1 | //===- SparseAnalysis.cpp - Sparse data-flow analysis ---------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Analysis/DataFlow/SparseAnalysis.h" |
10 | #include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h" |
11 | #include "mlir/Analysis/DataFlowFramework.h" |
12 | #include "mlir/IR/Attributes.h" |
13 | #include "mlir/IR/Operation.h" |
14 | #include "mlir/IR/Region.h" |
15 | #include "mlir/IR/SymbolTable.h" |
16 | #include "mlir/IR/Value.h" |
17 | #include "mlir/IR/ValueRange.h" |
18 | #include "mlir/Interfaces/CallInterfaces.h" |
19 | #include "mlir/Interfaces/ControlFlowInterfaces.h" |
20 | #include "mlir/Support/LLVM.h" |
21 | #include "llvm/ADT/STLExtras.h" |
22 | #include "llvm/Support/Casting.h" |
23 | #include <cassert> |
24 | #include <optional> |
25 | |
26 | using namespace mlir; |
27 | using namespace mlir::dataflow; |
28 | |
29 | //===----------------------------------------------------------------------===// |
30 | // AbstractSparseLattice |
31 | //===----------------------------------------------------------------------===// |
32 | |
33 | void AbstractSparseLattice::onUpdate(DataFlowSolver *solver) const { |
34 | AnalysisState::onUpdate(solver); |
35 | |
36 | // Push all users of the value to the queue. |
37 | for (Operation *user : cast<Value>(Val: anchor).getUsers()) |
38 | for (DataFlowAnalysis *analysis : useDefSubscribers) |
39 | solver->enqueue(item: {solver->getProgramPointAfter(op: user), analysis}); |
40 | } |
41 | |
42 | //===----------------------------------------------------------------------===// |
43 | // AbstractSparseForwardDataFlowAnalysis |
44 | //===----------------------------------------------------------------------===// |
45 | |
46 | AbstractSparseForwardDataFlowAnalysis::AbstractSparseForwardDataFlowAnalysis( |
47 | DataFlowSolver &solver) |
48 | : DataFlowAnalysis(solver) { |
49 | registerAnchorKind<CFGEdge>(); |
50 | } |
51 | |
52 | LogicalResult |
53 | AbstractSparseForwardDataFlowAnalysis::initialize(Operation *top) { |
54 | // Mark the entry block arguments as having reached their pessimistic |
55 | // fixpoints. |
56 | for (Region ®ion : top->getRegions()) { |
57 | if (region.empty()) |
58 | continue; |
59 | for (Value argument : region.front().getArguments()) |
60 | setToEntryState(getLatticeElement(value: argument)); |
61 | } |
62 | |
63 | return initializeRecursively(op: top); |
64 | } |
65 | |
66 | LogicalResult |
67 | AbstractSparseForwardDataFlowAnalysis::initializeRecursively(Operation *op) { |
68 | // Initialize the analysis by visiting every owner of an SSA value (all |
69 | // operations and blocks). |
70 | if (failed(Result: visitOperation(op))) |
71 | return failure(); |
72 | |
73 | for (Region ®ion : op->getRegions()) { |
74 | for (Block &block : region) { |
75 | getOrCreate<Executable>(anchor: getProgramPointBefore(block: &block)) |
76 | ->blockContentSubscribe(analysis: this); |
77 | visitBlock(block: &block); |
78 | for (Operation &op : block) |
79 | if (failed(Result: initializeRecursively(op: &op))) |
80 | return failure(); |
81 | } |
82 | } |
83 | |
84 | return success(); |
85 | } |
86 | |
87 | LogicalResult |
88 | AbstractSparseForwardDataFlowAnalysis::visit(ProgramPoint *point) { |
89 | if (!point->isBlockStart()) |
90 | return visitOperation(op: point->getPrevOp()); |
91 | visitBlock(block: point->getBlock()); |
92 | return success(); |
93 | } |
94 | |
95 | LogicalResult |
96 | AbstractSparseForwardDataFlowAnalysis::visitOperation(Operation *op) { |
97 | // Exit early on operations with no results. |
98 | if (op->getNumResults() == 0) |
99 | return success(); |
