1//===- HexagonGenExtract.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/ADT/APInt.h"
10#include "llvm/ADT/GraphTraits.h"
11#include "llvm/IR/BasicBlock.h"
12#include "llvm/IR/CFG.h"
13#include "llvm/IR/Constants.h"
14#include "llvm/IR/Dominators.h"
15#include "llvm/IR/Function.h"
16#include "llvm/IR/IRBuilder.h"
17#include "llvm/IR/Instruction.h"
18#include "llvm/IR/Instructions.h"
19#include "llvm/IR/Intrinsics.h"
20#include "llvm/IR/IntrinsicsHexagon.h"
21#include "llvm/IR/PatternMatch.h"
22#include "llvm/IR/Type.h"
23#include "llvm/IR/Value.h"
24#include "llvm/InitializePasses.h"
25#include "llvm/Pass.h"
26#include "llvm/Support/CommandLine.h"
27#include <algorithm>
28#include <cstdint>
29#include <iterator>
30
31using namespace llvm;
32
33static cl::opt<unsigned> ExtractCutoff("extract-cutoff", cl::init(Val: ~0U),
34 cl::Hidden, cl::desc("Cutoff for generating \"extract\""
35 " instructions"));
36
37// This prevents generating extract instructions that have the offset of 0.
38// One of the reasons for "extract" is to put a sequence of bits in a regis-
39// ter, starting at offset 0 (so that these bits can then be used by an
40// "insert"). If the bits are already at offset 0, it is better not to gene-
41// rate "extract", since logical bit operations can be merged into compound
42// instructions (as opposed to "extract").
43static cl::opt<bool> NoSR0("extract-nosr0", cl::init(Val: true), cl::Hidden,
44 cl::desc("No extract instruction with offset 0"));
45
46static cl::opt<bool> NeedAnd("extract-needand", cl::init(Val: true), cl::Hidden,
47 cl::desc("Require & in extract patterns"));
48
49namespace llvm {
50
51void initializeHexagonGenExtractPass(PassRegistry&);
52FunctionPass *createHexagonGenExtract();
53
54} // end namespace llvm
55
56namespace {
57
58 class HexagonGenExtract : public FunctionPass {
59 public:
60 static char ID;
61
62 HexagonGenExtract() : FunctionPass(ID) {
63 initializeHexagonGenExtractPass(*PassRegistry::getPassRegistry());
64 }
65
66 StringRef getPassName() const override {
67 return "Hexagon generate \"extract\" instructions";
68 }
69
70 bool runOnFunction(Function &F) override;
71
72 void getAnalysisUsage(AnalysisUsage &AU) const override {
73 AU.addRequired<DominatorTreeWrapperPass>();
74 AU.addPreserved<DominatorTreeWrapperPass>();
75 FunctionPass::getAnalysisUsage(AU);
76 }
77
78 private:
79 bool visitBlock(BasicBlock *B);
80 bool convert(Instruction *In);
81
82 unsigned ExtractCount = 0;
83 DominatorTree *DT;
84 };
85
86} // end anonymous namespace
87
88char HexagonGenExtract::ID = 0;
89
90INITIALIZE_PASS_BEGIN(HexagonGenExtract, "hextract", "Hexagon generate "
91 "\"extract\" instructions", false, false)
92INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
93INITIALIZE_PASS_END(HexagonGenExtract, "hextract", "Hexagon generate "
94 "\"extract\" instructions", false, false)
95
96bool HexagonGenExtract::convert(Instruction *In) {
97 using namespace PatternMatch;
98
99 Value *BF = nullptr;
100 ConstantInt *CSL = nullptr, *CSR = nullptr, *CM = nullptr;
101 BasicBlock *BB = In->getParent();
102 LLVMContext &Ctx = BB->getContext();
103 bool LogicalSR;
104
105 // (and (shl (lshr x, #sr), #sl), #m)
106 LogicalSR = true;
107 bool Match = match(V: In, P: m_And(L: m_Shl(L: m_LShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)),
108 R: m_ConstantInt(CI&: CSL)),
109 R: m_ConstantInt(CI&: CM)));
110
111 if (!Match) {
112 // (and (shl (ashr x, #sr), #sl), #m)
113 LogicalSR = false;
114 Match = match(V: In, P: m_And(L: m_Shl(L: m_AShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)),
115 R: m_ConstantInt(CI&: CSL)),
116 R: m_ConstantInt(CI&: CM)));
117 }
118 if (!Match) {
119 // (and (shl x, #sl), #m)
120 LogicalSR = true;
121 CSR = ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: 0);
122 Match = match(V: In, P: m_And(L: m_Shl(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSL)),
123 R: m_ConstantInt(CI&: CM)));
124 if (Match && NoSR0)
125 return false;
126 }
127 if (!Match) {
128 // (and (lshr x, #sr), #m)
129 LogicalSR = true;
130 CSL = ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: 0);
131 Match = match(V: In, P: m_And(L: m_LShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)),
132 R: m_ConstantInt(CI&: CM)));
133 }
134 if (!Match) {
135 // (and (ashr x, #sr), #m)
136 LogicalSR = false;
137 CSL = ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: 0);
138 Match = match(V: In, P: m_And(L: m_AShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)),
139 R: m_ConstantInt(CI&: CM)));
140 }
141 if (!Match) {
142 CM = nullptr;
143 // (shl (lshr x, #sr), #sl)
144 LogicalSR = true;
145 Match = match(V: In, P: m_Shl(L: m_LShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)),
146 R: m_ConstantInt(CI&: CSL)));
147 }
148 if (!Match) {
149 CM = nullptr;
150 // (shl (ashr x, #sr), #sl)
151 LogicalSR = false;
152 Match = match(V: In, P: m_Shl(L: m_AShr(L: m_Value(V&: BF), R: m_ConstantInt(CI&: CSR)),
153 R: m_ConstantInt(CI&: CSL)));
154 }
155 if (!Match)
156 return false;
157
158 Type *Ty = BF->getType();
159 if (!Ty->isIntegerTy())
160 return false;
161 unsigned BW = Ty->getPrimitiveSizeInBits();
162 if (BW != 32 && BW != 64)
163 return false;
164
165 uint32_t SR = CSR->getZExtValue();
166 uint32_t SL = CSL->getZExtValue();
167
168 if (!CM) {
169 // If there was no and, and the shift left did not remove all potential
170 // sign bits created by the shift right, then extractu cannot reproduce
171 // this value.
