1 | //===-- ArchitectureMips.cpp ----------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "Plugins/Architecture/Mips/ArchitectureMips.h" |
10 | #include "lldb/Core/Address.h" |
11 | #include "lldb/Core/Disassembler.h" |
12 | #include "lldb/Core/Module.h" |
13 | #include "lldb/Core/PluginManager.h" |
14 | #include "lldb/Symbol/Function.h" |
15 | #include "lldb/Symbol/SymbolContext.h" |
16 | #include "lldb/Target/SectionLoadList.h" |
17 | #include "lldb/Target/Target.h" |
18 | #include "lldb/Utility/ArchSpec.h" |
19 | #include "lldb/Utility/LLDBLog.h" |
20 | #include "lldb/Utility/Log.h" |
21 | |
22 | using namespace lldb_private; |
23 | using namespace lldb; |
24 | |
25 | LLDB_PLUGIN_DEFINE(ArchitectureMips) |
26 | |
27 | void ArchitectureMips::Initialize() { |
28 | PluginManager::RegisterPlugin(name: GetPluginNameStatic(), |
29 | description: "Mips-specific algorithms" , |
30 | create_callback: &ArchitectureMips::Create); |
31 | } |
32 | |
33 | void ArchitectureMips::Terminate() { |
34 | PluginManager::UnregisterPlugin(create_callback: &ArchitectureMips::Create); |
35 | } |
36 | |
37 | std::unique_ptr<Architecture> ArchitectureMips::Create(const ArchSpec &arch) { |
38 | return arch.IsMIPS() ? |
39 | std::unique_ptr<Architecture>(new ArchitectureMips(arch)) : nullptr; |
40 | } |
41 | |
42 | addr_t ArchitectureMips::GetCallableLoadAddress(addr_t code_addr, |
43 | AddressClass addr_class) const { |
44 | bool is_alternate_isa = false; |
45 | |
46 | switch (addr_class) { |
47 | case AddressClass::eData: |
48 | case AddressClass::eDebug: |
49 | return LLDB_INVALID_ADDRESS; |
50 | case AddressClass::eCodeAlternateISA: |
51 | is_alternate_isa = true; |
52 | break; |
53 | default: break; |
54 | } |
55 | |
56 | if ((code_addr & 2ull) || is_alternate_isa) |
57 | return code_addr | 1u; |
58 | return code_addr; |
59 | } |
60 | |
61 | addr_t ArchitectureMips::GetOpcodeLoadAddress(addr_t opcode_addr, |
62 | AddressClass addr_class) const { |
63 | switch (addr_class) { |
64 | case AddressClass::eData: |
65 | case AddressClass::eDebug: |
66 | return LLDB_INVALID_ADDRESS; |
67 | default: break; |
68 | } |
69 | return opcode_addr & ~(1ull); |
70 | } |
71 | |
72 | lldb::addr_t ArchitectureMips::GetBreakableLoadAddress(lldb::addr_t addr, |
73 | Target &target) const { |
74 | |
75 | Log *log = GetLog(mask: LLDBLog::Breakpoints); |
76 | |
77 | Address resolved_addr; |
78 | |
79 | if (!target.HasLoadedSections()) |
80 | // No sections are loaded, so we must assume we are not running yet and |
81 | // need to operate only on file address. |
82 | target.ResolveFileAddress(load_addr: addr, so_addr&: resolved_addr); |
83 | else |
84 | target.ResolveLoadAddress(load_addr: addr, so_addr&: resolved_addr); |
85 | |
86 | addr_t current_offset = 0; |
87 | |
88 | // Get the function boundaries to make sure we don't scan back before the |
89 | // beginning of the current function. |
90 | ModuleSP temp_addr_module_sp(resolved_addr.GetModule()); |
91 | if (temp_addr_module_sp) { |
92 | SymbolContext sc; |
93 | SymbolContextItem resolve_scope = |
94 | eSymbolContextFunction | eSymbolContextSymbol; |
95 | temp_addr_module_sp->ResolveSymbolContextForAddress(so_addr: resolved_addr, |
96 | resolve_scope, sc); |
97 | Address sym_addr; |
98 | if (sc.function) |
99 | sym_addr = sc.function->GetAddress(); |
100 | else if (sc.symbol) |
101 | sym_addr = sc.symbol->GetAddress(); |
102 | |
103 | addr_t function_start = sym_addr.GetLoadAddress(target: &target); |
104 | if (function_start == LLDB_INVALID_ADDRESS) |
105 | function_start = sym_addr.GetFileAddress(); |
106 | |
107 | if (function_start) |
108 | current_offset = addr - function_start; |
109 | } |
110 | |
111 | // If breakpoint address is start of function then we dont have to do |
112 | // anything. |
113 | if (current_offset == 0) |
114 | return addr; |
115 | |
116 | auto insn = GetInstructionAtAddress(target, resolved_addr: current_offset, symbol_offset: addr); |
117 | |
118 | if (nullptr == insn || !insn->HasDelaySlot()) |
119 | return addr; |
120 | |
121 | // Adjust the breakable address |
122 | uint64_t breakable_addr = addr - insn->GetOpcode().GetByteSize(); |
123 | LLDB_LOGF(log, |