100 | |
101 | // If the containing block is not executable, bail out. |
102 | if (op->getBlock() != nullptr && |
103 | !getOrCreate<Executable>(anchor: getProgramPointBefore(block: op->getBlock()))->isLive()) |
104 | return success(); |
105 | |
106 | // Get the result lattices. |
107 | SmallVector<AbstractSparseLattice *> resultLattices; |
108 | resultLattices.reserve(N: op->getNumResults()); |
109 | for (Value result : op->getResults()) { |
110 | AbstractSparseLattice *resultLattice = getLatticeElement(value: result); |
111 | resultLattices.push_back(Elt: resultLattice); |
112 | } |
113 | |
114 | // The results of a region branch operation are determined by control-flow. |
115 | if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) { |
116 | visitRegionSuccessors(point: getProgramPointAfter(branch), branch: branch, |
117 | /*successor=*/RegionBranchPoint::parent(), |
118 | lattices: resultLattices); |
119 | return success(); |
120 | } |
121 | |
122 | // Grab the lattice elements of the operands. |
123 | SmallVector<const AbstractSparseLattice *> operandLattices; |
124 | operandLattices.reserve(N: op->getNumOperands()); |
125 | for (Value operand : op->getOperands()) { |
126 | AbstractSparseLattice *operandLattice = getLatticeElement(value: operand); |
127 | operandLattice->useDefSubscribe(analysis: this); |
128 | operandLattices.push_back(Elt: operandLattice); |
129 | } |
130 | |
131 | if (auto call = dyn_cast<CallOpInterface>(op)) |
132 | return visitCallOperation(call: call, operandLattices, resultLattices); |
133 | |
134 | // Invoke the operation transfer function. |
135 | return visitOperationImpl(op, operandLattices, resultLattices); |
136 | } |
137 | |
138 | void AbstractSparseForwardDataFlowAnalysis::visitBlock(Block *block) { |
139 | // Exit early on blocks with no arguments. |
140 | if (block->getNumArguments() == 0) |
141 | return; |
142 | |
143 | // If the block is not executable, bail out. |
144 | if (!getOrCreate<Executable>(anchor: getProgramPointBefore(block))->isLive()) |
145 | return; |
146 | |
147 | // Get the argument lattices. |
148 | SmallVector<AbstractSparseLattice *> argLattices; |
149 | argLattices.reserve(N: block->getNumArguments()); |
150 | for (BlockArgument argument : block->getArguments()) { |
151 | AbstractSparseLattice *argLattice = getLatticeElement(value: argument); |
152 | argLattices.push_back(Elt: argLattice); |
153 | } |
154 | |
155 | // The argument lattices of entry blocks are set by region control-flow or the |
156 | // callgraph. |
157 | if (block->isEntryBlock()) { |
158 | // Check if this block is the entry block of a callable region. |
159 | auto callable = dyn_cast<CallableOpInterface>(block->getParentOp()); |
160 | if (callable && callable.getCallableRegion() == block->getParent()) |
161 | return visitCallableOperation(callable, argLattices); |
162 | |
163 | // Check if the lattices can be determined from region control flow. |
164 | if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp())) { |
165 | return visitRegionSuccessors(point: getProgramPointBefore(block), branch: branch, |
166 | successor: block->getParent(), lattices: argLattices); |
167 | } |
168 | |
169 | // Otherwise, we can't reason about the data-flow. |
170 | return visitNonControlFlowArgumentsImpl(op: block->getParentOp(), |
171 | successor: RegionSuccessor(block->getParent()), |
172 | argLattices, /*firstIndex=*/0); |
173 | } |
174 | |
175 | // Iterate over the predecessors of the non-entry block. |
176 | for (Block::pred_iterator it = block->pred_begin(), e = block->pred_end(); |
177 | it != e; ++it) { |
