| 1 | //===-- Scalar.cpp --------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "lldb/Utility/Scalar.h" |
| 10 | #include "lldb/Utility/DataBufferHeap.h" |
| 11 | #include "lldb/Utility/DataExtractor.h" |
| 12 | #include "lldb/Utility/Endian.h" |
| 13 | #include "lldb/Utility/Status.h" |
| 14 | #include "lldb/Utility/Stream.h" |
| 15 | #include "lldb/Utility/StreamString.h" |
| 16 | #include "lldb/lldb-types.h" |
| 17 | #include "llvm/ADT/APSInt.h" |
| 18 | #include "llvm/ADT/SmallString.h" |
| 19 | #include "llvm/ADT/StringExtras.h" |
| 20 | |
| 21 | #include <cinttypes> |
| 22 | #include <cstdio> |
| 23 | |
| 24 | using namespace lldb; |
| 25 | using namespace lldb_private; |
| 26 | |
| 27 | using llvm::APFloat; |
| 28 | using llvm::APInt; |
| 29 | using llvm::APSInt; |
| 30 | |
| 31 | Scalar::PromotionKey Scalar::GetPromoKey() const { |
| 32 | switch (m_type) { |
| 33 | case e_void: |
| 34 | return PromotionKey{e_void, 0, false}; |
| 35 | case e_int: |
| 36 | return PromotionKey{e_int, m_integer.getBitWidth(), m_integer.isUnsigned()}; |
| 37 | case e_float: |
| 38 | return GetFloatPromoKey(semantics: m_float.getSemantics()); |
| 39 | } |
| 40 | llvm_unreachable("Unhandled category!" ); |
| 41 | } |
| 42 | |
| 43 | Scalar::PromotionKey Scalar::GetFloatPromoKey(const llvm::fltSemantics &sem) { |
| 44 | static const llvm::fltSemantics *const order[] = { |
| 45 | &APFloat::IEEEsingle(), &APFloat::IEEEdouble(), |
| 46 | &APFloat::x87DoubleExtended()}; |
| 47 | for (const auto &entry : llvm::enumerate(First: order)) { |
| 48 | if (entry.value() == &sem) |
| 49 | return PromotionKey{e_float, entry.index(), false}; |
| 50 | } |
| 51 | llvm_unreachable("Unsupported semantics!" ); |
| 52 | } |
| 53 | |
| 54 | // Promote to max type currently follows the ANSI C rule for type promotion in |
| 55 | // expressions. |
| 56 | Scalar::Type Scalar::PromoteToMaxType(Scalar &lhs, Scalar &rhs) { |
| 57 | const auto &Promote = [](Scalar &a, const Scalar &b) { |
| 58 | switch (b.GetType()) { |
| 59 | case e_void: |
| 60 | break; |
| 61 | case e_int: |
| 62 | a.IntegralPromote(bits: b.m_integer.getBitWidth(), sign: b.m_integer.isSigned()); |
| 63 | break; |
| 64 | case e_float: |
| 65 | a.FloatPromote(semantics: b.m_float.getSemantics()); |
| 66 | } |
| 67 | }; |
| 68 | |
| 69 | PromotionKey lhs_key = lhs.GetPromoKey(); |
| 70 | PromotionKey rhs_key = rhs.GetPromoKey(); |
| 71 | |
| 72 | if (lhs_key > rhs_key) |
| 73 | Promote(rhs, lhs); |
| 74 | else if (rhs_key > lhs_key) |
| 75 | Promote(lhs, rhs); |
| 76 | |
| 77 | // Make sure our type promotion worked as expected |
| 78 | if (lhs.GetPromoKey() == rhs.GetPromoKey()) |
| 79 | return lhs.GetType(); // Return the resulting type |
| 80 | |
| 81 | // Return the void type (zero) if we fail to promote either of the values. |
| 82 | return Scalar::e_void; |
| 83 | } |
| 84 | |
| 85 | bool Scalar::(DataExtractor &data, size_t limit_byte_size) const { |
| 86 | size_t byte_size = GetByteSize(); |
| 87 | if (byte_size == 0) { |
| 88 | data.Clear(); |
| 89 | return false; |
| 90 | } |
| 91 | auto buffer_up = std::make_unique<DataBufferHeap>(args&: byte_size, args: 0); |
| 92 | GetBytes(storage: buffer_up->GetData()); |
| 93 | lldb::offset_t offset = 0; |
| 94 | |
| 95 | if (limit_byte_size < byte_size) { |
| 96 | if (endian::InlHostByteOrder() == eByteOrderLittle) { |
| 97 | // On little endian systems if we want fewer bytes from the current |
| 98 | // type we just specify fewer bytes since the LSByte is first... |
| 99 | byte_size = limit_byte_size; |
| 100 | } else if (endian::InlHostByteOrder() == eByteOrderBig) { |
| 101 | // On big endian systems if we want fewer bytes from the current type |
| 102 | // have to advance our initial byte pointer and trim down the number of |
| 103 | // bytes since the MSByte is first |
| 104 | offset = byte_size - limit_byte_size; |
