1 | //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // The file defines the MachineFrameInfo class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H |
14 | #define LLVM_CODEGEN_MACHINEFRAMEINFO_H |
15 | |
16 | #include "llvm/ADT/SmallVector.h" |
17 | #include "llvm/CodeGen/Register.h" |
18 | #include "llvm/CodeGen/TargetFrameLowering.h" |
19 | #include "llvm/Support/Alignment.h" |
20 | #include <cassert> |
21 | #include <vector> |
22 | |
23 | namespace llvm { |
24 | class raw_ostream; |
25 | class MachineFunction; |
26 | class MachineBasicBlock; |
27 | class BitVector; |
28 | class AllocaInst; |
29 | |
30 | /// The CalleeSavedInfo class tracks the information need to locate where a |
31 | /// callee saved register is in the current frame. |
32 | /// Callee saved reg can also be saved to a different register rather than |
33 | /// on the stack by setting DstReg instead of FrameIdx. |
34 | class CalleeSavedInfo { |
35 | Register Reg; |
36 | union { |
37 | int FrameIdx; |
38 | unsigned DstReg; |
39 | }; |
40 | /// Flag indicating whether the register is actually restored in the epilog. |
41 | /// In most cases, if a register is saved, it is also restored. There are |
42 | /// some situations, though, when this is not the case. For example, the |
43 | /// LR register on ARM is usually saved, but on exit from the function its |
44 | /// saved value may be loaded directly into PC. Since liveness tracking of |
45 | /// physical registers treats callee-saved registers are live outside of |
46 | /// the function, LR would be treated as live-on-exit, even though in these |
47 | /// scenarios it is not. This flag is added to indicate that the saved |
48 | /// register described by this object is not restored in the epilog. |
49 | /// The long-term solution is to model the liveness of callee-saved registers |
50 | /// by implicit uses on the return instructions, however, the required |
51 | /// changes in the ARM backend would be quite extensive. |
52 | bool Restored = true; |
53 | /// Flag indicating whether the register is spilled to stack or another |
54 | /// register. |
55 | bool SpilledToReg = false; |
56 | |
57 | public: |
58 | explicit CalleeSavedInfo(unsigned R, int FI = 0) : Reg(R), FrameIdx(FI) {} |
59 | |
60 | // Accessors. |
61 | Register getReg() const { return Reg; } |
62 | int getFrameIdx() const { return FrameIdx; } |
63 | unsigned getDstReg() const { return DstReg; } |
64 | void setFrameIdx(int FI) { |
65 | FrameIdx = FI; |
66 | SpilledToReg = false; |
67 | } |
68 | void setDstReg(Register SpillReg) { |
69 | DstReg = SpillReg; |
70 | SpilledToReg = true; |
71 | } |
72 | bool isRestored() const { return Restored; } |
73 | void setRestored(bool R) { Restored = R; } |
74 | bool isSpilledToReg() const { return SpilledToReg; } |
75 | }; |
76 | |
77 | /// The MachineFrameInfo class represents an abstract stack frame until |
78 | /// prolog/epilog code is inserted. This class is key to allowing stack frame |
79 | /// representation optimizations, such as frame pointer elimination. It also |
80 | /// allows more mundane (but still important) optimizations, such as reordering |
81 | /// of abstract objects on the stack frame. |
82 | /// |
83 | /// To support this, the class assigns unique integer identifiers to stack |
84 | /// objects requested clients. These identifiers are negative integers for |
85 | /// fixed stack objects (such as arguments passed on the stack) or nonnegative |
86 | /// for objects that may be reordered. Instructions which refer to stack |
87 | /// objects use a special MO_FrameIndex operand to represent these frame |
88 | /// indexes. |
89 | /// |
90 | /// Because this class keeps track of all references to the stack frame, it |
91 | /// knows when a variable sized object is allocated on the stack. This is the |
92 | /// sole condition which prevents frame pointer elimination, which is an |
93 | /// important optimization on register-poor architectures. Because original |
94 | /// variable sized alloca's in the source program are the only source of |
95 | /// variable sized stack objects, it is safe to decide whether there will be |
96 | /// any variable sized objects before all stack objects are known (for |
97 | /// example, register allocator spill code never needs variable sized |
98 | /// objects). |
99 | /// |
100 | /// When prolog/epilog code emission is performed, the final stack frame is |
101 | /// built and the machine instructions are modified to refer to the actual |
102 | /// stack offsets of the object, eliminating all MO_FrameIndex operands from |
103 | /// the program. |
104 | /// |
105 | /// Abstract Stack Frame Information |
106 | class MachineFrameInfo { |
107 | public: |
108 | /// Stack Smashing Protection (SSP) rules require that vulnerable stack |
109 | /// allocations are located close the stack protector. |
110 | enum SSPLayoutKind { |
