1 | //===-- MemoryTagManagerAArch64MTETest.cpp --------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "Plugins/Process/Utility/MemoryTagManagerAArch64MTE.h" |
10 | #include "llvm/Testing/Support/Error.h" |
11 | #include "gtest/gtest.h" |
12 | |
13 | using namespace lldb_private; |
14 | |
15 | TEST(MemoryTagManagerAArch64MTETest, UnpackTagsData) { |
16 | MemoryTagManagerAArch64MTE manager; |
17 | |
18 | // Error for insufficient tag data |
19 | std::vector<uint8_t> input; |
20 | ASSERT_THAT_EXPECTED( |
21 | manager.UnpackTagsData(input, 2), |
22 | llvm::FailedWithMessage( |
23 | "Packed tag data size does not match expected number of tags. " |
24 | "Expected 2 tag(s) for 2 granule(s), got 0 tag(s)." )); |
25 | |
26 | // This is out of the valid tag range |
27 | input.push_back(x: 0x1f); |
28 | ASSERT_THAT_EXPECTED( |
29 | manager.UnpackTagsData(input, 1), |
30 | llvm::FailedWithMessage( |
31 | "Found tag 0x1f which is > max MTE tag value of 0xf." )); |
32 | |
33 | // MTE tags are 1 per byte |
34 | input.pop_back(); |
35 | input.push_back(x: 0xe); |
36 | input.push_back(x: 0xf); |
37 | |
38 | std::vector<lldb::addr_t> expected{0xe, 0xf}; |
39 | |
40 | llvm::Expected<std::vector<lldb::addr_t>> got = |
41 | manager.UnpackTagsData(tags: input, granules: 2); |
42 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
43 | ASSERT_THAT(expected, testing::ContainerEq(*got)); |
44 | |
45 | // Error for too much tag data |
46 | ASSERT_THAT_EXPECTED( |
47 | manager.UnpackTagsData(input, 1), |
48 | llvm::FailedWithMessage( |
49 | "Packed tag data size does not match expected number of tags. " |
50 | "Expected 1 tag(s) for 1 granule(s), got 2 tag(s)." )); |
51 | |
52 | // By default, we don't check number of tags |
53 | llvm::Expected<std::vector<lldb::addr_t>> got_zero = |
54 | manager.UnpackTagsData(tags: input); |
55 | ASSERT_THAT_EXPECTED(got_zero, llvm::Succeeded()); |
56 | ASSERT_THAT(expected, testing::ContainerEq(*got)); |
57 | |
58 | // Which is the same as granules=0 |
59 | got_zero = manager.UnpackTagsData(tags: input, granules: 0); |
60 | ASSERT_THAT_EXPECTED(got_zero, llvm::Succeeded()); |
61 | ASSERT_THAT(expected, testing::ContainerEq(*got)); |
62 | } |
63 | |
64 | TEST(MemoryTagManagerAArch64MTETest, PackTags) { |
65 | MemoryTagManagerAArch64MTE manager; |
66 | |
67 | // Error for tag out of range |
68 | llvm::Expected<std::vector<uint8_t>> invalid_tag_err = |
69 | manager.PackTags(tags: {0x10}); |
70 | ASSERT_THAT_EXPECTED( |
71 | invalid_tag_err, |
72 | llvm::FailedWithMessage( |
73 | "Found tag 0x10 which is > max MTE tag value of 0xf." )); |
74 | |
75 | // 0xf here is the max tag value that we can pack |
76 | std::vector<lldb::addr_t> tags{0, 1, 0xf}; |
77 | std::vector<uint8_t> expected{0, 1, 0xf}; |
78 | llvm::Expected<std::vector<uint8_t>> packed = manager.PackTags(tags); |
79 | ASSERT_THAT_EXPECTED(packed, llvm::Succeeded()); |
80 | ASSERT_THAT(expected, testing::ContainerEq(*packed)); |
81 | } |
82 | |
83 | TEST(MemoryTagManagerAArch64MTETest, UnpackTagsFromCoreFileSegment) { |
84 | MemoryTagManagerAArch64MTE manager; |
85 | // This is our fake segment data where tags are compressed as 2 4 bit tags |
86 | // per byte. |
87 | std::vector<uint8_t> tags_data; |
88 | MemoryTagManager::CoreReaderFn reader = |
89 | [&tags_data](lldb::offset_t offset, size_t length, void *dst) { |
90 | std::memcpy(dest: dst, src: tags_data.data() + offset, n: length); |
91 | return length; |
92 | }; |
93 | |
94 | // Zero length is ok. |
95 | std::vector<lldb::addr_t> tags = |
96 | manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 0); |
97 | ASSERT_EQ(tags.size(), (size_t)0); |
98 | |
99 | // In the simplest case we read 2 tags which are in the same byte. |
100 | tags_data.push_back(x: 0x21); |
101 | // The least significant bits are the first tag in memory. |
102 | std::vector<lldb::addr_t> expected{1, 2}; |
103 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 32); |
