1 | //===- MLIRGen.cpp - MLIR Generation from a Toy AST -----------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements a simple IR generation targeting MLIR from a Module AST |
10 | // for the Toy language. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "toy/MLIRGen.h" |
15 | #include "mlir/IR/Block.h" |
16 | #include "mlir/IR/Diagnostics.h" |
17 | #include "mlir/IR/Value.h" |
18 | #include "toy/AST.h" |
19 | #include "toy/Dialect.h" |
20 | |
21 | #include "mlir/IR/Builders.h" |
22 | #include "mlir/IR/BuiltinOps.h" |
23 | #include "mlir/IR/BuiltinTypes.h" |
24 | #include "mlir/IR/MLIRContext.h" |
25 | #include "mlir/IR/Verifier.h" |
26 | #include "toy/Lexer.h" |
27 | |
28 | #include "llvm/ADT/STLExtras.h" |
29 | #include "llvm/ADT/ScopedHashTable.h" |
30 | #include "llvm/ADT/SmallVector.h" |
31 | #include "llvm/ADT/StringRef.h" |
32 | #include "llvm/ADT/Twine.h" |
33 | #include <cassert> |
34 | #include <cstdint> |
35 | #include <functional> |
36 | #include <numeric> |
37 | #include <optional> |
38 | #include <vector> |
39 | |
40 | using namespace mlir::toy; |
41 | using namespace toy; |
42 | |
43 | using llvm::ArrayRef; |
44 | using llvm::cast; |
45 | using llvm::dyn_cast; |
46 | using llvm::isa; |
47 | using llvm::ScopedHashTableScope; |
48 | using llvm::SmallVector; |
49 | using llvm::StringRef; |
50 | using llvm::Twine; |
51 | |
52 | namespace { |
53 | |
54 | /// Implementation of a simple MLIR emission from the Toy AST. |
55 | /// |
56 | /// This will emit operations that are specific to the Toy language, preserving |
57 | /// the semantics of the language and (hopefully) allow to perform accurate |
58 | /// analysis and transformation based on these high level semantics. |
59 | class MLIRGenImpl { |
60 | public: |
61 | MLIRGenImpl(mlir::MLIRContext &context) : builder(&context) {} |
62 | |
63 | /// Public API: convert the AST for a Toy module (source file) to an MLIR |
64 | /// Module operation. |
65 | mlir::ModuleOp mlirGen(ModuleAST &moduleAST) { |
66 | // We create an empty MLIR module and codegen functions one at a time and |
67 | // add them to the module. |
68 | theModule = mlir::ModuleOp::create(builder.getUnknownLoc()); |
69 | |
70 | for (FunctionAST &f : moduleAST) |
71 | mlirGen(f); |
72 | |
73 | // Verify the module after we have finished constructing it, this will check |
74 | // the structural properties of the IR and invoke any specific verifiers we |
75 | // have on the Toy operations. |
76 | if (failed(mlir::verify(theModule))) { |
77 | theModule.emitError("module verification error" ); |
78 | return nullptr; |
79 | } |
80 | |
81 | return theModule; |
82 | } |
83 | |
84 | private: |
85 | /// A "module" matches a Toy source file: containing a list of functions. |
86 | mlir::ModuleOp theModule; |
87 | |
88 | /// The builder is a helper class to create IR inside a function. The builder |
89 | /// is stateful, in particular it keeps an "insertion point": this is where |
90 | /// the next operations will be introduced. |
91 | mlir::OpBuilder builder; |
92 | |
93 | /// The symbol table maps a variable name to a value in the current scope. |
94 | /// Entering a function creates a new scope, and the function arguments are |
95 | /// added to the mapping. When the processing of a function is terminated, the |
96 | /// scope is destroyed and the mappings created in this scope are dropped. |
97 | llvm::ScopedHashTable<StringRef, mlir::Value> symbolTable; |
98 | |
99 | /// Helper conversion for a Toy AST location to an MLIR location. |
100 | mlir::Location loc(const Location &loc) { |
101 | return mlir::FileLineColLoc::get(builder.getStringAttr(*loc.file), loc.line, |
102 | loc.col); |
103 | } |
104 | |
105 | /// Declare a variable in the current scope, return success if the variable |
