| 1 | //===- ComplexToStandard.cpp - conversion from Complex to Standard dialect ===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Conversion/ComplexToStandard/ComplexToStandard.h" |
| 10 | |
| 11 | #include "mlir/Conversion/ComplexCommon/DivisionConverter.h" |
| 12 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 13 | #include "mlir/Dialect/Complex/IR/Complex.h" |
| 14 | #include "mlir/Dialect/Math/IR/Math.h" |
| 15 | #include "mlir/IR/ImplicitLocOpBuilder.h" |
| 16 | #include "mlir/IR/PatternMatch.h" |
| 17 | #include "mlir/Pass/Pass.h" |
| 18 | #include "mlir/Transforms/DialectConversion.h" |
| 19 | #include <memory> |
| 20 | #include <type_traits> |
| 21 | |
| 22 | namespace mlir { |
| 23 | #define GEN_PASS_DEF_CONVERTCOMPLEXTOSTANDARDPASS |
| 24 | #include "mlir/Conversion/Passes.h.inc" |
| 25 | } // namespace mlir |
| 26 | |
| 27 | using namespace mlir; |
| 28 | |
| 29 | namespace { |
| 30 | |
| 31 | enum class AbsFn { abs, sqrt, rsqrt }; |
| 32 | |
| 33 | // Returns the absolute value, its square root or its reciprocal square root. |
| 34 | Value computeAbs(Value real, Value imag, arith::FastMathFlags fmf, |
| 35 | ImplicitLocOpBuilder &b, AbsFn fn = AbsFn::abs) { |
| 36 | Value one = b.create<arith::ConstantOp>(real.getType(), |
| 37 | b.getFloatAttr(real.getType(), 1.0)); |
| 38 | |
| 39 | Value absReal = b.create<math::AbsFOp>(real, fmf); |
| 40 | Value absImag = b.create<math::AbsFOp>(imag, fmf); |
| 41 | |
| 42 | Value max = b.create<arith::MaximumFOp>(absReal, absImag, fmf); |
| 43 | Value min = b.create<arith::MinimumFOp>(absReal, absImag, fmf); |
| 44 | |
| 45 | // The lowering below requires NaNs and infinities to work correctly. |
| 46 | arith::FastMathFlags fmfWithNaNInf = arith::bitEnumClear( |
| 47 | fmf, arith::FastMathFlags::nnan | arith::FastMathFlags::ninf); |
| 48 | Value ratio = b.create<arith::DivFOp>(min, max, fmfWithNaNInf); |
| 49 | Value ratioSq = b.create<arith::MulFOp>(ratio, ratio, fmfWithNaNInf); |
| 50 | Value ratioSqPlusOne = b.create<arith::AddFOp>(ratioSq, one, fmfWithNaNInf); |
| 51 | Value result; |
| 52 | |
| 53 | if (fn == AbsFn::rsqrt) { |
| 54 | ratioSqPlusOne = b.create<math::RsqrtOp>(ratioSqPlusOne, fmfWithNaNInf); |
| 55 | min = b.create<math::RsqrtOp>(min, fmfWithNaNInf); |
| 56 | max = b.create<math::RsqrtOp>(max, fmfWithNaNInf); |
| 57 | } |
| 58 | |
| 59 | if (fn == AbsFn::sqrt) { |
| 60 | Value quarter = b.create<arith::ConstantOp>( |
| 61 | real.getType(), b.getFloatAttr(real.getType(), 0.25)); |
| 62 | // sqrt(sqrt(a*b)) would avoid the pow, but will overflow more easily. |
| 63 | Value sqrt = b.create<math::SqrtOp>(max, fmfWithNaNInf); |
| 64 | Value p025 = b.create<math::PowFOp>(ratioSqPlusOne, quarter, fmfWithNaNInf); |
| 65 | result = b.create<arith::MulFOp>(sqrt, p025, fmfWithNaNInf); |
| 66 | } else { |
| 67 | Value sqrt = b.create<math::SqrtOp>(ratioSqPlusOne, fmfWithNaNInf); |
| 68 | result = b.create<arith::MulFOp>(max, sqrt, fmfWithNaNInf); |
| 69 | } |
| 70 | |
| 71 | Value isNaN = b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, result, |
| 72 | result, fmfWithNaNInf); |
| 73 | return b.create<arith::SelectOp>(isNaN, min, result); |
| 74 | } |
| 75 | |
| 76 | struct AbsOpConversion : public OpConversionPattern<complex::AbsOp> { |
| 77 | using OpConversionPattern<complex::AbsOp>::OpConversionPattern; |
| 78 | |
| 79 | LogicalResult |
| 80 | matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor, |
| 81 | ConversionPatternRewriter &rewriter) const override { |
| 82 | ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 83 | |
| 84 | arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue(); |
| 85 | |
| 86 | Value real = b.create<complex::ReOp>(adaptor.getComplex()); |
| 87 | Value imag = b.create<complex::ImOp>(adaptor.getComplex()); |
| 88 | rewriter.replaceOp(op, computeAbs(real, imag, fmf, b)); |
| 89 | |
| 90 | return success(); |
| 91 | } |
| 92 | }; |
| 93 | |
| 94 | // atan2(y,x) = -i * log((x + i * y)/sqrt(x**2+y**2)) |
| 95 | struct Atan2OpConversion : public OpConversionPattern<complex::Atan2Op> { |
| 96 | using OpConversionPattern<complex::Atan2Op>::OpConversionPattern; |
| 97 | |
| 98 | LogicalResult |
| 99 | matchAndRewrite(complex::Atan2Op op, OpAdaptor adaptor, |
| 100 | ConversionPatternRewriter &rewriter) const override { |
| 101 | mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 102 | |
| 103 | auto type = cast<ComplexType>(op.getType()); |
| 104 | Type elementType = type.getElementType(); |
| 105 | arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| 106 | |
| 107 | Value lhs = adaptor.getLhs(); |
| 108 | Value rhs = adaptor.getRhs(); |
| 109 | |
| 110 | Value rhsSquared = b.create<complex::MulOp>(type, rhs, rhs, fmf); |
| 111 | Value lhsSquared = b.create<complex::MulOp>(type, lhs, lhs, fmf); |
| 112 | Value rhsSquaredPlusLhsSquared = |
| 113 | b.create<complex::AddOp>(type, rhsSquared, lhsSquared, fmf); |
| 114 | Value sqrtOfRhsSquaredPlusLhsSquared = |
| 115 | b.create<complex::SqrtOp>(type, rhsSquaredPlusLhsSquared, fmf); |
| 116 | |
| 117 | Value zero = |
| 118 | b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType)); |
| 119 | Value one = b.create<arith::ConstantOp>(elementType, |
| 120 | b.getFloatAttr(elementType, 1)); |
| 121 | Value i = b.create<complex::CreateOp>(type, zero, one); |
| 122 | Value iTimesLhs = b.create<complex::MulOp>(i, lhs, fmf); |
| 123 | Value rhsPlusILhs = b.create<complex::AddOp>(rhs, iTimesLhs, fmf); |
| 124 | |
| 125 | Value divResult = b.create<complex::DivOp>( |
| 126 | rhsPlusILhs, sqrtOfRhsSquaredPlusLhsSquared, fmf); |
| 127 | Value logResult = b.create<complex::LogOp>(divResult, fmf); |
| 128 | |
| 129 | Value negativeOne = b.create<arith::ConstantOp>( |
| 130 | elementType, b.getFloatAttr(elementType, -1)); |
| 131 | Value negativeI = b.create<complex::CreateOp>(type, zero, negativeOne); |
| 132 | |
| 133 | rewriter.replaceOpWithNewOp<complex::MulOp>(op, negativeI, logResult, fmf); |
| 134 | return success(); |
| 135 | } |
| 136 | }; |
| 137 | |
| 138 | template <typename ComparisonOp, arith::CmpFPredicate p> |
| 139 | struct ComparisonOpConversion : public OpConversionPattern<ComparisonOp> { |
| 140 | using OpConversionPattern<ComparisonOp>::OpConversionPattern; |
| 141 | using ResultCombiner = |
| 142 | std::conditional_t<std::is_same<ComparisonOp, complex::EqualOp>::value, |
| 143 | arith::AndIOp, arith::OrIOp>; |
| 144 | |
| 145 | LogicalResult |
| 146 | matchAndRewrite(ComparisonOp op, typename ComparisonOp::Adaptor adaptor, |