111 | SSPLK_None, ///< Did not trigger a stack protector. No effect on data |
112 | ///< layout. |
113 | SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size. Closest |
114 | ///< to the stack protector. |
115 | SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest |
116 | ///< to the stack protector. |
117 | SSPLK_AddrOf ///< The address of this allocation is exposed and |
118 | ///< triggered protection. 3rd closest to the protector. |
119 | }; |
120 | |
121 | private: |
122 | // Represent a single object allocated on the stack. |
123 | struct StackObject { |
124 | // The offset of this object from the stack pointer on entry to |
125 | // the function. This field has no meaning for a variable sized element. |
126 | int64_t SPOffset; |
127 | |
128 | // The size of this object on the stack. 0 means a variable sized object, |
129 | // ~0ULL means a dead object. |
130 | uint64_t Size; |
131 | |
132 | // The required alignment of this stack slot. |
133 | Align Alignment; |
134 | |
135 | // If true, the value of the stack object is set before |
136 | // entering the function and is not modified inside the function. By |
137 | // default, fixed objects are immutable unless marked otherwise. |
138 | bool isImmutable; |
139 | |
140 | // If true the stack object is used as spill slot. It |
141 | // cannot alias any other memory objects. |
142 | bool isSpillSlot; |
143 | |
144 | /// If true, this stack slot is used to spill a value (could be deopt |
145 | /// and/or GC related) over a statepoint. We know that the address of the |
146 | /// slot can't alias any LLVM IR value. This is very similar to a Spill |
147 | /// Slot, but is created by statepoint lowering is SelectionDAG, not the |
148 | /// register allocator. |
149 | bool isStatepointSpillSlot = false; |
150 | |
151 | /// Identifier for stack memory type analagous to address space. If this is |
152 | /// non-0, the meaning is target defined. Offsets cannot be directly |
153 | /// compared between objects with different stack IDs. The object may not |
154 | /// necessarily reside in the same contiguous memory block as other stack |
155 | /// objects. Objects with differing stack IDs should not be merged or |
156 | /// replaced substituted for each other. |
157 | // |
158 | /// It is assumed a target uses consecutive, increasing stack IDs starting |
159 | /// from 1. |
160 | uint8_t StackID; |
161 | |
162 | /// If this stack object is originated from an Alloca instruction |
163 | /// this value saves the original IR allocation. Can be NULL. |
164 | const AllocaInst *Alloca; |
165 | |
166 | // If true, the object was mapped into the local frame |
167 | // block and doesn't need additional handling for allocation beyond that. |
168 | bool PreAllocated = false; |
169 | |
170 | // If true, an LLVM IR value might point to this object. |
171 | // Normally, spill slots and fixed-offset objects don't alias IR-accessible |
172 | // objects, but there are exceptions (on PowerPC, for example, some byval |
173 | // arguments have ABI-prescribed offsets). |
174 | bool isAliased; |
175 | |
176 | /// If true, the object has been zero-extended. |
177 | bool isZExt = false; |
178 | |
179 | /// If true, the object has been sign-extended. |
180 | bool isSExt = false; |
181 | |
182 | uint8_t SSPLayout = SSPLK_None; |
183 | |
184 | StackObject(uint64_t Size, Align Alignment, int64_t SPOffset, |
185 | bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca, |
186 | bool IsAliased, uint8_t StackID = 0) |
187 | : SPOffset(SPOffset), Size(Size), Alignment(Alignment), |
188 | isImmutable(IsImmutable), isSpillSlot(IsSpillSlot), StackID(StackID), |
189 | Alloca(Alloca), isAliased(IsAliased) {} |
190 | }; |
191 | |
192 | /// The alignment of the stack. |
193 | Align StackAlignment; |
194 | |
195 | /// Can the stack be realigned. This can be false if the target does not |
196 | /// support stack realignment, or if the user asks us not to realign the |
197 | /// stack. In this situation, overaligned allocas are all treated as dynamic |
198 | /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC |
199 | /// lowering. All non-alloca stack objects have their alignment clamped to the |
200 | /// base ABI stack alignment. |
201 | /// FIXME: There is room for improvement in this case, in terms of |
202 | /// grouping overaligned allocas into a "secondary stack frame" and |
203 | /// then only use a single alloca to allocate this frame and only a |
204 | /// single virtual register to access it. Currently, without such an |
205 | /// optimization, each such alloca gets its own dynamic realignment. |
206 | bool StackRealignable; |
207 | |
208 | /// Whether the function has the \c alignstack attribute. |
209 | bool ForcedRealign; |
210 | |
211 | /// The list of stack objects allocated. |
212 | std::vector<StackObject> Objects; |
213 | |
