1 | //===-- MemoryTagManagerAArch64MTETest.cpp --------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "Plugins/Process/Utility/MemoryTagManagerAArch64MTE.h" |
10 | #include "llvm/Testing/Support/Error.h" |
11 | #include "gtest/gtest.h" |
12 | |
13 | using namespace lldb_private; |
14 | |
15 | TEST(MemoryTagManagerAArch64MTETest, UnpackTagsData) { |
16 | MemoryTagManagerAArch64MTE manager; |
17 | |
18 | // Error for insufficient tag data |
19 | std::vector<uint8_t> input; |
20 | ASSERT_THAT_EXPECTED( |
21 | manager.UnpackTagsData(input, 2), |
22 | llvm::FailedWithMessage( |
23 | "Packed tag data size does not match expected number of tags. " |
24 | "Expected 2 tag(s) for 2 granule(s), got 0 tag(s)." )); |
25 | |
26 | // This is out of the valid tag range |
27 | input.push_back(x: 0x1f); |
28 | ASSERT_THAT_EXPECTED( |
29 | manager.UnpackTagsData(input, 1), |
30 | llvm::FailedWithMessage( |
31 | "Found tag 0x1f which is > max MTE tag value of 0xf." )); |
32 | |
33 | // MTE tags are 1 per byte |
34 | input.pop_back(); |
35 | input.push_back(x: 0xe); |
36 | input.push_back(x: 0xf); |
37 | |
38 | std::vector<lldb::addr_t> expected{0xe, 0xf}; |
39 | |
40 | llvm::Expected<std::vector<lldb::addr_t>> got = |
41 | manager.UnpackTagsData(tags: input, granules: 2); |
42 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
43 | ASSERT_THAT(expected, testing::ContainerEq(*got)); |
44 | |
45 | // Error for too much tag data |
46 | ASSERT_THAT_EXPECTED( |
47 | manager.UnpackTagsData(input, 1), |
48 | llvm::FailedWithMessage( |
49 | "Packed tag data size does not match expected number of tags. " |
50 | "Expected 1 tag(s) for 1 granule(s), got 2 tag(s)." )); |
51 | |
52 | // By default, we don't check number of tags |
53 | llvm::Expected<std::vector<lldb::addr_t>> got_zero = |
54 | manager.UnpackTagsData(tags: input); |
55 | ASSERT_THAT_EXPECTED(got_zero, llvm::Succeeded()); |
56 | ASSERT_THAT(expected, testing::ContainerEq(*got)); |
57 | |
58 | // Which is the same as granules=0 |
59 | got_zero = manager.UnpackTagsData(tags: input, granules: 0); |
60 | ASSERT_THAT_EXPECTED(got_zero, llvm::Succeeded()); |
61 | ASSERT_THAT(expected, testing::ContainerEq(*got)); |
62 | } |
63 | |
64 | TEST(MemoryTagManagerAArch64MTETest, PackTags) { |
65 | MemoryTagManagerAArch64MTE manager; |
66 | |
67 | // Error for tag out of range |
68 | llvm::Expected<std::vector<uint8_t>> invalid_tag_err = |
69 | manager.PackTags(tags: {0x10}); |
70 | ASSERT_THAT_EXPECTED( |
71 | invalid_tag_err, |
72 | llvm::FailedWithMessage( |
73 | "Found tag 0x10 which is > max MTE tag value of 0xf." )); |
74 | |
75 | // 0xf here is the max tag value that we can pack |
76 | std::vector<lldb::addr_t> tags{0, 1, 0xf}; |
77 | std::vector<uint8_t> expected{0, 1, 0xf}; |
78 | llvm::Expected<std::vector<uint8_t>> packed = manager.PackTags(tags); |
79 | ASSERT_THAT_EXPECTED(packed, llvm::Succeeded()); |
80 | ASSERT_THAT(expected, testing::ContainerEq(*packed)); |
81 | } |
82 | |
83 | TEST(MemoryTagManagerAArch64MTETest, UnpackTagsFromCoreFileSegment) { |
84 | MemoryTagManagerAArch64MTE manager; |
85 | // This is our fake segment data where tags are compressed as 2 4 bit tags |
86 | // per byte. |
87 | std::vector<uint8_t> tags_data; |
88 | MemoryTagManager::CoreReaderFn reader = |
89 | [&tags_data](lldb::offset_t offset, size_t length, void *dst) { |
90 | std::memcpy(dest: dst, src: tags_data.data() + offset, n: length); |
91 | return length; |
92 | }; |
93 | |
94 | // Zero length is ok. |
95 | std::vector<lldb::addr_t> tags = |
96 | manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 0); |
97 | ASSERT_EQ(tags.size(), (size_t)0); |
98 | |
99 | // In the simplest case we read 2 tags which are in the same byte. |
100 | tags_data.push_back(x: 0x21); |
101 | // The least significant bits are the first tag in memory. |
102 | std::vector<lldb::addr_t> expected{1, 2}; |
103 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 32); |
