| 1 | //===-- MemoryTagManagerAArch64MTETest.cpp --------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "Plugins/Process/Utility/MemoryTagManagerAArch64MTE.h" |
| 10 | #include "llvm/Testing/Support/Error.h" |
| 11 | #include "gtest/gtest.h" |
| 12 | |
| 13 | using namespace lldb_private; |
| 14 | |
| 15 | TEST(MemoryTagManagerAArch64MTETest, UnpackTagsData) { |
| 16 | MemoryTagManagerAArch64MTE manager; |
| 17 | |
| 18 | // Error for insufficient tag data |
| 19 | std::vector<uint8_t> input; |
| 20 | ASSERT_THAT_EXPECTED( |
| 21 | manager.UnpackTagsData(input, 2), |
| 22 | llvm::FailedWithMessage( |
| 23 | "Packed tag data size does not match expected number of tags. " |
| 24 | "Expected 2 tag(s) for 2 granule(s), got 0 tag(s)." )); |
| 25 | |
| 26 | // This is out of the valid tag range |
| 27 | input.push_back(x: 0x1f); |
| 28 | ASSERT_THAT_EXPECTED( |
| 29 | manager.UnpackTagsData(input, 1), |
| 30 | llvm::FailedWithMessage( |
| 31 | "Found tag 0x1f which is > max MTE tag value of 0xf." )); |
| 32 | |
| 33 | // MTE tags are 1 per byte |
| 34 | input.pop_back(); |
| 35 | input.push_back(x: 0xe); |
| 36 | input.push_back(x: 0xf); |
| 37 | |
| 38 | std::vector<lldb::addr_t> expected{0xe, 0xf}; |
| 39 | |
| 40 | llvm::Expected<std::vector<lldb::addr_t>> got = |
| 41 | manager.UnpackTagsData(tags: input, granules: 2); |
| 42 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 43 | ASSERT_THAT(expected, testing::ContainerEq(*got)); |
| 44 | |
| 45 | // Error for too much tag data |
| 46 | ASSERT_THAT_EXPECTED( |
| 47 | manager.UnpackTagsData(input, 1), |
| 48 | llvm::FailedWithMessage( |
| 49 | "Packed tag data size does not match expected number of tags. " |
| 50 | "Expected 1 tag(s) for 1 granule(s), got 2 tag(s)." )); |
| 51 | |
| 52 | // By default, we don't check number of tags |
| 53 | llvm::Expected<std::vector<lldb::addr_t>> got_zero = |
| 54 | manager.UnpackTagsData(tags: input); |
| 55 | ASSERT_THAT_EXPECTED(got_zero, llvm::Succeeded()); |
| 56 | ASSERT_THAT(expected, testing::ContainerEq(*got)); |
| 57 | |
| 58 | // Which is the same as granules=0 |
| 59 | got_zero = manager.UnpackTagsData(tags: input, granules: 0); |
| 60 | ASSERT_THAT_EXPECTED(got_zero, llvm::Succeeded()); |
| 61 | ASSERT_THAT(expected, testing::ContainerEq(*got)); |
| 62 | } |
| 63 | |
| 64 | TEST(MemoryTagManagerAArch64MTETest, PackTags) { |
| 65 | MemoryTagManagerAArch64MTE manager; |
| 66 | |
| 67 | // Error for tag out of range |
| 68 | llvm::Expected<std::vector<uint8_t>> invalid_tag_err = |
| 69 | manager.PackTags(tags: {0x10}); |
| 70 | ASSERT_THAT_EXPECTED( |
| 71 | invalid_tag_err, |
| 72 | llvm::FailedWithMessage( |
| 73 | "Found tag 0x10 which is > max MTE tag value of 0xf." )); |
| 74 | |
| 75 | // 0xf here is the max tag value that we can pack |
| 76 | std::vector<lldb::addr_t> tags{0, 1, 0xf}; |
| 77 | std::vector<uint8_t> expected{0, 1, 0xf}; |
| 78 | llvm::Expected<std::vector<uint8_t>> packed = manager.PackTags(tags); |
| 79 | ASSERT_THAT_EXPECTED(packed, llvm::Succeeded()); |
| 80 | ASSERT_THAT(expected, testing::ContainerEq(*packed)); |
| 81 | } |
| 82 | |
| 83 | TEST(MemoryTagManagerAArch64MTETest, UnpackTagsFromCoreFileSegment) { |
| 84 | MemoryTagManagerAArch64MTE manager; |
| 85 | // This is our fake segment data where tags are compressed as 2 4 bit tags |
| 86 | // per byte. |
| 87 | std::vector<uint8_t> tags_data; |
| 88 | MemoryTagManager::CoreReaderFn reader = |
| 89 | [&tags_data](lldb::offset_t offset, size_t length, void *dst) { |