| 105 | byte_size = limit_byte_size; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | data.SetData(data_sp: std::move(buffer_up), offset, length: byte_size); |
| 110 | data.SetByteOrder(endian::InlHostByteOrder()); |
| 111 | return true; |
| 112 | } |
| 113 | |
| 114 | void Scalar::GetBytes(llvm::MutableArrayRef<uint8_t> storage) const { |
| 115 | assert(storage.size() >= GetByteSize()); |
| 116 | |
| 117 | const auto &store = [&](const llvm::APInt &val) { |
| 118 | StoreIntToMemory(IntVal: val, Dst: storage.data(), StoreBytes: (val.getBitWidth() + 7) / 8); |
| 119 | }; |
| 120 | switch (m_type) { |
| 121 | case e_void: |
| 122 | break; |
| 123 | case e_int: |
| 124 | store(m_integer); |
| 125 | break; |
| 126 | case e_float: |
| 127 | store(m_float.bitcastToAPInt()); |
| 128 | break; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | size_t Scalar::GetByteSize() const { |
| 133 | switch (m_type) { |
| 134 | case e_void: |
| 135 | break; |
| 136 | case e_int: |
| 137 | return (m_integer.getBitWidth() + 7) / 8; |
| 138 | case e_float: |
| 139 | return (m_float.bitcastToAPInt().getBitWidth() + 7) / 8; |
| 140 | } |
| 141 | return 0; |
| 142 | } |
| 143 | |
| 144 | bool Scalar::IsZero() const { |
| 145 | switch (m_type) { |
| 146 | case e_void: |
| 147 | break; |
| 148 | case e_int: |
| 149 | return m_integer.isZero(); |
| 150 | case e_float: |
| 151 | return m_float.isZero(); |
| 152 | } |
| 153 | return false; |
| 154 | } |
| 155 | |
| 156 | void Scalar::GetValue(Stream &s, bool show_type) const { |
| 157 | if (show_type) |
| 158 | s.Printf(format: "(%s) " , GetTypeAsCString()); |
| 159 | |
| 160 | switch (m_type) { |
| 161 | case e_void: |
| 162 | break; |
| 163 | case e_int: |
| 164 | s.PutCString(cstr: llvm::toString(I: m_integer, Radix: 10)); |
| 165 | break; |
| 166 | case e_float: |
| 167 | llvm::SmallString<24> string; |
| 168 | m_float.toString(Str&: string); |
| 169 | s.PutCString(cstr: string); |
| 170 | break; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | void Scalar::TruncOrExtendTo(uint16_t bits, bool sign) { |
| 175 | m_integer.setIsSigned(sign); |
| 176 | m_integer = m_integer.extOrTrunc(width: bits); |
| 177 | } |
| 178 | |
| 179 | bool Scalar::IntegralPromote(uint16_t bits, bool sign) { |
| 180 | switch (m_type) { |
| 181 | case e_void: |
| 182 | case e_float: |
| 183 | break; |
| 184 | case e_int: |
| 185 | if (GetPromoKey() > PromotionKey(e_int, bits, !sign)) |
| 186 | break; |
| 187 | m_integer = m_integer.extOrTrunc(width: bits); |
| 188 | m_integer.setIsSigned(sign); |
| 189 | return true; |
| 190 | } |
| 191 | return false; |
| 192 | } |
| 193 | |
| 194 | bool Scalar::FloatPromote(const llvm::fltSemantics &semantics) { |
| 195 | bool success = false; |
| 196 | switch (m_type) { |
| 197 | case e_void: |
| 198 | break; |
| 199 | case e_int: |
| 200 | m_float = llvm::APFloat(semantics); |
| 201 | m_float.convertFromAPInt(Input: m_integer, IsSigned: m_integer.isSigned(), |
| 202 | RM: llvm::APFloat::rmNearestTiesToEven); |
| 203 | success = true; |
| 204 | break; |
| 205 | case e_float: |
| 206 | if (GetFloatPromoKey(sem: semantics) < GetFloatPromoKey(sem: m_float.getSemantics())) |
| 207 | break; |
| 208 | bool ignore; |
| 209 | success = true; |
| 210 | m_float.convert(ToSemantics: semantics, RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &ignore); |
| 211 | } |
| 212 | |
| 213 | if (success) |
| 214 | m_type = e_float; |
| 215 | return success; |
| 216 | } |
| 217 | |
| 218 | const char *Scalar::GetValueTypeAsCString(Scalar::Type type) { |
| 219 | switch (type) { |
| 220 | case e_void: |
| 221 | return "void" ; |
| 222 | case e_int: |
| 223 | return "int" ; |
| 224 | case e_float: |
| 225 | return "float" ; |
| 226 | } |
| 227 | return "???" ; |
| 228 | } |
| 229 | |
| 230 | bool Scalar::IsSigned() const { |
| 231 | switch (m_type) { |
| 232 | case e_void: |
| 233 | return false; |
| 234 | case e_int: |
| 235 | return m_integer.isSigned(); |