172 if (!LogicalSR && (SR > SL))
173 return false;
174 APInt A = APInt(BW, ~0ULL).lshr(shiftAmt: SR).shl(shiftAmt: SL);
175 CM = ConstantInt::get(Context&: Ctx, V: A);
176 }
177
178 // CM is the shifted-left mask. Shift it back right to remove the zero
179 // bits on least-significant positions.
180 APInt M = CM->getValue().lshr(shiftAmt: SL);
181 uint32_t T = M.countr_one();
182
183 // During the shifts some of the bits will be lost. Calculate how many
184 // of the original value will remain after shift right and then left.
185 uint32_t U = BW - std::max(a: SL, b: SR);
186 // The width of the extracted field is the minimum of the original bits
187 // that remain after the shifts and the number of contiguous 1s in the mask.
188 uint32_t W = std::min(a: U, b: T);
189 if (W == 0 || W == 1)
190 return false;
191
192 // Check if the extracted bits are contained within the mask that it is
193 // and-ed with. The extract operation will copy these bits, and so the
194 // mask cannot any holes in it that would clear any of the bits of the
195 // extracted field.
196 if (!LogicalSR) {
197 // If the shift right was arithmetic, it could have included some 1 bits.
198 // It is still ok to generate extract, but only if the mask eliminates
199 // those bits (i.e. M does not have any bits set beyond U).
200 APInt C = APInt::getHighBitsSet(numBits: BW, hiBitsSet: BW-U);
201 if (M.intersects(RHS: C) || !M.isMask(numBits: W))
202 return false;
203 } else {
204 // Check if M starts with a contiguous sequence of W times 1 bits. Get
205 // the low U bits of M (which eliminates the 0 bits shifted in on the
206 // left), and check if the result is APInt's "mask":
207 if (!M.getLoBits(numBits: U).isMask(numBits: W))
208 return false;
209 }
210
211 IRBuilder<> IRB(In);
212 Intrinsic::ID IntId = (BW == 32) ? Intrinsic::hexagon_S2_extractu
213 : Intrinsic::hexagon_S2_extractup;
214 Module *Mod = BB->getParent()->getParent();
215 Function *ExtF = Intrinsic::getDeclaration(M: Mod, id: IntId);
216 Value *NewIn = IRB.CreateCall(Callee: ExtF, Args: {BF, IRB.getInt32(C: W), IRB.getInt32(C: SR)});
217 if (SL != 0)
218 NewIn = IRB.CreateShl(LHS: NewIn, RHS: SL, Name: CSL->getName());
219 In->replaceAllUsesWith(V: NewIn);
220 return true;
221}
222
223bool HexagonGenExtract::visitBlock(BasicBlock *B) {
224 bool Changed = false;
225
226 // Depth-first, bottom-up traversal.
227 for (auto *DTN : children<DomTreeNode*>(G: DT->getNode(BB: B)))
228 Changed |= visitBlock(B: DTN->getBlock());
229
230 // Allow limiting the number of generated extracts for debugging purposes.
231 bool HasCutoff = ExtractCutoff.getPosition();
232 unsigned Cutoff = ExtractCutoff;
233
234 BasicBlock::iterator I = std::prev(x: B->end()), NextI, Begin = B->begin();
235 while (true) {
236 if (HasCutoff && (ExtractCount >= Cutoff))
237 return Changed;
238 bool Last = (I == Begin);
239 if (!Last)
240 NextI = std::prev(x: I);
241 Instruction *In = &*I;
242 bool Done = convert(In);
243 if (HasCutoff && Done)
244 ExtractCount++;
245 Changed |= Done;
246 if (Last)
247 break;
248 I = NextI;
249 }
250 return Changed;
251}
252
253bool HexagonGenExtract::runOnFunction(Function &F) {
254 if (skipFunction(F))
255 return false;
256
257 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
258 bool Changed;
259
260 // Traverse the function bottom-up, to see super-expressions before their
261 // sub-expressions.
262 BasicBlock *Entry = GraphTraits<Function*>::getEntryNode(F: &F);
263 Changed = visitBlock(B: Entry);
264
265 return Changed;
266}
267
268FunctionPass *llvm::createHexagonGenExtract() {
269 return new HexagonGenExtract();
270}
271

source code of llvm/lib/Target/Hexagon/HexagonGenExtract.cpp