| 90 | std::memcpy(dest: dst, src: tags_data.data() + offset, n: length); |
| 91 | return length; |
| 92 | }; |
| 93 | |
| 94 | // Zero length is ok. |
| 95 | std::vector<lldb::addr_t> tags = |
| 96 | manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 0); |
| 97 | ASSERT_EQ(tags.size(), (size_t)0); |
| 98 | |
| 99 | // In the simplest case we read 2 tags which are in the same byte. |
| 100 | tags_data.push_back(x: 0x21); |
| 101 | // The least significant bits are the first tag in memory. |
| 102 | std::vector<lldb::addr_t> expected{1, 2}; |
| 103 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 32); |
| 104 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
| 105 | |
| 106 | // If we read just one then it will have to trim off the second one. |
| 107 | expected = std::vector<lldb::addr_t>{1}; |
| 108 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 16); |
| 109 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
| 110 | |
| 111 | // If we read the second tag only then the first one must be trimmed. |
| 112 | expected = std::vector<lldb::addr_t>{2}; |
| 113 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 16, len: 16); |
| 114 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
| 115 | |
| 116 | // This trimming logic applies if you read a larger set of tags. |
| 117 | tags_data = std::vector<uint8_t>{0x21, 0x43, 0x65, 0x87}; |
| 118 | |
| 119 | // Trailing tag should be trimmed. |
| 120 | expected = std::vector<lldb::addr_t>{1, 2, 3}; |
| 121 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 0, len: 48); |
| 122 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
| 123 | |
| 124 | // Leading tag should be trimmed. |
| 125 | expected = std::vector<lldb::addr_t>{2, 3, 4}; |
| 126 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 16, len: 48); |
| 127 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
| 128 | |
| 129 | // Leading and trailing trimmmed. |
| 130 | expected = std::vector<lldb::addr_t>{2, 3, 4, 5}; |
| 131 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 0, addr: 16, len: 64); |
| 132 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
| 133 | |
| 134 | // The address given is an offset into the whole file so the address requested |
| 135 | // from the reader should be beyond that. |
| 136 | tags_data = std::vector<uint8_t>{0xFF, 0xFF, 0x21, 0x43, 0x65, 0x87}; |
| 137 | expected = std::vector<lldb::addr_t>{1, 2}; |
| 138 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 0, tag_segment_data_address: 2, addr: 0, len: 32); |
| 139 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
| 140 | |
| 141 | // addr is a virtual address that we expect to be >= the tag segment's |
| 142 | // starting virtual address. So again an offset must be made from the |
| 143 | // difference. |
| 144 | expected = std::vector<lldb::addr_t>{3, 4}; |
| 145 | tags = manager.UnpackTagsFromCoreFileSegment(reader, tag_segment_virtual_address: 32, tag_segment_data_address: 2, addr: 64, len: 32); |
| 146 | ASSERT_THAT(expected, testing::ContainerEq(tags)); |
| 147 | } |
| 148 | |
| 149 | TEST(MemoryTagManagerAArch64MTETest, GetLogicalTag) { |
| 150 | MemoryTagManagerAArch64MTE manager; |
| 151 | |
| 152 | // Set surrounding bits to check shift is correct |
| 153 | ASSERT_EQ((lldb::addr_t)0, manager.GetLogicalTag(0xe0e00000ffffffff)); |
| 154 | // Max tag value |
| 155 | ASSERT_EQ((lldb::addr_t)0xf, manager.GetLogicalTag(0x0f000000ffffffff)); |
| 156 | ASSERT_EQ((lldb::addr_t)2, manager.GetLogicalTag(0x02000000ffffffff)); |
| 157 | } |
| 158 | |