106 | /// wasn't declared yet. |
107 | llvm::LogicalResult declare(llvm::StringRef var, mlir::Value value) { |
108 | if (symbolTable.count(Key: var)) |
109 | return mlir::failure(); |
110 | symbolTable.insert(Key: var, Val: value); |
111 | return mlir::success(); |
112 | } |
113 | |
114 | /// Create the prototype for an MLIR function with as many arguments as the |
115 | /// provided Toy AST prototype. |
116 | mlir::toy::FuncOp mlirGen(PrototypeAST &proto) { |
117 | auto location = loc(loc: proto.loc()); |
118 | |
119 | // This is a generic function, the return type will be inferred later. |
120 | // Arguments type are uniformly unranked tensors. |
121 | llvm::SmallVector<mlir::Type, 4> argTypes(proto.getArgs().size(), |
122 | getType(type: VarType{})); |
123 | auto funcType = builder.getFunctionType(argTypes, std::nullopt); |
124 | return builder.create<mlir::toy::FuncOp>(location, proto.getName(), |
125 | funcType); |
126 | } |
127 | |
128 | /// Emit a new function and add it to the MLIR module. |
129 | mlir::toy::FuncOp mlirGen(FunctionAST &funcAST) { |
130 | // Create a scope in the symbol table to hold variable declarations. |
131 | ScopedHashTableScope<llvm::StringRef, mlir::Value> varScope(symbolTable); |
132 | |
133 | // Create an MLIR function for the given prototype. |
134 | builder.setInsertionPointToEnd(theModule.getBody()); |
135 | mlir::toy::FuncOp function = mlirGen(*funcAST.getProto()); |
136 | if (!function) |
137 | return nullptr; |
138 | |
139 | // Let's start the body of the function now! |
140 | mlir::Block &entryBlock = function.front(); |
141 | auto protoArgs = funcAST.getProto()->getArgs(); |
142 | |
143 | // Declare all the function arguments in the symbol table. |
144 | for (const auto nameValue : |
145 | llvm::zip(protoArgs, entryBlock.getArguments())) { |
146 | if (failed(declare(std::get<0>(nameValue)->getName(), |
147 | std::get<1>(nameValue)))) |
148 | return nullptr; |
149 | } |
150 | |
151 | // Set the insertion point in the builder to the beginning of the function |
152 | // body, it will be used throughout the codegen to create operations in this |
153 | // function. |
154 | builder.setInsertionPointToStart(&entryBlock); |
155 | |
156 | // Emit the body of the function. |
157 | if (mlir::failed(Result: mlirGen(blockAST&: *funcAST.getBody()))) { |
158 | function.erase(); |
159 | return nullptr; |
160 | } |
161 | |
162 | // Implicitly return void if no return statement was emitted. |
163 | // FIXME: we may fix the parser instead to always return the last expression |
164 | // (this would possibly help the REPL case later) |
165 | ReturnOp returnOp; |
166 | if (!entryBlock.empty()) |
167 | returnOp = dyn_cast<ReturnOp>(entryBlock.back()); |
168 | if (!returnOp) { |
169 | builder.create<ReturnOp>(loc(funcAST.getProto()->loc())); |
170 | } else if (returnOp.hasOperand()) { |
171 | // Otherwise, if this return operation has an operand then add a result to |
172 | // the function. |
173 | function.setType(builder.getFunctionType( |
174 | inputs: function.getFunctionType().getInputs(), results: getType(type: VarType{}))); |
175 | } |
176 | |
177 | return function; |
178 | } |
179 | |
180 | /// Emit a binary operation |
181 | mlir::Value mlirGen(BinaryExprAST &binop) { |
182 | // First emit the operations for each side of the operation before emitting |
183 | // the operation itself. For example if the expression is `a + foo(a)` |
184 | // 1) First it will visiting the LHS, which will return a reference to the |
185 | // value holding `a`. This value should have been emitted at declaration |
186 | // time and registered in the symbol table, so nothing would be |
187 | // codegen'd. If the value is not in the symbol table, an error has been |
