| 1 | //===-- PipeWindows.cpp ---------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "lldb/Host/windows/PipeWindows.h" |
| 10 | |
| 11 | #include "llvm/ADT/SmallString.h" |
| 12 | #include "llvm/Support/Process.h" |
| 13 | #include "llvm/Support/raw_ostream.h" |
| 14 | |
| 15 | #include <fcntl.h> |
| 16 | #include <io.h> |
| 17 | #include <rpc.h> |
| 18 | |
| 19 | #include <atomic> |
| 20 | #include <string> |
| 21 | |
| 22 | using namespace lldb; |
| 23 | using namespace lldb_private; |
| 24 | |
| 25 | static std::atomic<uint32_t> g_pipe_serial(0); |
| 26 | static constexpr llvm::StringLiteral g_pipe_name_prefix = "\\\\.\\Pipe\\" ; |
| 27 | |
| 28 | PipeWindows::PipeWindows() |
| 29 | : m_read(INVALID_HANDLE_VALUE), m_write(INVALID_HANDLE_VALUE), |
| 30 | m_read_fd(PipeWindows::kInvalidDescriptor), |
| 31 | m_write_fd(PipeWindows::kInvalidDescriptor) { |
| 32 | ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); |
| 33 | ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped)); |
| 34 | } |
| 35 | |
| 36 | PipeWindows::PipeWindows(pipe_t read, pipe_t write) |
| 37 | : m_read((HANDLE)read), m_write((HANDLE)write), |
| 38 | m_read_fd(PipeWindows::kInvalidDescriptor), |
| 39 | m_write_fd(PipeWindows::kInvalidDescriptor) { |
| 40 | assert(read != LLDB_INVALID_PIPE || write != LLDB_INVALID_PIPE); |
| 41 | |
| 42 | // Don't risk in passing file descriptors and getting handles from them by |
| 43 | // _get_osfhandle since the retrieved handles are highly likely unrecognized |
| 44 | // in the current process and usually crashes the program. Pass handles |
| 45 | // instead since the handle can be inherited. |
| 46 | |
| 47 | if (read != LLDB_INVALID_PIPE) { |
| 48 | m_read_fd = _open_osfhandle((intptr_t)read, _O_RDONLY); |
| 49 | // Make sure the fd and native handle are consistent. |
| 50 | if (m_read_fd < 0) |
| 51 | m_read = INVALID_HANDLE_VALUE; |
| 52 | } |
| 53 | |
| 54 | if (write != LLDB_INVALID_PIPE) { |
| 55 | m_write_fd = _open_osfhandle((intptr_t)write, _O_WRONLY); |
| 56 | if (m_write_fd < 0) |
| 57 | m_write = INVALID_HANDLE_VALUE; |
| 58 | } |
| 59 | |
| 60 | ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); |
| 61 | m_read_overlapped.hEvent = ::CreateEventA(nullptr, TRUE, FALSE, nullptr); |
| 62 | |
| 63 | ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped)); |
| 64 | m_write_overlapped.hEvent = ::CreateEventA(nullptr, TRUE, FALSE, nullptr); |
| 65 | } |
| 66 | |
| 67 | PipeWindows::~PipeWindows() { Close(); } |
| 68 | |
| 69 | Status PipeWindows::CreateNew(bool child_process_inherit) { |
| 70 | // Even for anonymous pipes, we open a named pipe. This is because you |
| 71 | // cannot get overlapped i/o on Windows without using a named pipe. So we |
| 72 | // synthesize a unique name. |
| 73 | uint32_t serial = g_pipe_serial.fetch_add(i: 1); |
| 74 | std::string pipe_name = llvm::formatv( |
| 75 | "lldb.pipe.{0}.{1}.{2}" , GetCurrentProcessId(), &g_pipe_serial, serial); |
| 76 | |
| 77 | return CreateNew(name: pipe_name.c_str(), child_process_inherit); |
| 78 | } |
| 79 | |
| 80 | Status PipeWindows::CreateNew(llvm::StringRef name, |
| 81 | bool child_process_inherit) { |
| 82 | if (name.empty()) |
| 83 | return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32); |
| 84 | |
| 85 | if (CanRead() || CanWrite()) |
| 86 | return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32); |
| 87 | |
| 88 | std::string pipe_path = g_pipe_name_prefix.str(); |
| 89 | pipe_path.append(str: name.str()); |
| 90 | |
| 91 | // We always create inheritable handles, but we won't pass them to a child |
| 92 | // process unless explicitly requested (cf. ProcessLauncherWindows.cpp). |
| 93 | SECURITY_ATTRIBUTES sa{sizeof(SECURITY_ATTRIBUTES), 0, TRUE}; |
| 94 | |