| 236 | case e_float: |
| 237 | return true; |
| 238 | } |
| 239 | llvm_unreachable("Unrecognized type!" ); |
| 240 | } |
| 241 | |
| 242 | bool Scalar::MakeSigned() { |
| 243 | bool success = false; |
| 244 | |
| 245 | switch (m_type) { |
| 246 | case e_void: |
| 247 | break; |
| 248 | case e_int: |
| 249 | m_integer.setIsSigned(true); |
| 250 | success = true; |
| 251 | break; |
| 252 | case e_float: |
| 253 | success = true; |
| 254 | break; |
| 255 | } |
| 256 | |
| 257 | return success; |
| 258 | } |
| 259 | |
| 260 | bool Scalar::MakeUnsigned() { |
| 261 | bool success = false; |
| 262 | |
| 263 | switch (m_type) { |
| 264 | case e_void: |
| 265 | break; |
| 266 | case e_int: |
| 267 | m_integer.setIsUnsigned(true); |
| 268 | success = true; |
| 269 | break; |
| 270 | case e_float: |
| 271 | success = true; |
| 272 | break; |
| 273 | } |
| 274 | |
| 275 | return success; |
| 276 | } |
| 277 | |
| 278 | static llvm::APInt ToAPInt(const llvm::APFloat &f, unsigned bits, |
| 279 | bool is_unsigned) { |
| 280 | llvm::APSInt result(bits, is_unsigned); |
| 281 | bool isExact; |
| 282 | f.convertToInteger(Result&: result, RM: llvm::APFloat::rmTowardZero, IsExact: &isExact); |
| 283 | return std::move(result); |
| 284 | } |
| 285 | |
| 286 | template <typename T> T Scalar::GetAs(T fail_value) const { |
| 287 | switch (m_type) { |
| 288 | case e_void: |
| 289 | break; |
| 290 | case e_int: { |
| 291 | APSInt ext = m_integer.extOrTrunc(width: sizeof(T) * 8); |
| 292 | if (ext.isSigned()) |
| 293 | return ext.getSExtValue(); |
| 294 | return ext.getZExtValue(); |
| 295 | } |
| 296 | case e_float: |
| 297 | return ToAPInt(m_float, sizeof(T) * 8, std::is_unsigned<T>::value) |
| 298 | .getSExtValue(); |
| 299 | } |
| 300 | return fail_value; |
| 301 | } |
| 302 | |
| 303 | signed char Scalar::SChar(signed char fail_value) const { |
| 304 | return GetAs<signed char>(fail_value); |
| 305 | } |
| 306 | |
| 307 | unsigned char Scalar::UChar(unsigned char fail_value) const { |
| 308 | return GetAs<unsigned char>(fail_value); |
| 309 | } |
| 310 | |
| 311 | short Scalar::SShort(short fail_value) const { |
| 312 | return GetAs<short>(fail_value); |
| 313 | } |
| 314 | |
| 315 | unsigned short Scalar::UShort(unsigned short fail_value) const { |
| 316 | return GetAs<unsigned short>(fail_value); |
| 317 | } |
| 318 | |
| 319 | int Scalar::SInt(int fail_value) const { return GetAs<int>(fail_value); } |
| 320 | |
| 321 | unsigned int Scalar::UInt(unsigned int fail_value) const { |
| 322 | return GetAs<unsigned int>(fail_value); |
| 323 | } |
| 324 | |
| 325 | long Scalar::SLong(long fail_value) const { return GetAs<long>(fail_value); } |
| 326 | |
| 327 | unsigned long Scalar::ULong(unsigned long fail_value) const { |
| 328 | return GetAs<unsigned long>(fail_value); |
| 329 | } |
| 330 | |
| 331 | long long Scalar::SLongLong(long long fail_value) const { |
| 332 | return GetAs<long long>(fail_value); |
| 333 | } |
| 334 | |
| 335 | unsigned long long Scalar::ULongLong(unsigned long long fail_value) const { |
| 336 | return GetAs<unsigned long long>(fail_value); |
| 337 | } |
| 338 | |
| 339 | llvm::APInt Scalar::SInt128(const llvm::APInt &fail_value) const { |
| 340 | switch (m_type) { |
| 341 | case e_void: |
| 342 | break; |
| 343 | case e_int: |
| 344 | return m_integer; |
| 345 | case e_float: |
| 346 | return ToAPInt(f: m_float, bits: 128, /*is_unsigned=*/false); |
| 347 | } |
| 348 | return fail_value; |
| 349 | } |
| 350 | |
| 351 | llvm::APInt Scalar::UInt128(const llvm::APInt &fail_value) const { |
| 352 | switch (m_type) { |
| 353 | case e_void: |
| 354 | break; |
| 355 | case e_int: |
| 356 | return m_integer; |
| 357 | case e_float: |
| 358 | return ToAPInt(f: m_float, bits: 128, /*is_unsigned=*/true); |
| 359 | } |
| 360 | return fail_value; |
| 361 | } |
| 362 | |
| 363 | float Scalar::Float(float fail_value) const { |
| 364 | switch (m_type) { |