| 159 | TEST(MemoryTagManagerAArch64MTETest, ExpandToGranule) { |
| 160 | MemoryTagManagerAArch64MTE manager; |
| 161 | // Reading nothing, no alignment needed |
| 162 | ASSERT_EQ( |
| 163 | MemoryTagManagerAArch64MTE::TagRange(0, 0), |
| 164 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0, 0))); |
| 165 | |
| 166 | // Ranges with 0 size are unchanged even if address is non 0 |
| 167 | // (normally 0x1234 would be aligned to 0x1230) |
| 168 | ASSERT_EQ( |
| 169 | MemoryTagManagerAArch64MTE::TagRange(0x1234, 0), |
| 170 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0x1234, 0))); |
| 171 | |
| 172 | // Ranges already aligned don't change |
| 173 | ASSERT_EQ( |
| 174 | MemoryTagManagerAArch64MTE::TagRange(0x100, 64), |
| 175 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0x100, 64))); |
| 176 | |
| 177 | // Any read of less than 1 granule is rounded up to reading 1 granule |
| 178 | ASSERT_EQ( |
| 179 | MemoryTagManagerAArch64MTE::TagRange(0, 16), |
| 180 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(0, 1))); |
| 181 | |
| 182 | // Start address is aligned down, and length modified accordingly |
| 183 | // Here bytes 8 through 24 straddle 2 granules. So the resulting range starts |
| 184 | // at 0 and covers 32 bytes. |
| 185 | ASSERT_EQ( |
| 186 | MemoryTagManagerAArch64MTE::TagRange(0, 32), |
| 187 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(8, 16))); |
| 188 | |
| 189 | // Here only the size of the range needs aligning |
| 190 | ASSERT_EQ( |
| 191 | MemoryTagManagerAArch64MTE::TagRange(16, 32), |
| 192 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(16, 24))); |
| 193 | |
| 194 | // Start and size need aligning here but we only need 1 granule to cover it |
| 195 | ASSERT_EQ( |
| 196 | MemoryTagManagerAArch64MTE::TagRange(16, 16), |
| 197 | manager.ExpandToGranule(MemoryTagManagerAArch64MTE::TagRange(18, 4))); |
| 198 | } |
| 199 | |
| 200 | static MemoryRegionInfo MakeRegionInfo(lldb::addr_t base, lldb::addr_t size, |
| 201 | bool tagged) { |
| 202 | return MemoryRegionInfo( |
| 203 | MemoryRegionInfo::RangeType(base, size), MemoryRegionInfo::eYes, |
| 204 | MemoryRegionInfo::eYes, MemoryRegionInfo::eYes, MemoryRegionInfo::eNo, |
| 205 | MemoryRegionInfo::eYes, ConstString(), MemoryRegionInfo::eNo, 0, |
| 206 | /*memory_tagged=*/ |
| 207 | tagged ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo, |
| 208 | MemoryRegionInfo::eDontKnow, MemoryRegionInfo::eDontKnow); |
| 209 | } |
| 210 | |
| 211 | TEST(MemoryTagManagerAArch64MTETest, MakeTaggedRange) { |
| 212 | MemoryTagManagerAArch64MTE manager; |
| 213 | MemoryRegionInfos memory_regions; |
| 214 | |
| 215 | // No regions means no tagged regions, error |
| 216 | ASSERT_THAT_EXPECTED( |
| 217 | manager.MakeTaggedRange(0, 0x10, memory_regions), |
| 218 | llvm::FailedWithMessage( |
| 219 | "Address range 0x0:0x10 is not in a memory tagged region" )); |
| 220 | |
| 221 | // Alignment is done before checking regions. |
| 222 | // Here 1 is rounded up to the granule size of 0x10. |
| 223 | ASSERT_THAT_EXPECTED( |
| 224 | manager.MakeTaggedRange(0, 1, memory_regions), |
| 225 | llvm::FailedWithMessage( |
| 226 | "Address range 0x0:0x10 is not in a memory tagged region" )); |
| 227 | |
| 228 | // Range must not be inverted |
| 229 | ASSERT_THAT_EXPECTED( |
| 230 | manager.MakeTaggedRange(1, 0, memory_regions), |
| 231 | llvm::FailedWithMessage( |
| 232 | "End address (0x0) must be greater than the start address (0x1)" )); |
| 233 | |
| 234 | // The inversion check ignores tags in the addresses (MTE tags start at bit |