104 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
105 | |
106 | // If we read just one then it will have to trim off the second one. |
107 | expected = std::vector<lldb::addr_t>{1}; |
108 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 16); |
109 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
110 | |
111 | // If we read the second tag only then the first one must be trimmed. |
112 | expected = std::vector<lldb::addr_t>{2}; |
113 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 16, len: 16); |
114 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
115 | |
116 | // This trimming logic applies if you read a larger set of tags. |
117 | tags_data = std::vector<uint8_t>{0x21, 0x43, 0x65, 0x87}; |
118 | |
119 | // Trailing tag should be trimmed. |
120 | expected = std::vector<lldb::addr_t>{1, 2, 3}; |
121 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 48); |
122 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
123 | |
124 | // Leading tag should be trimmed. |
125 | expected = std::vector<lldb::addr_t>{2, 3, 4}; |
126 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 16, len: 48); |
127 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
128 | |
129 | // Leading and trailing trimmmed. |
130 | expected = std::vector<lldb::addr_t>{2, 3, 4, 5}; |
131 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 16, len: 64); |
132 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
133 | |
134 | // The address given is an offset into the whole file so the address requested |
135 | // from the reader should be beyond that. |
136 | tags_data = std::vector<uint8_t>{0xFF, 0xFF, 0x21, 0x43, 0x65, 0x87}; |
137 | expected = std::vector<lldb::addr_t>{1, 2}; |
138 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 2, addr: 0, len: 32); |
139 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
140 | |
141 | // addr is a virtual address that we expect to be >= the tag segment's |
142 | // starting virtual address. So again an offset must be made from the |
143 | // difference. |
144 | expected = std::vector<lldb::addr_t>{3, 4}; |
145 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 32, tag_segment_data_address: 2, addr: 64, len: 32); |
146 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
147 | } |
148 | |
149 | TEST(MemoryTagManagerAArch64MTETest, GetLogicalTag) { |
150 | MemoryTagManagerAArch64MTE manager; |
151 | |
152 | // Set surrounding bits to check shift is correct |
153 | ASSERT_EQ((lldb::addr_t)0, manager.GetLogicalTag(0xe0e00000ffffffff)); |
154 | // Max tag value |
155 | ASSERT_EQ((lldb::addr_t)0xf, manager.GetLogicalTag(0x0f000000ffffffff)); |
156 | ASSERT_EQ((lldb::addr_t)2, manager.GetLogicalTag(0x02000000ffffffff)); |
157 | } |
158 | |
159 | TEST(MemoryTagManagerAArch64MTETest, ExpandToGranule) { |
160 | MemoryTagManagerAArch64MTE manager; |
161 | // Reading nothing, no alignment needed |
162 | ASSERT_EQ( |
163 | MemoryTagManagerAArch64MTE::TagRange(0, 0), |
164 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0, 0))); |
165 | |
166 | // Ranges with 0 size are unchanged even if address is non 0 |
167 | // (normally 0x1234 would be aligned to 0x1230) |
168 | ASSERT_EQ( |
169 | MemoryTagManagerAArch64MTE::TagRange(0x1234, 0), |
170 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0x1234, 0))); |
171 | |
172 | // Ranges already aligned don't change |
173 | ASSERT_EQ( |
174 | MemoryTagManagerAArch64MTE::TagRange(0x100, 64), |
175 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0x100, 64))); |
176 | |
177 | // Any read of less than 1 granule is rounded up to reading 1 granule |
178 | ASSERT_EQ( |
179 | MemoryTagManagerAArch64MTE::TagRange(0, 16), |
180 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0, 1))); |
181 | |
182 | // Start address is aligned down, and length modified accordingly |
183 | // Here bytes 8 through 24 straddle 2 granules. So the resulting range starts |