214 | /// This contains the number of fixed objects contained on |
215 | /// the stack. Because fixed objects are stored at a negative index in the |
216 | /// Objects list, this is also the index to the 0th object in the list. |
217 | unsigned NumFixedObjects = 0; |
218 | |
219 | /// This boolean keeps track of whether any variable |
220 | /// sized objects have been allocated yet. |
221 | bool HasVarSizedObjects = false; |
222 | |
223 | /// This boolean keeps track of whether there is a call |
224 | /// to builtin \@llvm.frameaddress. |
225 | bool FrameAddressTaken = false; |
226 | |
227 | /// This boolean keeps track of whether there is a call |
228 | /// to builtin \@llvm.returnaddress. |
229 | bool ReturnAddressTaken = false; |
230 | |
231 | /// This boolean keeps track of whether there is a call |
232 | /// to builtin \@llvm.experimental.stackmap. |
233 | bool HasStackMap = false; |
234 | |
235 | /// This boolean keeps track of whether there is a call |
236 | /// to builtin \@llvm.experimental.patchpoint. |
237 | bool HasPatchPoint = false; |
238 | |
239 | /// The prolog/epilog code inserter calculates the final stack |
240 | /// offsets for all of the fixed size objects, updating the Objects list |
241 | /// above. It then updates StackSize to contain the number of bytes that need |
242 | /// to be allocated on entry to the function. |
243 | uint64_t StackSize = 0; |
244 | |
245 | /// The amount that a frame offset needs to be adjusted to |
246 | /// have the actual offset from the stack/frame pointer. The exact usage of |
247 | /// this is target-dependent, but it is typically used to adjust between |
248 | /// SP-relative and FP-relative offsets. E.G., if objects are accessed via |
249 | /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set |
250 | /// to the distance between the initial SP and the value in FP. For many |
251 | /// targets, this value is only used when generating debug info (via |
252 | /// TargetRegisterInfo::getFrameIndexReference); when generating code, the |
253 | /// corresponding adjustments are performed directly. |
254 | int OffsetAdjustment = 0; |
255 | |
256 | /// The prolog/epilog code inserter may process objects that require greater |
257 | /// alignment than the default alignment the target provides. |
258 | /// To handle this, MaxAlignment is set to the maximum alignment |
259 | /// needed by the objects on the current frame. If this is greater than the |
260 | /// native alignment maintained by the compiler, dynamic alignment code will |
261 | /// be needed. |
262 | /// |
263 | Align MaxAlignment; |
264 | |
265 | /// Set to true if this function adjusts the stack -- e.g., |
266 | /// when calling another function. This is only valid during and after |
267 | /// prolog/epilog code insertion. |
268 | bool AdjustsStack = false; |
269 | |
270 | /// Set to true if this function has any function calls. |
271 | bool HasCalls = false; |
272 | |
273 | /// The frame index for the stack protector. |
274 | int StackProtectorIdx = -1; |
275 | |
276 | /// The frame index for the function context. Used for SjLj exceptions. |
277 | int FunctionContextIdx = -1; |
278 | |
279 | /// This contains the size of the largest call frame if the target uses frame |
280 | /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo |
281 | /// class). This information is important for frame pointer elimination. |
282 | /// It is only valid during and after prolog/epilog code insertion. |
283 | unsigned MaxCallFrameSize = ~0u; |
284 | |
285 | /// The number of bytes of callee saved registers that the target wants to |
286 | /// report for the current function in the CodeView S_FRAMEPROC record. |
287 | unsigned CVBytesOfCalleeSavedRegisters = 0; |
288 | |
289 | /// The prolog/epilog code inserter fills in this vector with each |
290 | /// callee saved register saved in either the frame or a different |
291 | /// register. Beyond its use by the prolog/ epilog code inserter, |
292 | /// this data is used for debug info and exception handling. |
293 | std::vector<CalleeSavedInfo> CSInfo; |
294 | |
295 | /// Has CSInfo been set yet? |
296 | bool CSIValid = false; |
297 | |
298 | /// References to frame indices which are mapped |
299 | /// into the local frame allocation block. <FrameIdx, LocalOffset> |
300 | SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects; |
301 | |
302 | /// Size of the pre-allocated local frame block. |
303 | int64_t LocalFrameSize = 0; |
304 | |
305 | /// Required alignment of the local object blob, which is the strictest |
306 | /// alignment of any object in it. |
307 | Align LocalFrameMaxAlign; |
308 | |
309 | /// Whether the local object blob needs to be allocated together. If not, |
310 | /// PEI should ignore the isPreAllocated flags on the stack objects and |
311 | /// just allocate them normally. |
312 | bool UseLocalStackAllocationBlock = false; |
313 | |
