| 1 | //===- DivisionConverter.cpp - Complex division conversion ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements functions for two different complex number division |
| 10 | // algorithms, the `algebraic formula` and `Smith's range reduction method`. |
| 11 | // These are used in two conversions: `ComplexToLLVM` and `ComplexToStandard`. |
| 12 | // When modifying the algorithms, both `ToLLVM` and `ToStandard` must be |
| 13 | // changed. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "mlir/Conversion/ComplexCommon/DivisionConverter.h" |
| 18 | #include "mlir/Dialect/Math/IR/Math.h" |
| 19 | |
| 20 | using namespace mlir; |
| 21 | |
| 22 | void mlir::complex::convertDivToLLVMUsingAlgebraic( |
| 23 | ConversionPatternRewriter &rewriter, Location loc, Value lhsRe, Value lhsIm, |
| 24 | Value rhsRe, Value rhsIm, LLVM::FastmathFlagsAttr fmf, Value *resultRe, |
| 25 | Value *resultIm) { |
| 26 | Value rhsSqNorm = rewriter.create<LLVM::FAddOp>( |
| 27 | loc, rewriter.create<LLVM::FMulOp>(loc, rhsRe, rhsRe, fmf), |
| 28 | rewriter.create<LLVM::FMulOp>(loc, rhsIm, rhsIm, fmf), fmf); |
| 29 | |
| 30 | Value realNumerator = rewriter.create<LLVM::FAddOp>( |
| 31 | loc, rewriter.create<LLVM::FMulOp>(loc, lhsRe, rhsRe, fmf), |
| 32 | rewriter.create<LLVM::FMulOp>(loc, lhsIm, rhsIm, fmf), fmf); |
| 33 | |
| 34 | Value imagNumerator = rewriter.create<LLVM::FSubOp>( |
| 35 | loc, rewriter.create<LLVM::FMulOp>(loc, lhsIm, rhsRe, fmf), |
| 36 | rewriter.create<LLVM::FMulOp>(loc, lhsRe, rhsIm, fmf), fmf); |
| 37 | |
| 38 | *resultRe = rewriter.create<LLVM::FDivOp>(loc, realNumerator, rhsSqNorm, fmf); |
| 39 | *resultIm = rewriter.create<LLVM::FDivOp>(loc, imagNumerator, rhsSqNorm, fmf); |
| 40 | } |
| 41 | |
| 42 | void mlir::complex::convertDivToStandardUsingAlgebraic( |
| 43 | ConversionPatternRewriter &rewriter, Location loc, Value lhsRe, Value lhsIm, |
| 44 | Value rhsRe, Value rhsIm, arith::FastMathFlagsAttr fmf, Value *resultRe, |
| 45 | Value *resultIm) { |
| 46 | Value rhsSqNorm = rewriter.create<arith::AddFOp>( |
| 47 | loc, rewriter.create<arith::MulFOp>(loc, rhsRe, rhsRe, fmf), |
| 48 | rewriter.create<arith::MulFOp>(loc, rhsIm, rhsIm, fmf), fmf); |
| 49 | |
| 50 | Value realNumerator = rewriter.create<arith::AddFOp>( |
| 51 | loc, rewriter.create<arith::MulFOp>(loc, lhsRe, rhsRe, fmf), |
| 52 | rewriter.create<arith::MulFOp>(loc, lhsIm, rhsIm, fmf), fmf); |
| 53 | Value imagNumerator = rewriter.create<arith::SubFOp>( |
| 54 | loc, rewriter.create<arith::MulFOp>(loc, lhsIm, rhsRe, fmf), |
| 55 | rewriter.create<arith::MulFOp>(loc, lhsRe, rhsIm, fmf), fmf); |
| 56 | |
| 57 | *resultRe = |
| 58 | rewriter.create<arith::DivFOp>(loc, realNumerator, rhsSqNorm, fmf); |
| 59 | *resultIm = |
| 60 | rewriter.create<arith::DivFOp>(loc, imagNumerator, rhsSqNorm, fmf); |
| 61 | } |
| 62 | |
| 63 | // Smith's algorithm to divide complex numbers. It is just a bit smarter |
| 64 | // way to compute the following algebraic formula: |
| 65 | // (lhsRe + lhsIm * i) / (rhsRe + rhsIm * i) |
| 66 | // = (lhsRe + lhsIm * i) (rhsRe - rhsIm * i) / |