178 | Block *predecessor = *it; |
179 | |
180 | // If the edge from the predecessor block to the current block is not live, |
181 | // bail out. |
182 | auto *edgeExecutable = |
183 | getOrCreate<Executable>(anchor: getLatticeAnchor<CFGEdge>(args&: predecessor, args&: block)); |
184 | edgeExecutable->blockContentSubscribe(analysis: this); |
185 | if (!edgeExecutable->isLive()) |
186 | continue; |
187 | |
188 | // Check if we can reason about the data-flow from the predecessor. |
189 | if (auto branch = |
190 | dyn_cast<BranchOpInterface>(predecessor->getTerminator())) { |
191 | SuccessorOperands operands = |
192 | branch.getSuccessorOperands(it.getSuccessorIndex()); |
193 | for (auto [idx, lattice] : llvm::enumerate(First&: argLattices)) { |
194 | if (Value operand = operands[idx]) { |
195 | join(lhs: lattice, |
196 | rhs: *getLatticeElementFor(point: getProgramPointBefore(block), value: operand)); |
197 | } else { |
198 | // Conservatively consider internally produced arguments as entry |
199 | // points. |
200 | setAllToEntryStates(lattice); |
201 | } |
202 | } |
203 | } else { |
204 | return setAllToEntryStates(argLattices); |
205 | } |
206 | } |
207 | } |
208 | |
209 | LogicalResult AbstractSparseForwardDataFlowAnalysis::visitCallOperation( |
210 | CallOpInterface call, |
211 | ArrayRef<const AbstractSparseLattice *> operandLattices, |
212 | ArrayRef<AbstractSparseLattice *> resultLattices) { |
213 | // If the call operation is to an external function, attempt to infer the |
214 | // results from the call arguments. |
215 | auto callable = |
216 | dyn_cast_if_present<CallableOpInterface>(call.resolveCallable()); |
217 | if (!getSolverConfig().isInterprocedural() || |
218 | (callable && !callable.getCallableRegion())) { |
219 | visitExternalCallImpl(call: call, argumentLattices: operandLattices, resultLattices); |
220 | return success(); |
221 | } |
222 | |
223 | // Otherwise, the results of a call operation are determined by the |
224 | // callgraph. |
225 | const auto *predecessors = getOrCreateFor<PredecessorState>( |
226 | getProgramPointAfter(call), getProgramPointAfter(call)); |
227 | // If not all return sites are known, then conservatively assume we can't |
228 | // reason about the data-flow. |
229 | if (!predecessors->allPredecessorsKnown()) { |
230 | setAllToEntryStates(resultLattices); |
231 | return success(); |
232 | } |
233 | for (Operation *predecessor : predecessors->getKnownPredecessors()) |
234 | for (auto &&[operand, resLattice] : |
235 | llvm::zip(predecessor->getOperands(), resultLattices)) |
236 | join(resLattice, |
237 | *getLatticeElementFor(getProgramPointAfter(call), operand)); |
238 | return success(); |
239 | } |
240 | |
241 | void AbstractSparseForwardDataFlowAnalysis::visitCallableOperation( |
242 | CallableOpInterface callable, |
243 | ArrayRef<AbstractSparseLattice *> argLattices) { |
244 | Block *entryBlock = &callable.getCallableRegion()->front(); |
245 | const auto *callsites = getOrCreateFor<PredecessorState>( |
246 | getProgramPointBefore(block: entryBlock), getProgramPointAfter(callable)); |
247 | // If not all callsites are known, conservatively mark all lattices as |
248 | // having reached their pessimistic fixpoints. |
249 | if (!callsites->allPredecessorsKnown() || |
250 | !getSolverConfig().isInterprocedural()) { |
251 | return setAllToEntryStates(argLattices); |
252 | } |
253 | for (Operation *callsite : callsites->getKnownPredecessors()) { |
254 | auto call = cast<CallOpInterface>(callsite); |
255 | for (auto it : llvm::zip(call.getArgOperands(), argLattices)) |
256 | join(std::get<1>(it), |