314 | /// True if the function dynamically adjusts the stack pointer through some |
315 | /// opaque mechanism like inline assembly or Win32 EH. |
316 | bool HasOpaqueSPAdjustment = false; |
317 | |
318 | /// True if the function contains operations which will lower down to |
319 | /// instructions which manipulate the stack pointer. |
320 | bool HasCopyImplyingStackAdjustment = false; |
321 | |
322 | /// True if the function contains a call to the llvm.vastart intrinsic. |
323 | bool HasVAStart = false; |
324 | |
325 | /// True if this is a varargs function that contains a musttail call. |
326 | bool HasMustTailInVarArgFunc = false; |
327 | |
328 | /// True if this function contains a tail call. If so immutable objects like |
329 | /// function arguments are no longer so. A tail call *can* override fixed |
330 | /// stack objects like arguments so we can't treat them as immutable. |
331 | bool HasTailCall = false; |
332 | |
333 | /// Not null, if shrink-wrapping found a better place for the prologue. |
334 | MachineBasicBlock *Save = nullptr; |
335 | /// Not null, if shrink-wrapping found a better place for the epilogue. |
336 | MachineBasicBlock *Restore = nullptr; |
337 | |
338 | /// Size of the UnsafeStack Frame |
339 | uint64_t UnsafeStackSize = 0; |
340 | |
341 | public: |
342 | explicit MachineFrameInfo(Align StackAlignment, bool StackRealignable, |
343 | bool ForcedRealign) |
344 | : StackAlignment(StackAlignment), |
345 | StackRealignable(StackRealignable), ForcedRealign(ForcedRealign) {} |
346 | |
347 | MachineFrameInfo(const MachineFrameInfo &) = delete; |
348 | |
349 | /// Return true if there are any stack objects in this function. |
350 | bool hasStackObjects() const { return !Objects.empty(); } |
351 | |
352 | /// This method may be called any time after instruction |
353 | /// selection is complete to determine if the stack frame for this function |
354 | /// contains any variable sized objects. |
355 | bool hasVarSizedObjects() const { return HasVarSizedObjects; } |
356 | |
357 | /// Return the index for the stack protector object. |
358 | int getStackProtectorIndex() const { return StackProtectorIdx; } |
359 | void setStackProtectorIndex(int I) { StackProtectorIdx = I; } |
360 | bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; } |
361 | |
362 | /// Return the index for the function context object. |
363 | /// This object is used for SjLj exceptions. |
364 | int getFunctionContextIndex() const { return FunctionContextIdx; } |
365 | void setFunctionContextIndex(int I) { FunctionContextIdx = I; } |
366 | bool hasFunctionContextIndex() const { return FunctionContextIdx != -1; } |
367 | |
368 | /// This method may be called any time after instruction |
369 | /// selection is complete to determine if there is a call to |
370 | /// \@llvm.frameaddress in this function. |
371 | bool isFrameAddressTaken() const { return FrameAddressTaken; } |
372 | void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; } |
373 | |
374 | /// This method may be called any time after |
375 | /// instruction selection is complete to determine if there is a call to |
376 | /// \@llvm.returnaddress in this function. |
377 | bool isReturnAddressTaken() const { return ReturnAddressTaken; } |
378 | void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; } |
379 | |
380 | /// This method may be called any time after instruction |
381 | /// selection is complete to determine if there is a call to builtin |
382 | /// \@llvm.experimental.stackmap. |
383 | bool hasStackMap() const { return HasStackMap; } |
384 | void setHasStackMap(bool s = true) { HasStackMap = s; } |
385 | |
386 | /// This method may be called any time after instruction |
387 | /// selection is complete to determine if there is a call to builtin |
388 | /// \@llvm.experimental.patchpoint. |
389 | bool hasPatchPoint() const { return HasPatchPoint; } |
390 | void setHasPatchPoint(bool s = true) { HasPatchPoint = s; } |
391 | |
392 | /// Return true if this function requires a split stack prolog, even if it |
393 | /// uses no stack space. This is only meaningful for functions where |
394 | /// MachineFunction::shouldSplitStack() returns true. |
395 | // |
396 | // For non-leaf functions we have to allow for the possibility that the call |
397 | // is to a non-split function, as in PR37807. This function could also take |
398 | // the address of a non-split function. When the linker tries to adjust its |
399 | // non-existent prologue, it would fail with an error. Mark the object file so |
400 | // that such failures are not errors. See this Go language bug-report |
401 | // https://go-review.googlesource.com/c/go/+/148819/ |
402 | bool needsSplitStackProlog() const { |
403 | return getStackSize() != 0 || hasTailCall(); |
404 | } |
405 | |
406 | /// Return the minimum frame object index. |
407 | int getObjectIndexBegin() const { return -NumFixedObjects; } |
