| 1 | //===-- DataExtractor.cpp -------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "lldb/Utility/DataExtractor.h" |
| 10 | |
| 11 | #include "lldb/lldb-defines.h" |
| 12 | #include "lldb/lldb-enumerations.h" |
| 13 | #include "lldb/lldb-forward.h" |
| 14 | #include "lldb/lldb-types.h" |
| 15 | |
| 16 | #include "lldb/Utility/DataBuffer.h" |
| 17 | #include "lldb/Utility/DataBufferHeap.h" |
| 18 | #include "lldb/Utility/LLDBAssert.h" |
| 19 | #include "lldb/Utility/Log.h" |
| 20 | #include "lldb/Utility/Stream.h" |
| 21 | #include "lldb/Utility/StreamString.h" |
| 22 | #include "lldb/Utility/UUID.h" |
| 23 | |
| 24 | #include "llvm/ADT/ArrayRef.h" |
| 25 | #include "llvm/ADT/SmallVector.h" |
| 26 | #include "llvm/ADT/StringExtras.h" |
| 27 | #include "llvm/Support/LEB128.h" |
| 28 | #include "llvm/Support/MD5.h" |
| 29 | #include "llvm/Support/MathExtras.h" |
| 30 | |
| 31 | #include <algorithm> |
| 32 | #include <array> |
| 33 | #include <cassert> |
| 34 | #include <cstdint> |
| 35 | #include <string> |
| 36 | |
| 37 | #include <cctype> |
| 38 | #include <cinttypes> |
| 39 | #include <cstring> |
| 40 | |
| 41 | using namespace lldb; |
| 42 | using namespace lldb_private; |
| 43 | |
| 44 | static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) { |
| 45 | uint16_t value; |
| 46 | memcpy(dest: &value, src: ptr + offset, n: 2); |
| 47 | return value; |
| 48 | } |
| 49 | |
| 50 | static inline uint32_t ReadInt32(const unsigned char *ptr, |
| 51 | offset_t offset = 0) { |
| 52 | uint32_t value; |
| 53 | memcpy(dest: &value, src: ptr + offset, n: 4); |
| 54 | return value; |
| 55 | } |
| 56 | |
| 57 | static inline uint64_t ReadInt64(const unsigned char *ptr, |
| 58 | offset_t offset = 0) { |
| 59 | uint64_t value; |
| 60 | memcpy(dest: &value, src: ptr + offset, n: 8); |
| 61 | return value; |
| 62 | } |
| 63 | |
| 64 | static inline uint16_t ReadInt16(const void *ptr) { |
| 65 | uint16_t value; |
| 66 | memcpy(dest: &value, src: ptr, n: 2); |
| 67 | return value; |
| 68 | } |
| 69 | |
| 70 | static inline uint16_t ReadSwapInt16(const unsigned char *ptr, |
| 71 | offset_t offset) { |
| 72 | uint16_t value; |
| 73 | memcpy(dest: &value, src: ptr + offset, n: 2); |
| 74 | return llvm::byteswap<uint16_t>(V: value); |
| 75 | } |
| 76 | |
| 77 | static inline uint32_t ReadSwapInt32(const unsigned char *ptr, |
| 78 | offset_t offset) { |
| 79 | uint32_t value; |
| 80 | memcpy(dest: &value, src: ptr + offset, n: 4); |
| 81 | return llvm::byteswap<uint32_t>(V: value); |
| 82 | } |
| 83 | |
| 84 | static inline uint64_t ReadSwapInt64(const unsigned char *ptr, |
| 85 | offset_t offset) { |
| 86 | uint64_t value; |
| 87 | memcpy(dest: &value, src: ptr + offset, n: 8); |
| 88 | return llvm::byteswap<uint64_t>(V: value); |
| 89 | } |
| 90 | |
| 91 | static inline uint16_t ReadSwapInt16(const void *ptr) { |
| 92 | uint16_t value; |
| 93 | memcpy(dest: &value, src: ptr, n: 2); |
| 94 | return llvm::byteswap<uint16_t>(V: value); |
| 95 | } |
| 96 | |
| 97 | static inline uint32_t ReadSwapInt32(const void *ptr) { |
| 98 | uint32_t value; |
| 99 | memcpy(dest: &value, src: ptr, n: 4); |
| 100 | return llvm::byteswap<uint32_t>(V: value); |
| 101 | } |
| 102 | |
| 103 | static inline uint64_t ReadSwapInt64(const void *ptr) { |
| 104 | uint64_t value; |
| 105 | memcpy(dest: &value, src: ptr, n: 8); |
| 106 | return llvm::byteswap<uint64_t>(V: value); |
| 107 | } |
| 108 | |
| 109 | static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size, |
| 110 | ByteOrder byte_order) { |
| 111 | uint64_t res = 0; |
| 112 | if (byte_order == eByteOrderBig) |
| 113 | for (size_t i = 0; i < byte_size; ++i) |
| 114 | res = (res << 8) | data[i]; |
| 115 | else { |
| 116 | assert(byte_order == eByteOrderLittle); |
| 117 | for (size_t i = 0; i < byte_size; ++i) |
| 118 | res = (res << 8) | data[byte_size - 1 - i]; |
| 119 | } |
| 120 | return res; |
| 121 | } |
| 122 | |
| 123 | DataExtractor::() |
| 124 | : m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)), |
| 125 | m_data_sp() {} |
| 126 | |
| 127 | // This constructor allows us to use data that is owned by someone else. The |
| 128 | // data must stay around as long as this object is valid. |
| 129 | DataExtractor::(const void *data, offset_t length, |
| 130 | ByteOrder endian, uint32_t addr_size, |
| 131 | uint32_t target_byte_size /*=1*/) |
| 132 | : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))), |
| 133 | m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length), |
| 134 | m_byte_order(endian), m_addr_size(addr_size), m_data_sp(), |
| 135 | m_target_byte_size(target_byte_size) { |
| 136 | assert(addr_size >= 1 && addr_size <= 8); |
| 137 | } |
| 138 | |
| 139 | // Make a shared pointer reference to the shared data in "data_sp" and set the |
| 140 | // endian swapping setting to "swap", and the address size to "addr_size". The |
| 141 | // shared data reference will ensure the data lives as long as any |
| 142 | // DataExtractor objects exist that have a reference to this data. |
| 143 | DataExtractor::(const DataBufferSP &data_sp, ByteOrder endian, |
| 144 | uint32_t addr_size, |
| 145 | uint32_t target_byte_size /*=1*/) |
| 146 | : m_byte_order(endian), m_addr_size(addr_size), m_data_sp(), |
| 147 | m_target_byte_size(target_byte_size) { |
| 148 | assert(addr_size >= 1 && addr_size <= 8); |