| 67 | // ((rhsRe + rhsIm * i)(rhsRe - rhsIm * i)) |
| 68 | // = ((lhsRe * rhsRe + lhsIm * rhsIm) + |
| 69 | // (lhsIm * rhsRe - lhsRe * rhsIm) * i) / ||rhs||^2 |
| 70 | // |
| 71 | // Depending on whether |rhsRe| < |rhsIm| we compute either |
| 72 | // rhsRealImagRatio = rhsRe / rhsIm |
| 73 | // rhsRealImagDenom = rhsIm + rhsRe * rhsRealImagRatio |
| 74 | // resultRe = (lhsRe * rhsRealImagRatio + lhsIm) / |
| 75 | // rhsRealImagDenom |
| 76 | // resultIm = (lhsIm * rhsRealImagRatio - lhsRe) / |
| 77 | // rhsRealImagDenom |
| 78 | // |
| 79 | // or |
| 80 | // |
| 81 | // rhsImagRealRatio = rhsIm / rhsRe |
| 82 | // rhsImagRealDenom = rhsRe + rhsIm * rhsImagRealRatio |
| 83 | // resultRe = (lhsRe + lhsIm * rhsImagRealRatio) / |
| 84 | // rhsImagRealDenom |
| 85 | // resultIm = (lhsIm - lhsRe * rhsImagRealRatio) / |
| 86 | // rhsImagRealDenom |
| 87 | // |
| 88 | // See https://dl.acm.org/citation.cfm?id=368661 for more details. |
| 89 | |
| 90 | void mlir::complex::convertDivToLLVMUsingRangeReduction( |
| 91 | ConversionPatternRewriter &rewriter, Location loc, Value lhsRe, Value lhsIm, |
| 92 | Value rhsRe, Value rhsIm, LLVM::FastmathFlagsAttr fmf, Value *resultRe, |
| 93 | Value *resultIm) { |
| 94 | auto elementType = cast<FloatType>(rhsRe.getType()); |
| 95 | |
| 96 | Value rhsRealImagRatio = |
| 97 | rewriter.create<LLVM::FDivOp>(loc, rhsRe, rhsIm, fmf); |
| 98 | Value rhsRealImagDenom = rewriter.create<LLVM::FAddOp>( |
| 99 | loc, rhsIm, |
| 100 | rewriter.create<LLVM::FMulOp>(loc, rhsRealImagRatio, rhsRe, fmf), fmf); |
| 101 | Value realNumerator1 = rewriter.create<LLVM::FAddOp>( |
| 102 | loc, rewriter.create<LLVM::FMulOp>(loc, lhsRe, rhsRealImagRatio, fmf), |
| 103 | lhsIm, fmf); |
| 104 | Value resultReal1 = |
| 105 | rewriter.create<LLVM::FDivOp>(loc, realNumerator1, rhsRealImagDenom, fmf); |
| 106 | Value imagNumerator1 = rewriter.create<LLVM::FSubOp>( |
| 107 | loc, rewriter.create<LLVM::FMulOp>(loc, lhsIm, rhsRealImagRatio, fmf), |
| 108 | lhsRe, fmf); |
| 109 | Value resultImag1 = |
| 110 | rewriter.create<LLVM::FDivOp>(loc, imagNumerator1, rhsRealImagDenom, fmf); |
| 111 | |
| 112 | Value rhsImagRealRatio = |
| 113 | rewriter.create<LLVM::FDivOp>(loc, rhsIm, rhsRe, fmf); |
| 114 | Value rhsImagRealDenom = rewriter.create<LLVM::FAddOp>( |
| 115 | loc, rhsRe, |
| 116 | rewriter.create<LLVM::FMulOp>(loc, rhsImagRealRatio, rhsIm, fmf), fmf); |
| 117 | Value realNumerator2 = rewriter.create<LLVM::FAddOp>( |
| 118 | loc, lhsRe, |
| 119 | rewriter.create<LLVM::FMulOp>(loc, lhsIm, rhsImagRealRatio, fmf), fmf); |
| 120 | Value resultReal2 = |
| 121 | rewriter.create<LLVM::FDivOp>(loc, realNumerator2, rhsImagRealDenom, fmf); |
| 122 | Value imagNumerator2 = rewriter.create<LLVM::FSubOp>( |
| 123 | loc, lhsIm, |
| 124 | rewriter.create<LLVM::FMulOp>(loc, lhsRe, rhsImagRealRatio, fmf), fmf); |
| 125 | Value resultImag2 = |
| 126 | rewriter.create<LLVM::FDivOp>(loc, imagNumerator2, rhsImagRealDenom, fmf); |
| 127 | |
| 128 | // Consider corner cases. |
| 129 | // Case 1. Zero denominator, numerator contains at most one NaN value. |