| 235 | // 56). |
| 236 | ASSERT_THAT_EXPECTED( |
| 237 | manager.MakeTaggedRange((lldb::addr_t)1 << 56, |
| 238 | ((lldb::addr_t)2 << 56) + 0x10, memory_regions), |
| 239 | llvm::FailedWithMessage( |
| 240 | "Address range 0x0:0x10 is not in a memory tagged region" )); |
| 241 | |
| 242 | // Adding a single region to cover the whole range |
| 243 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x1000, tagged: true)); |
| 244 | |
| 245 | // Range can have different tags for begin and end |
| 246 | // (which would make it look inverted if we didn't remove them) |
| 247 | // Note that range comes back with an untagged base and alginment |
| 248 | // applied. |
| 249 | MemoryTagManagerAArch64MTE::TagRange expected_range(0x0, 0x10); |
| 250 | llvm::Expected<MemoryTagManagerAArch64MTE::TagRange> got = |
| 251 | manager.MakeTaggedRange(addr: 0x0f00000000000000, end_addr: 0x0e00000000000001, |
| 252 | memory_regions); |
| 253 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 254 | ASSERT_EQ(*got, expected_range); |
| 255 | |
| 256 | // Error if the range isn't within any region |
| 257 | ASSERT_THAT_EXPECTED( |
| 258 | manager.MakeTaggedRange(0x1000, 0x1010, memory_regions), |
| 259 | llvm::FailedWithMessage( |
| 260 | "Address range 0x1000:0x1010 is not in a memory tagged region" )); |
| 261 | |
| 262 | // Error if the first part of a range isn't tagged |
| 263 | memory_regions.clear(); |
| 264 | const char *err_msg = |
| 265 | "Address range 0x0:0x1000 is not in a memory tagged region" ; |
| 266 | |
| 267 | // First because it has no region entry |
| 268 | memory_regions.push_back(x: MakeRegionInfo(base: 0x10, size: 0x1000, tagged: true)); |
| 269 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
| 270 | llvm::FailedWithMessage(err_msg)); |
| 271 | |
| 272 | // Then because the first region is untagged |
| 273 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x10, tagged: false)); |
| 274 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
| 275 | llvm::FailedWithMessage(err_msg)); |
| 276 | |
| 277 | // If we tag that first part it succeeds |
| 278 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
| 279 | expected_range = MemoryTagManagerAArch64MTE::TagRange(0x0, 0x1000); |
| 280 | got = manager.MakeTaggedRange(addr: 0, end_addr: 0x1000, memory_regions); |
| 281 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 282 | ASSERT_EQ(*got, expected_range); |
| 283 | |
| 284 | // Error if the end of a range is untagged |
| 285 | memory_regions.clear(); |
| 286 | |
| 287 | // First because it has no region entry |
| 288 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0xF00, tagged: true)); |
| 289 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
| 290 | llvm::FailedWithMessage(err_msg)); |
| 291 | |
| 292 | // Then because the last region is untagged |
| 293 | memory_regions.push_back(x: MakeRegionInfo(base: 0xF00, size: 0x100, tagged: false)); |
| 294 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
| 295 | llvm::FailedWithMessage(err_msg)); |
| 296 | |
| 297 | // If we tag the last part it succeeds |
| 298 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
| 299 | got = manager.MakeTaggedRange(addr: 0, end_addr: 0x1000, memory_regions); |
| 300 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 301 | ASSERT_EQ(*got, expected_range); |
| 302 | |
| 303 | // Error if the middle of a range is untagged |
| 304 | memory_regions.clear(); |
| 305 | |
| 306 | // First because it has no entry |
