 | Status::FromErrorString(str: "Couldn't read: not enough underlying data" ); |
| 698 | return; |
| 699 | } |
| 700 | |
| 701 | ::memcpy(dest: bytes, src: allocation.m_data.GetBytes() + offset, n: size); |
| 702 | break; |
| 703 | case eAllocationPolicyMirror: |
| 704 | process_sp = m_process_wp.lock(); |
| 705 | if (process_sp) { |
| 706 | process_sp->ReadMemory(vm_addr: process_address, buf: bytes, size, error); |
| 707 | if (!error.Success()) |
| 708 | return; |
| 709 | } else { |
| 710 | if (!allocation.m_data.GetByteSize()) { |
| 711 | error = Status::FromErrorString(str: "Couldn't read: data buffer is empty" ); |
| 712 | return; |
| 713 | } |
| 714 | ::memcpy(dest: bytes, src: allocation.m_data.GetBytes() + offset, n: size); |
| 715 | } |
| 716 | break; |
| 717 | case eAllocationPolicyProcessOnly: |
| 718 | process_sp = m_process_wp.lock(); |
| 719 | if (process_sp) { |
| 720 | process_sp->ReadMemory(vm_addr: process_address, buf: bytes, size, error); |
| 721 | if (!error.Success()) |
| 722 | return; |
| 723 | } |
| 724 | break; |
| 725 | } |
| 726 | |
| 727 | if (lldb_private::Log *log = GetLog(mask: LLDBLog::Expressions)) { |
| 728 | LLDB_LOGF(log, |
| 729 | "IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIxPTR |
| 730 | ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")" , |
| 731 | (uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size, |
| 732 | (uint64_t)allocation.m_process_start, |
| 733 | (uint64_t)allocation.m_process_start + |
| 734 | (uint64_t)allocation.m_size); |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar, |
| 739 | lldb::addr_t process_address, |
| 740 | size_t size, Status &error) { |
| 741 | error.Clear(); |
| 742 | |
| 743 | if (size > 0) { |
| 744 | DataBufferHeap buf(size, 0); |
| 745 | ReadMemory(bytes: buf.GetBytes(), process_address, size, error); |
| 746 | |
| 747 | if (!error.Success()) |
| 748 | return; |
| 749 | |
| 750 | DataExtractor (buf.GetBytes(), buf.GetByteSize(), GetByteOrder(), |
| 751 | GetAddressByteSize()); |
| 752 | |
| 753 | lldb::offset_t offset = 0; |
| 754 | |
| 755 | switch (size) { |
| 756 | default: |
| 757 | error = Status::FromErrorStringWithFormat( |
| 758 | format: "Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size); |
| 759 | return; |
| 760 | case 1: |
| 761 | scalar = extractor.GetU8(offset_ptr: &offset); |
| 762 | break; |
| 763 | case 2: |
| 764 | scalar = extractor.GetU16(offset_ptr: &offset); |
| 765 | break; |
| 766 | case 4: |
| 767 | scalar = extractor.GetU32(offset_ptr: &offset); |
| 768 | break; |
| 769 | case 8: |
| 770 | scalar = extractor.GetU64(offset_ptr: &offset); |
| 771 | break; |
| 772 | } |
| 773 | } else { |
| 774 | error = Status::FromErrorString(str: "Couldn't read scalar: its size was zero" ); |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address, |
| 779 | lldb::addr_t process_address, |
| 780 | Status &error) { |
| 781 | error.Clear(); |
| 782 | |
| 783 | Scalar pointer_scalar; |
| 784 | ReadScalarFromMemory(scalar&: pointer_scalar, process_address, size: GetAddressByteSize(), |
| 785 | error); |
| 786 | |
| 787 | if (!error.Success()) |
| 788 | return; |
| 789 | |
| 790 | *address = pointer_scalar.ULongLong(); |
| 791 | } |
| 792 | |
| 793 | void IRMemoryMap::(DataExtractor &, |
| 794 | lldb::addr_t process_address, size_t size, |
| 795 | Status &error) { |
| 796 | error.Clear(); |
| 797 | |
| 798 | if (size > 0) { |
| 799 | AllocationMap::iterator iter = FindAllocation(addr: process_address, size); |
| 800 | |
| 801 | if (iter == m_allocations.end()) { |
| 802 | error = Status::FromErrorStringWithFormat( |
| 803 | format: "Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64 |
| 804 | ")" , |
| 805 | process_address, process_address + size); |
| 806 | return; |
| 807 | } |
| 808 | |
| 809 | Allocation &allocation = iter->second; |
| 810 | |
| 811 | switch (allocation.m_policy) { |
| 812 | default: |
| 813 | error = Status::FromErrorString( |
| 814 | str: "Couldn't get memory data: invalid allocation policy" ); |
| 815 | return; |
| 816 | case eAllocationPolicyProcessOnly: |
| 817 | error = Status::FromErrorString( |
| 818 | str: "Couldn't get memory data: memory is only in the target" ); |
| 819 | return; |
| 820 | case eAllocationPolicyMirror: { |
| 821 | lldb::ProcessSP process_sp = m_process_wp.lock(); |
| 822 | |
| 823 | if (!allocation.m_data.GetByteSize()) { |
| 824 | error = Status::FromErrorString( |
| 825 | str: "Couldn't get memory data: data buffer is empty" ); |
| 826 | return; |
| 827 | } |
| 828 | if (process_sp) { |
| 829 | process_sp->ReadMemory(vm_addr: allocation.m_process_start, |
| 830 | buf: allocation.m_data.GetBytes(), |
| 831 | size: allocation.m_data.GetByteSize(), error); |
| 832 | if (!error.Success()) |
| 833 | return; |
| 834 | uint64_t offset = process_address - allocation.m_process_start; |
| 835 | extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, |
| 836 | GetByteOrder(), GetAddressByteSize()); |
| 837 | return; |
| 838 | } |
| 839 | } break; |
| 840 | case eAllocationPolicyHostOnly: |
| 841 | if (!allocation.m_data.GetByteSize()) { |
| 842 | error = Status::FromErrorString( |
| 843 | str: "Couldn't get memory data: data buffer is empty" ); |
| 844 | return; |
| 845 | } |
| 846 | uint64_t offset = process_address - allocation.m_process_start; |
| 847 | extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, |
| 848 | GetByteOrder(), GetAddressByteSize()); |
| 849 | return; |
| 850 | } |
| 851 | } else { |
| 852 | error = |
| 853 | Status::FromErrorString(str: "Couldn't get memory data: its size was zero" ); |
| 854 | return; |
| 855 | } |
| 856 | } |
| 857 | |