104 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
105 | |
106 | // If we read just one then it will have to trim off the second one. |
107 | expected = std::vector<lldb::addr_t>{1}; |
108 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 16); |
109 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
110 | |
111 | // If we read the second tag only then the first one must be trimmed. |
112 | expected = std::vector<lldb::addr_t>{2}; |
113 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 16, len: 16); |
114 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
115 | |
116 | // This trimming logic applies if you read a larger set of tags. |
117 | tags_data = std::vector<uint8_t>{0x21, 0x43, 0x65, 0x87}; |
118 | |
119 | // Trailing tag should be trimmed. |
120 | expected = std::vector<lldb::addr_t>{1, 2, 3}; |
121 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 48); |
122 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
123 | |
124 | // Leading tag should be trimmed. |
125 | expected = std::vector<lldb::addr_t>{2, 3, 4}; |
126 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 16, len: 48); |
127 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
128 | |
129 | // Leading and trailing trimmmed. |
130 | expected = std::vector<lldb::addr_t>{2, 3, 4, 5}; |
131 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 16, len: 64); |
132 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
133 | |
134 | // The address given is an offset into the whole file so the address requested |
135 | // from the reader should be beyond that. |
136 | tags_data = std::vector<uint8_t>{0xFF, 0xFF, 0x21, 0x43, 0x65, 0x87}; |
137 | expected = std::vector<lldb::addr_t>{1, 2}; |
138 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 2, addr: 0, len: 32); |
139 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
140 | |
141 | // addr is a virtual address that we expect to be >= the tag segment's |
142 | // starting virtual address. So again an offset must be made from the |
143 | // difference. |
144 | expected = std::vector<lldb::addr_t>{3, 4}; |
145 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 32, tag_segment_data_address: 2, addr: 64, len: 32); |
146 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
147 | } |
148 | |
149 | TEST(MemoryTagManagerAArch64MTETest, GetLogicalTag) { |
150 | MemoryTagManagerAArch64MTE manager; |
151 | |
152 | // Set surrounding bits to check shift is correct |
153 | ASSERT_EQ((lldb::addr_t)0, manager.GetLogicalTag(0xe0e00000ffffffff)); |
154 | // Max tag value |
155 | ASSERT_EQ((lldb::addr_t)0xf, manager.GetLogicalTag(0x0f000000ffffffff)); |
156 | ASSERT_EQ((lldb::addr_t)2, manager.GetLogicalTag(0x02000000ffffffff)); |
157 | } |
158 | |
159 | TEST(MemoryTagManagerAArch64MTETest, ExpandToGranule) { |
160 | MemoryTagManagerAArch64MTE manager; |
161 | // Reading nothing, no alignment needed |
162 | ASSERT_EQ( |
163 | MemoryTagManagerAArch64MTE::TagRange(0, 0), |
164 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0, 0))); |
165 | |
166 | // Ranges with 0 size are unchanged even if address is non 0 |
167 | // (normally 0x1234 would be aligned to 0x1230) |
168 | ASSERT_EQ( |
169 | MemoryTagManagerAArch64MTE::TagRange(0x1234, 0), |
170 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0x1234, 0))); |
171 | |
172 | // Ranges already aligned don't change |
173 | ASSERT_EQ( |
174 | MemoryTagManagerAArch64MTE::TagRange(0x100, 64), |
175 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0x100, 64))); |
176 | |
177 | // Any read of less than 1 granule is rounded up to reading 1 granule |
178 | ASSERT_EQ( |
179 | MemoryTagManagerAArch64MTE::TagRange(0, 16), |
180 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0, 1))); |
181 | |
182 | // Start address is aligned down, and length modified accordingly |
183 | // Here bytes 8 through 24 straddle 2 granules. So the resulting range starts |