257 | *getLatticeElementFor(getProgramPointBefore(entryBlock), |
258 | std::get<0>(it))); |
259 | } |
260 | } |
261 | |
262 | void AbstractSparseForwardDataFlowAnalysis::visitRegionSuccessors( |
263 | ProgramPoint *point, RegionBranchOpInterface branch, |
264 | RegionBranchPoint successor, ArrayRef<AbstractSparseLattice *> lattices) { |
265 | const auto *predecessors = getOrCreateFor<PredecessorState>(dependent: point, anchor: point); |
266 | assert(predecessors->allPredecessorsKnown() && |
267 | "unexpected unresolved region successors"); |
268 | |
269 | for (Operation *op : predecessors->getKnownPredecessors()) { |
270 | // Get the incoming successor operands. |
271 | std::optional<OperandRange> operands; |
272 | |
273 | // Check if the predecessor is the parent op. |
274 | if (op == branch) { |
275 | operands = branch.getEntrySuccessorOperands(successor); |
276 | // Otherwise, try to deduce the operands from a region return-like op. |
277 | } else if (auto regionTerminator = |
278 | dyn_cast<RegionBranchTerminatorOpInterface>(op)) { |
279 | operands = regionTerminator.getSuccessorOperands(successor); |
280 | } |
281 | |
282 | if (!operands) { |
283 | // We can't reason about the data-flow. |
284 | return setAllToEntryStates(lattices); |
285 | } |
286 | |
287 | ValueRange inputs = predecessors->getSuccessorInputs(predecessor: op); |
288 | assert(inputs.size() == operands->size() && |
289 | "expected the same number of successor inputs as operands"); |
290 | |
291 | unsigned firstIndex = 0; |
292 | if (inputs.size() != lattices.size()) { |
293 | if (!point->isBlockStart()) { |
294 | if (!inputs.empty()) |
295 | firstIndex = cast<OpResult>(Val: inputs.front()).getResultNumber(); |
296 | visitNonControlFlowArgumentsImpl( |
297 | op: branch, |
298 | successor: RegionSuccessor( |
299 | branch->getResults().slice(firstIndex, inputs.size())), |
300 | argLattices: lattices, firstIndex); |
301 | } else { |
302 | if (!inputs.empty()) |
303 | firstIndex = cast<BlockArgument>(Val: inputs.front()).getArgNumber(); |
304 | Region *region = point->getBlock()->getParent(); |
305 | visitNonControlFlowArgumentsImpl( |
306 | op: branch, |
307 | successor: RegionSuccessor(region, region->getArguments().slice( |
308 | N: firstIndex, M: inputs.size())), |
309 | argLattices: lattices, firstIndex); |
310 | } |
311 | } |
312 | |
313 | for (auto it : llvm::zip(t&: *operands, u: lattices.drop_front(N: firstIndex))) |
314 | join(lhs: std::get<1>(t&: it), rhs: *getLatticeElementFor(point, value: std::get<0>(t&: it))); |
315 | } |
316 | } |
317 | |
318 | const AbstractSparseLattice * |
319 | AbstractSparseForwardDataFlowAnalysis::getLatticeElementFor(ProgramPoint *point, |
320 | Value value) { |
321 | AbstractSparseLattice *state = getLatticeElement(value); |
322 | addDependency(state, point); |
323 | return state; |
324 | } |
325 | |
326 | void AbstractSparseForwardDataFlowAnalysis::setAllToEntryStates( |
327 | ArrayRef<AbstractSparseLattice *> lattices) { |
328 | for (AbstractSparseLattice *lattice : lattices) |
329 | setToEntryState(lattice); |
330 | } |
331 | |
332 | void AbstractSparseForwardDataFlowAnalysis::join( |
333 | AbstractSparseLattice *lhs, const AbstractSparseLattice &rhs) { |
334 | propagateIfChanged(state: lhs, changed: lhs->join(rhs)); |
335 | } |
336 | |
337 | //===----------------------------------------------------------------------===// |
338 | // AbstractSparseBackwardDataFlowAnalysis |
339 | //===----------------------------------------------------------------------===// |
340 | |