184 | // at 0 and covers 32 bytes. |
185 | ASSERT_EQ( |
186 | MemoryTagManagerAArch64MTE::TagRange(0, 32), |
187 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(8, 16))); |
188 | |
189 | // Here only the size of the range needs aligning |
190 | ASSERT_EQ( |
191 | MemoryTagManagerAArch64MTE::TagRange(16, 32), |
192 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(16, 24))); |
193 | |
194 | // Start and size need aligning here but we only need 1 granule to cover it |
195 | ASSERT_EQ( |
196 | MemoryTagManagerAArch64MTE::TagRange(16, 16), |
197 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(18, 4))); |
198 | } |
199 | |
200 | static MemoryRegionInfo MakeRegionInfo(lldb::addr_t base, lldb::addr_t size, |
201 | bool tagged) { |
202 | return MemoryRegionInfo( |
203 | MemoryRegionInfo::RangeType(base, size), MemoryRegionInfo::eYes, |
204 | MemoryRegionInfo::eYes, MemoryRegionInfo::eYes, MemoryRegionInfo::eNo, |
205 | MemoryRegionInfo::eYes, ConstString(), MemoryRegionInfo::eNo, 0, |
206 | /*memory_tagged=*/ |
207 | tagged ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo, |
208 | MemoryRegionInfo::eDontKnow, MemoryRegionInfo::eDontKnow); |
209 | } |
210 | |
211 | TEST(MemoryTagManagerAArch64MTETest, MakeTaggedRange) { |
212 | MemoryTagManagerAArch64MTE manager; |
213 | MemoryRegionInfos memory_regions; |
214 | |
215 | // No regions means no tagged regions, error |
216 | ASSERT_THAT_EXPECTED( |
217 | manager.MakeTaggedRange(0, 0x10, memory_regions), |
218 | llvm::FailedWithMessage( |
219 | "Address range 0x0:0x10 is not in a memory tagged region" )); |
220 | |
221 | // Alignment is done before checking regions. |
222 | // Here 1 is rounded up to the granule size of 0x10. |
223 | ASSERT_THAT_EXPECTED( |
224 | manager.MakeTaggedRange(0, 1, memory_regions), |
225 | llvm::FailedWithMessage( |
226 | "Address range 0x0:0x10 is not in a memory tagged region" )); |
227 | |
228 | // Range must not be inverted |
229 | ASSERT_THAT_EXPECTED( |
230 | manager.MakeTaggedRange(1, 0, memory_regions), |
231 | llvm::FailedWithMessage( |
232 | "End address (0x0) must be greater than the start address (0x1)" )); |
233 | |
234 | // The inversion check ignores tags in the addresses (MTE tags start at bit |
235 | // 56). |
236 | ASSERT_THAT_EXPECTED( |
237 | manager.MakeTaggedRange((lldb::addr_t)1 << 56, |
238 | ((lldb::addr_t)2 << 56) + 0x10, memory_regions), |
239 | llvm::FailedWithMessage( |
240 | "Address range 0x0:0x10 is not in a memory tagged region" )); |
241 | |
242 | // Adding a single region to cover the whole range |
243 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x1000, tagged: true)); |
244 | |
245 | // Range can have different tags for begin and end |
246 | // (which would make it look inverted if we didn't remove them) |
247 | // Note that range comes back with an untagged base and alginment |
248 | // applied. |
249 | MemoryTagManagerAArch64MTE::TagRange expected_range(0x0, 0x10); |
250 | llvm::Expected<MemoryTagManagerAArch64MTE::TagRange> got = |
251 | manager.MakeTaggedRange(addr: 0x0f00000000000000, end_addr: 0x0e00000000000001, |
252 | memory_regions); |
253 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
254 | ASSERT_EQ(*got, expected_range); |
255 | |
256 | // Error if the range isn't within any region |
257 | ASSERT_THAT_EXPECTED( |
258 | manager.MakeTaggedRange(0x1000, 0x1010, memory_regions), |
259 | llvm::FailedWithMessage( |
260 | "Address range 0x1000:0x1010 is not in a memory tagged region" )); |
261 | |
262 | // Error if the first part of a range isn't tagged |
263 | memory_regions.clear(); |
264 | const char *err_msg = |
265 | "Address range 0x0:0x1000 is not in a memory tagged region" ; |
266 | |
267 | // First because it has no region entry |
268 | memory_regions.push_back(x: MakeRegionInfo(base: 0x10, size: 0x1000, tagged: true)); |
269 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
270 | llvm::FailedWithMessage(err_msg)); |