| 147 | ConversionPatternRewriter &rewriter) const override { |
| 148 | auto loc = op.getLoc(); |
| 149 | auto type = cast<ComplexType>(adaptor.getLhs().getType()).getElementType(); |
| 150 | |
| 151 | Value realLhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getLhs()); |
| 152 | Value imagLhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getLhs()); |
| 153 | Value realRhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getRhs()); |
| 154 | Value imagRhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getRhs()); |
| 155 | Value realComparison = |
| 156 | rewriter.create<arith::CmpFOp>(loc, p, realLhs, realRhs); |
| 157 | Value imagComparison = |
| 158 | rewriter.create<arith::CmpFOp>(loc, p, imagLhs, imagRhs); |
| 159 | |
| 160 | rewriter.replaceOpWithNewOp<ResultCombiner>(op, realComparison, |
| 161 | imagComparison); |
| 162 | return success(); |
| 163 | } |
| 164 | }; |
| 165 | |
| 166 | // Default conversion which applies the BinaryStandardOp separately on the real |
| 167 | // and imaginary parts. Can for example be used for complex::AddOp and |
| 168 | // complex::SubOp. |
| 169 | template <typename BinaryComplexOp, typename BinaryStandardOp> |
| 170 | struct BinaryComplexOpConversion : public OpConversionPattern<BinaryComplexOp> { |
| 171 | using OpConversionPattern<BinaryComplexOp>::OpConversionPattern; |
| 172 | |
| 173 | LogicalResult |
| 174 | matchAndRewrite(BinaryComplexOp op, typename BinaryComplexOp::Adaptor adaptor, |
| 175 | ConversionPatternRewriter &rewriter) const override { |
| 176 | auto type = cast<ComplexType>(adaptor.getLhs().getType()); |
| 177 | auto elementType = cast<FloatType>(type.getElementType()); |
| 178 | mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 179 | arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| 180 | |
| 181 | Value realLhs = b.create<complex::ReOp>(elementType, adaptor.getLhs()); |
| 182 | Value realRhs = b.create<complex::ReOp>(elementType, adaptor.getRhs()); |
| 183 | Value resultReal = b.create<BinaryStandardOp>(elementType, realLhs, realRhs, |
| 184 | fmf.getValue()); |
| 185 | Value imagLhs = b.create<complex::ImOp>(elementType, adaptor.getLhs()); |
| 186 | Value imagRhs = b.create<complex::ImOp>(elementType, adaptor.getRhs()); |
| 187 | Value resultImag = b.create<BinaryStandardOp>(elementType, imagLhs, imagRhs, |
| 188 | fmf.getValue()); |
| 189 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| 190 | resultImag); |
| 191 | return success(); |
| 192 | } |
| 193 | }; |
| 194 | |
| 195 | template <typename TrigonometricOp> |
| 196 | struct TrigonometricOpConversion : public OpConversionPattern<TrigonometricOp> { |
| 197 | using OpAdaptor = typename OpConversionPattern<TrigonometricOp>::OpAdaptor; |
| 198 | |
| 199 | using OpConversionPattern<TrigonometricOp>::OpConversionPattern; |
| 200 | |
| 201 | LogicalResult |
| 202 | matchAndRewrite(TrigonometricOp op, OpAdaptor adaptor, |
| 203 | ConversionPatternRewriter &rewriter) const override { |
| 204 | auto loc = op.getLoc(); |
| 205 | auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| 206 | auto elementType = cast<FloatType>(type.getElementType()); |
| 207 | arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| 208 | |
| 209 | Value real = |
| 210 | rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex()); |
| 211 | Value imag = |
| 212 | rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex()); |
| 213 | |
| 214 | // Trigonometric ops use a set of common building blocks to convert to real |
| 215 | // ops. Here we create these building blocks and call into an op-specific |
| 216 | // implementation in the subclass to combine them. |
| 217 | Value half = rewriter.create<arith::ConstantOp>( |
| 218 | loc, elementType, rewriter.getFloatAttr(elementType, 0.5)); |
| 219 | Value exp = rewriter.create<math::ExpOp>(loc, imag, fmf); |
| 220 | Value scaledExp = rewriter.create<arith::MulFOp>(loc, half, exp, fmf); |
| 221 | Value reciprocalExp = rewriter.create<arith::DivFOp>(loc, half, exp, fmf); |
| 222 | Value sin = rewriter.create<math::SinOp>(loc, real, fmf); |
| 223 | Value cos = rewriter.create<math::CosOp>(loc, real, fmf); |
| 224 | |
| 225 | auto resultPair = |
| 226 | combine(loc, scaledExp, reciprocalExp, sin, cos, rewriter, fmf); |
| 227 | |
| 228 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultPair.first, |
| 229 | resultPair.second); |
| 230 | return success(); |
| 231 | } |
| 232 | |
| 233 | virtual std::pair<Value, Value> |
| 234 | combine(Location loc, Value scaledExp, Value reciprocalExp, Value sin, |
| 235 | Value cos, ConversionPatternRewriter &rewriter, |
| 236 | arith::FastMathFlagsAttr fmf) const = 0; |
| 237 | }; |
| 238 | |
| 239 | struct CosOpConversion : public TrigonometricOpConversion<complex::CosOp> { |
| 240 | using TrigonometricOpConversion<complex::CosOp>::TrigonometricOpConversion; |
| 241 | |
| 242 | std::pair<Value, Value> combine(Location loc, Value scaledExp, |
| 243 | Value reciprocalExp, Value sin, Value cos, |
| 244 | ConversionPatternRewriter &rewriter, |
| 245 | arith::FastMathFlagsAttr fmf) const override { |
| 246 | // Complex cosine is defined as; |
| 247 | // cos(x + iy) = 0.5 * (exp(i(x + iy)) + exp(-i(x + iy))) |
| 248 | // Plugging in: |
| 249 | // exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x)) |
| 250 | // exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x))) |
| 251 | // and defining t := exp(y) |
| 252 | // We get: |
| 253 | // Re(cos(x + iy)) = (0.5/t + 0.5*t) * cos x |
| 254 | // Im(cos(x + iy)) = (0.5/t - 0.5*t) * sin x |
| 255 | Value sum = |
| 256 | rewriter.create<arith::AddFOp>(loc, reciprocalExp, scaledExp, fmf); |
| 257 | Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, cos, fmf); |
| 258 | Value diff = |
| 259 | rewriter.create<arith::SubFOp>(loc, reciprocalExp, scaledExp, fmf); |
| 260 | Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, sin, fmf); |
| 261 | return {resultReal, resultImag}; |
| 262 | } |
| 263 | }; |
| 264 | |
| 265 | struct DivOpConversion : public OpConversionPattern<complex::DivOp> { |
| 266 | DivOpConversion(MLIRContext *context, complex::ComplexRangeFlags target) |
| 267 | : OpConversionPattern<complex::DivOp>(context), complexRange(target) {} |
| 268 | |
| 269 | using OpConversionPattern<complex::DivOp>::OpConversionPattern; |
| 270 | |
| 271 | LogicalResult |
| 272 | matchAndRewrite(complex::DivOp op, OpAdaptor adaptor, |
| 273 | ConversionPatternRewriter &rewriter) const override { |
| 274 | auto loc = op.getLoc(); |
