| 1 | //===- Linalg.cpp - C Interface for Linalg dialect ------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir-c/Dialect/Linalg.h" |
| 10 | #include "mlir/CAPI/Registration.h" |
| 11 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 12 | |
| 13 | using namespace mlir; |
| 14 | using namespace mlir::linalg; |
| 15 | |
| 16 | /// Apply the special region builder for the builtin named Linalg op. |
| 17 | /// Assert that `op` is a builtin named Linalg op. |
| 18 | void mlirLinalgFillBuiltinNamedOpRegion(MlirOperation mlirOp) { |
| 19 | Operation *op = unwrap(c: mlirOp); |
| 20 | auto linalgOp = cast<LinalgOp>(op); |
| 21 | auto *dialect = static_cast<LinalgDialect *>(linalgOp->getDialect()); |
| 22 | LinalgDialect::RegionBuilderFunType fun = |
| 23 | dialect->getRegionBuilder(op->getName().getStringRef()); |
| 24 | |
| 25 | assert(fun && "Expected a builtin named Linalg op." ); |
| 26 | assert(op->getNumRegions() == 1 && "Expected Linalg op with 1 region" ); |
| 27 | assert(op->getRegion(0).getBlocks().empty() && |
| 28 | "Expected Linalg op with 0 blocks" ); |
| 29 | |
| 30 | SmallVector<Type, 8> argTypes; |
| 31 | SmallVector<Location, 8> argLocs; |
| 32 | for (OpOperand &opOperand : linalgOp->getOpOperands()) { |
| 33 | argTypes.push_back(getElementTypeOrSelf(opOperand.get().getType())); |
| 34 | argLocs.push_back(opOperand.get().getLoc()); |
| 35 | } |
| 36 | |
| 37 | ImplicitLocOpBuilder b(op->getLoc(), op->getContext()); |
| 38 | Region ®ion = op->getRegion(index: 0); |
| 39 | Block *body = b.createBlock(parent: ®ion, /*insertPt=*/{}, argTypes, locs: argLocs); |
| 40 | b.setInsertionPointToStart(body); |
| 41 | fun(b, *body, op->getAttrs()); |
| 42 | } |
| 43 | |
| 44 | MLIR_CAPI_EXPORTED bool mlirLinalgIsAContractionOp(MlirOperation op) { |
| 45 | auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(c: op)); |
| 46 | // isaContractionOpInterface handles null linalgOp internally. |
| 47 | return linalg::isaContractionOpInterface(linalgOp: linalgOp); |
| 48 | } |
| 49 | |
| 50 | MLIR_CAPI_EXPORTED MlirLinalgContractionDimensions |
| 51 | mlirLinalgInferContractionDimensions(MlirOperation op) { |
| 52 | MlirLinalgContractionDimensions result{}; |
| 53 | auto linalgOp = dyn_cast<linalg::LinalgOp>(unwrap(c: op)); |
| 54 | if (!linalgOp) |
| 55 | return result; |
| 56 | |
| 57 | FailureOr<linalg::ContractionDimensions> maybeDims = |
| 58 | linalg::inferContractionDims(linalgOp); |
| 59 | if (failed(Result: maybeDims)) |
| 60 | return result; |
| 61 | |
| 62 | linalg::ContractionDimensions contractionDims = *maybeDims; |
| 63 | MLIRContext *ctx = linalgOp.getContext(); |
| 64 | |
| 65 | auto toAttr = [&ctx](const SmallVector<unsigned, 2> &vals) -> MlirAttribute { |
| 66 | return wrap( |
| 67 | DenseI32ArrayAttr::get(ctx, llvm::to_vector_of<int32_t, 2>(vals))); |
| 68 | }; |
| 69 | |
| 70 | result.batch = toAttr(contractionDims.batch); |
| 71 | result.m = toAttr(contractionDims.m); |
| 72 | result.n = toAttr(contractionDims.n); |
| 73 | result.k = toAttr(contractionDims.k); |
| 74 | |
| 75 | return result; |
| 76 | } |
| 77 | |
| 78 | MLIR_CAPI_EXPORTED bool mlirLinalgIsAConvolutionOp(MlirOperation op) { |
| 79 | auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(c: op)); |
| 80 | if (!linalgOp) |
| 81 | return false; |
| 82 | |
| 83 | return linalg::isaConvolutionOpInterface(linalgOp: linalgOp); |
| 84 | } |
| 85 | |
| 86 | MLIR_CAPI_EXPORTED MlirLinalgConvolutionDimensions |
| 87 | mlirLinalgInferConvolutionDimensions(MlirOperation op) { |
| 88 | MlirLinalgConvolutionDimensions result{}; |
| 89 | auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(c: op)); |
| 90 | if (!linalgOp) |
| 91 | return result; |
| 92 | |
| 93 | FailureOr<linalg::ConvolutionDimensions> maybeDims = |
| 94 | linalg::inferConvolutionDims(linalgOp: linalgOp); |
| 95 | if (failed(Result: maybeDims)) |
| 96 | return result; |
| 97 | |
| 98 | linalg::ConvolutionDimensions dims = *maybeDims; |
| 99 | MLIRContext *ctx = linalgOp.getContext(); |
| 100 | |
| 101 | auto toI32Attr = |
| 102 | [&ctx](const SmallVector<unsigned, 2> &vals) -> MlirAttribute { |
| 103 | return wrap(DenseI32ArrayAttr::get(ctx, llvm::to_vector_of<int32_t>(vals))); |
| 104 | }; |
| 105 | |
| 106 | auto toI64Attr = |
| 107 | [&ctx](const SmallVector<int64_t, 2> &vals) -> MlirAttribute { |
| 108 | return wrap(DenseI64ArrayAttr::get(ctx, vals)); |
| 109 | }; |
| 110 | |
| 111 | result.batch = toI32Attr(dims.batch); |
| 112 | result.outputImage = toI32Attr(dims.outputImage); |
| 113 | result.outputChannel = toI32Attr(dims.outputChannel); |
| 114 | result.filterLoop = toI32Attr(dims.filterLoop); |
| 115 | result.inputChannel = toI32Attr(dims.inputChannel); |
| 116 | result.depth = toI32Attr(dims.depth); |
| 117 | result.strides = toI64Attr(dims.strides); |
| 118 | result.dilations = toI64Attr(dims.dilations); |
| 119 | |
| 120 | return result; |
| 121 | } |
| 122 | |
| 123 | MLIR_CAPI_EXPORTED MlirAttribute |
| 124 | mlirLinalgGetIndexingMapsAttribute(MlirOperation op) { |
| 125 | auto linalgOp = llvm::dyn_cast<mlir::linalg::LinalgOp>(unwrap(c: op)); |
| 126 | if (!linalgOp) |
| 127 | return MlirAttribute{.ptr: nullptr}; |
| 128 | |
| 129 | ArrayAttr attr = linalgOp.getIndexingMaps(); |
| 130 | return wrap(attr); |
| 131 | } |
| 132 | |
| 133 | MLIR_DEFINE_CAPI_DIALECT_REGISTRATION(Linalg, linalg, LinalgDialect) |
| 134 | |