271 | |
272 | // Then because the first region is untagged |
273 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x10, tagged: false)); |
274 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
275 | llvm::FailedWithMessage(err_msg)); |
276 | |
277 | // If we tag that first part it succeeds |
278 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
279 | expected_range = MemoryTagManagerAArch64MTE::TagRange(0x0, 0x1000); |
280 | got = manager.MakeTaggedRange(addr: 0, end_addr: 0x1000, memory_regions); |
281 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
282 | ASSERT_EQ(*got, expected_range); |
283 | |
284 | // Error if the end of a range is untagged |
285 | memory_regions.clear(); |
286 | |
287 | // First because it has no region entry |
288 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0xF00, tagged: true)); |
289 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
290 | llvm::FailedWithMessage(err_msg)); |
291 | |
292 | // Then because the last region is untagged |
293 | memory_regions.push_back(x: MakeRegionInfo(base: 0xF00, size: 0x100, tagged: false)); |
294 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
295 | llvm::FailedWithMessage(err_msg)); |
296 | |
297 | // If we tag the last part it succeeds |
298 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
299 | got = manager.MakeTaggedRange(addr: 0, end_addr: 0x1000, memory_regions); |
300 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
301 | ASSERT_EQ(*got, expected_range); |
302 | |
303 | // Error if the middle of a range is untagged |
304 | memory_regions.clear(); |
305 | |
306 | // First because it has no entry |
307 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x500, tagged: true)); |
308 | memory_regions.push_back(x: MakeRegionInfo(base: 0x900, size: 0x700, tagged: true)); |
309 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
310 | llvm::FailedWithMessage(err_msg)); |
311 | |
312 | // Then because it's untagged |
313 | memory_regions.push_back(x: MakeRegionInfo(base: 0x500, size: 0x400, tagged: false)); |
314 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
315 | llvm::FailedWithMessage(err_msg)); |
316 | |
317 | // If we tag the middle part it succeeds |
318 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
319 | got = manager.MakeTaggedRange(addr: 0, end_addr: 0x1000, memory_regions); |
320 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
321 | ASSERT_EQ(*got, expected_range); |
322 | } |
323 | |
324 | TEST(MemoryTagManagerAArch64MTETest, MakeTaggedRanges) { |
325 | MemoryTagManagerAArch64MTE manager; |
326 | MemoryRegionInfos memory_regions; |
327 | |
328 | // Note that MakeTaggedRanges takes start/end address. |
329 | // Whereas TagRanges and regions take start address and size. |
330 | |
331 | // Range must not be inverted |
332 | ASSERT_THAT_EXPECTED( |
333 | manager.MakeTaggedRanges(1, 0, memory_regions), |
334 | llvm::FailedWithMessage( |
335 | "End address (0x0) must be greater than the start address (0x1)" )); |
336 | |
337 | // We remove tags before doing the inversion check, so this is not an error. |
338 | // Also no regions means no tagged regions returned. |
339 | // (bit 56 is where MTE tags begin) |
340 | llvm::Expected<std::vector<MemoryTagManager::TagRange>> got = |
341 | manager.MakeTaggedRanges(addr: (lldb::addr_t)2 << 56, |
342 | end_addr: ((lldb::addr_t)1 << 56) + 0x10, memory_regions); |
343 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
344 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{}); |
345 | |
346 | // Cover whole range, untagged. No ranges returned. |
347 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x20, tagged: false)); |
348 | got = manager.MakeTaggedRanges(addr: 0, end_addr: 0x20, memory_regions); |
349 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
350 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{}); |
351 | |