408 | |
409 | /// Return one past the maximum frame object index. |
410 | int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; } |
411 | |
412 | /// Return the number of fixed objects. |
413 | unsigned getNumFixedObjects() const { return NumFixedObjects; } |
414 | |
415 | /// Return the number of objects. |
416 | unsigned getNumObjects() const { return Objects.size(); } |
417 | |
418 | /// Map a frame index into the local object block |
419 | void mapLocalFrameObject(int ObjectIndex, int64_t Offset) { |
420 | LocalFrameObjects.push_back(Elt: std::pair<int, int64_t>(ObjectIndex, Offset)); |
421 | Objects[ObjectIndex + NumFixedObjects].PreAllocated = true; |
422 | } |
423 | |
424 | /// Get the local offset mapping for a for an object. |
425 | std::pair<int, int64_t> getLocalFrameObjectMap(int i) const { |
426 | assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() && |
427 | "Invalid local object reference!" ); |
428 | return LocalFrameObjects[i]; |
429 | } |
430 | |
431 | /// Return the number of objects allocated into the local object block. |
432 | int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); } |
433 | |
434 | /// Set the size of the local object blob. |
435 | void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; } |
436 | |
437 | /// Get the size of the local object blob. |
438 | int64_t getLocalFrameSize() const { return LocalFrameSize; } |
439 | |
440 | /// Required alignment of the local object blob, |
441 | /// which is the strictest alignment of any object in it. |
442 | void setLocalFrameMaxAlign(Align Alignment) { |
443 | LocalFrameMaxAlign = Alignment; |
444 | } |
445 | |
446 | /// Return the required alignment of the local object blob. |
447 | Align getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; } |
448 | |
449 | /// Get whether the local allocation blob should be allocated together or |
450 | /// let PEI allocate the locals in it directly. |
451 | bool getUseLocalStackAllocationBlock() const { |
452 | return UseLocalStackAllocationBlock; |
453 | } |
454 | |
455 | /// setUseLocalStackAllocationBlock - Set whether the local allocation blob |
456 | /// should be allocated together or let PEI allocate the locals in it |
457 | /// directly. |
458 | void setUseLocalStackAllocationBlock(bool v) { |
459 | UseLocalStackAllocationBlock = v; |
460 | } |
461 | |
462 | /// Return true if the object was pre-allocated into the local block. |
463 | bool isObjectPreAllocated(int ObjectIdx) const { |
464 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
465 | "Invalid Object Idx!" ); |
466 | return Objects[ObjectIdx+NumFixedObjects].PreAllocated; |
467 | } |
468 | |
469 | /// Return the size of the specified object. |
470 | int64_t getObjectSize(int ObjectIdx) const { |
471 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
472 | "Invalid Object Idx!" ); |
473 | return Objects[ObjectIdx+NumFixedObjects].Size; |
474 | } |
475 | |
476 | /// Change the size of the specified stack object. |
477 | void setObjectSize(int ObjectIdx, int64_t Size) { |
478 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
479 | "Invalid Object Idx!" ); |
480 | Objects[ObjectIdx+NumFixedObjects].Size = Size; |
481 | } |
482 | |
483 | /// Return the alignment of the specified stack object. |
484 | Align getObjectAlign(int ObjectIdx) const { |
485 | assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && |
486 | "Invalid Object Idx!" ); |
487 | return Objects[ObjectIdx + NumFixedObjects].Alignment; |
488 | } |
489 | |
490 | /// Should this stack ID be considered in MaxAlignment. |
491 | bool contributesToMaxAlignment(uint8_t StackID) { |
492 | return StackID == TargetStackID::Default || |
493 | StackID == TargetStackID::ScalableVector; |
494 | } |
495 | |
496 | /// setObjectAlignment - Change the alignment of the specified stack object. |
497 | void setObjectAlignment(int ObjectIdx, Align Alignment) { |
498 | assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && |
499 | "Invalid Object Idx!" ); |
500 | Objects[ObjectIdx + NumFixedObjects].Alignment = Alignment; |
501 | |
502 | // Only ensure max alignment for the default and scalable vector stack. |
503 | uint8_t StackID = getStackID(ObjectIdx); |
504 | if (contributesToMaxAlignment(StackID)) |
505 | ensureMaxAlignment(Alignment); |
506 | } |
507 | |
508 | /// Return the underlying Alloca of the specified |
509 | /// stack object if it exists. Returns 0 if none exists. |
510 | const AllocaInst* getObjectAllocation(int ObjectIdx) const { |
511 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
512 | "Invalid Object Idx!" ); |
513 | return Objects[ObjectIdx+NumFixedObjects].Alloca; |
514 | } |
515 | |
516 | /// Remove the underlying Alloca of the specified stack object if it |
517 | /// exists. This generally should not be used and is for reduction tooling. |
518 | void clearObjectAllocation(int ObjectIdx) { |