184 | // at 0 and covers 32 bytes. |
185 | ASSERT_EQ( |
186 | MemoryTagManagerAArch64MTE::TagRange(0, 32), |
187 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(8, 16))); |
188 | |
189 | // Here only the size of the range needs aligning |
190 | ASSERT_EQ( |
191 | MemoryTagManagerAArch64MTE::TagRange(16, 32), |
192 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(16, 24))); |
193 | |
194 | // Start and size need aligning here but we only need 1 granule to cover it |
195 | ASSERT_EQ( |
196 | MemoryTagManagerAArch64MTE::TagRange(16, 16), |
197 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(18, 4))); |
198 | } |
199 | |
200 | static MemoryRegionInfo MakeRegionInfo(lldb::addr_t base, lldb::addr_t size, |
201 | bool tagged) { |
202 | return MemoryRegionInfo( |
203 | MemoryRegionInfo::RangeType(base, size), |
204 | MemoryRegionInfo::eYes, MemoryRegionInfo::eYes, MemoryRegionInfo::eYes, |
205 | MemoryRegionInfo::eNo, |
206 | MemoryRegionInfo::eYes, |
207 | ConstString(), MemoryRegionInfo::eNo, 0, |
208 | /*memory_tagged=*/ |
209 | tagged ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo, |
210 | MemoryRegionInfo::eDontKnow); |
211 | } |
212 | |
213 | TEST(MemoryTagManagerAArch64MTETest, MakeTaggedRange) { |
214 | MemoryTagManagerAArch64MTE manager; |
215 | MemoryRegionInfos memory_regions; |
216 | |
217 | // No regions means no tagged regions, error |
218 | ASSERT_THAT_EXPECTED( |
219 | manager.MakeTaggedRange(0, 0x10, memory_regions), |
220 | llvm::FailedWithMessage( |
221 | "Address range 0x0:0x10 is not in a memory tagged region" )); |
222 | |
223 | // Alignment is done before checking regions. |
224 | // Here 1 is rounded up to the granule size of 0x10. |
225 | ASSERT_THAT_EXPECTED( |
226 | manager.MakeTaggedRange(0, 1, memory_regions), |
227 | llvm::FailedWithMessage( |
228 | "Address range 0x0:0x10 is not in a memory tagged region" )); |
229 | |
230 | // Range must not be inverted |
231 | ASSERT_THAT_EXPECTED( |
232 | manager.MakeTaggedRange(1, 0, memory_regions), |
233 | llvm::FailedWithMessage( |
234 | "End address (0x0) must be greater than the start address (0x1)" )); |
235 | |
236 | // The inversion check ignores tags in the addresses (MTE tags start at bit |
237 | // 56). |
238 | ASSERT_THAT_EXPECTED( |
239 | manager.MakeTaggedRange((lldb::addr_t)1 << 56, |
240 | ((lldb::addr_t)2 << 56) + 0x10, memory_regions), |
241 | llvm::FailedWithMessage( |
242 | "Address range 0x0:0x10 is not in a memory tagged region" )); |
243 | |
244 | // Adding a single region to cover the whole range |
245 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x1000, tagged: true)); |
246 | |
247 | // Range can have different tags for begin and end |
248 | // (which would make it look inverted if we didn't remove them) |
249 | // Note that range comes back with an untagged base and alginment |
250 | // applied. |
251 | MemoryTagManagerAArch64MTE::TagRange expected_range(0x0, 0x10); |
252 | llvm::Expected<MemoryTagManagerAArch64MTE::TagRange> got = |
253 | manager.MakeTaggedRange(addr: 0x0f00000000000000, end_addr: 0x0e00000000000001, |
254 | memory_regions); |
255 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
256 | ASSERT_EQ(*got, expected_range); |
257 | |
258 | // Error if the range isn't within any region |
259 | ASSERT_THAT_EXPECTED( |
260 | manager.MakeTaggedRange(0x1000, 0x1010, memory_regions), |
261 | llvm::FailedWithMessage( |
262 | "Address range 0x1000:0x1010 is not in a memory tagged region" )); |
263 | |
264 | // Error if the first part of a range isn't tagged |
265 | memory_regions.clear(); |
266 | const char *err_msg = |
267 | "Address range 0x0:0x1000 is not in a memory tagged region" ; |
268 | |
269 | // First because it has no region entry |
270 | memory_regions.push_back(x: MakeRegionInfo(base: 0x10, size: 0x1000, tagged: true)); |
271 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
272 | llvm::FailedWithMessage(err_msg)); |