352 | // Make the region tagged and it'll be the one range returned. |
353 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
354 | got = manager.MakeTaggedRanges(addr: 0, end_addr: 0x20, memory_regions); |
355 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
356 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{ |
357 | MemoryTagManager::TagRange(0, 0x20)}); |
358 | |
359 | // This region will be trimmed if it's larger than the whole range. |
360 | memory_regions.clear(); |
361 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x40, tagged: true)); |
362 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x30, memory_regions); |
363 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
364 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{ |
365 | MemoryTagManager::TagRange(0x10, 0x20)}); |
366 | |
367 | memory_regions.clear(); |
368 | |
369 | // For the following tests we keep the input regions |
370 | // in ascending order as MakeTaggedRanges expects. |
371 | |
372 | // Only start of range is tagged, only that is returned. |
373 | // Start the region just before the requested range to check |
374 | // we limit the result to the requested range. |
375 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x20, tagged: true)); |
376 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x100, memory_regions); |
377 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
378 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{ |
379 | MemoryTagManager::TagRange(0x10, 0x10)}); |
380 | |
381 | // Add a tagged region at the end, now we get both |
382 | // and the middle is untagged. |
383 | // <tagged: [0x0, 0x20)> |
384 | // <...> |
385 | // <tagged: [0xE0, 0x120)> |
386 | // The range added here is deliberately over the end of the |
387 | // requested range to show that we trim the end. |
388 | memory_regions.push_back(x: MakeRegionInfo(base: 0xE0, size: 0x40, tagged: true)); |
389 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
390 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
391 | |
392 | std::vector<MemoryTagManager::TagRange> expected{ |
393 | MemoryTagManager::TagRange(0x10, 0x10), |
394 | MemoryTagManager::TagRange(0xE0, 0x30)}; |
395 | ASSERT_EQ(*got, expected); |
396 | |
397 | // Now add a middle tagged region. |
398 | // <tagged: [0x0, 0x20)> |
399 | // <...> |
400 | // <tagged: [0x90, 0xB0)> |
401 | // <...> |
402 | // <tagged: [0xE0, 0x120)> |
403 | memory_regions.insert(position: std::next(x: memory_regions.begin()), |
404 | x: MakeRegionInfo(base: 0x90, size: 0x20, tagged: true)); |
405 | |
406 | // As the given regions are in ascending order, the resulting |
407 | // tagged ranges are also. So this new range goes in the middle. |
408 | expected.insert(position: std::next(x: expected.begin()), |
409 | x: MemoryTagManager::TagRange(0x90, 0x20)); |
410 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
411 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
412 | ASSERT_EQ(*got, expected); |
413 | |
414 | // Then if we add untagged regions in between the tagged, |
415 | // the output should stay the same. |
416 | // <tagged: [0x0, 0x20)> |
417 | // <untagged: [0x20, 0x90)> |
418 | // <tagged: [0x90, 0xB0)> |
419 | // <untagged: [0xB0, 0xE0)> |
420 | // <tagged: [0xE0, 0x120)> |
421 | memory_regions.insert(position: std::next(x: memory_regions.begin()), |
422 | x: MakeRegionInfo(base: 0x20, size: 0x70, tagged: false)); |
423 | memory_regions.insert(position: std::prev(x: memory_regions.end()), |
424 | x: MakeRegionInfo(base: 0xB0, size: 0x30, tagged: false)); |
425 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
426 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
427 | ASSERT_EQ(*got, expected); |
428 | |
429 | // Finally check that we handle only having the end of the range. |
430 | memory_regions.clear(); |
431 | expected.clear(); |
432 | |
433 | memory_regions.push_back(x: MakeRegionInfo(base: 0x100, size: 0x10, tagged: true)); |