| 130 | Value zero = rewriter.create<LLVM::ConstantOp>( |
| 131 | loc, elementType, rewriter.getZeroAttr(elementType)); |
| 132 | Value rhsRealAbs = rewriter.create<LLVM::FAbsOp>(loc, rhsRe, fmf); |
| 133 | Value rhsRealIsZero = rewriter.create<LLVM::FCmpOp>( |
| 134 | loc, LLVM::FCmpPredicate::oeq, rhsRealAbs, zero); |
| 135 | Value rhsImagAbs = rewriter.create<LLVM::FAbsOp>(loc, rhsIm, fmf); |
| 136 | Value rhsImagIsZero = rewriter.create<LLVM::FCmpOp>( |
| 137 | loc, LLVM::FCmpPredicate::oeq, rhsImagAbs, zero); |
| 138 | Value lhsRealIsNotNaN = |
| 139 | rewriter.create<LLVM::FCmpOp>(loc, LLVM::FCmpPredicate::ord, lhsRe, zero); |
| 140 | Value lhsImagIsNotNaN = |
| 141 | rewriter.create<LLVM::FCmpOp>(loc, LLVM::FCmpPredicate::ord, lhsIm, zero); |
| 142 | Value lhsContainsNotNaNValue = |
| 143 | rewriter.create<LLVM::OrOp>(loc, lhsRealIsNotNaN, lhsImagIsNotNaN); |
| 144 | Value resultIsInfinity = rewriter.create<LLVM::AndOp>( |
| 145 | loc, lhsContainsNotNaNValue, |
| 146 | rewriter.create<LLVM::AndOp>(loc, rhsRealIsZero, rhsImagIsZero)); |
| 147 | Value inf = rewriter.create<LLVM::ConstantOp>( |
| 148 | loc, elementType, |
| 149 | rewriter.getFloatAttr(elementType, |
| 150 | APFloat::getInf(elementType.getFloatSemantics()))); |
| 151 | Value infWithSignOfrhsReal = |
| 152 | rewriter.create<LLVM::CopySignOp>(loc, inf, rhsRe); |
| 153 | Value infinityResultReal = |
| 154 | rewriter.create<LLVM::FMulOp>(loc, infWithSignOfrhsReal, lhsRe, fmf); |
| 155 | Value infinityResultImag = |
| 156 | rewriter.create<LLVM::FMulOp>(loc, infWithSignOfrhsReal, lhsIm, fmf); |
| 157 | |
| 158 | // Case 2. Infinite numerator, finite denominator. |
| 159 | Value rhsRealFinite = rewriter.create<LLVM::FCmpOp>( |
| 160 | loc, LLVM::FCmpPredicate::one, rhsRealAbs, inf); |
| 161 | Value rhsImagFinite = rewriter.create<LLVM::FCmpOp>( |
| 162 | loc, LLVM::FCmpPredicate::one, rhsImagAbs, inf); |
| 163 | Value rhsFinite = |
| 164 | rewriter.create<LLVM::AndOp>(loc, rhsRealFinite, rhsImagFinite); |
| 165 | Value lhsRealAbs = rewriter.create<LLVM::FAbsOp>(loc, lhsRe, fmf); |
| 166 | Value lhsRealInfinite = rewriter.create<LLVM::FCmpOp>( |
| 167 | loc, LLVM::FCmpPredicate::oeq, lhsRealAbs, inf); |
| 168 | Value lhsImagAbs = rewriter.create<LLVM::FAbsOp>(loc, lhsIm, fmf); |
| 169 | Value lhsImagInfinite = rewriter.create<LLVM::FCmpOp>( |
| 170 | loc, LLVM::FCmpPredicate::oeq, lhsImagAbs, inf); |
| 171 | Value lhsInfinite = |
| 172 | rewriter.create<LLVM::OrOp>(loc, lhsRealInfinite, lhsImagInfinite); |
| 173 | Value infNumFiniteDenom = |
| 174 | rewriter.create<LLVM::AndOp>(loc, lhsInfinite, rhsFinite); |
| 175 | Value one = rewriter.create<LLVM::ConstantOp>( |
| 176 | loc, elementType, rewriter.getFloatAttr(elementType, 1)); |
| 177 | Value lhsRealIsInfWithSign = rewriter.create<LLVM::CopySignOp>( |
| 178 | loc, rewriter.create<LLVM::SelectOp>(loc, lhsRealInfinite, one, zero), |
| 179 | lhsRe); |
| 180 | Value lhsImagIsInfWithSign = rewriter.create<LLVM::CopySignOp>( |
| 181 | loc, rewriter.create<LLVM::SelectOp>(loc, lhsImagInfinite, one, zero), |
| 182 | lhsIm); |
| 183 | Value lhsRealIsInfWithSignTimesrhsReal = |