| 307 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x500, tagged: true)); |
| 308 | memory_regions.push_back(x: MakeRegionInfo(base: 0x900, size: 0x700, tagged: true)); |
| 309 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
| 310 | llvm::FailedWithMessage(err_msg)); |
| 311 | |
| 312 | // Then because it's untagged |
| 313 | memory_regions.push_back(x: MakeRegionInfo(base: 0x500, size: 0x400, tagged: false)); |
| 314 | ASSERT_THAT_EXPECTED(manager.MakeTaggedRange(0, 0x1000, memory_regions), |
| 315 | llvm::FailedWithMessage(err_msg)); |
| 316 | |
| 317 | // If we tag the middle part it succeeds |
| 318 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
| 319 | got = manager.MakeTaggedRange(addr: 0, end_addr: 0x1000, memory_regions); |
| 320 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 321 | ASSERT_EQ(*got, expected_range); |
| 322 | } |
| 323 | |
| 324 | TEST(MemoryTagManagerAArch64MTETest, MakeTaggedRanges) { |
| 325 | MemoryTagManagerAArch64MTE manager; |
| 326 | MemoryRegionInfos memory_regions; |
| 327 | |
| 328 | // Note that MakeTaggedRanges takes start/end address. |
| 329 | // Whereas TagRanges and regions take start address and size. |
| 330 | |
| 331 | // Range must not be inverted |
| 332 | ASSERT_THAT_EXPECTED( |
| 333 | manager.MakeTaggedRanges(1, 0, memory_regions), |
| 334 | llvm::FailedWithMessage( |
| 335 | "End address (0x0) must be greater than the start address (0x1)" )); |
| 336 | |
| 337 | // We remove tags before doing the inversion check, so this is not an error. |
| 338 | // Also no regions means no tagged regions returned. |
| 339 | // (bit 56 is where MTE tags begin) |
| 340 | llvm::Expected<std::vector<MemoryTagManager::TagRange>> got = |
| 341 | manager.MakeTaggedRanges(addr: (lldb::addr_t)2 << 56, |
| 342 | end_addr: ((lldb::addr_t)1 << 56) + 0x10, memory_regions); |
| 343 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 344 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{}); |
| 345 | |
| 346 | // Cover whole range, untagged. No ranges returned. |
| 347 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x20, tagged: false)); |
| 348 | got = manager.MakeTaggedRanges(addr: 0, end_addr: 0x20, memory_regions); |
| 349 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 350 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{}); |
| 351 | |
| 352 | // Make the region tagged and it'll be the one range returned. |
| 353 | memory_regions.back().SetMemoryTagged(MemoryRegionInfo::eYes); |
| 354 | got = manager.MakeTaggedRanges(addr: 0, end_addr: 0x20, memory_regions); |
| 355 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 356 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{ |
| 357 | MemoryTagManager::TagRange(0, 0x20)}); |
| 358 | |
| 359 | // This region will be trimmed if it's larger than the whole range. |
| 360 | memory_regions.clear(); |
| 361 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x40, tagged: true)); |
| 362 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x30, memory_regions); |
| 363 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 364 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{ |
| 365 | MemoryTagManager::TagRange(0x10, 0x20)}); |
| 366 | |
| 367 | memory_regions.clear(); |
| 368 | |
| 369 | // For the following tests we keep the input regions |
| 370 | // in ascending order as MakeTaggedRanges expects. |
| 371 | |
| 372 | // Only start of range is tagged, only that is returned. |
| 373 | // Start the region just before the requested range to check |