124 | "Target::%s Breakpoint at 0x%8.8" PRIx64 |
125 | " is adjusted to 0x%8.8" PRIx64 " due to delay slot\n" , |
126 | __FUNCTION__, addr, breakable_addr); |
127 | |
128 | return breakable_addr; |
129 | } |
130 | |
131 | Instruction *ArchitectureMips::GetInstructionAtAddress( |
132 | Target &target, const Address &resolved_addr, addr_t symbol_offset) const { |
133 | |
134 | auto loop_count = symbol_offset / 2; |
135 | |
136 | uint32_t arch_flags = m_arch.GetFlags(); |
137 | bool IsMips16 = arch_flags & ArchSpec::eMIPSAse_mips16; |
138 | bool IsMicromips = arch_flags & ArchSpec::eMIPSAse_micromips; |
139 | |
140 | if (loop_count > 3) { |
141 | // Scan previous 6 bytes |
142 | if (IsMips16 | IsMicromips) |
143 | loop_count = 3; |
144 | // For mips-only, instructions are always 4 bytes, so scan previous 4 |
145 | // bytes only. |
146 | else |
147 | loop_count = 2; |
148 | } |
149 | |
150 | // Create Disassembler Instance |
151 | lldb::DisassemblerSP disasm_sp( |
152 | Disassembler::FindPlugin(arch: m_arch, flavor: nullptr, cpu: nullptr, features: nullptr, plugin_name: nullptr)); |
153 | |
154 | InstructionList instruction_list; |
155 | InstructionSP prev_insn; |
156 | uint32_t inst_to_choose = 0; |
157 | |
158 | Address addr = resolved_addr; |
159 | |
160 | for (uint32_t i = 1; i <= loop_count; i++) { |
161 | // Adjust the address to read from. |
162 | addr.Slide(offset: -2); |
163 | uint32_t insn_size = 0; |
164 | |
165 | disasm_sp->ParseInstructions(target, address: addr, |
166 | limit: {.kind: Disassembler::Limit::Bytes, .value: i * 2}, error_strm_ptr: nullptr); |
167 | |
168 | uint32_t num_insns = disasm_sp->GetInstructionList().GetSize(); |
169 | if (num_insns) { |
170 | prev_insn = disasm_sp->GetInstructionList().GetInstructionAtIndex(idx: 0); |
171 | insn_size = prev_insn->GetOpcode().GetByteSize(); |
172 | if (i == 1 && insn_size == 2) { |
173 | // This looks like a valid 2-byte instruction (but it could be a part |
174 | // of upper 4 byte instruction). |
175 | instruction_list.Append(inst_sp&: prev_insn); |
176 | inst_to_choose = 1; |
177 | } |
178 | else if (i == 2) { |
179 | // Here we may get one 4-byte instruction or two 2-byte instructions. |
180 | if (num_insns == 2) { |
181 | // Looks like there are two 2-byte instructions above our |
182 | // breakpoint target address. Now the upper 2-byte instruction is |
183 | // either a valid 2-byte instruction or could be a part of it's |
184 | // upper 4-byte instruction. In both cases we don't care because in |
185 | // this case lower 2-byte instruction is definitely a valid |
186 | // instruction and whatever i=1 iteration has found out is true. |
187 | inst_to_choose = 1; |
188 | break; |
189 | } |
190 | else if (insn_size == 4) { |
191 | // This instruction claims its a valid 4-byte instruction. But it |
192 | // could be a part of it's upper 4-byte instruction. Lets try |
193 | // scanning upper 2 bytes to verify this. |
194 | instruction_list.Append(inst_sp&: prev_insn); |
195 | inst_to_choose = 2; |
196 | } |
197 | } |
198 | else if (i == 3) { |
199 | if (insn_size == 4) |
200 | // FIXME: We reached here that means instruction at [target - 4] has |
201 | // already claimed to be a 4-byte instruction, and now instruction |
202 | // at [target - 6] is also claiming that it's a 4-byte instruction. |
203 | // This can not be true. In this case we can not decide the valid |
204 | // previous instruction so we let lldb set the breakpoint at the |
205 | // address given by user. |
206 | inst_to_choose = 0; |
207 | else |
208 | // This is straight-forward |
209 | inst_to_choose = 2; |
210 | break; |
211 | } |
212 | } |
213 | else { |
214 | // Decode failed, bytes do not form a valid instruction. So whatever |
215 | // previous iteration has found out is true. |
216 | if (i > 1) { |
217 | inst_to_choose = i - 1; |
218 | break; |
219 | } |
220 | } |
221 | } |
222 | |
223 | // Check if we are able to find any valid instruction. |
224 | if (inst_to_choose) { |
225 | if (inst_to_choose > instruction_list.GetSize()) |
226 | inst_to_choose--; |
227 | return instruction_list.GetInstructionAtIndex(idx: inst_to_choose - 1).get(); |
228 | } |
229 | |
230 | return nullptr; |
231 | } |
232 | |