188 | // emitted and nullptr is returned. |
189 | // 2) Then the RHS is visited (recursively) and a call to `foo` is emitted |
190 | // and the result value is returned. If an error occurs we get a nullptr |
191 | // and propagate. |
192 | // |
193 | mlir::Value lhs = mlirGen(expr&: *binop.getLHS()); |
194 | if (!lhs) |
195 | return nullptr; |
196 | mlir::Value rhs = mlirGen(expr&: *binop.getRHS()); |
197 | if (!rhs) |
198 | return nullptr; |
199 | auto location = loc(loc: binop.loc()); |
200 | |
201 | // Derive the operation name from the binary operator. At the moment we only |
202 | // support '+' and '*'. |
203 | switch (binop.getOp()) { |
204 | case '+': |
205 | return builder.create<AddOp>(location, lhs, rhs); |
206 | case '*': |
207 | return builder.create<MulOp>(location, lhs, rhs); |
208 | } |
209 | |
210 | emitError(loc: location, message: "invalid binary operator '" ) << binop.getOp() << "'" ; |
211 | return nullptr; |
212 | } |
213 | |
214 | /// This is a reference to a variable in an expression. The variable is |
215 | /// expected to have been declared and so should have a value in the symbol |
216 | /// table, otherwise emit an error and return nullptr. |
217 | mlir::Value mlirGen(VariableExprAST &expr) { |
218 | if (auto variable = symbolTable.lookup(Key: expr.getName())) |
219 | return variable; |
220 | |
221 | emitError(loc: loc(loc: expr.loc()), message: "error: unknown variable '" ) |
222 | << expr.getName() << "'" ; |
223 | return nullptr; |
224 | } |
225 | |
226 | /// Emit a return operation. This will return failure if any generation fails. |
227 | llvm::LogicalResult mlirGen(ReturnExprAST &ret) { |
228 | auto location = loc(loc: ret.loc()); |
229 | |
230 | // 'return' takes an optional expression, handle that case here. |
231 | mlir::Value expr = nullptr; |
232 | if (ret.getExpr().has_value()) { |
233 | if (!(expr = mlirGen(expr&: **ret.getExpr()))) |
234 | return mlir::failure(); |
235 | } |
236 | |
237 | // Otherwise, this return operation has zero operands. |
238 | builder.create<ReturnOp>(location, |
239 | expr ? ArrayRef(expr) : ArrayRef<mlir::Value>()); |
240 | return mlir::success(); |
241 | } |
242 | |
243 | /// Emit a literal/constant array. It will be emitted as a flattened array of |
244 | /// data in an Attribute attached to a `toy.constant` operation. |
245 | /// See documentation on [Attributes](LangRef.md#attributes) for more details. |
246 | /// Here is an excerpt: |
247 | /// |
248 | /// Attributes are the mechanism for specifying constant data in MLIR in |
249 | /// places where a variable is never allowed [...]. They consist of a name |
250 | /// and a concrete attribute value. The set of expected attributes, their |
251 | /// structure, and their interpretation are all contextually dependent on |
252 | /// what they are attached to. |
253 | /// |
254 | /// Example, the source level statement: |
255 | /// var a<2, 3> = [[1, 2, 3], [4, 5, 6]]; |
256 | /// will be converted to: |
257 | /// %0 = "toy.constant"() {value: dense<tensor<2x3xf64>, |
258 | /// [[1.000000e+00, 2.000000e+00, 3.000000e+00], |
259 | /// [4.000000e+00, 5.000000e+00, 6.000000e+00]]>} : () -> tensor<2x3xf64> |
260 | /// |
261 | mlir::Value mlirGen(LiteralExprAST &lit) { |
262 | auto type = getType(shape: lit.getDims()); |
263 | |
264 | // The attribute is a vector with a floating point value per element |
265 | // (number) in the array, see `collectData()` below for more details. |
266 | std::vector<double> data; |
267 | data.reserve(n: std::accumulate(first: lit.getDims().begin(), last: lit.getDims().end(), init: 1, |
268 | binary_op: std::multiplies<int>())); |
269 | collectData(expr&: lit, data); |
270 | |
271 | // The type of this attribute is tensor of 64-bit floating-point with the |