341 | AbstractSparseBackwardDataFlowAnalysis::AbstractSparseBackwardDataFlowAnalysis( |
342 | DataFlowSolver &solver, SymbolTableCollection &symbolTable) |
343 | : DataFlowAnalysis(solver), symbolTable(symbolTable) { |
344 | registerAnchorKind<CFGEdge>(); |
345 | } |
346 | |
347 | LogicalResult |
348 | AbstractSparseBackwardDataFlowAnalysis::initialize(Operation *top) { |
349 | return initializeRecursively(op: top); |
350 | } |
351 | |
352 | LogicalResult |
353 | AbstractSparseBackwardDataFlowAnalysis::initializeRecursively(Operation *op) { |
354 | if (failed(Result: visitOperation(op))) |
355 | return failure(); |
356 | |
357 | for (Region ®ion : op->getRegions()) { |
358 | for (Block &block : region) { |
359 | getOrCreate<Executable>(anchor: getProgramPointBefore(block: &block)) |
360 | ->blockContentSubscribe(analysis: this); |
361 | // Initialize ops in reverse order, so we can do as much initial |
362 | // propagation as possible without having to go through the |
363 | // solver queue. |
364 | for (auto it = block.rbegin(); it != block.rend(); it++) |
365 | if (failed(Result: initializeRecursively(op: &*it))) |
366 | return failure(); |
367 | } |
368 | } |
369 | return success(); |
370 | } |
371 | |
372 | LogicalResult |
373 | AbstractSparseBackwardDataFlowAnalysis::visit(ProgramPoint *point) { |
374 | // For backward dataflow, we don't have to do any work for the blocks |
375 | // themselves. CFG edges between blocks are processed by the BranchOp |
376 | // logic in `visitOperation`, and entry blocks for functions are tied |
377 | // to the CallOp arguments by visitOperation. |
378 | if (point->isBlockStart()) |
379 | return success(); |
380 | return visitOperation(op: point->getPrevOp()); |
381 | } |
382 | |
383 | SmallVector<AbstractSparseLattice *> |
384 | AbstractSparseBackwardDataFlowAnalysis::getLatticeElements(ValueRange values) { |
385 | SmallVector<AbstractSparseLattice *> resultLattices; |
386 | resultLattices.reserve(N: values.size()); |
387 | for (Value result : values) { |
388 | AbstractSparseLattice *resultLattice = getLatticeElement(value: result); |
389 | resultLattices.push_back(Elt: resultLattice); |
390 | } |
391 | return resultLattices; |
392 | } |
393 | |
394 | SmallVector<const AbstractSparseLattice *> |
395 | AbstractSparseBackwardDataFlowAnalysis::getLatticeElementsFor( |
396 | ProgramPoint *point, ValueRange values) { |
397 | SmallVector<const AbstractSparseLattice *> resultLattices; |
398 | resultLattices.reserve(N: values.size()); |
399 | for (Value result : values) { |
400 | const AbstractSparseLattice *resultLattice = |
401 | getLatticeElementFor(point, value: result); |
402 | resultLattices.push_back(Elt: resultLattice); |
403 | } |
404 | return resultLattices; |
405 | } |
406 | |
407 | static MutableArrayRef<OpOperand> operandsToOpOperands(OperandRange &operands) { |
408 | return MutableArrayRef<OpOperand>(operands.getBase(), operands.size()); |
409 | } |
410 | |
411 | LogicalResult |
412 | AbstractSparseBackwardDataFlowAnalysis::visitOperation(Operation *op) { |
413 | // If we're in a dead block, bail out. |
414 | if (op->getBlock() != nullptr && |
415 | !getOrCreate<Executable>(anchor: getProgramPointBefore(block: op->getBlock()))->isLive()) |
416 | return success(); |
417 | |
418 | SmallVector<AbstractSparseLattice *> operandLattices = |
419 | getLatticeElements(values: op->getOperands()); |
420 | SmallVector<const AbstractSparseLattice *> resultLattices = |
421 | getLatticeElementsFor(point: getProgramPointAfter(op), values: op->getResults()); |
422 | |
423 | // Block arguments of region branch operations flow back into the operands |