| 149 | SetData(data_sp); |
| 150 | } |
| 151 | |
| 152 | // Initialize this object with a subset of the data bytes in "data". If "data" |
| 153 | // contains shared data, then a reference to this shared data will added and |
| 154 | // the shared data will stay around as long as any object contains a reference |
| 155 | // to that data. The endian swap and address size settings are copied from |
| 156 | // "data". |
| 157 | DataExtractor::(const DataExtractor &data, offset_t offset, |
| 158 | offset_t length, uint32_t target_byte_size /*=1*/) |
| 159 | : m_byte_order(data.m_byte_order), m_addr_size(data.m_addr_size), |
| 160 | m_data_sp(), m_target_byte_size(target_byte_size) { |
| 161 | assert(m_addr_size >= 1 && m_addr_size <= 8); |
| 162 | if (data.ValidOffset(offset)) { |
| 163 | offset_t bytes_available = data.GetByteSize() - offset; |
| 164 | if (length > bytes_available) |
| 165 | length = bytes_available; |
| 166 | SetData(data, offset, length); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | DataExtractor::(const DataExtractor &rhs) |
| 171 | : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order), |
| 172 | m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp), |
| 173 | m_target_byte_size(rhs.m_target_byte_size) { |
| 174 | assert(m_addr_size >= 1 && m_addr_size <= 8); |
| 175 | } |
| 176 | |
| 177 | // Assignment operator |
| 178 | const DataExtractor &DataExtractor::(const DataExtractor &rhs) { |
| 179 | if (this != &rhs) { |
| 180 | m_start = rhs.m_start; |
| 181 | m_end = rhs.m_end; |
| 182 | m_byte_order = rhs.m_byte_order; |
| 183 | m_addr_size = rhs.m_addr_size; |
| 184 | m_data_sp = rhs.m_data_sp; |
| 185 | } |
| 186 | return *this; |
| 187 | } |
| 188 | |
| 189 | DataExtractor::() = default; |
| 190 | |
| 191 | // Clears the object contents back to a default invalid state, and release any |
| 192 | // references to shared data that this object may contain. |
| 193 | void DataExtractor::() { |
| 194 | m_start = nullptr; |
| 195 | m_end = nullptr; |
| 196 | m_byte_order = endian::InlHostByteOrder(); |
| 197 | m_addr_size = sizeof(void *); |
| 198 | m_data_sp.reset(); |
| 199 | } |
| 200 | |
| 201 | // If this object contains shared data, this function returns the offset into |
| 202 | // that shared data. Else zero is returned. |
| 203 | size_t DataExtractor::() const { |
| 204 | if (m_start != nullptr) { |
| 205 | const DataBuffer *data = m_data_sp.get(); |
| 206 | if (data != nullptr) { |
| 207 | const uint8_t *data_bytes = data->GetBytes(); |
| 208 | if (data_bytes != nullptr) { |
| 209 | assert(m_start >= data_bytes); |
| 210 | return m_start - data_bytes; |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | // Set the data with which this object will extract from to data starting at |
| 218 | // BYTES and set the length of the data to LENGTH bytes long. The data is |
| 219 | // externally owned must be around at least as long as this object points to |
| 220 | // the data. No copy of the data is made, this object just refers to this data |
| 221 | // and can extract from it. If this object refers to any shared data upon |
| 222 | // entry, the reference to that data will be released. Is SWAP is set to true, |
| 223 | // any data extracted will be endian swapped. |
| 224 | lldb::offset_t DataExtractor::(const void *bytes, offset_t length, |
| 225 | ByteOrder endian) { |
| 226 | m_byte_order = endian; |
| 227 | m_data_sp.reset(); |
| 228 | if (bytes == nullptr || length == 0) { |
| 229 | m_start = nullptr; |
| 230 | m_end = nullptr; |
| 231 | } else { |
| 232 | m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes)); |
| 233 | m_end = m_start + length; |
| 234 | } |
| 235 | return GetByteSize(); |
| 236 | } |
| 237 | |
| 238 | // Assign the data for this object to be a subrange in "data" starting |
| 239 | // "data_offset" bytes into "data" and ending "data_length" bytes later. If |
| 240 | // "data_offset" is not a valid offset into "data", then this object will |
| 241 | // contain no bytes. If "data_offset" is within "data" yet "data_length" is too |
| 242 | // large, the length will be capped at the number of bytes remaining in "data". |
| 243 | // If "data" contains a shared pointer to other data, then a ref counted |
| 244 | // pointer to that data will be made in this object. If "data" doesn't contain |
| 245 | // a shared pointer to data, then the bytes referred to in "data" will need to |
| 246 | // exist at least as long as this object refers to those bytes. The address |
| 247 | // size and endian swap settings are copied from the current values in "data". |
| 248 | lldb::offset_t DataExtractor::(const DataExtractor &data, |
| 249 | offset_t data_offset, |
| 250 | offset_t data_length) { |
| 251 | m_addr_size = data.m_addr_size; |
| 252 | assert(m_addr_size >= 1 && m_addr_size <= 8); |
| 253 | // If "data" contains shared pointer to data, then we can use that |
| 254 | if (data.m_data_sp) { |
| 255 | m_byte_order = data.m_byte_order; |
| 256 | return SetData(data_sp: data.m_data_sp, offset: data.GetSharedDataOffset() + data_offset, |
| 257 | length: data_length); |
| 258 | } |
| 259 | |
| 260 | // We have a DataExtractor object that just has a pointer to bytes |
| 261 | if (data.ValidOffset(offset: data_offset)) { |
| 262 | if (data_length > data.GetByteSize() - data_offset) |
| 263 | data_length = data.GetByteSize() - data_offset; |