| 184 | rewriter.create<LLVM::FMulOp>(loc, lhsRealIsInfWithSign, rhsRe, fmf); |
| 185 | Value lhsImagIsInfWithSignTimesrhsImag = |
| 186 | rewriter.create<LLVM::FMulOp>(loc, lhsImagIsInfWithSign, rhsIm, fmf); |
| 187 | Value resultReal3 = rewriter.create<LLVM::FMulOp>( |
| 188 | loc, inf, |
| 189 | rewriter.create<LLVM::FAddOp>(loc, lhsRealIsInfWithSignTimesrhsReal, |
| 190 | lhsImagIsInfWithSignTimesrhsImag, fmf), |
| 191 | fmf); |
| 192 | Value lhsRealIsInfWithSignTimesrhsImag = |
| 193 | rewriter.create<LLVM::FMulOp>(loc, lhsRealIsInfWithSign, rhsIm, fmf); |
| 194 | Value lhsImagIsInfWithSignTimesrhsReal = |
| 195 | rewriter.create<LLVM::FMulOp>(loc, lhsImagIsInfWithSign, rhsRe, fmf); |
| 196 | Value resultImag3 = rewriter.create<LLVM::FMulOp>( |
| 197 | loc, inf, |
| 198 | rewriter.create<LLVM::FSubOp>(loc, lhsImagIsInfWithSignTimesrhsReal, |
| 199 | lhsRealIsInfWithSignTimesrhsImag, fmf), |
| 200 | fmf); |
| 201 | |
| 202 | // Case 3: Finite numerator, infinite denominator. |
| 203 | Value lhsRealFinite = rewriter.create<LLVM::FCmpOp>( |
| 204 | loc, LLVM::FCmpPredicate::one, lhsRealAbs, inf); |
| 205 | Value lhsImagFinite = rewriter.create<LLVM::FCmpOp>( |
| 206 | loc, LLVM::FCmpPredicate::one, lhsImagAbs, inf); |
| 207 | Value lhsFinite = |
| 208 | rewriter.create<LLVM::AndOp>(loc, lhsRealFinite, lhsImagFinite); |
| 209 | Value rhsRealInfinite = rewriter.create<LLVM::FCmpOp>( |
| 210 | loc, LLVM::FCmpPredicate::oeq, rhsRealAbs, inf); |
| 211 | Value rhsImagInfinite = rewriter.create<LLVM::FCmpOp>( |
| 212 | loc, LLVM::FCmpPredicate::oeq, rhsImagAbs, inf); |
| 213 | Value rhsInfinite = |
| 214 | rewriter.create<LLVM::OrOp>(loc, rhsRealInfinite, rhsImagInfinite); |
| 215 | Value finiteNumInfiniteDenom = |
| 216 | rewriter.create<LLVM::AndOp>(loc, lhsFinite, rhsInfinite); |
| 217 | Value rhsRealIsInfWithSign = rewriter.create<LLVM::CopySignOp>( |
| 218 | loc, rewriter.create<LLVM::SelectOp>(loc, rhsRealInfinite, one, zero), |
| 219 | rhsRe); |
| 220 | Value rhsImagIsInfWithSign = rewriter.create<LLVM::CopySignOp>( |
| 221 | loc, rewriter.create<LLVM::SelectOp>(loc, rhsImagInfinite, one, zero), |
| 222 | rhsIm); |
| 223 | Value rhsRealIsInfWithSignTimeslhsReal = |
| 224 | rewriter.create<LLVM::FMulOp>(loc, lhsRe, rhsRealIsInfWithSign, fmf); |
| 225 | Value rhsImagIsInfWithSignTimeslhsImag = |
| 226 | rewriter.create<LLVM::FMulOp>(loc, lhsIm, rhsImagIsInfWithSign, fmf); |
| 227 | Value resultReal4 = rewriter.create<LLVM::FMulOp>( |
| 228 | loc, zero, |
| 229 | rewriter.create<LLVM::FAddOp>(loc, rhsRealIsInfWithSignTimeslhsReal, |
| 230 | rhsImagIsInfWithSignTimeslhsImag, fmf), |
| 231 | fmf); |
| 232 | Value rhsRealIsInfWithSignTimeslhsImag = |
| 233 | rewriter.create<LLVM::FMulOp>(loc, lhsIm, rhsRealIsInfWithSign, fmf); |
| 234 | Value rhsImagIsInfWithSignTimeslhsReal = |
| 235 | rewriter.create<LLVM::FMulOp>(loc, lhsRe, rhsImagIsInfWithSign, fmf); |
| 236 | Value resultImag4 = rewriter.create<LLVM::FMulOp>( |
| 237 | loc, zero, |
| 238 | rewriter.create<LLVM::FSubOp>(loc, rhsRealIsInfWithSignTimeslhsImag, |