424 | // of the parent op |
425 | if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) { |
426 | visitRegionSuccessors(branch: branch, operands: operandLattices); |
427 | return success(); |
428 | } |
429 | |
430 | if (auto branch = dyn_cast<BranchOpInterface>(op)) { |
431 | // Block arguments of successor blocks flow back into our operands. |
432 | |
433 | // We remember all operands not forwarded to any block in a BitVector. |
434 | // We can't just cut out a range here, since the non-forwarded ops might |
435 | // be non-contiguous (if there's more than one successor). |
436 | BitVector unaccounted(op->getNumOperands(), true); |
437 | |
438 | for (auto [index, block] : llvm::enumerate(First: op->getSuccessors())) { |
439 | SuccessorOperands successorOperands = branch.getSuccessorOperands(index); |
440 | OperandRange forwarded = successorOperands.getForwardedOperands(); |
441 | if (!forwarded.empty()) { |
442 | MutableArrayRef<OpOperand> operands = op->getOpOperands().slice( |
443 | N: forwarded.getBeginOperandIndex(), M: forwarded.size()); |
444 | for (OpOperand &operand : operands) { |
445 | unaccounted.reset(operand.getOperandNumber()); |
446 | if (std::optional<BlockArgument> blockArg = |
447 | detail::getBranchSuccessorArgument( |
448 | successorOperands, operand.getOperandNumber(), block)) { |
449 | meet(getLatticeElement(operand.get()), |
450 | *getLatticeElementFor(getProgramPointAfter(op), *blockArg)); |
451 | } |
452 | } |
453 | } |
454 | } |
455 | // Operands not forwarded to successor blocks are typically parameters |
456 | // of the branch operation itself (for example the boolean for if/else). |
457 | for (int index : unaccounted.set_bits()) { |
458 | OpOperand &operand = op->getOpOperand(idx: index); |
459 | visitBranchOperand(operand); |
460 | } |
461 | return success(); |
462 | } |
463 | |
464 | // For function calls, connect the arguments of the entry blocks to the |
465 | // operands of the call op that are forwarded to these arguments. |
466 | if (auto call = dyn_cast<CallOpInterface>(op)) { |
467 | Operation *callableOp = call.resolveCallableInTable(&symbolTable); |
468 | if (auto callable = dyn_cast_or_null<CallableOpInterface>(callableOp)) { |
469 | // Not all operands of a call op forward to arguments. Such operands are |
470 | // stored in `unaccounted`. |
471 | BitVector unaccounted(op->getNumOperands(), true); |
472 | |
473 | // If the call invokes an external function (or a function treated as |
474 | // external due to config), defer to the corresponding extension hook. |
475 | // By default, it just does `visitCallOperand` for all operands. |
476 | OperandRange argOperands = call.getArgOperands(); |
477 | MutableArrayRef<OpOperand> argOpOperands = |
478 | operandsToOpOperands(operands&: argOperands); |
479 | Region *region = callable.getCallableRegion(); |
480 | if (!region || region->empty() || |
481 | !getSolverConfig().isInterprocedural()) { |
482 | visitExternalCallImpl(call: call, operandLattices, resultLattices); |
483 | return success(); |
484 | } |
485 | |
486 | // Otherwise, propagate information from the entry point of the function |
487 | // back to operands whenever possible. |
488 | Block &block = region->front(); |
489 | for (auto [blockArg, argOpOperand] : |
490 | llvm::zip(block.getArguments(), argOpOperands)) { |
491 | meet(getLatticeElement(argOpOperand.get()), |
492 | *getLatticeElementFor(getProgramPointAfter(op), blockArg)); |
493 | unaccounted.reset(argOpOperand.getOperandNumber()); |
494 | } |
495 | |
496 | // Handle the operands of the call op that aren't forwarded to any |