| 95 | // Always open for overlapped i/o. We implement blocking manually in Read |
| 96 | // and Write. |
| 97 | DWORD read_mode = FILE_FLAG_OVERLAPPED; |
| 98 | m_read = |
| 99 | ::CreateNamedPipeA(pipe_path.c_str(), PIPE_ACCESS_INBOUND | read_mode, |
| 100 | PIPE_TYPE_BYTE | PIPE_WAIT, /*nMaxInstances=*/1, |
| 101 | /*nOutBufferSize=*/1024, |
| 102 | /*nInBufferSize=*/1024, |
| 103 | /*nDefaultTimeOut=*/0, &sa); |
| 104 | if (INVALID_HANDLE_VALUE == m_read) |
| 105 | return Status(::GetLastError(), eErrorTypeWin32); |
| 106 | m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY); |
| 107 | ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); |
| 108 | m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr); |
| 109 | |
| 110 | // Open the write end of the pipe. Note that closing either the read or |
| 111 | // write end of the pipe could directly close the pipe itself. |
| 112 | Status result = OpenNamedPipe(name, child_process_inherit, is_read: false); |
| 113 | if (!result.Success()) { |
| 114 | CloseReadFileDescriptor(); |
| 115 | return result; |
| 116 | } |
| 117 | |
| 118 | return result; |
| 119 | } |
| 120 | |
| 121 | Status PipeWindows::CreateWithUniqueName(llvm::StringRef prefix, |
| 122 | bool child_process_inherit, |
| 123 | llvm::SmallVectorImpl<char> &name) { |
| 124 | llvm::SmallString<128> pipe_name; |
| 125 | Status error; |
| 126 | ::UUID unique_id; |
| 127 | RPC_CSTR unique_string; |
| 128 | RPC_STATUS status = ::UuidCreate(&unique_id); |
| 129 | if (status == RPC_S_OK || status == RPC_S_UUID_LOCAL_ONLY) |
| 130 | status = ::UuidToStringA(&unique_id, &unique_string); |
| 131 | if (status == RPC_S_OK) { |
| 132 | pipe_name = prefix; |
| 133 | pipe_name += "-" ; |
| 134 | pipe_name += reinterpret_cast<char *>(unique_string); |
| 135 | ::RpcStringFreeA(&unique_string); |
| 136 | error = CreateNew(name: pipe_name, child_process_inherit); |
| 137 | } else { |
| 138 | error = Status(status, eErrorTypeWin32); |
| 139 | } |
| 140 | if (error.Success()) |
| 141 | name = pipe_name; |
| 142 | return error; |
| 143 | } |
| 144 | |
| 145 | Status PipeWindows::OpenAsReader(llvm::StringRef name, |
| 146 | bool child_process_inherit) { |
| 147 | if (CanRead()) |
| 148 | return Status(); // Note the name is ignored. |
| 149 | |
| 150 | return OpenNamedPipe(name, child_process_inherit, is_read: true); |
| 151 | } |
| 152 | |
| 153 | llvm::Error PipeWindows::OpenAsWriter(llvm::StringRef name, |
| 154 | bool child_process_inherit, |
| 155 | const Timeout<std::micro> &timeout) { |
| 156 | if (CanWrite()) |
| 157 | return llvm::Error::success(); // Note the name is ignored. |
| 158 | |
| 159 | return OpenNamedPipe(name, child_process_inherit, is_read: false).takeError(); |
| 160 | } |
| 161 | |
| 162 | Status PipeWindows::OpenNamedPipe(llvm::StringRef name, |
| 163 | bool child_process_inherit, bool is_read) { |
| 164 | if (name.empty()) |
| 165 | return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32); |
| 166 | |
| 167 | assert(is_read ? !CanRead() : !CanWrite()); |
| 168 | |
| 169 | // We always create inheritable handles, but we won't pass them to a child |
| 170 | // process unless explicitly requested (cf. ProcessLauncherWindows.cpp). |
| 171 | SECURITY_ATTRIBUTES attributes{sizeof(SECURITY_ATTRIBUTES), 0, TRUE}; |
| 172 | |
| 173 | std::string pipe_path = g_pipe_name_prefix.str(); |
| 174 | pipe_path.append(str: name.str()); |
| 175 | |
| 176 | if (is_read) { |
| 177 | m_read = ::CreateFileA(pipe_path.c_str(), GENERIC_READ, 0, &attributes, |
| 178 | OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL); |
| 179 | if (INVALID_HANDLE_VALUE == m_read) |
| 180 | return Status(::GetLastError(), eErrorTypeWin32); |
| 181 | |
| 182 | m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY); |