273 | |
274 | // Then because the first region is untagged |
275 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x10, tagged: false)); |
276 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
277 | llvm::FailedWithMessage(err_msg)); |
278 | |
279 | // If we tag that first part it succeeds |
280 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
281 | expected_range = MemoryTagManagerAArch64MTE::TagRange(0x0, 0x1000); |
282 | got = manager.MakeTaggedRange(addr: 0, end_addr: 0x1000, memory_regions); |
283 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
284 | ASSERT_EQ(*got, expected_range); |
285 | |
286 | // Error if the end of a range is untagged |
287 | memory_regions.clear(); |
288 | |
289 | // First because it has no region entry |
290 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0xF00, tagged: true)); |
291 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
292 | llvm::FailedWithMessage(err_msg)); |
293 | |
294 | // Then because the last region is untagged |
295 | memory_regions.push_back(x: MakeRegionInfo(base: 0xF00, size: 0x100, tagged: false)); |
296 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
297 | llvm::FailedWithMessage(err_msg)); |
298 | |
299 | // If we tag the last part it succeeds |
300 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
301 | got = manager.MakeTaggedRange(addr: 0, end_addr: 0x1000, memory_regions); |
302 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
303 | ASSERT_EQ(*got, expected_range); |
304 | |
305 | // Error if the middle of a range is untagged |
306 | memory_regions.clear(); |
307 | |
308 | // First because it has no entry |
309 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x500, tagged: true)); |
310 | memory_regions.push_back(x: MakeRegionInfo(base: 0x900, size: 0x700, tagged: true)); |
311 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
312 | llvm::FailedWithMessage(err_msg)); |
313 | |
314 | // Then because it's untagged |
315 | memory_regions.push_back(x: MakeRegionInfo(base: 0x500, size: 0x400, tagged: false)); |
316 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
317 | llvm::FailedWithMessage(err_msg)); |
318 | |
319 | // If we tag the middle part it succeeds |
320 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
321 | got = manager.MakeTaggedRange(addr: 0, end_addr: 0x1000, memory_regions); |
322 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
323 | ASSERT_EQ(*got, expected_range); |
324 | } |
325 | |
326 | TEST(MemoryTagManagerAArch64MTETest, MakeTaggedRanges) { |
327 | MemoryTagManagerAArch64MTE manager; |
328 | MemoryRegionInfos memory_regions; |
329 | |
330 | // Note that MakeTaggedRanges takes start/end address. |
331 | // Whereas TagRanges and regions take start address and size. |
332 | |
333 | // Range must not be inverted |
334 | ASSERT_THAT_EXPECTED( |
335 | manager.MakeTaggedRanges(1, 0, memory_regions), |
336 | llvm::FailedWithMessage( |
337 | "End address (0x0) must be greater than the start address (0x1)" )); |
338 | |
339 | // We remove tags before doing the inversion check, so this is not an error. |
340 | // Also no regions means no tagged regions returned. |
341 | // (bit 56 is where MTE tags begin) |
342 | llvm::Expected<std::vector<MemoryTagManager::TagRange>> got = |
343 | manager.MakeTaggedRanges(addr: (lldb::addr_t)2 << 56, |
344 | end_addr: ((lldb::addr_t)1 << 56) + 0x10, memory_regions); |
345 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
346 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{}); |
347 | |
348 | // Cover whole range, untagged. No ranges returned. |
349 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x20, tagged: false)); |
350 | got = manager.MakeTaggedRanges(addr: 0, end_addr: 0x20, memory_regions); |
351 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
352 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{}); |
353 | |