519 | assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && |
520 | "Invalid Object Idx!" ); |
521 | Objects[ObjectIdx + NumFixedObjects].Alloca = nullptr; |
522 | } |
523 | |
524 | /// Return the assigned stack offset of the specified object |
525 | /// from the incoming stack pointer. |
526 | int64_t getObjectOffset(int ObjectIdx) const { |
527 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
528 | "Invalid Object Idx!" ); |
529 | assert(!isDeadObjectIndex(ObjectIdx) && |
530 | "Getting frame offset for a dead object?" ); |
531 | return Objects[ObjectIdx+NumFixedObjects].SPOffset; |
532 | } |
533 | |
534 | bool isObjectZExt(int ObjectIdx) const { |
535 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
536 | "Invalid Object Idx!" ); |
537 | return Objects[ObjectIdx+NumFixedObjects].isZExt; |
538 | } |
539 | |
540 | void setObjectZExt(int ObjectIdx, bool IsZExt) { |
541 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
542 | "Invalid Object Idx!" ); |
543 | Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt; |
544 | } |
545 | |
546 | bool isObjectSExt(int ObjectIdx) const { |
547 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
548 | "Invalid Object Idx!" ); |
549 | return Objects[ObjectIdx+NumFixedObjects].isSExt; |
550 | } |
551 | |
552 | void setObjectSExt(int ObjectIdx, bool IsSExt) { |
553 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
554 | "Invalid Object Idx!" ); |
555 | Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt; |
556 | } |
557 | |
558 | /// Set the stack frame offset of the specified object. The |
559 | /// offset is relative to the stack pointer on entry to the function. |
560 | void setObjectOffset(int ObjectIdx, int64_t SPOffset) { |
561 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
562 | "Invalid Object Idx!" ); |
563 | assert(!isDeadObjectIndex(ObjectIdx) && |
564 | "Setting frame offset for a dead object?" ); |
565 | Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset; |
566 | } |
567 | |
568 | SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const { |
569 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
570 | "Invalid Object Idx!" ); |
571 | return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout; |
572 | } |
573 | |
574 | void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) { |
575 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
576 | "Invalid Object Idx!" ); |
577 | assert(!isDeadObjectIndex(ObjectIdx) && |
578 | "Setting SSP layout for a dead object?" ); |
579 | Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind; |
580 | } |
581 | |
582 | /// Return the number of bytes that must be allocated to hold |
583 | /// all of the fixed size frame objects. This is only valid after |
584 | /// Prolog/Epilog code insertion has finalized the stack frame layout. |
585 | uint64_t getStackSize() const { return StackSize; } |
586 | |
587 | /// Set the size of the stack. |
588 | void setStackSize(uint64_t Size) { StackSize = Size; } |
589 | |
590 | /// Estimate and return the size of the stack frame. |
591 | uint64_t estimateStackSize(const MachineFunction &MF) const; |
592 | |
593 | /// Return the correction for frame offsets. |
594 | int getOffsetAdjustment() const { return OffsetAdjustment; } |
595 | |
596 | /// Set the correction for frame offsets. |
597 | void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; } |
598 | |
599 | /// Return the alignment in bytes that this function must be aligned to, |
600 | /// which is greater than the default stack alignment provided by the target. |
601 | Align getMaxAlign() const { return MaxAlignment; } |
602 | |
603 | /// Make sure the function is at least Align bytes aligned. |
604 | void ensureMaxAlignment(Align Alignment); |
605 | |
606 | /// Return true if this function adjusts the stack -- e.g., |
607 | /// when calling another function. This is only valid during and after |
608 | /// prolog/epilog code insertion. |
609 | bool adjustsStack() const { return AdjustsStack; } |
610 | void setAdjustsStack(bool V) { AdjustsStack = V; } |
611 | |
612 | /// Return true if the current function has any function calls. |
613 | bool hasCalls() const { return HasCalls; } |
614 | void setHasCalls(bool V) { HasCalls = V; } |
615 | |
616 | /// Returns true if the function contains opaque dynamic stack adjustments. |
617 | bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; } |
618 | void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; } |
619 | |
620 | /// Returns true if the function contains operations which will lower down to |
621 | /// instructions which manipulate the stack pointer. |
622 | bool hasCopyImplyingStackAdjustment() const { |
623 | return HasCopyImplyingStackAdjustment; |
624 | } |
625 | void setHasCopyImplyingStackAdjustment(bool B) { |
626 | HasCopyImplyingStackAdjustment = B; |
627 | } |
628 | |