| 275 | auto type = cast<ComplexType>(adaptor.getLhs().getType()); |
| 276 | auto elementType = cast<FloatType>(type.getElementType()); |
| 277 | arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| 278 | |
| 279 | Value lhsReal = |
| 280 | rewriter.create<complex::ReOp>(loc, elementType, adaptor.getLhs()); |
| 281 | Value lhsImag = |
| 282 | rewriter.create<complex::ImOp>(loc, elementType, adaptor.getLhs()); |
| 283 | Value rhsReal = |
| 284 | rewriter.create<complex::ReOp>(loc, elementType, adaptor.getRhs()); |
| 285 | Value rhsImag = |
| 286 | rewriter.create<complex::ImOp>(loc, elementType, adaptor.getRhs()); |
| 287 | |
| 288 | Value resultReal, resultImag; |
| 289 | |
| 290 | if (complexRange == complex::ComplexRangeFlags::basic || |
| 291 | complexRange == complex::ComplexRangeFlags::none) { |
| 292 | mlir::complex::convertDivToStandardUsingAlgebraic( |
| 293 | rewriter, loc, lhsReal, lhsImag, rhsReal, rhsImag, fmf, &resultReal, |
| 294 | &resultImag); |
| 295 | } else if (complexRange == complex::ComplexRangeFlags::improved) { |
| 296 | mlir::complex::convertDivToStandardUsingRangeReduction( |
| 297 | rewriter, loc, lhsReal, lhsImag, rhsReal, rhsImag, fmf, &resultReal, |
| 298 | &resultImag); |
| 299 | } |
| 300 | |
| 301 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| 302 | resultImag); |
| 303 | |
| 304 | return success(); |
| 305 | } |
| 306 | |
| 307 | private: |
| 308 | complex::ComplexRangeFlags complexRange; |
| 309 | }; |
| 310 | |
| 311 | struct ExpOpConversion : public OpConversionPattern<complex::ExpOp> { |
| 312 | using OpConversionPattern<complex::ExpOp>::OpConversionPattern; |
| 313 | |
| 314 | LogicalResult |
| 315 | matchAndRewrite(complex::ExpOp op, OpAdaptor adaptor, |
| 316 | ConversionPatternRewriter &rewriter) const override { |
| 317 | auto loc = op.getLoc(); |
| 318 | auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| 319 | auto elementType = cast<FloatType>(type.getElementType()); |
| 320 | arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| 321 | |
| 322 | Value real = |
| 323 | rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex()); |
| 324 | Value imag = |
| 325 | rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex()); |
| 326 | Value expReal = rewriter.create<math::ExpOp>(loc, real, fmf.getValue()); |
| 327 | Value cosImag = rewriter.create<math::CosOp>(loc, imag, fmf.getValue()); |
| 328 | Value resultReal = |
| 329 | rewriter.create<arith::MulFOp>(loc, expReal, cosImag, fmf.getValue()); |
| 330 | Value sinImag = rewriter.create<math::SinOp>(loc, imag, fmf.getValue()); |
| 331 | Value resultImag = |
| 332 | rewriter.create<arith::MulFOp>(loc, expReal, sinImag, fmf.getValue()); |
| 333 | |
| 334 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| 335 | resultImag); |
| 336 | return success(); |
| 337 | } |
| 338 | }; |
| 339 | |
| 340 | Value evaluatePolynomial(ImplicitLocOpBuilder &b, Value arg, |
| 341 | ArrayRef<double> coefficients, |
| 342 | arith::FastMathFlagsAttr fmf) { |
| 343 | auto argType = mlir::cast<FloatType>(arg.getType()); |
| 344 | Value poly = |
| 345 | b.create<arith::ConstantOp>(b.getFloatAttr(argType, coefficients[0])); |
| 346 | for (unsigned i = 1; i < coefficients.size(); ++i) { |
| 347 | poly = b.create<math::FmaOp>( |
| 348 | poly, arg, |
| 349 | b.create<arith::ConstantOp>(b.getFloatAttr(argType, coefficients[i])), |
| 350 | fmf); |
| 351 | } |
| 352 | return poly; |
| 353 | } |
| 354 | |
| 355 | struct Expm1OpConversion : public OpConversionPattern<complex::Expm1Op> { |
| 356 | using OpConversionPattern<complex::Expm1Op>::OpConversionPattern; |
| 357 | |
| 358 | // e^(a+bi)-1 = (e^a*cos(b)-1)+e^a*sin(b)i |
| 359 | // [handle inaccuracies when a and/or b are small] |
| 360 | // = ((e^a - 1) * cos(b) + cos(b) - 1) + e^a*sin(b)i |
| 361 | // = (expm1(a) * cos(b) + cosm1(b)) + e^a*sin(b)i |
| 362 | LogicalResult |
| 363 | matchAndRewrite(complex::Expm1Op op, OpAdaptor adaptor, |
| 364 | ConversionPatternRewriter &rewriter) const override { |
| 365 | auto type = op.getType(); |
| 366 | auto elemType = mlir::cast<FloatType>(type.getElementType()); |
| 367 | |
| 368 | arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| 369 | ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 370 | Value real = b.create<complex::ReOp>(adaptor.getComplex()); |
| 371 | Value imag = b.create<complex::ImOp>(adaptor.getComplex()); |
| 372 | |
| 373 | Value zero = b.create<arith::ConstantOp>(b.getFloatAttr(elemType, 0.0)); |
| 374 | Value one = b.create<arith::ConstantOp>(b.getFloatAttr(elemType, 1.0)); |
| 375 | |
| 376 | Value expm1Real = b.create<math::ExpM1Op>(real, fmf); |
| 377 | Value expReal = b.create<arith::AddFOp>(expm1Real, one, fmf); |
| 378 | |
| 379 | Value sinImag = b.create<math::SinOp>(imag, fmf); |
| 380 | Value cosm1Imag = emitCosm1(imag, fmf, b); |
| 381 | Value cosImag = b.create<arith::AddFOp>(cosm1Imag, one, fmf); |
| 382 | |
| 383 | Value realResult = b.create<arith::AddFOp>( |
| 384 | b.create<arith::MulFOp>(expm1Real, cosImag, fmf), cosm1Imag, fmf); |
| 385 | |
| 386 | Value imagIsZero = b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, |
| 387 | zero, fmf.getValue()); |
| 388 | Value imagResult = b.create<arith::SelectOp>( |
| 389 | imagIsZero, zero, b.create<arith::MulFOp>(expReal, sinImag, fmf)); |
| 390 | |
| 391 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, realResult, |
| 392 | imagResult); |
| 393 | return success(); |
| 394 | } |
| 395 | |
| 396 | private: |
| 397 | Value emitCosm1(Value arg, arith::FastMathFlagsAttr fmf, |
| 398 | ImplicitLocOpBuilder &b) const { |
| 399 | auto argType = mlir::cast<FloatType>(arg.getType()); |
| 400 | auto negHalf = b.create<arith::ConstantOp>(b.getFloatAttr(argType, -0.5)); |
| 401 | auto negOne = b.create<arith::ConstantOp>(b.getFloatAttr(argType, -1.0)); |
| 402 | |
| 403 | // Algorithm copied from cephes cosm1. |
| 404 | SmallVector<double, 7> kCoeffs{ |
| 405 | 4.7377507964246204691685E-14, -1.1470284843425359765671E-11, |
| 406 | 2.0876754287081521758361E-9, -2.7557319214999787979814E-7, |
| 407 | 2.4801587301570552304991E-5, -1.3888888888888872993737E-3, |
| 408 | 4.1666666666666666609054E-2, |
| 409 | }; |
| 410 | Value cos = b.create<math::CosOp>(arg, fmf); |
| 411 | Value forLargeArg = b.create<arith::AddFOp>(cos, negOne, fmf); |
| 412 | |
| 413 | Value argPow2 = b.create<arith::MulFOp>(arg, arg, fmf); |
| 414 | Value argPow4 = b.create<arith::MulFOp>(argPow2, argPow2, fmf); |
| 415 | Value poly = evaluatePolynomial(b, argPow2, kCoeffs, fmf); |