| 264 | return SetData(bytes: data.GetDataStart() + data_offset, length: data_length, |
| 265 | endian: data.GetByteOrder()); |
| 266 | } |
| 267 | return 0; |
| 268 | } |
| 269 | |
| 270 | // Assign the data for this object to be a subrange of the shared data in |
| 271 | // "data_sp" starting "data_offset" bytes into "data_sp" and ending |
| 272 | // "data_length" bytes later. If "data_offset" is not a valid offset into |
| 273 | // "data_sp", then this object will contain no bytes. If "data_offset" is |
| 274 | // within "data_sp" yet "data_length" is too large, the length will be capped |
| 275 | // at the number of bytes remaining in "data_sp". A ref counted pointer to the |
| 276 | // data in "data_sp" will be made in this object IF the number of bytes this |
| 277 | // object refers to in greater than zero (if at least one byte was available |
| 278 | // starting at "data_offset") to ensure the data stays around as long as it is |
| 279 | // needed. The address size and endian swap settings will remain unchanged from |
| 280 | // their current settings. |
| 281 | lldb::offset_t DataExtractor::(const DataBufferSP &data_sp, |
| 282 | offset_t data_offset, |
| 283 | offset_t data_length) { |
| 284 | m_start = m_end = nullptr; |
| 285 | |
| 286 | if (data_length > 0) { |
| 287 | m_data_sp = data_sp; |
| 288 | if (data_sp) { |
| 289 | const size_t data_size = data_sp->GetByteSize(); |
| 290 | if (data_offset < data_size) { |
| 291 | m_start = data_sp->GetBytes() + data_offset; |
| 292 | const size_t bytes_left = data_size - data_offset; |
| 293 | // Cap the length of we asked for too many |
| 294 | if (data_length <= bytes_left) |
| 295 | m_end = m_start + data_length; // We got all the bytes we wanted |
| 296 | else |
| 297 | m_end = m_start + bytes_left; // Not all the bytes requested were |
| 298 | // available in the shared data |
| 299 | } |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | size_t new_size = GetByteSize(); |
| 304 | |
| 305 | // Don't hold a shared pointer to the data buffer if we don't share any valid |
| 306 | // bytes in the shared buffer. |
| 307 | if (new_size == 0) |
| 308 | m_data_sp.reset(); |
| 309 | |
| 310 | return new_size; |
| 311 | } |
| 312 | |
| 313 | // Extract a single unsigned char from the binary data and update the offset |
| 314 | // pointed to by "offset_ptr". |
| 315 | // |
| 316 | // RETURNS the byte that was extracted, or zero on failure. |
| 317 | uint8_t DataExtractor::(offset_t *offset_ptr) const { |
| 318 | const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, length: 1)); |
| 319 | if (data) |
| 320 | return *data; |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | // Extract "count" unsigned chars from the binary data and update the offset |
| 325 | // pointed to by "offset_ptr". The extracted data is copied into "dst". |
| 326 | // |
| 327 | // RETURNS the non-nullptr buffer pointer upon successful extraction of |
| 328 | // all the requested bytes, or nullptr when the data is not available in the |
| 329 | // buffer due to being out of bounds, or insufficient data. |
| 330 | void *DataExtractor::(offset_t *offset_ptr, void *dst, |
| 331 | uint32_t count) const { |
| 332 | const uint8_t *data = |
| 333 | static_cast<const uint8_t *>(GetData(offset_ptr, length: count)); |
| 334 | if (data) { |
| 335 | // Copy the data into the buffer |
| 336 | memcpy(dest: dst, src: data, n: count); |
| 337 | // Return a non-nullptr pointer to the converted data as an indicator of |
| 338 | // success |
| 339 | return dst; |
| 340 | } |
| 341 | return nullptr; |
| 342 | } |
| 343 | |
| 344 | // Extract a single uint16_t from the data and update the offset pointed to by |
| 345 | // "offset_ptr". |
| 346 | // |
| 347 | // RETURNS the uint16_t that was extracted, or zero on failure. |
| 348 | uint16_t DataExtractor::(offset_t *offset_ptr) const { |
| 349 | uint16_t val = 0; |
| 350 | const uint8_t *data = |
| 351 | static_cast<const uint8_t *>(GetData(offset_ptr, length: sizeof(val))); |
| 352 | if (data) { |
| 353 | if (m_byte_order != endian::InlHostByteOrder()) |
| 354 | val = ReadSwapInt16(ptr: data); |
| 355 | else |
| 356 | val = ReadInt16(ptr: data); |
| 357 | } |
| 358 | return val; |
| 359 | } |
| 360 | |
| 361 | uint16_t DataExtractor::(offset_t *offset_ptr) const { |
| 362 | uint16_t val; |
| 363 | if (m_byte_order == endian::InlHostByteOrder()) |
| 364 | val = ReadInt16(ptr: m_start, offset: *offset_ptr); |
| 365 | else |
| 366 | val = ReadSwapInt16(ptr: m_start, offset: *offset_ptr); |
| 367 | *offset_ptr += sizeof(val); |
| 368 | return val; |
| 369 | } |
| 370 | |
| 371 | uint32_t DataExtractor::(offset_t *offset_ptr) const { |
| 372 | uint32_t val; |
| 373 | if (m_byte_order == endian::InlHostByteOrder()) |
| 374 | val = ReadInt32(ptr: m_start, offset: *offset_ptr); |
| 375 | else |
| 376 | val = ReadSwapInt32(ptr: m_start, offset: *offset_ptr); |
| 377 | *offset_ptr += sizeof(val); |
| 378 | return val; |
| 379 | } |
| 380 | |
| 381 | uint64_t DataExtractor::(offset_t *offset_ptr) const { |
| 382 | uint64_t val; |
| 383 | if (m_byte_order == endian::InlHostByteOrder()) |
| 384 | val = ReadInt64(ptr: m_start, offset: *offset_ptr); |
| 385 | else |
| 386 | val = ReadSwapInt64(ptr: m_start, offset: *offset_ptr); |
| 387 | *offset_ptr += sizeof(val); |
| 388 | return val; |