629 | /// Returns true if the function calls the llvm.va_start intrinsic. |
630 | bool hasVAStart() const { return HasVAStart; } |
631 | void setHasVAStart(bool B) { HasVAStart = B; } |
632 | |
633 | /// Returns true if the function is variadic and contains a musttail call. |
634 | bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; } |
635 | void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; } |
636 | |
637 | /// Returns true if the function contains a tail call. |
638 | bool hasTailCall() const { return HasTailCall; } |
639 | void setHasTailCall(bool V = true) { HasTailCall = V; } |
640 | |
641 | /// Computes the maximum size of a callframe. |
642 | /// This only works for targets defining |
643 | /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(), |
644 | /// and getFrameSize(). |
645 | /// This is usually computed by the prologue epilogue inserter but some |
646 | /// targets may call this to compute it earlier. |
647 | /// If FrameSDOps is passed, the frame instructions in the MF will be |
648 | /// inserted into it. |
649 | void computeMaxCallFrameSize( |
650 | MachineFunction &MF, |
651 | std::vector<MachineBasicBlock::iterator> *FrameSDOps = nullptr); |
652 | |
653 | /// Return the maximum size of a call frame that must be |
654 | /// allocated for an outgoing function call. This is only available if |
655 | /// CallFrameSetup/Destroy pseudo instructions are used by the target, and |
656 | /// then only during or after prolog/epilog code insertion. |
657 | /// |
658 | unsigned getMaxCallFrameSize() const { |
659 | // TODO: Enable this assert when targets are fixed. |
660 | //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet"); |
661 | if (!isMaxCallFrameSizeComputed()) |
662 | return 0; |
663 | return MaxCallFrameSize; |
664 | } |
665 | bool isMaxCallFrameSizeComputed() const { |
666 | return MaxCallFrameSize != ~0u; |
667 | } |
668 | void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; } |
669 | |
670 | /// Returns how many bytes of callee-saved registers the target pushed in the |
671 | /// prologue. Only used for debug info. |
672 | unsigned getCVBytesOfCalleeSavedRegisters() const { |
673 | return CVBytesOfCalleeSavedRegisters; |
674 | } |
675 | void setCVBytesOfCalleeSavedRegisters(unsigned S) { |
676 | CVBytesOfCalleeSavedRegisters = S; |
677 | } |
678 | |
679 | /// Create a new object at a fixed location on the stack. |
680 | /// All fixed objects should be created before other objects are created for |
681 | /// efficiency. By default, fixed objects are not pointed to by LLVM IR |
682 | /// values. This returns an index with a negative value. |
683 | int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, |
684 | bool isAliased = false); |
685 | |
686 | /// Create a spill slot at a fixed location on the stack. |
687 | /// Returns an index with a negative value. |
688 | int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset, |
689 | bool IsImmutable = false); |
690 | |
691 | /// Returns true if the specified index corresponds to a fixed stack object. |
692 | bool isFixedObjectIndex(int ObjectIdx) const { |
693 | return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects); |
694 | } |
695 | |
696 | /// Returns true if the specified index corresponds |
697 | /// to an object that might be pointed to by an LLVM IR value. |
698 | bool isAliasedObjectIndex(int ObjectIdx) const { |
699 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
700 | "Invalid Object Idx!" ); |
701 | return Objects[ObjectIdx+NumFixedObjects].isAliased; |
702 | } |
703 | |
704 | /// Set "maybe pointed to by an LLVM IR value" for an object. |
705 | void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased) { |
706 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
707 | "Invalid Object Idx!" ); |
708 | Objects[ObjectIdx+NumFixedObjects].isAliased = IsAliased; |
709 | } |
710 | |
711 | /// Returns true if the specified index corresponds to an immutable object. |
712 | bool isImmutableObjectIndex(int ObjectIdx) const { |
713 | // Tail calling functions can clobber their function arguments. |
714 | if (HasTailCall) |
715 | return false; |
716 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
717 | "Invalid Object Idx!" ); |
718 | return Objects[ObjectIdx+NumFixedObjects].isImmutable; |
719 | } |
720 | |
721 | /// Marks the immutability of an object. |
722 | void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) { |
723 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
724 | "Invalid Object Idx!" ); |
725 | Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable; |
726 | } |
727 | |
728 | /// Returns true if the specified index corresponds to a spill slot. |
729 | bool isSpillSlotObjectIndex(int ObjectIdx) const { |
730 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
731 | "Invalid Object Idx!" ); |
732 | return Objects[ObjectIdx+NumFixedObjects].isSpillSlot; |