| 239 | rhsImagIsInfWithSignTimeslhsReal, fmf), |
| 240 | fmf); |
| 241 | |
| 242 | Value realAbsSmallerThanImagAbs = rewriter.create<LLVM::FCmpOp>( |
| 243 | loc, LLVM::FCmpPredicate::olt, rhsRealAbs, rhsImagAbs); |
| 244 | Value resultReal5 = rewriter.create<LLVM::SelectOp>( |
| 245 | loc, realAbsSmallerThanImagAbs, resultReal1, resultReal2); |
| 246 | Value resultImag5 = rewriter.create<LLVM::SelectOp>( |
| 247 | loc, realAbsSmallerThanImagAbs, resultImag1, resultImag2); |
| 248 | Value resultRealSpecialCase3 = rewriter.create<LLVM::SelectOp>( |
| 249 | loc, finiteNumInfiniteDenom, resultReal4, resultReal5); |
| 250 | Value resultImagSpecialCase3 = rewriter.create<LLVM::SelectOp>( |
| 251 | loc, finiteNumInfiniteDenom, resultImag4, resultImag5); |
| 252 | Value resultRealSpecialCase2 = rewriter.create<LLVM::SelectOp>( |
| 253 | loc, infNumFiniteDenom, resultReal3, resultRealSpecialCase3); |
| 254 | Value resultImagSpecialCase2 = rewriter.create<LLVM::SelectOp>( |
| 255 | loc, infNumFiniteDenom, resultImag3, resultImagSpecialCase3); |
| 256 | Value resultRealSpecialCase1 = rewriter.create<LLVM::SelectOp>( |
| 257 | loc, resultIsInfinity, infinityResultReal, resultRealSpecialCase2); |
| 258 | Value resultImagSpecialCase1 = rewriter.create<LLVM::SelectOp>( |
| 259 | loc, resultIsInfinity, infinityResultImag, resultImagSpecialCase2); |
| 260 | |
| 261 | Value resultRealIsNaN = rewriter.create<LLVM::FCmpOp>( |
| 262 | loc, LLVM::FCmpPredicate::uno, resultReal5, zero); |
| 263 | Value resultImagIsNaN = rewriter.create<LLVM::FCmpOp>( |
| 264 | loc, LLVM::FCmpPredicate::uno, resultImag5, zero); |
| 265 | Value resultIsNaN = |
| 266 | rewriter.create<LLVM::AndOp>(loc, resultRealIsNaN, resultImagIsNaN); |
| 267 | |
| 268 | *resultRe = rewriter.create<LLVM::SelectOp>( |
| 269 | loc, resultIsNaN, resultRealSpecialCase1, resultReal5); |
| 270 | *resultIm = rewriter.create<LLVM::SelectOp>( |
| 271 | loc, resultIsNaN, resultImagSpecialCase1, resultImag5); |
| 272 | } |
| 273 | |
| 274 | void mlir::complex::convertDivToStandardUsingRangeReduction( |
| 275 | ConversionPatternRewriter &rewriter, Location loc, Value lhsRe, Value lhsIm, |
| 276 | Value rhsRe, Value rhsIm, arith::FastMathFlagsAttr fmf, Value *resultRe, |
| 277 | Value *resultIm) { |
| 278 | auto elementType = cast<FloatType>(rhsRe.getType()); |
| 279 | |
| 280 | Value rhsRealImagRatio = |
| 281 | rewriter.create<arith::DivFOp>(loc, rhsRe, rhsIm, fmf); |
| 282 | Value rhsRealImagDenom = rewriter.create<arith::AddFOp>( |
| 283 | loc, rhsIm, |
| 284 | rewriter.create<arith::MulFOp>(loc, rhsRealImagRatio, rhsRe, fmf), fmf); |
| 285 | Value realNumerator1 = rewriter.create<arith::AddFOp>( |
| 286 | loc, rewriter.create<arith::MulFOp>(loc, lhsRe, rhsRealImagRatio, fmf), |
| 287 | lhsIm, fmf); |
| 288 | Value resultReal1 = rewriter.create<arith::DivFOp>(loc, realNumerator1, |
| 289 | rhsRealImagDenom, fmf); |
| 290 | Value imagNumerator1 = rewriter.create<arith::SubFOp>( |
| 291 | loc, rewriter.create<arith::MulFOp>(loc, lhsIm, rhsRealImagRatio, fmf), |
| 292 | lhsRe, fmf); |
| 293 | Value resultImag1 = rewriter.create<arith::DivFOp>(loc, imagNumerator1, |