| 416 | |
| 417 | auto forSmallArg = |
| 418 | b.create<arith::AddFOp>(b.create<arith::MulFOp>(argPow4, poly, fmf), |
| 419 | b.create<arith::MulFOp>(negHalf, argPow2, fmf)); |
| 420 | |
| 421 | // (pi/4)^2 is approximately 0.61685 |
| 422 | Value piOver4Pow2 = |
| 423 | b.create<arith::ConstantOp>(b.getFloatAttr(argType, 0.61685)); |
| 424 | Value cond = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGE, argPow2, |
| 425 | piOver4Pow2, fmf.getValue()); |
| 426 | return b.create<arith::SelectOp>(cond, forLargeArg, forSmallArg); |
| 427 | } |
| 428 | }; |
| 429 | |
| 430 | struct LogOpConversion : public OpConversionPattern<complex::LogOp> { |
| 431 | using OpConversionPattern<complex::LogOp>::OpConversionPattern; |
| 432 | |
| 433 | LogicalResult |
| 434 | matchAndRewrite(complex::LogOp op, OpAdaptor adaptor, |
| 435 | ConversionPatternRewriter &rewriter) const override { |
| 436 | auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| 437 | auto elementType = cast<FloatType>(type.getElementType()); |
| 438 | arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| 439 | mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 440 | |
| 441 | Value abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex(), |
| 442 | fmf.getValue()); |
| 443 | Value resultReal = b.create<math::LogOp>(elementType, abs, fmf.getValue()); |
| 444 | Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex()); |
| 445 | Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex()); |
| 446 | Value resultImag = |
| 447 | b.create<math::Atan2Op>(elementType, imag, real, fmf.getValue()); |
| 448 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| 449 | resultImag); |
| 450 | return success(); |
| 451 | } |
| 452 | }; |
| 453 | |
| 454 | struct Log1pOpConversion : public OpConversionPattern<complex::Log1pOp> { |
| 455 | using OpConversionPattern<complex::Log1pOp>::OpConversionPattern; |
| 456 | |
| 457 | LogicalResult |
| 458 | matchAndRewrite(complex::Log1pOp op, OpAdaptor adaptor, |
| 459 | ConversionPatternRewriter &rewriter) const override { |
| 460 | auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| 461 | auto elementType = cast<FloatType>(type.getElementType()); |
| 462 | arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue(); |
| 463 | mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 464 | |
| 465 | Value real = b.create<complex::ReOp>(adaptor.getComplex()); |
| 466 | Value imag = b.create<complex::ImOp>(adaptor.getComplex()); |
| 467 | |
| 468 | Value half = b.create<arith::ConstantOp>(elementType, |
| 469 | b.getFloatAttr(elementType, 0.5)); |
| 470 | Value one = b.create<arith::ConstantOp>(elementType, |
| 471 | b.getFloatAttr(elementType, 1)); |
| 472 | Value realPlusOne = b.create<arith::AddFOp>(real, one, fmf); |
| 473 | Value absRealPlusOne = b.create<math::AbsFOp>(realPlusOne, fmf); |
| 474 | Value absImag = b.create<math::AbsFOp>(imag, fmf); |
| 475 | |
| 476 | Value maxAbs = b.create<arith::MaximumFOp>(absRealPlusOne, absImag, fmf); |
| 477 | Value minAbs = b.create<arith::MinimumFOp>(absRealPlusOne, absImag, fmf); |
| 478 | |
| 479 | Value useReal = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, |
| 480 | realPlusOne, absImag, fmf); |
| 481 | Value maxMinusOne = b.create<arith::SubFOp>(maxAbs, one, fmf); |
| 482 | Value maxAbsOfRealPlusOneAndImagMinusOne = |
| 483 | b.create<arith::SelectOp>(useReal, real, maxMinusOne); |
| 484 | arith::FastMathFlags fmfWithNaNInf = arith::bitEnumClear( |
| 485 | fmf, arith::FastMathFlags::nnan | arith::FastMathFlags::ninf); |
| 486 | Value minMaxRatio = b.create<arith::DivFOp>(minAbs, maxAbs, fmfWithNaNInf); |
| 487 | Value logOfMaxAbsOfRealPlusOneAndImag = |
| 488 | b.create<math::Log1pOp>(maxAbsOfRealPlusOneAndImagMinusOne, fmf); |
| 489 | Value logOfSqrtPart = b.create<math::Log1pOp>( |
| 490 | b.create<arith::MulFOp>(minMaxRatio, minMaxRatio, fmfWithNaNInf), |
| 491 | fmfWithNaNInf); |
| 492 | Value r = b.create<arith::AddFOp>( |
| 493 | b.create<arith::MulFOp>(half, logOfSqrtPart, fmfWithNaNInf), |
| 494 | logOfMaxAbsOfRealPlusOneAndImag, fmfWithNaNInf); |
| 495 | Value resultReal = b.create<arith::SelectOp>( |
| 496 | b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, r, r, fmfWithNaNInf), |
| 497 | minAbs, r); |
| 498 | Value resultImag = b.create<math::Atan2Op>(imag, realPlusOne, fmf); |
| 499 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| 500 | resultImag); |
| 501 | return success(); |
| 502 | } |
| 503 | }; |
| 504 | |
| 505 | struct MulOpConversion : public OpConversionPattern<complex::MulOp> { |
| 506 | using OpConversionPattern<complex::MulOp>::OpConversionPattern; |
| 507 | |
| 508 | LogicalResult |
| 509 | matchAndRewrite(complex::MulOp op, OpAdaptor adaptor, |
| 510 | ConversionPatternRewriter &rewriter) const override { |
| 511 | mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 512 | auto type = cast<ComplexType>(adaptor.getLhs().getType()); |
| 513 | auto elementType = cast<FloatType>(type.getElementType()); |
| 514 | arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| 515 | auto fmfValue = fmf.getValue(); |
| 516 | Value lhsReal = b.create<complex::ReOp>(elementType, adaptor.getLhs()); |
| 517 | Value lhsImag = b.create<complex::ImOp>(elementType, adaptor.getLhs()); |
| 518 | Value rhsReal = b.create<complex::ReOp>(elementType, adaptor.getRhs()); |
| 519 | Value rhsImag = b.create<complex::ImOp>(elementType, adaptor.getRhs()); |
| 520 | Value lhsRealTimesRhsReal = |
| 521 | b.create<arith::MulFOp>(lhsReal, rhsReal, fmfValue); |
| 522 | Value lhsImagTimesRhsImag = |
| 523 | b.create<arith::MulFOp>(lhsImag, rhsImag, fmfValue); |
| 524 | Value real = b.create<arith::SubFOp>(lhsRealTimesRhsReal, |
| 525 | lhsImagTimesRhsImag, fmfValue); |
| 526 | Value lhsImagTimesRhsReal = |
| 527 | b.create<arith::MulFOp>(lhsImag, rhsReal, fmfValue); |
| 528 | Value lhsRealTimesRhsImag = |
| 529 | b.create<arith::MulFOp>(lhsReal, rhsImag, fmfValue); |
| 530 | Value imag = b.create<arith::AddFOp>(lhsImagTimesRhsReal, |
| 531 | lhsRealTimesRhsImag, fmfValue); |
| 532 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, imag); |
| 533 | return success(); |
| 534 | } |
| 535 | }; |
| 536 | |
| 537 | struct NegOpConversion : public OpConversionPattern<complex::NegOp> { |
| 538 | using OpConversionPattern<complex::NegOp>::OpConversionPattern; |
| 539 | |
| 540 | LogicalResult |
| 541 | matchAndRewrite(complex::NegOp op, OpAdaptor adaptor, |
| 542 | ConversionPatternRewriter &rewriter) const override { |