354 | // Make the region tagged and it'll be the one range returned. |
355 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
356 | got = manager.MakeTaggedRanges(addr: 0, end_addr: 0x20, memory_regions); |
357 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
358 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{ |
359 | MemoryTagManager::TagRange(0, 0x20)}); |
360 | |
361 | // This region will be trimmed if it's larger than the whole range. |
362 | memory_regions.clear(); |
363 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x40, tagged: true)); |
364 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x30, memory_regions); |
365 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
366 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{ |
367 | MemoryTagManager::TagRange(0x10, 0x20)}); |
368 | |
369 | memory_regions.clear(); |
370 | |
371 | // For the following tests we keep the input regions |
372 | // in ascending order as MakeTaggedRanges expects. |
373 | |
374 | // Only start of range is tagged, only that is returned. |
375 | // Start the region just before the requested range to check |
376 | // we limit the result to the requested range. |
377 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x20, tagged: true)); |
378 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x100, memory_regions); |
379 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
380 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{ |
381 | MemoryTagManager::TagRange(0x10, 0x10)}); |
382 | |
383 | // Add a tagged region at the end, now we get both |
384 | // and the middle is untagged. |
385 | // <tagged: [0x0, 0x20)> |
386 | // <...> |
387 | // <tagged: [0xE0, 0x120)> |
388 | // The range added here is deliberately over the end of the |
389 | // requested range to show that we trim the end. |
390 | memory_regions.push_back(x: MakeRegionInfo(base: 0xE0, size: 0x40, tagged: true)); |
391 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
392 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
393 | |
394 | std::vector<MemoryTagManager::TagRange> expected{ |
395 | MemoryTagManager::TagRange(0x10, 0x10), |
396 | MemoryTagManager::TagRange(0xE0, 0x30)}; |
397 | ASSERT_EQ(*got, expected); |
398 | |
399 | // Now add a middle tagged region. |
400 | // <tagged: [0x0, 0x20)> |
401 | // <...> |
402 | // <tagged: [0x90, 0xB0)> |
403 | // <...> |
404 | // <tagged: [0xE0, 0x120)> |
405 | memory_regions.insert(position: std::next(x: memory_regions.begin()), |
406 | x: MakeRegionInfo(base: 0x90, size: 0x20, tagged: true)); |
407 | |
408 | // As the given regions are in ascending order, the resulting |
409 | // tagged ranges are also. So this new range goes in the middle. |
410 | expected.insert(position: std::next(x: expected.begin()), |
411 | x: MemoryTagManager::TagRange(0x90, 0x20)); |
412 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
413 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
414 | ASSERT_EQ(*got, expected); |
415 | |
416 | // Then if we add untagged regions in between the tagged, |
417 | // the output should stay the same. |
418 | // <tagged: [0x0, 0x20)> |
419 | // <untagged: [0x20, 0x90)> |
420 | // <tagged: [0x90, 0xB0)> |
421 | // <untagged: [0xB0, 0xE0)> |
422 | // <tagged: [0xE0, 0x120)> |
423 | memory_regions.insert(position: std::next(x: memory_regions.begin()), |
424 | x: MakeRegionInfo(base: 0x20, size: 0x70, tagged: false)); |
425 | memory_regions.insert(position: std::prev(x: memory_regions.end()), |
426 | x: MakeRegionInfo(base: 0xB0, size: 0x30, tagged: false)); |
427 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
428 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
429 | ASSERT_EQ(*got, expected); |
430 | |
431 | // Finally check that we handle only having the end of the range. |
432 | memory_regions.clear(); |
433 | expected.clear(); |
434 | |
435 | memory_regions.push_back(x: MakeRegionInfo(base: 0x100, size: 0x10, tagged: true)); |