| 389 | } |
| 390 | |
| 391 | // Extract "count" uint16_t values from the binary data and update the offset |
| 392 | // pointed to by "offset_ptr". The extracted data is copied into "dst". |
| 393 | // |
| 394 | // RETURNS the non-nullptr buffer pointer upon successful extraction of |
| 395 | // all the requested bytes, or nullptr when the data is not available in the |
| 396 | // buffer due to being out of bounds, or insufficient data. |
| 397 | void *DataExtractor::(offset_t *offset_ptr, void *void_dst, |
| 398 | uint32_t count) const { |
| 399 | const size_t src_size = sizeof(uint16_t) * count; |
| 400 | const uint16_t *src = |
| 401 | static_cast<const uint16_t *>(GetData(offset_ptr, length: src_size)); |
| 402 | if (src) { |
| 403 | if (m_byte_order != endian::InlHostByteOrder()) { |
| 404 | uint16_t *dst_pos = static_cast<uint16_t *>(void_dst); |
| 405 | uint16_t *dst_end = dst_pos + count; |
| 406 | const uint16_t *src_pos = src; |
| 407 | while (dst_pos < dst_end) { |
| 408 | *dst_pos = ReadSwapInt16(ptr: src_pos); |
| 409 | ++dst_pos; |
| 410 | ++src_pos; |
| 411 | } |
| 412 | } else { |
| 413 | memcpy(dest: void_dst, src: src, n: src_size); |
| 414 | } |
| 415 | // Return a non-nullptr pointer to the converted data as an indicator of |
| 416 | // success |
| 417 | return void_dst; |
| 418 | } |
| 419 | return nullptr; |
| 420 | } |
| 421 | |
| 422 | // Extract a single uint32_t from the data and update the offset pointed to by |
| 423 | // "offset_ptr". |
| 424 | // |
| 425 | // RETURNS the uint32_t that was extracted, or zero on failure. |
| 426 | uint32_t DataExtractor::(offset_t *offset_ptr) const { |
| 427 | uint32_t val = 0; |
| 428 | const uint8_t *data = |
| 429 | static_cast<const uint8_t *>(GetData(offset_ptr, length: sizeof(val))); |
| 430 | if (data) { |
| 431 | if (m_byte_order != endian::InlHostByteOrder()) { |
| 432 | val = ReadSwapInt32(ptr: data); |
| 433 | } else { |
| 434 | memcpy(dest: &val, src: data, n: 4); |
| 435 | } |
| 436 | } |
| 437 | return val; |
| 438 | } |
| 439 | |
| 440 | // Extract "count" uint32_t values from the binary data and update the offset |
| 441 | // pointed to by "offset_ptr". The extracted data is copied into "dst". |
| 442 | // |
| 443 | // RETURNS the non-nullptr buffer pointer upon successful extraction of |
| 444 | // all the requested bytes, or nullptr when the data is not available in the |
| 445 | // buffer due to being out of bounds, or insufficient data. |
| 446 | void *DataExtractor::(offset_t *offset_ptr, void *void_dst, |
| 447 | uint32_t count) const { |
| 448 | const size_t src_size = sizeof(uint32_t) * count; |
| 449 | const uint32_t *src = |
| 450 | static_cast<const uint32_t *>(GetData(offset_ptr, length: src_size)); |
| 451 | if (src) { |
| 452 | if (m_byte_order != endian::InlHostByteOrder()) { |
| 453 | uint32_t *dst_pos = static_cast<uint32_t *>(void_dst); |
| 454 | uint32_t *dst_end = dst_pos + count; |
| 455 | const uint32_t *src_pos = src; |
| 456 | while (dst_pos < dst_end) { |
| 457 | *dst_pos = ReadSwapInt32(ptr: src_pos); |
| 458 | ++dst_pos; |
| 459 | ++src_pos; |
| 460 | } |
| 461 | } else { |
| 462 | memcpy(dest: void_dst, src: src, n: src_size); |
| 463 | } |
| 464 | // Return a non-nullptr pointer to the converted data as an indicator of |
| 465 | // success |
| 466 | return void_dst; |
| 467 | } |
| 468 | return nullptr; |
| 469 | } |
| 470 | |
| 471 | // Extract a single uint64_t from the data and update the offset pointed to by |
| 472 | // "offset_ptr". |
| 473 | // |
| 474 | // RETURNS the uint64_t that was extracted, or zero on failure. |
| 475 | uint64_t DataExtractor::(offset_t *offset_ptr) const { |
| 476 | uint64_t val = 0; |
| 477 | const uint8_t *data = |
| 478 | static_cast<const uint8_t *>(GetData(offset_ptr, length: sizeof(val))); |
| 479 | if (data) { |
| 480 | if (m_byte_order != endian::InlHostByteOrder()) { |
| 481 | val = ReadSwapInt64(ptr: data); |
| 482 | } else { |
| 483 | memcpy(dest: &val, src: data, n: 8); |
| 484 | } |
| 485 | } |
| 486 | return val; |
| 487 | } |
| 488 | |
| 489 | // GetU64 |
| 490 | // |
| 491 | // Get multiple consecutive 64 bit values. Return true if the entire read |
| 492 | // succeeds and increment the offset pointed to by offset_ptr, else return |
| 493 | // false and leave the offset pointed to by offset_ptr unchanged. |
| 494 | void *DataExtractor::(offset_t *offset_ptr, void *void_dst, |
| 495 | uint32_t count) const { |
| 496 | const size_t src_size = sizeof(uint64_t) * count; |
| 497 | const uint64_t *src = |
| 498 | static_cast<const uint64_t *>(GetData(offset_ptr, length: src_size)); |
| 499 | if (src) { |
| 500 | if (m_byte_order != endian::InlHostByteOrder()) { |
| 501 | uint64_t *dst_pos = static_cast<uint64_t *>(void_dst); |
| 502 | uint64_t *dst_end = dst_pos + count; |
| 503 | const uint64_t *src_pos = src; |
| 504 | while (dst_pos < dst_end) { |
| 505 | *dst_pos = ReadSwapInt64(ptr: src_pos); |
| 506 | ++dst_pos; |
| 507 | ++src_pos; |
| 508 | } |
| 509 | } else { |
| 510 | memcpy(dest: void_dst, src: src, n: src_size); |
| 511 | } |
| 512 | // Return a non-nullptr pointer to the converted data as an indicator of |
| 513 | // success |
| 514 | return void_dst; |
| 515 | } |
| 516 | return nullptr; |
| 517 | } |
| 518 | |
| 519 | uint32_t DataExtractor::(offset_t *offset_ptr, |