434 | expected.push_back(x: MemoryTagManager::TagRange(0x100, 0x10)); |
435 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
436 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
437 | ASSERT_EQ(*got, expected); |
438 | } |
439 | |
440 | TEST(MemoryTagManagerAArch64MTETest, RemoveTagBits) { |
441 | MemoryTagManagerAArch64MTE manager; |
442 | |
443 | ASSERT_EQ(0, 0); |
444 | // Removes the whole top byte |
445 | ASSERT_EQ((lldb::addr_t)0x00ffeedd11223344, |
446 | manager.RemoveTagBits(0x00ffeedd11223344)); |
447 | ASSERT_EQ((lldb::addr_t)0x0000000000000000, |
448 | manager.RemoveTagBits(0xff00000000000000)); |
449 | ASSERT_EQ((lldb::addr_t)0x0055555566666666, |
450 | manager.RemoveTagBits(0xee55555566666666)); |
451 | } |
452 | |
453 | TEST(MemoryTagManagerAArch64MTETest, AddressDiff) { |
454 | MemoryTagManagerAArch64MTE manager; |
455 | |
456 | ASSERT_EQ(0, manager.AddressDiff(0, 0)); |
457 | // Result is signed |
458 | ASSERT_EQ(10, manager.AddressDiff(10, 0)); |
459 | ASSERT_EQ(-10, manager.AddressDiff(0, 10)); |
460 | // Anything in the top byte is ignored |
461 | ASSERT_EQ(0, manager.AddressDiff(0x2211222233334444, 0x3311222233334444)); |
462 | ASSERT_EQ(-32, manager.AddressDiff(0x5511222233334400, 0x4411222233334420)); |
463 | ASSERT_EQ(65, manager.AddressDiff(0x9911222233334441, 0x6611222233334400)); |
464 | } |
465 | |
466 | // Helper to check that repeating "tags" over "range" gives you |
467 | // "expected_tags". |
468 | static void |
469 | test_repeating_tags(const std::vector<lldb::addr_t> &tags, |
470 | MemoryTagManagerAArch64MTE::TagRange range, |
471 | const std::vector<lldb::addr_t> &expected_tags) { |
472 | MemoryTagManagerAArch64MTE manager; |
473 | llvm::Expected<std::vector<lldb::addr_t>> tags_or_err = |
474 | manager.RepeatTagsForRange(tags, range); |
475 | ASSERT_THAT_EXPECTED(tags_or_err, llvm::Succeeded()); |
476 | ASSERT_THAT(expected_tags, testing::ContainerEq(*tags_or_err)); |
477 | } |
478 | |
479 | TEST(MemoryTagManagerAArch64MTETest, RepeatTagsForRange) { |
480 | MemoryTagManagerAArch64MTE manager; |
481 | |
482 | // Must have some tags if your range is not empty |
483 | llvm::Expected<std::vector<lldb::addr_t>> no_tags_err = |
484 | manager.RepeatTagsForRange(tags: {}, |
485 | range: MemoryTagManagerAArch64MTE::TagRange{0, 16}); |
486 | ASSERT_THAT_EXPECTED( |
487 | no_tags_err, llvm::FailedWithMessage( |
488 | "Expected some tags to cover given range, got zero." )); |
489 | |
490 | // If the range is empty, you get no tags back |
491 | test_repeating_tags(tags: {1, 2, 3}, range: MemoryTagManagerAArch64MTE::TagRange{0, 0}, |
492 | expected_tags: {}); |
493 | // And you don't need tags for an empty range |
494 | test_repeating_tags(tags: {}, range: MemoryTagManagerAArch64MTE::TagRange{0, 0}, expected_tags: {}); |
495 | |
496 | // A single tag will just be multiplied as many times as needed |
497 | test_repeating_tags(tags: {5}, range: MemoryTagManagerAArch64MTE::TagRange{0, 16}, expected_tags: {5}); |
498 | test_repeating_tags(tags: {6}, range: MemoryTagManagerAArch64MTE::TagRange{0, 32}, expected_tags: {6, 6}); |
499 | |
500 | // If you've got as many tags as granules, it's a roundtrip |
501 | test_repeating_tags(tags: {7, 8}, range: MemoryTagManagerAArch64MTE::TagRange{0, 32}, |
502 | expected_tags: {7, 8}); |
503 | |
504 | // If you've got fewer tags than granules, they repeat. Exactly or partially |
505 | // as needed. |
506 | test_repeating_tags(tags: {7, 8}, range: MemoryTagManagerAArch64MTE::TagRange{0, 64}, |
507 | expected_tags: {7, 8, 7, 8}); |
508 | test_repeating_tags(tags: {7, 8}, range: MemoryTagManagerAArch64MTE::TagRange{0, 48}, |
509 | expected_tags: {7, 8, 7}); |
510 | |
511 | // If you've got more tags than granules you get back only those needed |
512 | test_repeating_tags(tags: {1, 2, 3, 4}, range: MemoryTagManagerAArch64MTE::TagRange{0, 32}, |
513 | expected_tags: {1, 2}); |
514 | } |
515 | |