436 | expected.push_back(x: MemoryTagManager::TagRange(0x100, 0x10)); |
437 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
438 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
439 | ASSERT_EQ(*got, expected); |
440 | } |
441 | |
442 | TEST(MemoryTagManagerAArch64MTETest, RemoveTagBits) { |
443 | MemoryTagManagerAArch64MTE manager; |
444 | |
445 | ASSERT_EQ(0, 0); |
446 | // Removes the whole top byte |
447 | ASSERT_EQ((lldb::addr_t)0x00ffeedd11223344, |
448 | manager.RemoveTagBits(0x00ffeedd11223344)); |
449 | ASSERT_EQ((lldb::addr_t)0x0000000000000000, |
450 | manager.RemoveTagBits(0xff00000000000000)); |
451 | ASSERT_EQ((lldb::addr_t)0x0055555566666666, |
452 | manager.RemoveTagBits(0xee55555566666666)); |
453 | } |
454 | |
455 | TEST(MemoryTagManagerAArch64MTETest, AddressDiff) { |
456 | MemoryTagManagerAArch64MTE manager; |
457 | |
458 | ASSERT_EQ(0, manager.AddressDiff(0, 0)); |
459 | // Result is signed |
460 | ASSERT_EQ(10, manager.AddressDiff(10, 0)); |
461 | ASSERT_EQ(-10, manager.AddressDiff(0, 10)); |
462 | // Anything in the top byte is ignored |
463 | ASSERT_EQ(0, manager.AddressDiff(0x2211222233334444, 0x3311222233334444)); |
464 | ASSERT_EQ(-32, manager.AddressDiff(0x5511222233334400, 0x4411222233334420)); |
465 | ASSERT_EQ(65, manager.AddressDiff(0x9911222233334441, 0x6611222233334400)); |
466 | } |
467 | |
468 | // Helper to check that repeating "tags" over "range" gives you |
469 | // "expected_tags". |
470 | static void |
471 | test_repeating_tags(const std::vector<lldb::addr_t> &tags, |
472 | MemoryTagManagerAArch64MTE::TagRange range, |
473 | const std::vector<lldb::addr_t> &expected_tags) { |
474 | MemoryTagManagerAArch64MTE manager; |
475 | llvm::Expected<std::vector<lldb::addr_t>> tags_or_err = |
476 | manager.RepeatTagsForRange(tags, range); |
477 | ASSERT_THAT_EXPECTED(tags_or_err, llvm::Succeeded()); |
478 | ASSERT_THAT(expected_tags, testing::ContainerEq(*tags_or_err)); |
479 | } |
480 | |
481 | TEST(MemoryTagManagerAArch64MTETest, RepeatTagsForRange) { |
482 | MemoryTagManagerAArch64MTE manager; |
483 | |
484 | // Must have some tags if your range is not empty |
485 | llvm::Expected<std::vector<lldb::addr_t>> no_tags_err = |
486 | manager.RepeatTagsForRange(tags: {}, |
487 | range: MemoryTagManagerAArch64MTE::TagRange{0, 16}); |
488 | ASSERT_THAT_EXPECTED( |
489 | no_tags_err, llvm::FailedWithMessage( |
490 | "Expected some tags to cover given range, got zero." )); |
491 | |
492 | // If the range is empty, you get no tags back |
493 | test_repeating_tags(tags: {1, 2, 3}, range: MemoryTagManagerAArch64MTE::TagRange{0, 0}, |
494 | expected_tags: {}); |
495 | // And you don't need tags for an empty range |
496 | test_repeating_tags(tags: {}, range: MemoryTagManagerAArch64MTE::TagRange{0, 0}, expected_tags: {}); |
497 | |
498 | // A single tag will just be multiplied as many times as needed |
499 | test_repeating_tags(tags: {5}, range: MemoryTagManagerAArch64MTE::TagRange{0, 16}, expected_tags: {5}); |
500 | test_repeating_tags(tags: {6}, range: MemoryTagManagerAArch64MTE::TagRange{0, 32}, expected_tags: {6, 6}); |
501 | |
502 | // If you've got as many tags as granules, it's a roundtrip |
503 | test_repeating_tags(tags: {7, 8}, range: MemoryTagManagerAArch64MTE::TagRange{0, 32}, |
504 | expected_tags: {7, 8}); |
505 | |
506 | // If you've got fewer tags than granules, they repeat. Exactly or partially |
507 | // as needed. |
508 | test_repeating_tags(tags: {7, 8}, range: MemoryTagManagerAArch64MTE::TagRange{0, 64}, |
509 | expected_tags: {7, 8, 7, 8}); |
510 | test_repeating_tags(tags: {7, 8}, range: MemoryTagManagerAArch64MTE::TagRange{0, 48}, |
511 | expected_tags: {7, 8, 7}); |
512 | |
513 | // If you've got more tags than granules you get back only those needed |
514 | test_repeating_tags(tags: {1, 2, 3, 4}, range: MemoryTagManagerAArch64MTE::TagRange{0, 32}, |
515 | expected_tags: {1, 2}); |
516 | } |
517 | |