| 543 | auto loc = op.getLoc(); |
| 544 | auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| 545 | auto elementType = cast<FloatType>(type.getElementType()); |
| 546 | |
| 547 | Value real = |
| 548 | rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex()); |
| 549 | Value imag = |
| 550 | rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex()); |
| 551 | Value negReal = rewriter.create<arith::NegFOp>(loc, real); |
| 552 | Value negImag = rewriter.create<arith::NegFOp>(loc, imag); |
| 553 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, negReal, negImag); |
| 554 | return success(); |
| 555 | } |
| 556 | }; |
| 557 | |
| 558 | struct SinOpConversion : public TrigonometricOpConversion<complex::SinOp> { |
| 559 | using TrigonometricOpConversion<complex::SinOp>::TrigonometricOpConversion; |
| 560 | |
| 561 | std::pair<Value, Value> combine(Location loc, Value scaledExp, |
| 562 | Value reciprocalExp, Value sin, Value cos, |
| 563 | ConversionPatternRewriter &rewriter, |
| 564 | arith::FastMathFlagsAttr fmf) const override { |
| 565 | // Complex sine is defined as; |
| 566 | // sin(x + iy) = -0.5i * (exp(i(x + iy)) - exp(-i(x + iy))) |
| 567 | // Plugging in: |
| 568 | // exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x)) |
| 569 | // exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x))) |
| 570 | // and defining t := exp(y) |
| 571 | // We get: |
| 572 | // Re(sin(x + iy)) = (0.5*t + 0.5/t) * sin x |
| 573 | // Im(cos(x + iy)) = (0.5*t - 0.5/t) * cos x |
| 574 | Value sum = |
| 575 | rewriter.create<arith::AddFOp>(loc, scaledExp, reciprocalExp, fmf); |
| 576 | Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, sin, fmf); |
| 577 | Value diff = |
| 578 | rewriter.create<arith::SubFOp>(loc, scaledExp, reciprocalExp, fmf); |
| 579 | Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, cos, fmf); |
| 580 | return {resultReal, resultImag}; |
| 581 | } |
| 582 | }; |
| 583 | |
| 584 | // The algorithm is listed in https://dl.acm.org/doi/pdf/10.1145/363717.363780. |
| 585 | struct SqrtOpConversion : public OpConversionPattern<complex::SqrtOp> { |
| 586 | using OpConversionPattern<complex::SqrtOp>::OpConversionPattern; |
| 587 | |
| 588 | LogicalResult |
| 589 | matchAndRewrite(complex::SqrtOp op, OpAdaptor adaptor, |
| 590 | ConversionPatternRewriter &rewriter) const override { |
| 591 | ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 592 | |
| 593 | auto type = cast<ComplexType>(op.getType()); |
| 594 | auto elementType = cast<FloatType>(type.getElementType()); |
| 595 | arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue(); |
| 596 | |
| 597 | auto cst = [&](APFloat v) { |
| 598 | return b.create<arith::ConstantOp>(elementType, |
| 599 | b.getFloatAttr(elementType, v)); |
| 600 | }; |
| 601 | const auto &floatSemantics = elementType.getFloatSemantics(); |
| 602 | Value zero = cst(APFloat::getZero(Sem: floatSemantics)); |
| 603 | Value half = b.create<arith::ConstantOp>(elementType, |
| 604 | b.getFloatAttr(elementType, 0.5)); |
| 605 | |
| 606 | Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex()); |
| 607 | Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex()); |
| 608 | Value absSqrt = computeAbs(real, imag, fmf, b, AbsFn::sqrt); |
| 609 | Value argArg = b.create<math::Atan2Op>(imag, real, fmf); |
| 610 | Value sqrtArg = b.create<arith::MulFOp>(argArg, half, fmf); |
| 611 | Value cos = b.create<math::CosOp>(sqrtArg, fmf); |
| 612 | Value sin = b.create<math::SinOp>(sqrtArg, fmf); |
| 613 | // sin(atan2(0, inf)) = 0, sqrt(abs(inf)) = inf, but we can't multiply |
| 614 | // 0 * inf. |
| 615 | Value sinIsZero = |
| 616 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, sin, zero, fmf); |
| 617 | |
| 618 | Value resultReal = b.create<arith::MulFOp>(absSqrt, cos, fmf); |
| 619 | Value resultImag = b.create<arith::SelectOp>( |
| 620 | sinIsZero, zero, b.create<arith::MulFOp>(absSqrt, sin, fmf)); |
| 621 | if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan | |
| 622 | arith::FastMathFlags::ninf)) { |
| 623 | Value inf = cst(APFloat::getInf(Sem: floatSemantics)); |
| 624 | Value negInf = cst(APFloat::getInf(Sem: floatSemantics, Negative: true)); |
| 625 | Value nan = cst(APFloat::getNaN(Sem: floatSemantics)); |
| 626 | Value absImag = b.create<math::AbsFOp>(elementType, imag, fmf); |
| 627 | |
| 628 | Value absImagIsInf = |
| 629 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absImag, inf, fmf); |
| 630 | Value absImagIsNotInf = |
| 631 | b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, absImag, inf, fmf); |
| 632 | Value realIsInf = |
| 633 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, inf, fmf); |
| 634 | Value realIsNegInf = |
| 635 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, negInf, fmf); |
| 636 | |
| 637 | resultReal = b.create<arith::SelectOp>( |
| 638 | b.create<arith::AndIOp>(realIsNegInf, absImagIsNotInf), zero, |
| 639 | resultReal); |
| 640 | resultReal = b.create<arith::SelectOp>( |
| 641 | b.create<arith::OrIOp>(absImagIsInf, realIsInf), inf, resultReal); |
| 642 | |
| 643 | Value imagSignInf = b.create<math::CopySignOp>(inf, imag, fmf); |
| 644 | resultImag = b.create<arith::SelectOp>( |
| 645 | b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, absSqrt, absSqrt), |
| 646 | nan, resultImag); |
| 647 | resultImag = b.create<arith::SelectOp>( |
| 648 | b.create<arith::OrIOp>(absImagIsInf, realIsNegInf), imagSignInf, |
| 649 | resultImag); |
| 650 | } |
| 651 | |
| 652 | Value resultIsZero = |
| 653 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absSqrt, zero, fmf); |
| 654 | resultReal = b.create<arith::SelectOp>(resultIsZero, zero, resultReal); |
| 655 | resultImag = b.create<arith::SelectOp>(resultIsZero, zero, resultImag); |
| 656 | |
| 657 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| 658 | resultImag); |
| 659 | return success(); |
| 660 | } |
| 661 | }; |
| 662 | |
| 663 | struct SignOpConversion : public OpConversionPattern<complex::SignOp> { |
| 664 | using OpConversionPattern<complex::SignOp>::OpConversionPattern; |
| 665 | |
| 666 | LogicalResult |
| 667 | matchAndRewrite(complex::SignOp op, OpAdaptor adaptor, |
| 668 | ConversionPatternRewriter &rewriter) const override { |
| 669 | auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| 670 | auto elementType = cast<FloatType>(type.getElementType()); |
| 671 | mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 672 | arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| 673 | |