| 365 | case e_void: |
| 366 | break; |
| 367 | case e_int: |
| 368 | if (m_integer.isSigned()) |
| 369 | return llvm::APIntOps::RoundSignedAPIntToFloat(APIVal: m_integer); |
| 370 | return llvm::APIntOps::RoundAPIntToFloat(APIVal: m_integer); |
| 371 | |
| 372 | case e_float: { |
| 373 | APFloat result = m_float; |
| 374 | bool losesInfo; |
| 375 | result.convert(ToSemantics: APFloat::IEEEsingle(), RM: APFloat::rmNearestTiesToEven, |
| 376 | losesInfo: &losesInfo); |
| 377 | return result.convertToFloat(); |
| 378 | } |
| 379 | } |
| 380 | return fail_value; |
| 381 | } |
| 382 | |
| 383 | double Scalar::Double(double fail_value) const { |
| 384 | switch (m_type) { |
| 385 | case e_void: |
| 386 | break; |
| 387 | case e_int: |
| 388 | if (m_integer.isSigned()) |
| 389 | return llvm::APIntOps::RoundSignedAPIntToDouble(APIVal: m_integer); |
| 390 | return llvm::APIntOps::RoundAPIntToDouble(APIVal: m_integer); |
| 391 | |
| 392 | case e_float: { |
| 393 | APFloat result = m_float; |
| 394 | bool losesInfo; |
| 395 | result.convert(ToSemantics: APFloat::IEEEdouble(), RM: APFloat::rmNearestTiesToEven, |
| 396 | losesInfo: &losesInfo); |
| 397 | return result.convertToDouble(); |
| 398 | } |
| 399 | } |
| 400 | return fail_value; |
| 401 | } |
| 402 | |
| 403 | long double Scalar::LongDouble(long double fail_value) const { |
| 404 | /// No way to get more precision at the moment. |
| 405 | return static_cast<long double>(Double(fail_value)); |
| 406 | } |
| 407 | |
| 408 | Scalar &Scalar::operator+=(Scalar rhs) { |
| 409 | Scalar copy = *this; |
| 410 | if ((m_type = PromoteToMaxType(lhs&: copy, rhs)) != Scalar::e_void) { |
| 411 | switch (m_type) { |
| 412 | case e_void: |
| 413 | break; |
| 414 | case e_int: |
| 415 | m_integer = copy.m_integer + rhs.m_integer; |
| 416 | break; |
| 417 | |
| 418 | case e_float: |
| 419 | m_float = copy.m_float + rhs.m_float; |
| 420 | break; |
| 421 | } |
| 422 | } |
| 423 | return *this; |
| 424 | } |
| 425 | |
| 426 | Scalar &Scalar::operator<<=(const Scalar &rhs) { |
| 427 | if (m_type == e_int && rhs.m_type == e_int) |
| 428 | static_cast<APInt &>(m_integer) <<= rhs.m_integer; |
| 429 | else |
| 430 | m_type = e_void; |
| 431 | return *this; |
| 432 | } |
| 433 | |
| 434 | bool Scalar::ShiftRightLogical(const Scalar &rhs) { |
| 435 | if (m_type == e_int && rhs.m_type == e_int) { |
| 436 | m_integer = m_integer.lshr(ShiftAmt: rhs.m_integer); |
| 437 | return true; |
| 438 | } |
| 439 | m_type = e_void; |
| 440 | return false; |
| 441 | } |
| 442 | |
| 443 | Scalar &Scalar::operator>>=(const Scalar &rhs) { |
| 444 | switch (m_type) { |
| 445 | case e_void: |
| 446 | case e_float: |
| 447 | m_type = e_void; |
| 448 | break; |
| 449 | |
| 450 | case e_int: |
| 451 | switch (rhs.m_type) { |
| 452 | case e_void: |
| 453 | case e_float: |
| 454 | m_type = e_void; |
| 455 | break; |
| 456 | case e_int: |
| 457 | m_integer = m_integer.ashr(ShiftAmt: rhs.m_integer); |
| 458 | break; |
| 459 | } |
| 460 | break; |
| 461 | } |
| 462 | return *this; |
| 463 | } |
| 464 | |
| 465 | Scalar &Scalar::operator&=(const Scalar &rhs) { |
| 466 | if (m_type == e_int && rhs.m_type == e_int) |
| 467 | m_integer &= rhs.m_integer; |
| 468 | else |
| 469 | m_type = e_void; |
| 470 | return *this; |
| 471 | } |
| 472 | |
| 473 | bool Scalar::AbsoluteValue() { |
| 474 | switch (m_type) { |
| 475 | case e_void: |
| 476 | break; |
| 477 | |
| 478 | case e_int: |
| 479 | if (m_integer.isNegative()) |
| 480 | m_integer = -m_integer; |
| 481 | return true; |
| 482 | |
| 483 | case e_float: |
| 484 | m_float.clearSign(); |
| 485 | return true; |
| 486 | } |
| 487 | return false; |
| 488 | } |
| 489 | |
| 490 | bool Scalar::UnaryNegate() { |
| 491 | switch (m_type) { |
| 492 | case e_void: |
| 493 | break; |
| 494 | case e_int: |
| 495 | m_integer = -m_integer; |
| 496 | return true; |
| 497 | case e_float: |
| 498 | m_float.changeSign(); |