272 | // shape of the literal. |
273 | mlir::Type elementType = builder.getF64Type(); |
274 | auto dataType = mlir::RankedTensorType::get(lit.getDims(), elementType); |
275 | |
276 | // This is the actual attribute that holds the list of values for this |
277 | // tensor literal. |
278 | auto dataAttribute = |
279 | mlir::DenseElementsAttr::get(dataType, llvm::ArrayRef(data)); |
280 | |
281 | // Build the MLIR op `toy.constant`. This invokes the `ConstantOp::build` |
282 | // method. |
283 | return builder.create<ConstantOp>(loc(lit.loc()), type, dataAttribute); |
284 | } |
285 | |
286 | /// Recursive helper function to accumulate the data that compose an array |
287 | /// literal. It flattens the nested structure in the supplied vector. For |
288 | /// example with this array: |
289 | /// [[1, 2], [3, 4]] |
290 | /// we will generate: |
291 | /// [ 1, 2, 3, 4 ] |
292 | /// Individual numbers are represented as doubles. |
293 | /// Attributes are the way MLIR attaches constant to operations. |
294 | void collectData(ExprAST &expr, std::vector<double> &data) { |
295 | if (auto *lit = dyn_cast<LiteralExprAST>(Val: &expr)) { |
296 | for (auto &value : lit->getValues()) |
297 | collectData(expr&: *value, data); |
298 | return; |
299 | } |
300 | |
301 | assert(isa<NumberExprAST>(expr) && "expected literal or number expr" ); |
302 | data.push_back(x: cast<NumberExprAST>(Val&: expr).getValue()); |
303 | } |
304 | |
305 | /// Emit a call expression. It emits specific operations for the `transpose` |
306 | /// builtin. Other identifiers are assumed to be user-defined functions. |
307 | mlir::Value mlirGen(CallExprAST &call) { |
308 | llvm::StringRef callee = call.getCallee(); |
309 | auto location = loc(loc: call.loc()); |
310 | |
311 | // Codegen the operands first. |
312 | SmallVector<mlir::Value, 4> operands; |
313 | for (auto &expr : call.getArgs()) { |
314 | auto arg = mlirGen(expr&: *expr); |
315 | if (!arg) |
316 | return nullptr; |
317 | operands.push_back(Elt: arg); |
318 | } |
319 | |
320 | // Builtin calls have their custom operation, meaning this is a |
321 | // straightforward emission. |
322 | if (callee == "transpose" ) { |
323 | if (call.getArgs().size() != 1) { |
324 | emitError(loc: location, message: "MLIR codegen encountered an error: toy.transpose " |
325 | "does not accept multiple arguments" ); |
326 | return nullptr; |
327 | } |
328 | return builder.create<TransposeOp>(location, operands[0]); |
329 | } |
330 | |
331 | // Otherwise this is a call to a user-defined function. Calls to |
332 | // user-defined functions are mapped to a custom call that takes the callee |
333 | // name as an attribute. |
334 | return builder.create<GenericCallOp>(location, callee, operands); |
335 | } |
336 | |
337 | /// Emit a print expression. It emits specific operations for two builtins: |
338 | /// transpose(x) and print(x). |
339 | llvm::LogicalResult mlirGen(PrintExprAST &call) { |
340 | auto arg = mlirGen(expr&: *call.getArg()); |
341 | if (!arg) |
342 | return mlir::failure(); |
343 | |
344 | builder.create<PrintOp>(loc(call.loc()), arg); |
345 | return mlir::success(); |
346 | } |
347 | |
348 | /// Emit a constant for a single number (FIXME: semantic? broadcast?) |
349 | mlir::Value mlirGen(NumberExprAST &num) { |
350 | return builder.create<ConstantOp>(loc(num.loc()), num.getValue()); |
351 | } |
352 | |
353 | /// Dispatch codegen for the right expression subclass using RTTI. |
354 | mlir::Value mlirGen(ExprAST &expr) { |
355 | switch (expr.getKind()) { |
356 | case toy::ExprAST::Expr_BinOp: |
357 | return mlirGen(binop&: cast<BinaryExprAST>(Val&: expr)); |
358 | case toy::ExprAST::Expr_Var: |
359 | return mlirGen(expr&: cast<VariableExprAST>(Val&: expr)); |
360 | case toy::ExprAST::Expr_Literal: |