| 374 | // we limit the result to the requested range. |
| 375 | memory_regions.push_back(x: MakeRegionInfo(base: 0, size: 0x20, tagged: true)); |
| 376 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x100, memory_regions); |
| 377 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 378 | ASSERT_EQ(*got, std::vector<MemoryTagManager::TagRange>{ |
| 379 | MemoryTagManager::TagRange(0x10, 0x10)}); |
| 380 | |
| 381 | // Add a tagged region at the end, now we get both |
| 382 | // and the middle is untagged. |
| 383 | // <tagged: [0x0, 0x20)> |
| 384 | // <...> |
| 385 | // <tagged: [0xE0, 0x120)> |
| 386 | // The range added here is deliberately over the end of the |
| 387 | // requested range to show that we trim the end. |
| 388 | memory_regions.push_back(x: MakeRegionInfo(base: 0xE0, size: 0x40, tagged: true)); |
| 389 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
| 390 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 391 | |
| 392 | std::vector<MemoryTagManager::TagRange> expected{ |
| 393 | MemoryTagManager::TagRange(0x10, 0x10), |
| 394 | MemoryTagManager::TagRange(0xE0, 0x30)}; |
| 395 | ASSERT_EQ(*got, expected); |
| 396 | |
| 397 | // Now add a middle tagged region. |
| 398 | // <tagged: [0x0, 0x20)> |
| 399 | // <...> |
| 400 | // <tagged: [0x90, 0xB0)> |
| 401 | // <...> |
| 402 | // <tagged: [0xE0, 0x120)> |
| 403 | memory_regions.insert(position: std::next(x: memory_regions.begin()), |
| 404 | x: MakeRegionInfo(base: 0x90, size: 0x20, tagged: true)); |
| 405 | |
| 406 | // As the given regions are in ascending order, the resulting |
| 407 | // tagged ranges are also. So this new range goes in the middle. |
| 408 | expected.insert(position: std::next(x: expected.begin()), |
| 409 | x: MemoryTagManager::TagRange(0x90, 0x20)); |
| 410 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
| 411 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 412 | ASSERT_EQ(*got, expected); |
| 413 | |
| 414 | // Then if we add untagged regions in between the tagged, |
| 415 | // the output should stay the same. |
| 416 | // <tagged: [0x0, 0x20)> |
| 417 | // <untagged: [0x20, 0x90)> |
| 418 | // <tagged: [0x90, 0xB0)> |
| 419 | // <untagged: [0xB0, 0xE0)> |
| 420 | // <tagged: [0xE0, 0x120)> |
| 421 | memory_regions.insert(position: std::next(x: memory_regions.begin()), |
| 422 | x: MakeRegionInfo(base: 0x20, size: 0x70, tagged: false)); |
| 423 | memory_regions.insert(position: std::prev(x: memory_regions.end()), |
| 424 | x: MakeRegionInfo(base: 0xB0, size: 0x30, tagged: false)); |
| 425 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
| 426 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 427 | ASSERT_EQ(*got, expected); |
| 428 | |
| 429 | // Finally check that we handle only having the end of the range. |
| 430 | memory_regions.clear(); |
| 431 | expected.clear(); |
| 432 | |
| 433 | memory_regions.push_back(x: MakeRegionInfo(base: 0x100, size: 0x10, tagged: true)); |
| 434 | expected.push_back(x: MemoryTagManager::TagRange(0x100, 0x10)); |
| 435 | got = manager.MakeTaggedRanges(addr: 0x10, end_addr: 0x110, memory_regions); |
| 436 | ASSERT_THAT_EXPECTED(got, llvm::Succeeded()); |
| 437 | ASSERT_EQ(*got, expected); |
| 438 | } |
| 439 | |
| 440 | TEST(MemoryTagManagerAArch64MTETest, RemoveTagBits) { |
| 441 | MemoryTagManagerAArch64MTE manager; |
| 442 | |
| 443 | ASSERT_EQ(0, 0); |
| 444 | // Removes the whole top byte |
| 445 | ASSERT_EQ((lldb::addr_t)0x00ffeedd11223344, |
| 446 | manager.RemoveTagBits(0x00ffeedd11223344)); |