| 520 | size_t byte_size) const { |
| 521 | lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!" ); |
| 522 | return GetMaxU64(offset_ptr, byte_size); |
| 523 | } |
| 524 | |
| 525 | uint64_t DataExtractor::(offset_t *offset_ptr, |
| 526 | size_t byte_size) const { |
| 527 | lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!" ); |
| 528 | switch (byte_size) { |
| 529 | case 1: |
| 530 | return GetU8(offset_ptr); |
| 531 | case 2: |
| 532 | return GetU16(offset_ptr); |
| 533 | case 4: |
| 534 | return GetU32(offset_ptr); |
| 535 | case 8: |
| 536 | return GetU64(offset_ptr); |
| 537 | default: { |
| 538 | // General case. |
| 539 | const uint8_t *data = |
| 540 | static_cast<const uint8_t *>(GetData(offset_ptr, length: byte_size)); |
| 541 | if (data == nullptr) |
| 542 | return 0; |
| 543 | return ReadMaxInt64(data, byte_size, byte_order: m_byte_order); |
| 544 | } |
| 545 | } |
| 546 | return 0; |
| 547 | } |
| 548 | |
| 549 | uint64_t DataExtractor::(offset_t *offset_ptr, |
| 550 | size_t byte_size) const { |
| 551 | switch (byte_size) { |
| 552 | case 1: |
| 553 | return GetU8_unchecked(offset_ptr); |
| 554 | case 2: |
| 555 | return GetU16_unchecked(offset_ptr); |
| 556 | case 4: |
| 557 | return GetU32_unchecked(offset_ptr); |
| 558 | case 8: |
| 559 | return GetU64_unchecked(offset_ptr); |
| 560 | default: { |
| 561 | uint64_t res = ReadMaxInt64(data: &m_start[*offset_ptr], byte_size, byte_order: m_byte_order); |
| 562 | *offset_ptr += byte_size; |
| 563 | return res; |
| 564 | } |
| 565 | } |
| 566 | return 0; |
| 567 | } |
| 568 | |
| 569 | int64_t DataExtractor::(offset_t *offset_ptr, size_t byte_size) const { |
| 570 | uint64_t u64 = GetMaxU64(offset_ptr, byte_size); |
| 571 | return llvm::SignExtend64(X: u64, B: 8 * byte_size); |
| 572 | } |
| 573 | |
| 574 | uint64_t DataExtractor::(offset_t *offset_ptr, size_t size, |
| 575 | uint32_t bitfield_bit_size, |
| 576 | uint32_t bitfield_bit_offset) const { |
| 577 | assert(bitfield_bit_size <= 64); |
| 578 | uint64_t uval64 = GetMaxU64(offset_ptr, byte_size: size); |
| 579 | |
| 580 | if (bitfield_bit_size == 0) |
| 581 | return uval64; |
| 582 | |
| 583 | int32_t lsbcount = bitfield_bit_offset; |
| 584 | if (m_byte_order == eByteOrderBig) |
| 585 | lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; |
| 586 | |
| 587 | if (lsbcount > 0) |
| 588 | uval64 >>= lsbcount; |
| 589 | |
| 590 | uint64_t bitfield_mask = |
| 591 | (bitfield_bit_size == 64 |
| 592 | ? std::numeric_limits<uint64_t>::max() |
| 593 | : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1)); |
| 594 | if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64) |
| 595 | return uval64; |
| 596 | |
| 597 | uval64 &= bitfield_mask; |
| 598 | |
| 599 | return uval64; |
| 600 | } |
| 601 | |
| 602 | int64_t DataExtractor::(offset_t *offset_ptr, size_t size, |
| 603 | uint32_t bitfield_bit_size, |
| 604 | uint32_t bitfield_bit_offset) const { |
| 605 | assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1" ); |
| 606 | assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8" ); |
| 607 | int64_t sval64 = GetMaxS64(offset_ptr, byte_size: size); |
| 608 | if (bitfield_bit_size == 0) |
| 609 | return sval64; |
| 610 | int32_t lsbcount = bitfield_bit_offset; |
| 611 | if (m_byte_order == eByteOrderBig) |
| 612 | lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size; |
| 613 | if (lsbcount > 0) |
| 614 | sval64 >>= lsbcount; |
| 615 | uint64_t bitfield_mask = llvm::maskTrailingOnes<uint64_t>(N: bitfield_bit_size); |
| 616 | sval64 &= bitfield_mask; |
| 617 | // sign extend if needed |
| 618 | if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1))) |
| 619 | sval64 |= ~bitfield_mask; |
| 620 | return sval64; |
| 621 | } |
| 622 | |
| 623 | float DataExtractor::(offset_t *offset_ptr) const { |
| 624 | return Get<float>(offset_ptr, fail_value: 0.0f); |
| 625 | } |
| 626 | |
| 627 | double DataExtractor::(offset_t *offset_ptr) const { |
| 628 | return Get<double>(offset_ptr, fail_value: 0.0); |
| 629 | } |
| 630 | |
| 631 | long double DataExtractor::(offset_t *offset_ptr) const { |
| 632 | long double val = 0.0; |
| 633 | #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \ |
| 634 | defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64) |
| 635 | *offset_ptr += CopyByteOrderedData(src_offset: *offset_ptr, src_len: 10, dst: &val, dst_len: sizeof(val), |
| 636 | dst_byte_order: endian::InlHostByteOrder()); |
| 637 | #else |
| 638 | *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val, |
| 639 | sizeof(val), endian::InlHostByteOrder()); |
| 640 | #endif |
| 641 | return val; |
| 642 | } |
| 643 | |
| 644 | // Extract a single address from the data and update the offset pointed to by |
| 645 | // "offset_ptr". The size of the extracted address comes from the |
| 646 | // "this->m_addr_size" member variable and should be set correctly prior to |
| 647 | // extracting any address values. |
| 648 | // |
| 649 | // RETURNS the address that was extracted, or zero on failure. |
| 650 | uint64_t DataExtractor::(offset_t *offset_ptr) const { |
| 651 | assert(m_addr_size >= 1 && m_addr_size <= 8); |
| 652 | return GetMaxU64(offset_ptr, byte_size: m_addr_size); |
| 653 | } |
| 654 | |
| 655 | uint64_t DataExtractor::(offset_t *offset_ptr) const { |
| 656 | assert(m_addr_size >= 1 && m_addr_size <= 8); |