733 | } |
734 | |
735 | bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const { |
736 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
737 | "Invalid Object Idx!" ); |
738 | return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot; |
739 | } |
740 | |
741 | /// \see StackID |
742 | uint8_t getStackID(int ObjectIdx) const { |
743 | return Objects[ObjectIdx+NumFixedObjects].StackID; |
744 | } |
745 | |
746 | /// \see StackID |
747 | void setStackID(int ObjectIdx, uint8_t ID) { |
748 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
749 | "Invalid Object Idx!" ); |
750 | Objects[ObjectIdx+NumFixedObjects].StackID = ID; |
751 | // If ID > 0, MaxAlignment may now be overly conservative. |
752 | // If ID == 0, MaxAlignment will need to be updated separately. |
753 | } |
754 | |
755 | /// Returns true if the specified index corresponds to a dead object. |
756 | bool isDeadObjectIndex(int ObjectIdx) const { |
757 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
758 | "Invalid Object Idx!" ); |
759 | return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL; |
760 | } |
761 | |
762 | /// Returns true if the specified index corresponds to a variable sized |
763 | /// object. |
764 | bool isVariableSizedObjectIndex(int ObjectIdx) const { |
765 | assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && |
766 | "Invalid Object Idx!" ); |
767 | return Objects[ObjectIdx + NumFixedObjects].Size == 0; |
768 | } |
769 | |
770 | void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) { |
771 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
772 | "Invalid Object Idx!" ); |
773 | Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true; |
774 | assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent" ); |
775 | } |
776 | |
777 | /// Create a new statically sized stack object, returning |
778 | /// a nonnegative identifier to represent it. |
779 | int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, |
780 | const AllocaInst *Alloca = nullptr, uint8_t ID = 0); |
781 | |
782 | /// Create a new statically sized stack object that represents a spill slot, |
783 | /// returning a nonnegative identifier to represent it. |
784 | int CreateSpillStackObject(uint64_t Size, Align Alignment); |
785 | |
786 | /// Remove or mark dead a statically sized stack object. |
787 | void RemoveStackObject(int ObjectIdx) { |
788 | // Mark it dead. |
789 | Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL; |
790 | } |
791 | |
792 | /// Notify the MachineFrameInfo object that a variable sized object has been |
793 | /// created. This must be created whenever a variable sized object is |
794 | /// created, whether or not the index returned is actually used. |
795 | int CreateVariableSizedObject(Align Alignment, const AllocaInst *Alloca); |
796 | |
797 | /// Returns a reference to call saved info vector for the current function. |
798 | const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const { |
799 | return CSInfo; |
800 | } |
801 | /// \copydoc getCalleeSavedInfo() |
802 | std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; } |
803 | |
804 | /// Used by prolog/epilog inserter to set the function's callee saved |
805 | /// information. |
806 | void setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI) { |
807 | CSInfo = std::move(CSI); |
808 | } |
809 | |
810 | /// Has the callee saved info been calculated yet? |
811 | bool isCalleeSavedInfoValid() const { return CSIValid; } |
812 | |
813 | void setCalleeSavedInfoValid(bool v) { CSIValid = v; } |
814 | |
815 | MachineBasicBlock *getSavePoint() const { return Save; } |
816 | void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; } |
817 | MachineBasicBlock *getRestorePoint() const { return Restore; } |
818 | void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; } |
819 | |
820 | uint64_t getUnsafeStackSize() const { return UnsafeStackSize; } |
821 | void setUnsafeStackSize(uint64_t Size) { UnsafeStackSize = Size; } |
822 | |
823 | /// Return a set of physical registers that are pristine. |
824 | /// |
825 | /// Pristine registers hold a value that is useless to the current function, |
826 | /// but that must be preserved - they are callee saved registers that are not |
827 | /// saved. |
828 | /// |
829 | /// Before the PrologueEpilogueInserter has placed the CSR spill code, this |
830 | /// method always returns an empty set. |
831 | BitVector getPristineRegs(const MachineFunction &MF) const; |
832 | |
833 | /// Used by the MachineFunction printer to print information about |
834 | /// stack objects. Implemented in MachineFunction.cpp. |
835 | void print(const MachineFunction &MF, raw_ostream &OS) const; |
836 | |
837 | /// dump - Print the function to stderr. |
838 | void dump(const MachineFunction &MF) const; |
839 | }; |
840 | |
841 | } // End llvm namespace |
842 | |
843 | #endif |
844 | |