| 183 | |
| 184 | ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); |
| 185 | m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr); |
| 186 | } else { |
| 187 | m_write = ::CreateFileA(pipe_path.c_str(), GENERIC_WRITE, 0, &attributes, |
| 188 | OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL); |
| 189 | if (INVALID_HANDLE_VALUE == m_write) |
| 190 | return Status(::GetLastError(), eErrorTypeWin32); |
| 191 | |
| 192 | m_write_fd = _open_osfhandle((intptr_t)m_write, _O_WRONLY); |
| 193 | |
| 194 | ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped)); |
| 195 | m_write_overlapped.hEvent = ::CreateEventA(nullptr, TRUE, FALSE, nullptr); |
| 196 | } |
| 197 | |
| 198 | return Status(); |
| 199 | } |
| 200 | |
| 201 | int PipeWindows::GetReadFileDescriptor() const { return m_read_fd; } |
| 202 | |
| 203 | int PipeWindows::GetWriteFileDescriptor() const { return m_write_fd; } |
| 204 | |
| 205 | int PipeWindows::ReleaseReadFileDescriptor() { |
| 206 | if (!CanRead()) |
| 207 | return PipeWindows::kInvalidDescriptor; |
| 208 | int result = m_read_fd; |
| 209 | m_read_fd = PipeWindows::kInvalidDescriptor; |
| 210 | if (m_read_overlapped.hEvent) |
| 211 | ::CloseHandle(m_read_overlapped.hEvent); |
| 212 | m_read = INVALID_HANDLE_VALUE; |
| 213 | ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); |
| 214 | return result; |
| 215 | } |
| 216 | |
| 217 | int PipeWindows::ReleaseWriteFileDescriptor() { |
| 218 | if (!CanWrite()) |
| 219 | return PipeWindows::kInvalidDescriptor; |
| 220 | int result = m_write_fd; |
| 221 | m_write_fd = PipeWindows::kInvalidDescriptor; |
| 222 | if (m_write_overlapped.hEvent) |
| 223 | ::CloseHandle(m_write_overlapped.hEvent); |
| 224 | m_write = INVALID_HANDLE_VALUE; |
| 225 | ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped)); |
| 226 | return result; |
| 227 | } |
| 228 | |
| 229 | void PipeWindows::CloseReadFileDescriptor() { |
| 230 | if (!CanRead()) |
| 231 | return; |
| 232 | |
| 233 | if (m_read_overlapped.hEvent) |
| 234 | ::CloseHandle(m_read_overlapped.hEvent); |
| 235 | |
| 236 | _close(m_read_fd); |
| 237 | m_read = INVALID_HANDLE_VALUE; |
| 238 | m_read_fd = PipeWindows::kInvalidDescriptor; |
| 239 | ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped)); |
| 240 | } |
| 241 | |
| 242 | void PipeWindows::CloseWriteFileDescriptor() { |
| 243 | if (!CanWrite()) |
| 244 | return; |
| 245 | |
| 246 | if (m_write_overlapped.hEvent) |
| 247 | ::CloseHandle(m_write_overlapped.hEvent); |
| 248 | |
| 249 | _close(m_write_fd); |
| 250 | m_write = INVALID_HANDLE_VALUE; |
| 251 | m_write_fd = PipeWindows::kInvalidDescriptor; |
| 252 | ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped)); |
| 253 | } |
| 254 | |
| 255 | void PipeWindows::Close() { |
| 256 | CloseReadFileDescriptor(); |
| 257 | CloseWriteFileDescriptor(); |
| 258 | } |
| 259 | |
| 260 | Status PipeWindows::Delete(llvm::StringRef name) { return Status(); } |
| 261 | |
| 262 | bool PipeWindows::CanRead() const { return (m_read != INVALID_HANDLE_VALUE); } |
| 263 | |
| 264 | bool PipeWindows::CanWrite() const { return (m_write != INVALID_HANDLE_VALUE); } |
| 265 | |
| 266 | HANDLE |
| 267 | PipeWindows::GetReadNativeHandle() { return m_read; } |
| 268 | |
| 269 | HANDLE |
| 270 | PipeWindows::GetWriteNativeHandle() { return m_write; } |
| 271 | |
| 272 | llvm::Expected<size_t> PipeWindows::Read(void *buf, size_t size, |
| 273 | const Timeout<std::micro> &timeout) { |
| 274 | if (!CanRead()) |
| 275 | return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32).takeError(); |
| 276 | |
| 277 | DWORD bytes_read = 0; |
| 278 | BOOL result = ::ReadFile(m_read, buf, size, &bytes_read, &m_read_overlapped); |
| 279 | if (result) |
| 280 | return bytes_read; |