| 657 | return GetMaxU64_unchecked(offset_ptr, byte_size: m_addr_size); |
| 658 | } |
| 659 | |
| 660 | size_t DataExtractor::(offset_t offset, offset_t length, |
| 661 | ByteOrder dst_byte_order, void *dst) const { |
| 662 | const uint8_t *src = PeekData(offset, length); |
| 663 | if (src) { |
| 664 | if (dst_byte_order != GetByteOrder()) { |
| 665 | // Validate that only a word- or register-sized dst is byte swapped |
| 666 | assert(length == 1 || length == 2 || length == 4 || length == 8 || |
| 667 | length == 10 || length == 16 || length == 32); |
| 668 | |
| 669 | for (uint32_t i = 0; i < length; ++i) |
| 670 | (static_cast<uint8_t *>(dst))[i] = src[length - i - 1]; |
| 671 | } else |
| 672 | ::memcpy(dest: dst, src: src, n: length); |
| 673 | return length; |
| 674 | } |
| 675 | return 0; |
| 676 | } |
| 677 | |
| 678 | // Extract data as it exists in target memory |
| 679 | lldb::offset_t DataExtractor::(offset_t offset, offset_t length, |
| 680 | void *dst) const { |
| 681 | const uint8_t *src = PeekData(offset, length); |
| 682 | if (src) { |
| 683 | ::memcpy(dest: dst, src: src, n: length); |
| 684 | return length; |
| 685 | } |
| 686 | return 0; |
| 687 | } |
| 688 | |
| 689 | // Extract data and swap if needed when doing the copy |
| 690 | lldb::offset_t |
| 691 | DataExtractor::(offset_t src_offset, offset_t src_len, |
| 692 | void *dst_void_ptr, offset_t dst_len, |
| 693 | ByteOrder dst_byte_order) const { |
| 694 | // Validate the source info |
| 695 | if (!ValidOffsetForDataOfSize(offset: src_offset, length: src_len)) |
| 696 | assert(ValidOffsetForDataOfSize(src_offset, src_len)); |
| 697 | assert(src_len > 0); |
| 698 | assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle); |
| 699 | |
| 700 | // Validate the destination info |
| 701 | assert(dst_void_ptr != nullptr); |
| 702 | assert(dst_len > 0); |
| 703 | assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle); |
| 704 | |
| 705 | // Validate that only a word- or register-sized dst is byte swapped |
| 706 | assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 || |
| 707 | dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 || |
| 708 | dst_len == 32); |
| 709 | |
| 710 | // Must have valid byte orders set in this object and for destination |
| 711 | if (!(dst_byte_order == eByteOrderBig || |
| 712 | dst_byte_order == eByteOrderLittle) || |
| 713 | !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle)) |
| 714 | return 0; |
| 715 | |
| 716 | uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr); |
| 717 | const uint8_t *src = PeekData(offset: src_offset, length: src_len); |
| 718 | if (src) { |
| 719 | if (dst_len >= src_len) { |
| 720 | // We are copying the entire value from src into dst. Calculate how many, |
| 721 | // if any, zeroes we need for the most significant bytes if "dst_len" is |
| 722 | // greater than "src_len"... |
| 723 | const size_t num_zeroes = dst_len - src_len; |
| 724 | if (dst_byte_order == eByteOrderBig) { |
| 725 | // Big endian, so we lead with zeroes... |
| 726 | if (num_zeroes > 0) |
| 727 | ::memset(s: dst, c: 0, n: num_zeroes); |
| 728 | // Then either copy or swap the rest |
| 729 | if (m_byte_order == eByteOrderBig) { |
| 730 | ::memcpy(dest: dst + num_zeroes, src: src, n: src_len); |
| 731 | } else { |
| 732 | for (uint32_t i = 0; i < src_len; ++i) |
| 733 | dst[i + num_zeroes] = src[src_len - 1 - i]; |
| 734 | } |
| 735 | } else { |
| 736 | // Little endian destination, so we lead the value bytes |
| 737 | if (m_byte_order == eByteOrderBig) { |
| 738 | for (uint32_t i = 0; i < src_len; ++i) |
| 739 | dst[i] = src[src_len - 1 - i]; |
| 740 | } else { |
| 741 | ::memcpy(dest: dst, src: src, n: src_len); |
| 742 | } |
| 743 | // And zero the rest... |
| 744 | if (num_zeroes > 0) |
| 745 | ::memset(s: dst + src_len, c: 0, n: num_zeroes); |
| 746 | } |
| 747 | return src_len; |
| 748 | } else { |
| 749 | // We are only copying some of the value from src into dst.. |
| 750 | |
| 751 | if (dst_byte_order == eByteOrderBig) { |
| 752 | // Big endian dst |
| 753 | if (m_byte_order == eByteOrderBig) { |
| 754 | // Big endian dst, with big endian src |
| 755 | ::memcpy(dest: dst, src: src + (src_len - dst_len), n: dst_len); |
| 756 | } else { |
| 757 | // Big endian dst, with little endian src |
| 758 | for (uint32_t i = 0; i < dst_len; ++i) |
| 759 | dst[i] = src[dst_len - 1 - i]; |
| 760 | } |
| 761 | } else { |
| 762 | // Little endian dst |
| 763 | if (m_byte_order == eByteOrderBig) { |
| 764 | // Little endian dst, with big endian src |
| 765 | for (uint32_t i = 0; i < dst_len; ++i) |
| 766 | dst[i] = src[src_len - 1 - i]; |
| 767 | } else { |
| 768 | // Little endian dst, with big endian src |
| 769 | ::memcpy(dest: dst, src: src, n: dst_len); |
| 770 | } |
| 771 | } |
| 772 | return dst_len; |
| 773 | } |
| 774 | } |
| 775 | return 0; |
| 776 | } |
| 777 | |
| 778 | // Extracts a variable length NULL terminated C string from the data at the |
| 779 | // offset pointed to by "offset_ptr". The "offset_ptr" will be updated with |
| 780 | // the offset of the byte that follows the NULL terminator byte. |
| 781 | // |
| 782 | // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is |
| 783 | // non-zero and there aren't enough available bytes, nullptr will be returned |
| 784 | // and "offset_ptr" will not be updated. |
| 785 | const char *DataExtractor::(offset_t *offset_ptr) const { |