| 499 | return true; |
| 500 | } |
| 501 | return false; |
| 502 | } |
| 503 | |
| 504 | bool Scalar::OnesComplement() { |
| 505 | if (m_type == e_int) { |
| 506 | m_integer = ~m_integer; |
| 507 | return true; |
| 508 | } |
| 509 | |
| 510 | return false; |
| 511 | } |
| 512 | |
| 513 | const Scalar lldb_private::operator+(const Scalar &lhs, const Scalar &rhs) { |
| 514 | Scalar result = lhs; |
| 515 | result += rhs; |
| 516 | return result; |
| 517 | } |
| 518 | |
| 519 | const Scalar lldb_private::operator-(Scalar lhs, Scalar rhs) { |
| 520 | Scalar result; |
| 521 | if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) { |
| 522 | switch (result.m_type) { |
| 523 | case Scalar::e_void: |
| 524 | break; |
| 525 | case Scalar::e_int: |
| 526 | result.m_integer = lhs.m_integer - rhs.m_integer; |
| 527 | break; |
| 528 | case Scalar::e_float: |
| 529 | result.m_float = lhs.m_float - rhs.m_float; |
| 530 | break; |
| 531 | } |
| 532 | } |
| 533 | return result; |
| 534 | } |
| 535 | |
| 536 | const Scalar lldb_private::operator/(Scalar lhs, Scalar rhs) { |
| 537 | Scalar result; |
| 538 | if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void && |
| 539 | !rhs.IsZero()) { |
| 540 | switch (result.m_type) { |
| 541 | case Scalar::e_void: |
| 542 | break; |
| 543 | case Scalar::e_int: |
| 544 | result.m_integer = lhs.m_integer / rhs.m_integer; |
| 545 | return result; |
| 546 | case Scalar::e_float: |
| 547 | result.m_float = lhs.m_float / rhs.m_float; |
| 548 | return result; |
| 549 | } |
| 550 | } |
| 551 | // For division only, the only way it should make it here is if a promotion |
| 552 | // failed, or if we are trying to do a divide by zero. |
| 553 | result.m_type = Scalar::e_void; |
| 554 | return result; |
| 555 | } |
| 556 | |
| 557 | const Scalar lldb_private::operator*(Scalar lhs, Scalar rhs) { |
| 558 | Scalar result; |
| 559 | if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) { |
| 560 | switch (result.m_type) { |
| 561 | case Scalar::e_void: |
| 562 | break; |
| 563 | case Scalar::e_int: |
| 564 | result.m_integer = lhs.m_integer * rhs.m_integer; |
| 565 | break; |
| 566 | case Scalar::e_float: |
| 567 | result.m_float = lhs.m_float * rhs.m_float; |
| 568 | break; |
| 569 | } |
| 570 | } |
| 571 | return result; |
| 572 | } |
| 573 | |
| 574 | const Scalar lldb_private::operator&(Scalar lhs, Scalar rhs) { |
| 575 | Scalar result; |
| 576 | if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) { |
| 577 | if (result.m_type == Scalar::e_int) |
| 578 | result.m_integer = lhs.m_integer & rhs.m_integer; |
| 579 | else |
| 580 | result.m_type = Scalar::e_void; |
| 581 | } |
| 582 | return result; |
| 583 | } |
| 584 | |
| 585 | const Scalar lldb_private::operator|(Scalar lhs, Scalar rhs) { |
| 586 | Scalar result; |
| 587 | if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) { |
| 588 | if (result.m_type == Scalar::e_int) |
| 589 | result.m_integer = lhs.m_integer | rhs.m_integer; |
| 590 | else |
| 591 | result.m_type = Scalar::e_void; |
| 592 | } |
| 593 | return result; |
| 594 | } |
| 595 | |
| 596 | const Scalar lldb_private::operator%(Scalar lhs, Scalar rhs) { |
| 597 | Scalar result; |
| 598 | if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) { |
| 599 | if (!rhs.IsZero() && result.m_type == Scalar::e_int) { |
| 600 | result.m_integer = lhs.m_integer % rhs.m_integer; |
| 601 | return result; |
| 602 | } |
| 603 | } |
| 604 | result.m_type = Scalar::e_void; |
| 605 | return result; |
| 606 | } |
| 607 | |
| 608 | const Scalar lldb_private::operator^(Scalar lhs, Scalar rhs) { |
| 609 | Scalar result; |
| 610 | if ((result.m_type = Scalar::PromoteToMaxType(lhs, rhs)) != Scalar::e_void) { |
| 611 | if (result.m_type == Scalar::e_int) |
| 612 | result.m_integer = lhs.m_integer ^ rhs.m_integer; |
| 613 | else |
| 614 | result.m_type = Scalar::e_void; |
| 615 | } |
| 616 | return result; |
| 617 | } |
| 618 | |