| 294 | rhsRealImagDenom, fmf); |
| 295 | |
| 296 | Value rhsImagRealRatio = |
| 297 | rewriter.create<arith::DivFOp>(loc, rhsIm, rhsRe, fmf); |
| 298 | Value rhsImagRealDenom = rewriter.create<arith::AddFOp>( |
| 299 | loc, rhsRe, |
| 300 | rewriter.create<arith::MulFOp>(loc, rhsImagRealRatio, rhsIm, fmf), fmf); |
| 301 | Value realNumerator2 = rewriter.create<arith::AddFOp>( |
| 302 | loc, lhsRe, |
| 303 | rewriter.create<arith::MulFOp>(loc, lhsIm, rhsImagRealRatio, fmf), fmf); |
| 304 | Value resultReal2 = rewriter.create<arith::DivFOp>(loc, realNumerator2, |
| 305 | rhsImagRealDenom, fmf); |
| 306 | Value imagNumerator2 = rewriter.create<arith::SubFOp>( |
| 307 | loc, lhsIm, |
| 308 | rewriter.create<arith::MulFOp>(loc, lhsRe, rhsImagRealRatio, fmf), fmf); |
| 309 | Value resultImag2 = rewriter.create<arith::DivFOp>(loc, imagNumerator2, |
| 310 | rhsImagRealDenom, fmf); |
| 311 | |
| 312 | // Consider corner cases. |
| 313 | // Case 1. Zero denominator, numerator contains at most one NaN value. |
| 314 | Value zero = rewriter.create<arith::ConstantOp>( |
| 315 | loc, elementType, rewriter.getZeroAttr(elementType)); |
| 316 | Value rhsRealAbs = rewriter.create<math::AbsFOp>(loc, rhsRe, fmf); |
| 317 | Value rhsRealIsZero = rewriter.create<arith::CmpFOp>( |
| 318 | loc, arith::CmpFPredicate::OEQ, rhsRealAbs, zero); |
| 319 | Value rhsImagAbs = rewriter.create<math::AbsFOp>(loc, rhsIm, fmf); |
| 320 | Value rhsImagIsZero = rewriter.create<arith::CmpFOp>( |
| 321 | loc, arith::CmpFPredicate::OEQ, rhsImagAbs, zero); |
| 322 | Value lhsRealIsNotNaN = rewriter.create<arith::CmpFOp>( |
| 323 | loc, arith::CmpFPredicate::ORD, lhsRe, zero); |
| 324 | Value lhsImagIsNotNaN = rewriter.create<arith::CmpFOp>( |
| 325 | loc, arith::CmpFPredicate::ORD, lhsIm, zero); |
| 326 | Value lhsContainsNotNaNValue = |
| 327 | rewriter.create<arith::OrIOp>(loc, lhsRealIsNotNaN, lhsImagIsNotNaN); |
| 328 | Value resultIsInfinity = rewriter.create<arith::AndIOp>( |
| 329 | loc, lhsContainsNotNaNValue, |
| 330 | rewriter.create<arith::AndIOp>(loc, rhsRealIsZero, rhsImagIsZero)); |
| 331 | Value inf = rewriter.create<arith::ConstantOp>( |
| 332 | loc, elementType, |
| 333 | rewriter.getFloatAttr(elementType, |
| 334 | APFloat::getInf(elementType.getFloatSemantics()))); |
| 335 | Value infWithSignOfRhsReal = |
| 336 | rewriter.create<math::CopySignOp>(loc, inf, rhsRe); |
| 337 | Value infinityResultReal = |
| 338 | rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsRe, fmf); |
| 339 | Value infinityResultImag = |
| 340 | rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsIm, fmf); |
| 341 | |
| 342 | // Case 2. Infinite numerator, finite denominator. |
| 343 | Value rhsRealFinite = rewriter.create<arith::CmpFOp>( |
| 344 | loc, arith::CmpFPredicate::ONE, rhsRealAbs, inf); |
| 345 | Value rhsImagFinite = rewriter.create<arith::CmpFOp>( |
| 346 | loc, arith::CmpFPredicate::ONE, rhsImagAbs, inf); |
| 347 | Value rhsFinite = |
| 348 | rewriter.create<arith::AndIOp>(loc, rhsRealFinite, rhsImagFinite); |