| 786 | const char *start = reinterpret_cast<const char *>(PeekData(offset: *offset_ptr, length: 1)); |
| 787 | // Already at the end of the data. |
| 788 | if (!start) |
| 789 | return nullptr; |
| 790 | |
| 791 | const char *end = reinterpret_cast<const char *>(m_end); |
| 792 | |
| 793 | // Check all bytes for a null terminator that terminates a C string. |
| 794 | const char *terminator_or_end = std::find(first: start, last: end, val: '\0'); |
| 795 | |
| 796 | // We didn't find a null terminator, so return nullptr to indicate that there |
| 797 | // is no valid C string at that offset. |
| 798 | if (terminator_or_end == end) |
| 799 | return nullptr; |
| 800 | |
| 801 | // Update offset_ptr for the caller to point to the data behind the |
| 802 | // terminator (which is 1 byte long). |
| 803 | *offset_ptr += (terminator_or_end - start + 1UL); |
| 804 | return start; |
| 805 | } |
| 806 | |
| 807 | // Extracts a NULL terminated C string from the fixed length field of length |
| 808 | // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be |
| 809 | // updated with the offset of the byte that follows the fixed length field. |
| 810 | // |
| 811 | // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset |
| 812 | // plus the length of the field is out of bounds, or if the field does not |
| 813 | // contain a NULL terminator byte, nullptr will be returned and "offset_ptr" |
| 814 | // will not be updated. |
| 815 | const char *DataExtractor::(offset_t *offset_ptr, offset_t len) const { |
| 816 | const char *cstr = reinterpret_cast<const char *>(PeekData(offset: *offset_ptr, length: len)); |
| 817 | if (cstr != nullptr) { |
| 818 | if (memchr(s: cstr, c: '\0', n: len) == nullptr) { |
| 819 | return nullptr; |
| 820 | } |
| 821 | *offset_ptr += len; |
| 822 | return cstr; |
| 823 | } |
| 824 | return nullptr; |
| 825 | } |
| 826 | |
| 827 | // Peeks at a string in the contained data. No verification is done to make |
| 828 | // sure the entire string lies within the bounds of this object's data, only |
| 829 | // "offset" is verified to be a valid offset. |
| 830 | // |
| 831 | // Returns a valid C string pointer if "offset" is a valid offset in this |
| 832 | // object's data, else nullptr is returned. |
| 833 | const char *DataExtractor::(offset_t offset) const { |
| 834 | return reinterpret_cast<const char *>(PeekData(offset, length: 1)); |
| 835 | } |
| 836 | |
| 837 | // Extracts an unsigned LEB128 number from this object's data starting at the |
| 838 | // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr" |
| 839 | // will be updated with the offset of the byte following the last extracted |
| 840 | // byte. |
| 841 | // |
| 842 | // Returned the extracted integer value. |
| 843 | uint64_t DataExtractor::(offset_t *offset_ptr) const { |
| 844 | const uint8_t *src = PeekData(offset: *offset_ptr, length: 1); |
| 845 | if (src == nullptr) |
| 846 | return 0; |
| 847 | |
| 848 | unsigned byte_count = 0; |
| 849 | uint64_t result = llvm::decodeULEB128(p: src, n: &byte_count, end: m_end); |
| 850 | *offset_ptr += byte_count; |
| 851 | return result; |
| 852 | } |
| 853 | |
| 854 | // Extracts an signed LEB128 number from this object's data starting at the |
| 855 | // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr" |
| 856 | // will be updated with the offset of the byte following the last extracted |
| 857 | // byte. |
| 858 | // |
| 859 | // Returned the extracted integer value. |
| 860 | int64_t DataExtractor::(offset_t *offset_ptr) const { |
| 861 | const uint8_t *src = PeekData(offset: *offset_ptr, length: 1); |
| 862 | if (src == nullptr) |
| 863 | return 0; |
| 864 | |
| 865 | unsigned byte_count = 0; |
| 866 | int64_t result = llvm::decodeSLEB128(p: src, n: &byte_count, end: m_end); |
| 867 | *offset_ptr += byte_count; |
| 868 | return result; |
| 869 | } |
| 870 | |
| 871 | // Skips a ULEB128 number (signed or unsigned) from this object's data starting |
| 872 | // at the offset pointed to by "offset_ptr". The offset pointed to by |
| 873 | // "offset_ptr" will be updated with the offset of the byte following the last |
| 874 | // extracted byte. |
| 875 | // |
| 876 | // Returns the number of bytes consumed during the extraction. |
| 877 | uint32_t DataExtractor::(offset_t *offset_ptr) const { |
| 878 | uint32_t bytes_consumed = 0; |
| 879 | const uint8_t *src = PeekData(offset: *offset_ptr, length: 1); |
| 880 | if (src == nullptr) |
| 881 | return 0; |
| 882 | |
| 883 | const uint8_t *end = m_end; |
| 884 | |
| 885 | if (src < end) { |
| 886 | const uint8_t *src_pos = src; |
| 887 | while ((src_pos < end) && (*src_pos++ & 0x80)) |
| 888 | ++bytes_consumed; |
| 889 | *offset_ptr += src_pos - src; |
| 890 | } |
| 891 | return bytes_consumed; |
| 892 | } |
| 893 | |
| 894 | // Dumps bytes from this object's data to the stream "s" starting |
| 895 | // "start_offset" bytes into this data, and ending with the byte before |
| 896 | // "end_offset". "base_addr" will be added to the offset into the dumped data |
| 897 | // when showing the offset into the data in the output information. |
| 898 | // "num_per_line" objects of type "type" will be dumped with the option to |
| 899 | // override the format for each object with "type_format". "type_format" is a |
| 900 | // printf style formatting string. If "type_format" is nullptr, then an |