| 619 | const Scalar lldb_private::operator<<(const Scalar &lhs, const Scalar &rhs) { |
| 620 | Scalar result = lhs; |
| 621 | result <<= rhs; |
| 622 | return result; |
| 623 | } |
| 624 | |
| 625 | const Scalar lldb_private::operator>>(const Scalar &lhs, const Scalar &rhs) { |
| 626 | Scalar result = lhs; |
| 627 | result >>= rhs; |
| 628 | return result; |
| 629 | } |
| 630 | |
| 631 | Status Scalar::SetValueFromCString(const char *value_str, Encoding encoding, |
| 632 | size_t byte_size) { |
| 633 | Status error; |
| 634 | if (value_str == nullptr || value_str[0] == '\0') { |
| 635 | return Status::FromErrorString(str: "Invalid c-string value string." ); |
| 636 | } |
| 637 | switch (encoding) { |
| 638 | case eEncodingInvalid: |
| 639 | return Status::FromErrorString(str: "Invalid encoding." ); |
| 640 | break; |
| 641 | |
| 642 | case eEncodingSint: |
| 643 | case eEncodingUint: { |
| 644 | llvm::StringRef str = value_str; |
| 645 | bool is_signed = encoding == eEncodingSint; |
| 646 | bool is_negative = is_signed && str.consume_front(Prefix: "-" ); |
| 647 | APInt integer; |
| 648 | if (str.getAsInteger(Radix: 0, Result&: integer)) { |
| 649 | error = Status::FromErrorStringWithFormatv( |
| 650 | format: "'{0}' is not a valid integer string value" , args&: value_str); |
| 651 | break; |
| 652 | } |
| 653 | bool fits; |
| 654 | if (is_signed) { |
| 655 | integer = integer.zext(width: integer.getBitWidth() + 1); |
| 656 | if (is_negative) |
| 657 | integer.negate(); |
| 658 | fits = integer.isSignedIntN(N: byte_size * 8); |
| 659 | } else |
| 660 | fits = integer.isIntN(N: byte_size * 8); |
| 661 | if (!fits) { |
| 662 | error = Status::FromErrorStringWithFormatv( |
| 663 | format: "value {0} is too large to fit in a {1} byte integer value" , |
| 664 | args&: value_str, args&: byte_size); |
| 665 | break; |
| 666 | } |
| 667 | m_type = e_int; |
| 668 | m_integer = |
| 669 | APSInt(std::move(integer), !is_signed).extOrTrunc(width: 8 * byte_size); |
| 670 | break; |
| 671 | } |
| 672 | |
| 673 | case eEncodingIEEE754: { |
| 674 | // FIXME: It's not possible to unambiguously map a byte size to a floating |
| 675 | // point type. This function should be refactored to take an explicit |
| 676 | // semantics argument. |
| 677 | const llvm::fltSemantics &sem = |
| 678 | byte_size <= 4 ? APFloat::IEEEsingle() |
| 679 | : byte_size <= 8 ? APFloat::IEEEdouble() |
| 680 | : APFloat::x87DoubleExtended(); |
| 681 | APFloat f(sem); |
| 682 | if (llvm::Expected<APFloat::opStatus> op = |
| 683 | f.convertFromString(value_str, APFloat::rmNearestTiesToEven)) { |
| 684 | m_type = e_float; |
| 685 | m_float = std::move(f); |
| 686 | } else |
| 687 | error = Status::FromError(error: op.takeError()); |
| 688 | break; |
| 689 | } |
| 690 | |
| 691 | case eEncodingVector: |
| 692 | return Status::FromErrorString(str: "vector encoding unsupported." ); |
| 693 | break; |
| 694 | } |
| 695 | if (error.Fail()) |
| 696 | m_type = e_void; |
| 697 | |
| 698 | return error; |
| 699 | } |
| 700 | |
| 701 | Status Scalar::(const DataExtractor &data, |
| 702 | lldb::Encoding encoding, size_t byte_size) { |
| 703 | Status error; |
| 704 | switch (encoding) { |
| 705 | case lldb::eEncodingInvalid: |
| 706 | return Status::FromErrorString(str: "invalid encoding" ); |
| 707 | break; |
| 708 | case lldb::eEncodingVector: |
| 709 | return Status::FromErrorString(str: "vector encoding unsupported" ); |
| 710 | break; |
| 711 | case lldb::eEncodingUint: |
| 712 | case lldb::eEncodingSint: { |
| 713 | if (data.GetByteSize() < byte_size) |
| 714 | return Status::FromErrorString(str: "insufficient data" ); |
| 715 | m_type = e_int; |
| 716 | m_integer = |
| 717 | APSInt(APInt::getZero(numBits: 8 * byte_size), encoding == eEncodingUint); |
| 718 | if (data.GetByteOrder() == endian::InlHostByteOrder()) { |
| 719 | llvm::LoadIntFromMemory(IntVal&: m_integer, Src: data.GetDataStart(), LoadBytes: byte_size); |