| 674 | Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex()); |
| 675 | Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex()); |
| 676 | Value zero = |
| 677 | b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType)); |
| 678 | Value realIsZero = |
| 679 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero); |
| 680 | Value imagIsZero = |
| 681 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero); |
| 682 | Value isZero = b.create<arith::AndIOp>(realIsZero, imagIsZero); |
| 683 | auto abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex(), fmf); |
| 684 | Value realSign = b.create<arith::DivFOp>(real, abs, fmf); |
| 685 | Value imagSign = b.create<arith::DivFOp>(imag, abs, fmf); |
| 686 | Value sign = b.create<complex::CreateOp>(type, realSign, imagSign); |
| 687 | rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isZero, |
| 688 | adaptor.getComplex(), sign); |
| 689 | return success(); |
| 690 | } |
| 691 | }; |
| 692 | |
| 693 | template <typename Op> |
| 694 | struct TanTanhOpConversion : public OpConversionPattern<Op> { |
| 695 | using OpConversionPattern<Op>::OpConversionPattern; |
| 696 | |
| 697 | LogicalResult |
| 698 | matchAndRewrite(Op op, typename Op::Adaptor adaptor, |
| 699 | ConversionPatternRewriter &rewriter) const override { |
| 700 | ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 701 | auto loc = op.getLoc(); |
| 702 | auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| 703 | auto elementType = cast<FloatType>(type.getElementType()); |
| 704 | arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue(); |
| 705 | const auto &floatSemantics = elementType.getFloatSemantics(); |
| 706 | |
| 707 | Value real = |
| 708 | b.create<complex::ReOp>(loc, elementType, adaptor.getComplex()); |
| 709 | Value imag = |
| 710 | b.create<complex::ImOp>(loc, elementType, adaptor.getComplex()); |
| 711 | Value negOne = b.create<arith::ConstantOp>( |
| 712 | elementType, b.getFloatAttr(elementType, -1.0)); |
| 713 | |
| 714 | if constexpr (std::is_same_v<Op, complex::TanOp>) { |
| 715 | // tan(x+yi) = -i*tanh(-y + xi) |
| 716 | std::swap(real, imag); |
| 717 | real = b.create<arith::MulFOp>(real, negOne, fmf); |
| 718 | } |
| 719 | |
| 720 | auto cst = [&](APFloat v) { |
| 721 | return b.create<arith::ConstantOp>(elementType, |
| 722 | b.getFloatAttr(elementType, v)); |
| 723 | }; |
| 724 | Value inf = cst(APFloat::getInf(Sem: floatSemantics)); |
| 725 | Value four = b.create<arith::ConstantOp>(elementType, |
| 726 | b.getFloatAttr(elementType, 4.0)); |
| 727 | Value twoReal = b.create<arith::AddFOp>(real, real, fmf); |
| 728 | Value negTwoReal = b.create<arith::MulFOp>(negOne, twoReal, fmf); |
| 729 | |
| 730 | Value expTwoRealMinusOne = b.create<math::ExpM1Op>(twoReal, fmf); |
| 731 | Value expNegTwoRealMinusOne = b.create<math::ExpM1Op>(negTwoReal, fmf); |
| 732 | Value realNum = |
| 733 | b.create<arith::SubFOp>(expTwoRealMinusOne, expNegTwoRealMinusOne, fmf); |
| 734 | |
| 735 | Value cosImag = b.create<math::CosOp>(imag, fmf); |
| 736 | Value cosImagSq = b.create<arith::MulFOp>(cosImag, cosImag, fmf); |
| 737 | Value twoCosTwoImagPlusOne = b.create<arith::MulFOp>(cosImagSq, four, fmf); |
| 738 | Value sinImag = b.create<math::SinOp>(imag, fmf); |
| 739 | |
| 740 | Value imagNum = b.create<arith::MulFOp>( |
| 741 | four, b.create<arith::MulFOp>(cosImag, sinImag, fmf), fmf); |
| 742 | |
| 743 | Value expSumMinusTwo = |
| 744 | b.create<arith::AddFOp>(expTwoRealMinusOne, expNegTwoRealMinusOne, fmf); |
| 745 | Value denom = |
| 746 | b.create<arith::AddFOp>(expSumMinusTwo, twoCosTwoImagPlusOne, fmf); |
| 747 | |
| 748 | Value isInf = b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, |
| 749 | expSumMinusTwo, inf, fmf); |
| 750 | Value realLimit = b.create<math::CopySignOp>(negOne, real, fmf); |
| 751 | |
| 752 | Value resultReal = b.create<arith::SelectOp>( |
| 753 | isInf, realLimit, b.create<arith::DivFOp>(realNum, denom, fmf)); |
| 754 | Value resultImag = b.create<arith::DivFOp>(imagNum, denom, fmf); |
| 755 | |
| 756 | if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan | |
| 757 | arith::FastMathFlags::ninf)) { |
| 758 | Value absReal = b.create<math::AbsFOp>(real, fmf); |
| 759 | Value zero = b.create<arith::ConstantOp>( |
| 760 | elementType, b.getFloatAttr(elementType, 0.0)); |
| 761 | Value nan = cst(APFloat::getNaN(Sem: floatSemantics)); |
| 762 | |
| 763 | Value absRealIsInf = |
| 764 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absReal, inf, fmf); |
| 765 | Value imagIsZero = |
| 766 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero, fmf); |
| 767 | Value absRealIsNotInf = b.create<arith::XOrIOp>( |
| 768 | absRealIsInf, b.create<arith::ConstantIntOp>(true, /*width=*/1)); |
| 769 | |
| 770 | Value imagNumIsNaN = b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, |
| 771 | imagNum, imagNum, fmf); |
| 772 | Value resultRealIsNaN = |
| 773 | b.create<arith::AndIOp>(imagNumIsNaN, absRealIsNotInf); |
| 774 | Value resultImagIsZero = b.create<arith::OrIOp>( |
| 775 | imagIsZero, b.create<arith::AndIOp>(absRealIsInf, imagNumIsNaN)); |
| 776 | |
| 777 | resultReal = b.create<arith::SelectOp>(resultRealIsNaN, nan, resultReal); |
| 778 | resultImag = |
| 779 | b.create<arith::SelectOp>(resultImagIsZero, zero, resultImag); |
| 780 | } |
| 781 | |
| 782 | if constexpr (std::is_same_v<Op, complex::TanOp>) { |
| 783 | // tan(x+yi) = -i*tanh(-y + xi) |
| 784 | std::swap(resultReal, resultImag); |
| 785 | resultImag = b.create<arith::MulFOp>(resultImag, negOne, fmf); |
| 786 | } |
| 787 | |
| 788 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| 789 | resultImag); |
| 790 | return success(); |
| 791 | } |
| 792 | }; |
| 793 | |
| 794 | struct ConjOpConversion : public OpConversionPattern<complex::ConjOp> { |
| 795 | using OpConversionPattern<complex::ConjOp>::OpConversionPattern; |
| 796 | |
| 797 | LogicalResult |
| 798 | matchAndRewrite(complex::ConjOp op, OpAdaptor adaptor, |
| 799 | ConversionPatternRewriter &rewriter) const override { |
| 800 | auto loc = op.getLoc(); |
| 801 | auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| 802 | auto elementType = cast<FloatType>(type.getElementType()); |
| 803 | Value real = |
| 804 | rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex()); |
| 805 | Value imag = |
| 806 | rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex()); |
| 807 | Value negImag = rewriter.create<arith::NegFOp>(loc, elementType, imag); |
| 808 | |
| 809 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, negImag); |