| 349 | Value lhsRealAbs = rewriter.create<math::AbsFOp>(loc, lhsRe, fmf); |
| 350 | Value lhsRealInfinite = rewriter.create<arith::CmpFOp>( |
| 351 | loc, arith::CmpFPredicate::OEQ, lhsRealAbs, inf); |
| 352 | Value lhsImagAbs = rewriter.create<math::AbsFOp>(loc, lhsIm, fmf); |
| 353 | Value lhsImagInfinite = rewriter.create<arith::CmpFOp>( |
| 354 | loc, arith::CmpFPredicate::OEQ, lhsImagAbs, inf); |
| 355 | Value lhsInfinite = |
| 356 | rewriter.create<arith::OrIOp>(loc, lhsRealInfinite, lhsImagInfinite); |
| 357 | Value infNumFiniteDenom = |
| 358 | rewriter.create<arith::AndIOp>(loc, lhsInfinite, rhsFinite); |
| 359 | Value one = rewriter.create<arith::ConstantOp>( |
| 360 | loc, elementType, rewriter.getFloatAttr(elementType, 1)); |
| 361 | Value lhsRealIsInfWithSign = rewriter.create<math::CopySignOp>( |
| 362 | loc, rewriter.create<arith::SelectOp>(loc, lhsRealInfinite, one, zero), |
| 363 | lhsRe); |
| 364 | Value lhsImagIsInfWithSign = rewriter.create<math::CopySignOp>( |
| 365 | loc, rewriter.create<arith::SelectOp>(loc, lhsImagInfinite, one, zero), |
| 366 | lhsIm); |
| 367 | Value lhsRealIsInfWithSignTimesRhsReal = |
| 368 | rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsRe, fmf); |
| 369 | Value lhsImagIsInfWithSignTimesRhsImag = |
| 370 | rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsIm, fmf); |
| 371 | Value resultReal3 = rewriter.create<arith::MulFOp>( |
| 372 | loc, inf, |
| 373 | rewriter.create<arith::AddFOp>(loc, lhsRealIsInfWithSignTimesRhsReal, |
| 374 | lhsImagIsInfWithSignTimesRhsImag, fmf), |
| 375 | fmf); |
| 376 | Value lhsRealIsInfWithSignTimesRhsImag = |
| 377 | rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsIm, fmf); |
| 378 | Value lhsImagIsInfWithSignTimesRhsReal = |
| 379 | rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsRe, fmf); |
| 380 | Value resultImag3 = rewriter.create<arith::MulFOp>( |
| 381 | loc, inf, |
| 382 | rewriter.create<arith::SubFOp>(loc, lhsImagIsInfWithSignTimesRhsReal, |
| 383 | lhsRealIsInfWithSignTimesRhsImag, fmf), |
| 384 | fmf); |
| 385 | |
| 386 | // Case 3: Finite numerator, infinite denominator. |
| 387 | Value lhsRealFinite = rewriter.create<arith::CmpFOp>( |
| 388 | loc, arith::CmpFPredicate::ONE, lhsRealAbs, inf); |
| 389 | Value lhsImagFinite = rewriter.create<arith::CmpFOp>( |
| 390 | loc, arith::CmpFPredicate::ONE, lhsImagAbs, inf); |
| 391 | Value lhsFinite = |
| 392 | rewriter.create<arith::AndIOp>(loc, lhsRealFinite, lhsImagFinite); |
| 393 | Value rhsRealInfinite = rewriter.create<arith::CmpFOp>( |
| 394 | loc, arith::CmpFPredicate::OEQ, rhsRealAbs, inf); |
| 395 | Value rhsImagInfinite = rewriter.create<arith::CmpFOp>( |
| 396 | loc, arith::CmpFPredicate::OEQ, rhsImagAbs, inf); |
| 397 | Value rhsInfinite = |
| 398 | rewriter.create<arith::OrIOp>(loc, rhsRealInfinite, rhsImagInfinite); |
| 399 | Value finiteNumInfiniteDenom = |
| 400 | rewriter.create<arith::AndIOp>(loc, lhsFinite, rhsInfinite); |
| 401 | Value rhsRealIsInfWithSign = rewriter.create<math::CopySignOp>( |
| 402 | loc, rewriter.create<arith::SelectOp>(loc, rhsRealInfinite, one, zero), |
| 403 | rhsRe); |