| 720 | } else { |
| 721 | std::vector<uint8_t> buffer(byte_size); |
| 722 | std::copy_n(first: data.GetDataStart(), n: byte_size, result: buffer.rbegin()); |
| 723 | llvm::LoadIntFromMemory(IntVal&: m_integer, Src: buffer.data(), LoadBytes: byte_size); |
| 724 | } |
| 725 | break; |
| 726 | } |
| 727 | case lldb::eEncodingIEEE754: { |
| 728 | lldb::offset_t offset = 0; |
| 729 | |
| 730 | if (byte_size == sizeof(float)) |
| 731 | operator=(data.GetFloat(offset_ptr: &offset)); |
| 732 | else if (byte_size == sizeof(double)) |
| 733 | operator=(data.GetDouble(offset_ptr: &offset)); |
| 734 | else if (byte_size == sizeof(long double)) |
| 735 | operator=(data.GetLongDouble(offset_ptr: &offset)); |
| 736 | else |
| 737 | return Status::FromErrorStringWithFormatv( |
| 738 | format: "unsupported float byte size: {0}" , args: static_cast<uint64_t>(byte_size)); |
| 739 | } break; |
| 740 | } |
| 741 | |
| 742 | return error; |
| 743 | } |
| 744 | |
| 745 | bool Scalar::SignExtend(uint32_t sign_bit_pos) { |
| 746 | const uint32_t max_bit_pos = GetByteSize() * 8; |
| 747 | |
| 748 | if (sign_bit_pos < max_bit_pos) { |
| 749 | switch (m_type) { |
| 750 | case Scalar::e_void: |
| 751 | case Scalar::e_float: |
| 752 | return false; |
| 753 | |
| 754 | case Scalar::e_int: |
| 755 | if (sign_bit_pos < (max_bit_pos - 1)) { |
| 756 | llvm::APInt sign_bit = llvm::APInt::getSignMask(BitWidth: sign_bit_pos + 1); |
| 757 | llvm::APInt bitwize_and = m_integer & sign_bit; |
| 758 | if (bitwize_and.getBoolValue()) { |
| 759 | llvm::APInt mask = |
| 760 | ~(sign_bit) + llvm::APInt(m_integer.getBitWidth(), 1); |
| 761 | m_integer |= APSInt(std::move(mask), m_integer.isUnsigned()); |
| 762 | } |
| 763 | return true; |
| 764 | } |
| 765 | break; |
| 766 | } |
| 767 | } |
| 768 | return false; |
| 769 | } |
| 770 | |
| 771 | size_t Scalar::GetAsMemoryData(void *dst, size_t dst_len, |
| 772 | lldb::ByteOrder dst_byte_order, |
| 773 | Status &error) const { |
| 774 | // Get a data extractor that points to the native scalar data |
| 775 | DataExtractor data; |
| 776 | if (!GetData(data)) { |
| 777 | error = Status::FromErrorString(str: "invalid scalar value" ); |
| 778 | return 0; |
| 779 | } |
| 780 | |
| 781 | const size_t src_len = data.GetByteSize(); |
| 782 | |
| 783 | // Prepare a memory buffer that contains some or all of the register value |
| 784 | const size_t bytes_copied = |
| 785 | data.CopyByteOrderedData(src_offset: 0, // src offset |
| 786 | src_len, // src length |
| 787 | dst, // dst buffer |
| 788 | dst_len, // dst length |
| 789 | dst_byte_order); // dst byte order |
| 790 | if (bytes_copied == 0) |
| 791 | error = Status::FromErrorString(str: "failed to copy data" ); |
| 792 | |
| 793 | return bytes_copied; |
| 794 | } |
| 795 | |
| 796 | bool Scalar::(uint32_t bit_size, uint32_t bit_offset) { |
| 797 | if (bit_size == 0) |
| 798 | return true; |
| 799 | |
| 800 | switch (m_type) { |
| 801 | case Scalar::e_void: |
| 802 | case Scalar::e_float: |
| 803 | break; |
| 804 | |
| 805 | case Scalar::e_int: |
| 806 | m_integer >>= bit_offset; |
| 807 | m_integer = m_integer.extOrTrunc(width: bit_size).extOrTrunc(width: 8 * GetByteSize()); |
| 808 | return true; |
| 809 | } |
| 810 | return false; |
| 811 | } |
| 812 | |
| 813 | llvm::APFloat Scalar::CreateAPFloatFromAPSInt(lldb::BasicType basic_type) { |
| 814 | switch (basic_type) { |
| 815 | case lldb::eBasicTypeFloat: |
| 816 | return llvm::APFloat( |
| 817 | m_integer.isSigned() |
| 818 | ? llvm::APIntOps::RoundSignedAPIntToFloat(APIVal: m_integer) |
| 819 | : llvm::APIntOps::RoundAPIntToFloat(APIVal: m_integer)); |
| 820 | case lldb::eBasicTypeDouble: |
| 821 | // No way to get more precision at the moment. |
| 822 | case lldb::eBasicTypeLongDouble: |
| 823 | return llvm::APFloat( |
| 824 | m_integer.isSigned() |
| 825 | ? llvm::APIntOps::RoundSignedAPIntToDouble(APIVal: m_integer) |