| 810 | |
| 811 | return success(); |
| 812 | } |
| 813 | }; |
| 814 | |
| 815 | /// Converts lhs^y = (a+bi)^(c+di) to |
| 816 | /// (a*a+b*b)^(0.5c) * exp(-d*atan2(b,a)) * (cos(q) + i*sin(q)), |
| 817 | /// where q = c*atan2(b,a)+0.5d*ln(a*a+b*b) |
| 818 | static Value powOpConversionImpl(mlir::ImplicitLocOpBuilder &builder, |
| 819 | ComplexType type, Value lhs, Value c, Value d, |
| 820 | arith::FastMathFlags fmf) { |
| 821 | auto elementType = cast<FloatType>(type.getElementType()); |
| 822 | |
| 823 | Value a = builder.create<complex::ReOp>(lhs); |
| 824 | Value b = builder.create<complex::ImOp>(lhs); |
| 825 | |
| 826 | Value abs = builder.create<complex::AbsOp>(lhs, fmf); |
| 827 | Value absToC = builder.create<math::PowFOp>(abs, c, fmf); |
| 828 | |
| 829 | Value negD = builder.create<arith::NegFOp>(d, fmf); |
| 830 | Value argLhs = builder.create<math::Atan2Op>(b, a, fmf); |
| 831 | Value negDArgLhs = builder.create<arith::MulFOp>(negD, argLhs, fmf); |
| 832 | Value expNegDArgLhs = builder.create<math::ExpOp>(negDArgLhs, fmf); |
| 833 | |
| 834 | Value coeff = builder.create<arith::MulFOp>(absToC, expNegDArgLhs, fmf); |
| 835 | Value lnAbs = builder.create<math::LogOp>(abs, fmf); |
| 836 | Value cArgLhs = builder.create<arith::MulFOp>(c, argLhs, fmf); |
| 837 | Value dLnAbs = builder.create<arith::MulFOp>(d, lnAbs, fmf); |
| 838 | Value q = builder.create<arith::AddFOp>(cArgLhs, dLnAbs, fmf); |
| 839 | Value cosQ = builder.create<math::CosOp>(q, fmf); |
| 840 | Value sinQ = builder.create<math::SinOp>(q, fmf); |
| 841 | |
| 842 | Value inf = builder.create<arith::ConstantOp>( |
| 843 | elementType, |
| 844 | builder.getFloatAttr(elementType, |
| 845 | APFloat::getInf(elementType.getFloatSemantics()))); |
| 846 | Value zero = builder.create<arith::ConstantOp>( |
| 847 | elementType, builder.getFloatAttr(elementType, 0.0)); |
| 848 | Value one = builder.create<arith::ConstantOp>( |
| 849 | elementType, builder.getFloatAttr(elementType, 1.0)); |
| 850 | Value complexOne = builder.create<complex::CreateOp>(type, one, zero); |
| 851 | Value complexZero = builder.create<complex::CreateOp>(type, zero, zero); |
| 852 | Value complexInf = builder.create<complex::CreateOp>(type, inf, zero); |
| 853 | |
| 854 | // Case 0: |
| 855 | // d^c is 0 if d is 0 and c > 0. 0^0 is defined to be 1.0, see |
| 856 | // Branch Cuts for Complex Elementary Functions or Much Ado About |
| 857 | // Nothing's Sign Bit, W. Kahan, Section 10. |
| 858 | Value absEqZero = |
| 859 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, abs, zero, fmf); |
| 860 | Value dEqZero = |
| 861 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, d, zero, fmf); |
| 862 | Value cEqZero = |
| 863 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, c, zero, fmf); |
| 864 | Value bEqZero = |
| 865 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, b, zero, fmf); |
| 866 | |
| 867 | Value zeroLeC = |
| 868 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLE, zero, c, fmf); |
| 869 | Value coeffCosQ = builder.create<arith::MulFOp>(coeff, cosQ, fmf); |
| 870 | Value coeffSinQ = builder.create<arith::MulFOp>(coeff, sinQ, fmf); |
| 871 | Value complexOneOrZero = |
| 872 | builder.create<arith::SelectOp>(cEqZero, complexOne, complexZero); |
| 873 | Value coeffCosSin = |
| 874 | builder.create<complex::CreateOp>(type, coeffCosQ, coeffSinQ); |
| 875 | Value cutoff0 = builder.create<arith::SelectOp>( |
| 876 | builder.create<arith::AndIOp>( |
| 877 | builder.create<arith::AndIOp>(absEqZero, dEqZero), zeroLeC), |
| 878 | complexOneOrZero, coeffCosSin); |
| 879 | |
| 880 | // Case 1: |
| 881 | // x^0 is defined to be 1 for any x, see |
| 882 | // Branch Cuts for Complex Elementary Functions or Much Ado About |
| 883 | // Nothing's Sign Bit, W. Kahan, Section 10. |
| 884 | Value rhsEqZero = builder.create<arith::AndIOp>(cEqZero, dEqZero); |
| 885 | Value cutoff1 = |
| 886 | builder.create<arith::SelectOp>(rhsEqZero, complexOne, cutoff0); |
| 887 | |
| 888 | // Case 2: |
| 889 | // 1^(c + d*i) = 1 + 0*i |
| 890 | Value lhsEqOne = builder.create<arith::AndIOp>( |
| 891 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, a, one, fmf), |
| 892 | bEqZero); |
| 893 | Value cutoff2 = |
| 894 | builder.create<arith::SelectOp>(lhsEqOne, complexOne, cutoff1); |
| 895 | |
| 896 | // Case 3: |
| 897 | // inf^(c + 0*i) = inf + 0*i, c > 0 |
| 898 | Value lhsEqInf = builder.create<arith::AndIOp>( |
| 899 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, a, inf, fmf), |
| 900 | bEqZero); |
| 901 | Value rhsGt0 = builder.create<arith::AndIOp>( |
| 902 | dEqZero, |
| 903 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, c, zero, fmf)); |
| 904 | Value cutoff3 = builder.create<arith::SelectOp>( |
| 905 | builder.create<arith::AndIOp>(lhsEqInf, rhsGt0), complexInf, cutoff2); |
| 906 | |
| 907 | // Case 4: |
| 908 | // inf^(c + 0*i) = 0 + 0*i, c < 0 |
| 909 | Value rhsLt0 = builder.create<arith::AndIOp>( |
| 910 | dEqZero, |
| 911 | builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, c, zero, fmf)); |
| 912 | Value cutoff4 = builder.create<arith::SelectOp>( |
| 913 | builder.create<arith::AndIOp>(lhsEqInf, rhsLt0), complexZero, cutoff3); |
| 914 | |
| 915 | return cutoff4; |
| 916 | } |
| 917 | |
| 918 | struct PowOpConversion : public OpConversionPattern<complex::PowOp> { |
| 919 | using OpConversionPattern<complex::PowOp>::OpConversionPattern; |
| 920 | |
| 921 | LogicalResult |
| 922 | matchAndRewrite(complex::PowOp op, OpAdaptor adaptor, |
| 923 | ConversionPatternRewriter &rewriter) const override { |
| 924 | mlir::ImplicitLocOpBuilder builder(op.getLoc(), rewriter); |
| 925 | auto type = cast<ComplexType>(adaptor.getLhs().getType()); |
| 926 | auto elementType = cast<FloatType>(type.getElementType()); |
| 927 | |
| 928 | Value c = builder.create<complex::ReOp>(elementType, adaptor.getRhs()); |
| 929 | Value d = builder.create<complex::ImOp>(elementType, adaptor.getRhs()); |
| 930 | |
| 931 | rewriter.replaceOp(op, {powOpConversionImpl(builder, type, adaptor.getLhs(), |
| 932 | c, d, op.getFastmath())}); |
| 933 | return success(); |
| 934 | } |
| 935 | }; |
| 936 | |
| 937 | struct RsqrtOpConversion : public OpConversionPattern<complex::RsqrtOp> { |
| 938 | using OpConversionPattern<complex::RsqrtOp>::OpConversionPattern; |
| 939 | |
| 940 | LogicalResult |
| 941 | matchAndRewrite(complex::RsqrtOp op, OpAdaptor adaptor, |
| 942 | ConversionPatternRewriter &rewriter) const override { |