| 404 | Value rhsImagIsInfWithSign = rewriter.create<math::CopySignOp>( |
| 405 | loc, rewriter.create<arith::SelectOp>(loc, rhsImagInfinite, one, zero), |
| 406 | rhsIm); |
| 407 | Value rhsRealIsInfWithSignTimesLhsReal = |
| 408 | rewriter.create<arith::MulFOp>(loc, lhsRe, rhsRealIsInfWithSign, fmf); |
| 409 | Value rhsImagIsInfWithSignTimesLhsImag = |
| 410 | rewriter.create<arith::MulFOp>(loc, lhsIm, rhsImagIsInfWithSign, fmf); |
| 411 | Value resultReal4 = rewriter.create<arith::MulFOp>( |
| 412 | loc, zero, |
| 413 | rewriter.create<arith::AddFOp>(loc, rhsRealIsInfWithSignTimesLhsReal, |
| 414 | rhsImagIsInfWithSignTimesLhsImag, fmf), |
| 415 | fmf); |
| 416 | Value rhsRealIsInfWithSignTimesLhsImag = |
| 417 | rewriter.create<arith::MulFOp>(loc, lhsIm, rhsRealIsInfWithSign, fmf); |
| 418 | Value rhsImagIsInfWithSignTimesLhsReal = |
| 419 | rewriter.create<arith::MulFOp>(loc, lhsRe, rhsImagIsInfWithSign, fmf); |
| 420 | Value resultImag4 = rewriter.create<arith::MulFOp>( |
| 421 | loc, zero, |
| 422 | rewriter.create<arith::SubFOp>(loc, rhsRealIsInfWithSignTimesLhsImag, |
| 423 | rhsImagIsInfWithSignTimesLhsReal, fmf), |
| 424 | fmf); |
| 425 | |
| 426 | Value realAbsSmallerThanImagAbs = rewriter.create<arith::CmpFOp>( |
| 427 | loc, arith::CmpFPredicate::OLT, rhsRealAbs, rhsImagAbs); |
| 428 | Value resultReal5 = rewriter.create<arith::SelectOp>( |
| 429 | loc, realAbsSmallerThanImagAbs, resultReal1, resultReal2); |
| 430 | Value resultImag5 = rewriter.create<arith::SelectOp>( |
| 431 | loc, realAbsSmallerThanImagAbs, resultImag1, resultImag2); |
| 432 | Value resultRealSpecialCase3 = rewriter.create<arith::SelectOp>( |
| 433 | loc, finiteNumInfiniteDenom, resultReal4, resultReal5); |
| 434 | Value resultImagSpecialCase3 = rewriter.create<arith::SelectOp>( |
| 435 | loc, finiteNumInfiniteDenom, resultImag4, resultImag5); |
| 436 | Value resultRealSpecialCase2 = rewriter.create<arith::SelectOp>( |
| 437 | loc, infNumFiniteDenom, resultReal3, resultRealSpecialCase3); |
| 438 | Value resultImagSpecialCase2 = rewriter.create<arith::SelectOp>( |
| 439 | loc, infNumFiniteDenom, resultImag3, resultImagSpecialCase3); |
| 440 | Value resultRealSpecialCase1 = rewriter.create<arith::SelectOp>( |
| 441 | loc, resultIsInfinity, infinityResultReal, resultRealSpecialCase2); |
| 442 | Value resultImagSpecialCase1 = rewriter.create<arith::SelectOp>( |
| 443 | loc, resultIsInfinity, infinityResultImag, resultImagSpecialCase2); |
| 444 | |
| 445 | Value resultRealIsNaN = rewriter.create<arith::CmpFOp>( |
| 446 | loc, arith::CmpFPredicate::UNO, resultReal5, zero); |
| 447 | Value resultImagIsNaN = rewriter.create<arith::CmpFOp>( |
| 448 | loc, arith::CmpFPredicate::UNO, resultImag5, zero); |
| 449 | Value resultIsNaN = |
| 450 | rewriter.create<arith::AndIOp>(loc, resultRealIsNaN, resultImagIsNaN); |
| 451 | |
| 452 | *resultRe = rewriter.create<arith::SelectOp>( |
| 453 | loc, resultIsNaN, resultRealSpecialCase1, resultReal5); |
| 454 | *resultIm = rewriter.create<arith::SelectOp>( |
| 455 | loc, resultIsNaN, resultImagSpecialCase1, resultImag5); |
| 456 | } |
| 457 | |