| 826 | : llvm::APIntOps::RoundAPIntToDouble(APIVal: m_integer)); |
| 827 | default: |
| 828 | const llvm::fltSemantics &sem = APFloat::IEEEsingle(); |
| 829 | return llvm::APFloat::getNaN(Sem: sem); |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | llvm::APFloat Scalar::CreateAPFloatFromAPFloat(lldb::BasicType basic_type) { |
| 834 | switch (basic_type) { |
| 835 | case lldb::eBasicTypeFloat: { |
| 836 | bool loses_info; |
| 837 | m_float.convert(ToSemantics: llvm::APFloat::IEEEsingle(), |
| 838 | RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &loses_info); |
| 839 | return m_float; |
| 840 | } |
| 841 | case lldb::eBasicTypeDouble: |
| 842 | // No way to get more precision at the moment. |
| 843 | case lldb::eBasicTypeLongDouble: { |
| 844 | bool loses_info; |
| 845 | m_float.convert(ToSemantics: llvm::APFloat::IEEEdouble(), |
| 846 | RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &loses_info); |
| 847 | return m_float; |
| 848 | } |
| 849 | default: |
| 850 | const llvm::fltSemantics &sem = APFloat::IEEEsingle(); |
| 851 | return llvm::APFloat::getNaN(Sem: sem); |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | APFloat::cmpResult lldb_private::compare(Scalar lhs, Scalar rhs) { |
| 856 | // If either entry is void then we can just compare the types |
| 857 | if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void) |
| 858 | return lhs.m_type == rhs.m_type ? APFloat::cmpEqual : APFloat::cmpUnordered; |
| 859 | |
| 860 | switch (Scalar::PromoteToMaxType(lhs, rhs)) { |
| 861 | case Scalar::e_void: |
| 862 | break; |
| 863 | case Scalar::e_int: |
| 864 | if (lhs.m_integer < rhs.m_integer) |
| 865 | return APFloat::cmpLessThan; |
| 866 | if (lhs.m_integer > rhs.m_integer) |
| 867 | return APFloat::cmpGreaterThan; |
| 868 | return APFloat::cmpEqual; |
| 869 | case Scalar::e_float: |
| 870 | return lhs.m_float.compare(RHS: rhs.m_float); |
| 871 | } |
| 872 | return APFloat::cmpUnordered; |
| 873 | } |
| 874 | |
| 875 | bool lldb_private::operator==(const Scalar &lhs, const Scalar &rhs) { |
| 876 | return compare(lhs, rhs) == APFloat::cmpEqual; |
| 877 | } |
| 878 | |
| 879 | bool lldb_private::operator!=(const Scalar &lhs, const Scalar &rhs) { |
| 880 | return compare(lhs, rhs) != APFloat::cmpEqual; |
| 881 | } |
| 882 | |
| 883 | bool lldb_private::operator<(const Scalar &lhs, const Scalar &rhs) { |
| 884 | return compare(lhs, rhs) == APFloat::cmpLessThan; |
| 885 | } |
| 886 | |
| 887 | bool lldb_private::operator<=(const Scalar &lhs, const Scalar &rhs) { |
| 888 | APFloat::cmpResult Res = compare(lhs, rhs); |
| 889 | return Res == APFloat::cmpLessThan || Res == APFloat::cmpEqual; |
| 890 | } |
| 891 | |
| 892 | bool lldb_private::operator>(const Scalar &lhs, const Scalar &rhs) { |
| 893 | return compare(lhs, rhs) == APFloat::cmpGreaterThan; |
| 894 | } |
| 895 | |
| 896 | bool lldb_private::operator>=(const Scalar &lhs, const Scalar &rhs) { |
| 897 | APFloat::cmpResult Res = compare(lhs, rhs); |
| 898 | return Res == APFloat::cmpGreaterThan || Res == APFloat::cmpEqual; |
| 899 | } |
| 900 | |
| 901 | bool Scalar::ClearBit(uint32_t bit) { |
| 902 | switch (m_type) { |
| 903 | case e_void: |
| 904 | break; |
| 905 | case e_int: |
| 906 | m_integer.clearBit(BitPosition: bit); |
| 907 | return true; |
| 908 | case e_float: |
| 909 | break; |
| 910 | } |
| 911 | return false; |
| 912 | } |
| 913 | |
| 914 | bool Scalar::SetBit(uint32_t bit) { |
| 915 | switch (m_type) { |
| 916 | case e_void: |
| 917 | break; |
| 918 | case e_int: |
| 919 | m_integer.setBit(bit); |
| 920 | return true; |
| 921 | case e_float: |
| 922 | break; |
| 923 | } |
| 924 | return false; |
| 925 | } |
| 926 | |
| 927 | llvm::raw_ostream &lldb_private::operator<<(llvm::raw_ostream &os, const Scalar &scalar) { |
| 928 | StreamString s; |
| 929 | scalar.GetValue(s, /*show_type*/ true); |
| 930 | return os << s.GetString(); |
| 931 | } |
| 932 | |