361 | return mlirGen(lit&: cast<LiteralExprAST>(Val&: expr)); |
362 | case toy::ExprAST::Expr_Call: |
363 | return mlirGen(call&: cast<CallExprAST>(Val&: expr)); |
364 | case toy::ExprAST::Expr_Num: |
365 | return mlirGen(num&: cast<NumberExprAST>(Val&: expr)); |
366 | default: |
367 | emitError(loc: loc(loc: expr.loc())) |
368 | << "MLIR codegen encountered an unhandled expr kind '" |
369 | << Twine(expr.getKind()) << "'" ; |
370 | return nullptr; |
371 | } |
372 | } |
373 | |
374 | /// Handle a variable declaration, we'll codegen the expression that forms the |
375 | /// initializer and record the value in the symbol table before returning it. |
376 | /// Future expressions will be able to reference this variable through symbol |
377 | /// table lookup. |
378 | mlir::Value mlirGen(VarDeclExprAST &vardecl) { |
379 | auto *init = vardecl.getInitVal(); |
380 | if (!init) { |
381 | emitError(loc: loc(loc: vardecl.loc()), |
382 | message: "missing initializer in variable declaration" ); |
383 | return nullptr; |
384 | } |
385 | |
386 | mlir::Value value = mlirGen(expr&: *init); |
387 | if (!value) |
388 | return nullptr; |
389 | |
390 | // We have the initializer value, but in case the variable was declared |
391 | // with specific shape, we emit a "reshape" operation. It will get |
392 | // optimized out later as needed. |
393 | if (!vardecl.getType().shape.empty()) { |
394 | value = builder.create<ReshapeOp>(loc(vardecl.loc()), |
395 | getType(vardecl.getType()), value); |
396 | } |
397 | |
398 | // Register the value in the symbol table. |
399 | if (failed(Result: declare(var: vardecl.getName(), value))) |
400 | return nullptr; |
401 | return value; |
402 | } |
403 | |
404 | /// Codegen a list of expression, return failure if one of them hit an error. |
405 | llvm::LogicalResult mlirGen(ExprASTList &blockAST) { |
406 | ScopedHashTableScope<StringRef, mlir::Value> varScope(symbolTable); |
407 | for (auto &expr : blockAST) { |
408 | // Specific handling for variable declarations, return statement, and |
409 | // print. These can only appear in block list and not in nested |
410 | // expressions. |
411 | if (auto *vardecl = dyn_cast<VarDeclExprAST>(Val: expr.get())) { |
412 | if (!mlirGen(vardecl&: *vardecl)) |
413 | return mlir::failure(); |
414 | continue; |
415 | } |
416 | if (auto *ret = dyn_cast<ReturnExprAST>(Val: expr.get())) |
417 | return mlirGen(ret&: *ret); |
418 | if (auto *print = dyn_cast<PrintExprAST>(Val: expr.get())) { |
419 | if (mlir::failed(Result: mlirGen(call&: *print))) |
420 | return mlir::success(); |
421 | continue; |
422 | } |
423 | |
424 | // Generic expression dispatch codegen. |
425 | if (!mlirGen(expr&: *expr)) |
426 | return mlir::failure(); |
427 | } |
428 | return mlir::success(); |
429 | } |
430 | |
431 | /// Build a tensor type from a list of shape dimensions. |
432 | mlir::Type getType(ArrayRef<int64_t> shape) { |
433 | // If the shape is empty, then this type is unranked. |
434 | if (shape.empty()) |
435 | return mlir::UnrankedTensorType::get(builder.getF64Type()); |
436 | |
437 | // Otherwise, we use the given shape. |
438 | return mlir::RankedTensorType::get(shape, builder.getF64Type()); |
439 | } |
440 | |
441 | /// Build an MLIR type from a Toy AST variable type (forward to the generic |
442 | /// getType above). |
443 | mlir::Type getType(const VarType &type) { return getType(shape: type.shape); } |
444 | }; |
445 | |
446 | } // namespace |
447 | |
448 | namespace toy { |
449 | |
450 | // The public API for codegen. |
451 | mlir::OwningOpRef<mlir::ModuleOp> mlirGen(mlir::MLIRContext &context, |
452 | ModuleAST &moduleAST) { |
453 | return MLIRGenImpl(context).mlirGen(moduleAST); |
454 | } |
455 | |
456 | } // namespace toy |
457 | |