497 | // arguments. |
498 | for (int index : unaccounted.set_bits()) { |
499 | OpOperand &opOperand = op->getOpOperand(idx: index); |
500 | visitCallOperand(operand&: opOperand); |
501 | } |
502 | return success(); |
503 | } |
504 | } |
505 | |
506 | // When the region of an op implementing `RegionBranchOpInterface` has a |
507 | // terminator implementing `RegionBranchTerminatorOpInterface` or a |
508 | // return-like terminator, the region's successors' arguments flow back into |
509 | // the "successor operands" of this terminator. |
510 | // |
511 | // A successor operand with respect to an op implementing |
512 | // `RegionBranchOpInterface` is an operand that is forwarded to a region |
513 | // successor's input. There are two types of successor operands: the operands |
514 | // of this op itself and the operands of the terminators of the regions of |
515 | // this op. |
516 | if (auto terminator = dyn_cast<RegionBranchTerminatorOpInterface>(op)) { |
517 | if (auto branch = dyn_cast<RegionBranchOpInterface>(op->getParentOp())) { |
518 | visitRegionSuccessorsFromTerminator(terminator, branch); |
519 | return success(); |
520 | } |
521 | } |
522 | |
523 | if (op->hasTrait<OpTrait::ReturnLike>()) { |
524 | // Going backwards, the operands of the return are derived from the |
525 | // results of all CallOps calling this CallableOp. |
526 | if (auto callable = dyn_cast<CallableOpInterface>(op->getParentOp())) |
527 | return visitCallableOperation(op, callable, operandLattices); |
528 | } |
529 | |
530 | return visitOperationImpl(op, operandLattices, resultLattices); |
531 | } |
532 | |
533 | LogicalResult AbstractSparseBackwardDataFlowAnalysis::visitCallableOperation( |
534 | Operation *op, CallableOpInterface callable, |
535 | ArrayRef<AbstractSparseLattice *> operandLattices) { |
536 | const PredecessorState *callsites = getOrCreateFor<PredecessorState>( |
537 | getProgramPointAfter(op), getProgramPointAfter(callable)); |
538 | if (callsites->allPredecessorsKnown()) { |
539 | for (Operation *call : callsites->getKnownPredecessors()) { |
540 | SmallVector<const AbstractSparseLattice *> callResultLattices = |
541 | getLatticeElementsFor(getProgramPointAfter(op), call->getResults()); |
542 | for (auto [op, result] : llvm::zip(operandLattices, callResultLattices)) |
543 | meet(op, *result); |
544 | } |
545 | } else { |
546 | // If we don't know all the callers, we can't know where the |
547 | // returned values go. Note that, in particular, this will trigger |
548 | // for the return ops of any public functions. |
549 | setAllToExitStates(operandLattices); |
550 | } |
551 | return success(); |
552 | } |
553 | |
554 | void AbstractSparseBackwardDataFlowAnalysis::visitRegionSuccessors( |
555 | RegionBranchOpInterface branch, |
556 | ArrayRef<AbstractSparseLattice *> operandLattices) { |
557 | Operation *op = branch.getOperation(); |
558 | SmallVector<RegionSuccessor> successors; |
559 | SmallVector<Attribute> operands(op->getNumOperands(), nullptr); |
560 | branch.getEntrySuccessorRegions(operands, successors); |
561 | |
562 | // All operands not forwarded to any successor. This set can be non-contiguous |
563 | // in the presence of multiple successors. |
564 | BitVector unaccounted(op->getNumOperands(), true); |
565 | |
566 | for (RegionSuccessor &successor : successors) { |
567 | OperandRange operands = branch.getEntrySuccessorOperands(successor); |
568 | MutableArrayRef<OpOperand> opoperands = operandsToOpOperands(operands); |
569 | ValueRange inputs = successor.getSuccessorInputs(); |
570 | for (auto [operand, input] : llvm::zip(opoperands, inputs)) { |