| 447 | ASSERT_EQ((lldb::addr_t)0x0000000000000000, |
| 448 | manager.RemoveTagBits(0xff00000000000000)); |
| 449 | ASSERT_EQ((lldb::addr_t)0x0055555566666666, |
| 450 | manager.RemoveTagBits(0xee55555566666666)); |
| 451 | } |
| 452 | |
| 453 | TEST(MemoryTagManagerAArch64MTETest, AddressDiff) { |
| 454 | MemoryTagManagerAArch64MTE manager; |
| 455 | |
| 456 | ASSERT_EQ(0, manager.AddressDiff(0, 0)); |
| 457 | // Result is signed |
| 458 | ASSERT_EQ(10, manager.AddressDiff(10, 0)); |
| 459 | ASSERT_EQ(-10, manager.AddressDiff(0, 10)); |
| 460 | // Anything in the top byte is ignored |
| 461 | ASSERT_EQ(0, manager.AddressDiff(0x2211222233334444, 0x3311222233334444)); |
| 462 | ASSERT_EQ(-32, manager.AddressDiff(0x5511222233334400, 0x4411222233334420)); |
| 463 | ASSERT_EQ(65, manager.AddressDiff(0x9911222233334441, 0x6611222233334400)); |
| 464 | } |
| 465 | |
| 466 | // Helper to check that repeating "tags" over "range" gives you |
| 467 | // "expected_tags". |
| 468 | static void |
| 469 | test_repeating_tags(const std::vector<lldb::addr_t> &tags, |
| 470 | MemoryTagManagerAArch64MTE::TagRange range, |
| 471 | const std::vector<lldb::addr_t> &expected_tags) { |
| 472 | MemoryTagManagerAArch64MTE manager; |
| 473 | llvm::Expected<std::vector<lldb::addr_t>> tags_or_err = |
| 474 | manager.RepeatTagsForRange(tags, range); |
| 475 | ASSERT_THAT_EXPECTED(tags_or_err, llvm::Succeeded()); |
| 476 | ASSERT_THAT(expected_tags, testing::ContainerEq(*tags_or_err)); |
| 477 | } |
| 478 | |
| 479 | TEST(MemoryTagManagerAArch64MTETest, RepeatTagsForRange) { |
| 480 | MemoryTagManagerAArch64MTE manager; |
| 481 | |
| 482 | // Must have some tags if your range is not empty |
| 483 | llvm::Expected<std::vector<lldb::addr_t>> no_tags_err = |
| 484 | manager.RepeatTagsForRange(tags: {}, |
| 485 | range: MemoryTagManagerAArch64MTE::TagRange{0, 16}); |
| 486 | ASSERT_THAT_EXPECTED( |
| 487 | no_tags_err, llvm::FailedWithMessage( |
| 488 | "Expected some tags to cover given range, got zero." )); |
| 489 | |
| 490 | // If the range is empty, you get no tags back |
| 491 | test_repeating_tags(tags: {1, 2, 3}, range: MemoryTagManagerAArch64MTE::TagRange{0, 0}, |
| 492 | expected_tags: {}); |
| 493 | // And you don't need tags for an empty range |
| 494 | test_repeating_tags(tags: {}, range: MemoryTagManagerAArch64MTE::TagRange{0, 0}, expected_tags: {}); |
| 495 | |
| 496 | // A single tag will just be multiplied as many times as needed |
| 497 | test_repeating_tags(tags: {5}, range: MemoryTagManagerAArch64MTE::TagRange{0, 16}, expected_tags: {5}); |
| 498 | test_repeating_tags(tags: {6}, range: MemoryTagManagerAArch64MTE::TagRange{0, 32}, expected_tags: {6, 6}); |
| 499 | |
| 500 | // If you've got as many tags as granules, it's a roundtrip |
| 501 | test_repeating_tags(tags: {7, 8}, range: MemoryTagManagerAArch64MTE::TagRange{0, 32}, |
| 502 | expected_tags: {7, 8}); |
| 503 | |
| 504 | // If you've got fewer tags than granules, they repeat. Exactly or partially |
| 505 | // as needed. |
| 506 | test_repeating_tags(tags: {7, 8}, range: MemoryTagManagerAArch64MTE::TagRange{0, 64}, |
| 507 | expected_tags: {7, 8, 7, 8}); |
| 508 | test_repeating_tags(tags: {7, 8}, range: MemoryTagManagerAArch64MTE::TagRange{0, 48}, |
| 509 | expected_tags: {7, 8, 7}); |
| 510 | |
| 511 | // If you've got more tags than granules you get back only those needed |
| 512 | test_repeating_tags(tags: {1, 2, 3, 4}, range: MemoryTagManagerAArch64MTE::TagRange{0, 32}, |
| 513 | expected_tags: {1, 2}); |
| 514 | } |
| 515 | |