| 901 | // appropriate format string will be used for the supplied "type". If the |
| 902 | // stream "s" is nullptr, then the output will be send to Log(). |
| 903 | lldb::offset_t DataExtractor::(Log *log, offset_t start_offset, |
| 904 | offset_t length, uint64_t base_addr, |
| 905 | uint32_t num_per_line, |
| 906 | DataExtractor::Type type) const { |
| 907 | if (log == nullptr) |
| 908 | return start_offset; |
| 909 | |
| 910 | offset_t offset; |
| 911 | offset_t end_offset; |
| 912 | uint32_t count; |
| 913 | StreamString sstr; |
| 914 | for (offset = start_offset, end_offset = offset + length, count = 0; |
| 915 | ValidOffset(offset) && offset < end_offset; ++count) { |
| 916 | if ((count % num_per_line) == 0) { |
| 917 | // Print out any previous string |
| 918 | if (sstr.GetSize() > 0) { |
| 919 | log->PutString(str: sstr.GetString()); |
| 920 | sstr.Clear(); |
| 921 | } |
| 922 | // Reset string offset and fill the current line string with address: |
| 923 | if (base_addr != LLDB_INVALID_ADDRESS) |
| 924 | sstr.Printf(format: "0x%8.8" PRIx64 ":" , |
| 925 | static_cast<uint64_t>(base_addr + (offset - start_offset))); |
| 926 | } |
| 927 | |
| 928 | switch (type) { |
| 929 | case TypeUInt8: |
| 930 | sstr.Printf(format: " %2.2x" , GetU8(offset_ptr: &offset)); |
| 931 | break; |
| 932 | case TypeChar: { |
| 933 | char ch = GetU8(offset_ptr: &offset); |
| 934 | sstr.Printf(format: " %c" , llvm::isPrint(C: ch) ? ch : ' '); |
| 935 | } break; |
| 936 | case TypeUInt16: |
| 937 | sstr.Printf(format: " %4.4x" , GetU16(offset_ptr: &offset)); |
| 938 | break; |
| 939 | case TypeUInt32: |
| 940 | sstr.Printf(format: " %8.8x" , GetU32(offset_ptr: &offset)); |
| 941 | break; |
| 942 | case TypeUInt64: |
| 943 | sstr.Printf(format: " %16.16" PRIx64, GetU64(offset_ptr: &offset)); |
| 944 | break; |
| 945 | case TypePointer: |
| 946 | sstr.Printf(format: " 0x%" PRIx64, GetAddress(offset_ptr: &offset)); |
| 947 | break; |
| 948 | case TypeULEB128: |
| 949 | sstr.Printf(format: " 0x%" PRIx64, GetULEB128(offset_ptr: &offset)); |
| 950 | break; |
| 951 | case TypeSLEB128: |
| 952 | sstr.Printf(format: " %" PRId64, GetSLEB128(offset_ptr: &offset)); |
| 953 | break; |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | if (!sstr.Empty()) |
| 958 | log->PutString(str: sstr.GetString()); |
| 959 | |
| 960 | return offset; // Return the offset at which we ended up |
| 961 | } |
| 962 | |
| 963 | size_t DataExtractor::(DataExtractor &dest_data) const { |
| 964 | if (m_data_sp) { |
| 965 | // we can pass along the SP to the data |
| 966 | dest_data.SetData(data_sp: m_data_sp); |
| 967 | } else { |
| 968 | const uint8_t *base_ptr = m_start; |
| 969 | size_t data_size = GetByteSize(); |
| 970 | dest_data.SetData(data_sp: DataBufferSP(new DataBufferHeap(base_ptr, data_size))); |
| 971 | } |
| 972 | return GetByteSize(); |
| 973 | } |
| 974 | |
| 975 | bool DataExtractor::(DataExtractor &rhs) { |
| 976 | if (rhs.GetByteOrder() != GetByteOrder()) |
| 977 | return false; |
| 978 | |
| 979 | if (rhs.GetByteSize() == 0) |
| 980 | return true; |
| 981 | |
| 982 | if (GetByteSize() == 0) |
| 983 | return (rhs.Copy(dest_data&: *this) > 0); |
| 984 | |
| 985 | size_t bytes = GetByteSize() + rhs.GetByteSize(); |
| 986 | |
| 987 | DataBufferHeap *buffer_heap_ptr = nullptr; |
| 988 | DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); |
| 989 | |
| 990 | if (!buffer_sp || buffer_heap_ptr == nullptr) |
| 991 | return false; |
| 992 | |
| 993 | uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); |
| 994 | |
| 995 | memcpy(dest: bytes_ptr, src: GetDataStart(), n: GetByteSize()); |
| 996 | memcpy(dest: bytes_ptr + GetByteSize(), src: rhs.GetDataStart(), n: rhs.GetByteSize()); |
| 997 | |
| 998 | SetData(data_sp: buffer_sp); |
| 999 | |
| 1000 | return true; |
| 1001 | } |
| 1002 | |
| 1003 | bool DataExtractor::(void *buf, offset_t length) { |
| 1004 | if (buf == nullptr) |
| 1005 | return false; |
| 1006 | |
| 1007 | if (length == 0) |
| 1008 | return true; |
| 1009 | |
| 1010 | size_t bytes = GetByteSize() + length; |
| 1011 | |
| 1012 | DataBufferHeap *buffer_heap_ptr = nullptr; |
| 1013 | DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0)); |
| 1014 | |
| 1015 | if (!buffer_sp || buffer_heap_ptr == nullptr) |
| 1016 | return false; |
| 1017 | |
| 1018 | uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes(); |
| 1019 | |
| 1020 | if (GetByteSize() > 0) |
| 1021 | memcpy(dest: bytes_ptr, src: GetDataStart(), n: GetByteSize()); |
| 1022 | |
| 1023 | memcpy(dest: bytes_ptr + GetByteSize(), src: buf, n: length); |
| 1024 | |
| 1025 | SetData(data_sp: buffer_sp); |
| 1026 | |
| 1027 | return true; |
| 1028 | } |
| 1029 | |
| 1030 | void DataExtractor::(llvm::SmallVectorImpl<uint8_t> &dest, |
| 1031 | uint64_t max_data) { |
| 1032 | if (max_data == 0) |
| 1033 | max_data = GetByteSize(); |
| 1034 | else |
| 1035 | max_data = std::min(a: max_data, b: GetByteSize()); |
| 1036 | |
| 1037 | llvm::MD5 md5; |
| 1038 | |
| 1039 | const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data); |
| 1040 | md5.update(Data: data); |
| 1041 | |
| 1042 | llvm::MD5::MD5Result result; |
| 1043 | md5.final(Result&: result); |
| 1044 | |
| 1045 | dest.clear(); |
| 1046 | dest.append(in_start: result.begin(), in_end: result.end()); |
| 1047 | } |
| 1048 | |