571 | meet(getLatticeElement(operand.get()), |
572 | *getLatticeElementFor(getProgramPointAfter(op), input)); |
573 | unaccounted.reset(operand.getOperandNumber()); |
574 | } |
575 | } |
576 | // All operands not forwarded to regions are typically parameters of the |
577 | // branch operation itself (for example the boolean for if/else). |
578 | for (int index : unaccounted.set_bits()) { |
579 | visitBranchOperand(op->getOpOperand(index)); |
580 | } |
581 | } |
582 | |
583 | void AbstractSparseBackwardDataFlowAnalysis:: |
584 | visitRegionSuccessorsFromTerminator( |
585 | RegionBranchTerminatorOpInterface terminator, |
586 | RegionBranchOpInterface branch) { |
587 | assert(isa<RegionBranchTerminatorOpInterface>(terminator) && |
588 | "expected a `RegionBranchTerminatorOpInterface` op"); |
589 | assert(terminator->getParentOp() == branch.getOperation() && |
590 | "expected `branch` to be the parent op of `terminator`"); |
591 | |
592 | SmallVector<Attribute> operandAttributes(terminator->getNumOperands(), |
593 | nullptr); |
594 | SmallVector<RegionSuccessor> successors; |
595 | terminator.getSuccessorRegions(operandAttributes, successors); |
596 | // All operands not forwarded to any successor. This set can be |
597 | // non-contiguous in the presence of multiple successors. |
598 | BitVector unaccounted(terminator->getNumOperands(), true); |
599 | |
600 | for (const RegionSuccessor &successor : successors) { |
601 | ValueRange inputs = successor.getSuccessorInputs(); |
602 | OperandRange operands = terminator.getSuccessorOperands(successor); |
603 | MutableArrayRef<OpOperand> opOperands = operandsToOpOperands(operands); |
604 | for (auto [opOperand, input] : llvm::zip(opOperands, inputs)) { |
605 | meet(getLatticeElement(opOperand.get()), |
606 | *getLatticeElementFor(getProgramPointAfter(terminator), input)); |
607 | unaccounted.reset(const_cast<OpOperand &>(opOperand).getOperandNumber()); |
608 | } |
609 | } |
610 | // Visit operands of the branch op not forwarded to the next region. |
611 | // (Like e.g. the boolean of `scf.conditional`) |
612 | for (int index : unaccounted.set_bits()) { |
613 | visitBranchOperand(terminator->getOpOperand(index)); |
614 | } |
615 | } |
616 | |
617 | const AbstractSparseLattice * |
618 | AbstractSparseBackwardDataFlowAnalysis::getLatticeElementFor( |
619 | ProgramPoint *point, Value value) { |
620 | AbstractSparseLattice *state = getLatticeElement(value); |
621 | addDependency(state, point); |
622 | return state; |
623 | } |
624 | |
625 | void AbstractSparseBackwardDataFlowAnalysis::setAllToExitStates( |
626 | ArrayRef<AbstractSparseLattice *> lattices) { |
627 | for (AbstractSparseLattice *lattice : lattices) |
628 | setToExitState(lattice); |
629 | } |
630 | |
631 | void AbstractSparseBackwardDataFlowAnalysis::meet( |
632 | AbstractSparseLattice *lhs, const AbstractSparseLattice &rhs) { |
633 | propagateIfChanged(state: lhs, changed: lhs->meet(rhs)); |
634 | } |
635 |
Definitions
- onUpdate
- AbstractSparseForwardDataFlowAnalysis
- initialize
- initializeRecursively
- visit
- visitOperation
- visitBlock
- visitCallOperation
- visitCallableOperation
- visitRegionSuccessors
- getLatticeElementFor
- setAllToEntryStates
- join
- AbstractSparseBackwardDataFlowAnalysis
- initialize
- initializeRecursively
- visit
- getLatticeElements
- getLatticeElementsFor
- operandsToOpOperands
- visitOperation
- visitCallableOperation
- visitRegionSuccessors
- visitRegionSuccessorsFromTerminator
- getLatticeElementFor
- setAllToExitStates
Learn to use CMake with our Intro Training
Find out more