| 281 | |
| 282 | DWORD failure_error = ::GetLastError(); |
| 283 | if (failure_error != ERROR_IO_PENDING) |
| 284 | return Status(failure_error, eErrorTypeWin32).takeError(); |
| 285 | |
| 286 | DWORD timeout_msec = |
| 287 | timeout ? ceil<std::chrono::milliseconds>(*timeout).count() : INFINITE; |
| 288 | DWORD wait_result = |
| 289 | ::WaitForSingleObject(m_read_overlapped.hEvent, timeout_msec); |
| 290 | if (wait_result != WAIT_OBJECT_0) { |
| 291 | // The operation probably failed. However, if it timed out, we need to |
| 292 | // cancel the I/O. Between the time we returned from WaitForSingleObject |
| 293 | // and the time we call CancelIoEx, the operation may complete. If that |
| 294 | // hapens, CancelIoEx will fail and return ERROR_NOT_FOUND. If that |
| 295 | // happens, the original operation should be considered to have been |
| 296 | // successful. |
| 297 | bool failed = true; |
| 298 | failure_error = ::GetLastError(); |
| 299 | if (wait_result == WAIT_TIMEOUT) { |
| 300 | BOOL cancel_result = ::CancelIoEx(m_read, &m_read_overlapped); |
| 301 | if (!cancel_result && ::GetLastError() == ERROR_NOT_FOUND) |
| 302 | failed = false; |
| 303 | } |
| 304 | if (failed) |
| 305 | return Status(failure_error, eErrorTypeWin32).takeError(); |
| 306 | } |
| 307 | |
| 308 | // Now we call GetOverlappedResult setting bWait to false, since we've |
| 309 | // already waited as long as we're willing to. |
| 310 | if (!::GetOverlappedResult(m_read, &m_read_overlapped, &bytes_read, FALSE)) |
| 311 | return Status(::GetLastError(), eErrorTypeWin32).takeError(); |
| 312 | |
| 313 | return bytes_read; |
| 314 | } |
| 315 | |
| 316 | llvm::Expected<size_t> PipeWindows::Write(const void *buf, size_t size, |
| 317 | const Timeout<std::micro> &timeout) { |
| 318 | if (!CanWrite()) |
| 319 | return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32).takeError(); |
| 320 | |
| 321 | DWORD bytes_written = 0; |
| 322 | BOOL result = |
| 323 | ::WriteFile(m_write, buf, size, &bytes_written, &m_write_overlapped); |
| 324 | if (result) |
| 325 | return bytes_written; |
| 326 | |
| 327 | DWORD failure_error = ::GetLastError(); |
| 328 | if (failure_error != ERROR_IO_PENDING) |
| 329 | return Status(failure_error, eErrorTypeWin32).takeError(); |
| 330 | |
| 331 | DWORD timeout_msec = |
| 332 | timeout ? ceil<std::chrono::milliseconds>(*timeout).count() : INFINITE; |
| 333 | DWORD wait_result = |
| 334 | ::WaitForSingleObject(m_write_overlapped.hEvent, timeout_msec); |
| 335 | if (wait_result != WAIT_OBJECT_0) { |
| 336 | // The operation probably failed. However, if it timed out, we need to |
| 337 | // cancel the I/O. Between the time we returned from WaitForSingleObject |
| 338 | // and the time we call CancelIoEx, the operation may complete. If that |
| 339 | // hapens, CancelIoEx will fail and return ERROR_NOT_FOUND. If that |
| 340 | // happens, the original operation should be considered to have been |
| 341 | // successful. |
| 342 | bool failed = true; |
| 343 | failure_error = ::GetLastError(); |
| 344 | if (wait_result == WAIT_TIMEOUT) { |
| 345 | BOOL cancel_result = ::CancelIoEx(m_write, &m_write_overlapped); |
| 346 | if (!cancel_result && ::GetLastError() == ERROR_NOT_FOUND) |
| 347 | failed = false; |
| 348 | } |
| 349 | if (failed) |
| 350 | return Status(failure_error, eErrorTypeWin32).takeError(); |
| 351 | } |
| 352 | |
| 353 | // Now we call GetOverlappedResult setting bWait to false, since we've |
| 354 | // already waited as long as we're willing to. |
| 355 | if (!::GetOverlappedResult(m_write, &m_write_overlapped, &bytes_written, |
| 356 | FALSE)) |
| 357 | return Status(::GetLastError(), eErrorTypeWin32).takeError(); |
| 358 | |
| 359 | return bytes_written; |
| 360 | } |
| 361 | |