| 943 | mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| 944 | auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| 945 | auto elementType = cast<FloatType>(type.getElementType()); |
| 946 | |
| 947 | arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue(); |
| 948 | |
| 949 | auto cst = [&](APFloat v) { |
| 950 | return b.create<arith::ConstantOp>(elementType, |
| 951 | b.getFloatAttr(elementType, v)); |
| 952 | }; |
| 953 | const auto &floatSemantics = elementType.getFloatSemantics(); |
| 954 | Value zero = cst(APFloat::getZero(Sem: floatSemantics)); |
| 955 | Value inf = cst(APFloat::getInf(Sem: floatSemantics)); |
| 956 | Value negHalf = b.create<arith::ConstantOp>( |
| 957 | elementType, b.getFloatAttr(elementType, -0.5)); |
| 958 | Value nan = cst(APFloat::getNaN(Sem: floatSemantics)); |
| 959 | |
| 960 | Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex()); |
| 961 | Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex()); |
| 962 | Value absRsqrt = computeAbs(real, imag, fmf, b, AbsFn::rsqrt); |
| 963 | Value argArg = b.create<math::Atan2Op>(imag, real, fmf); |
| 964 | Value rsqrtArg = b.create<arith::MulFOp>(argArg, negHalf, fmf); |
| 965 | Value cos = b.create<math::CosOp>(rsqrtArg, fmf); |
| 966 | Value sin = b.create<math::SinOp>(rsqrtArg, fmf); |
| 967 | |
| 968 | Value resultReal = b.create<arith::MulFOp>(absRsqrt, cos, fmf); |
| 969 | Value resultImag = b.create<arith::MulFOp>(absRsqrt, sin, fmf); |
| 970 | |
| 971 | if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan | |
| 972 | arith::FastMathFlags::ninf)) { |
| 973 | Value negOne = b.create<arith::ConstantOp>( |
| 974 | elementType, b.getFloatAttr(elementType, -1)); |
| 975 | |
| 976 | Value realSignedZero = b.create<math::CopySignOp>(zero, real, fmf); |
| 977 | Value imagSignedZero = b.create<math::CopySignOp>(zero, imag, fmf); |
| 978 | Value negImagSignedZero = |
| 979 | b.create<arith::MulFOp>(negOne, imagSignedZero, fmf); |
| 980 | |
| 981 | Value absReal = b.create<math::AbsFOp>(real, fmf); |
| 982 | Value absImag = b.create<math::AbsFOp>(imag, fmf); |
| 983 | |
| 984 | Value absImagIsInf = |
| 985 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absImag, inf, fmf); |
| 986 | Value realIsNan = |
| 987 | b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, real, real, fmf); |
| 988 | Value realIsInf = |
| 989 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absReal, inf, fmf); |
| 990 | Value inIsNanInf = b.create<arith::AndIOp>(absImagIsInf, realIsNan); |
| 991 | |
| 992 | Value resultIsZero = b.create<arith::OrIOp>(inIsNanInf, realIsInf); |
| 993 | |
| 994 | resultReal = |
| 995 | b.create<arith::SelectOp>(resultIsZero, realSignedZero, resultReal); |
| 996 | resultImag = b.create<arith::SelectOp>(resultIsZero, negImagSignedZero, |
| 997 | resultImag); |
| 998 | } |
| 999 | |
| 1000 | Value isRealZero = |
| 1001 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero, fmf); |
| 1002 | Value isImagZero = |
| 1003 | b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero, fmf); |
| 1004 | Value isZero = b.create<arith::AndIOp>(isRealZero, isImagZero); |
| 1005 | |
| 1006 | resultReal = b.create<arith::SelectOp>(isZero, inf, resultReal); |
| 1007 | resultImag = b.create<arith::SelectOp>(isZero, nan, resultImag); |
| 1008 | |
| 1009 | rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| 1010 | resultImag); |
| 1011 | return success(); |
| 1012 | } |
| 1013 | }; |
| 1014 | |
| 1015 | struct AngleOpConversion : public OpConversionPattern<complex::AngleOp> { |
| 1016 | using OpConversionPattern<complex::AngleOp>::OpConversionPattern; |
| 1017 | |
| 1018 | LogicalResult |
| 1019 | matchAndRewrite(complex::AngleOp op, OpAdaptor adaptor, |
| 1020 | ConversionPatternRewriter &rewriter) const override { |
| 1021 | auto loc = op.getLoc(); |
| 1022 | auto type = op.getType(); |
| 1023 | arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| 1024 | |
| 1025 | Value real = |
| 1026 | rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex()); |
| 1027 | Value imag = |
| 1028 | rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex()); |
| 1029 | |
| 1030 | rewriter.replaceOpWithNewOp<math::Atan2Op>(op, imag, real, fmf); |
| 1031 | |
| 1032 | return success(); |
| 1033 | } |
| 1034 | }; |
| 1035 | |
| 1036 | } // namespace |
| 1037 | |
| 1038 | void mlir::populateComplexToStandardConversionPatterns( |
| 1039 | RewritePatternSet &patterns, complex::ComplexRangeFlags complexRange) { |
| 1040 | // clang-format off |
| 1041 | patterns.add< |
| 1042 | AbsOpConversion, |
| 1043 | AngleOpConversion, |
| 1044 | Atan2OpConversion, |
| 1045 | BinaryComplexOpConversion<complex::AddOp, arith::AddFOp>, |
| 1046 | BinaryComplexOpConversion<complex::SubOp, arith::SubFOp>, |
| 1047 | ComparisonOpConversion<complex::EqualOp, arith::CmpFPredicate::OEQ>, |
| 1048 | ComparisonOpConversion<complex::NotEqualOp, arith::CmpFPredicate::UNE>, |
| 1049 | ConjOpConversion, |
| 1050 | CosOpConversion, |
| 1051 | ExpOpConversion, |
| 1052 | Expm1OpConversion, |
| 1053 | Log1pOpConversion, |
| 1054 | LogOpConversion, |
| 1055 | MulOpConversion, |
| 1056 | NegOpConversion, |
| 1057 | SignOpConversion, |
| 1058 | SinOpConversion, |
| 1059 | SqrtOpConversion, |
| 1060 | TanTanhOpConversion<complex::TanOp>, |
| 1061 | TanTanhOpConversion<complex::TanhOp>, |
| 1062 | PowOpConversion, |
| 1063 | RsqrtOpConversion |
| 1064 | >(patterns.getContext()); |
| 1065 | |
| 1066 | patterns.add<DivOpConversion>(patterns.getContext(), complexRange); |
| 1067 | |
| 1068 | // clang-format on |
| 1069 | } |
| 1070 | |
| 1071 | namespace { |
| 1072 | struct ConvertComplexToStandardPass |
| 1073 | : public impl::ConvertComplexToStandardPassBase< |
| 1074 | ConvertComplexToStandardPass> { |
| 1075 | using Base::Base; |
| 1076 | |
| 1077 | void runOnOperation() override; |
| 1078 | }; |
| 1079 | |
| 1080 | void ConvertComplexToStandardPass::runOnOperation() { |
| 1081 | // Convert to the Standard dialect using the converter defined above. |
| 1082 | RewritePatternSet patterns(&getContext()); |
| 1083 | populateComplexToStandardConversionPatterns(patterns, complexRange); |
| 1084 | |
| 1085 | ConversionTarget target(getContext()); |
| 1086 | target.addLegalDialect<arith::ArithDialect, math::MathDialect>(); |
| 1087 | target.addLegalOp<complex::CreateOp, complex::ImOp, complex::ReOp>(); |
| 1088 | if (failed( |
| 1089 | applyPartialConversion(getOperation(), target, std::move(patterns)))) |
| 1090 | signalPassFailure(); |
| 1091 | } |
| 1092 | } // namespace |
| 1093 | |