| 1 | //===- MathToLLVM.cpp - Math to LLVM dialect conversion -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Conversion/MathToLLVM/MathToLLVM.h" |
| 10 | |
| 11 | #include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h" |
| 12 | #include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h" |
| 13 | #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" |
| 14 | #include "mlir/Conversion/LLVMCommon/Pattern.h" |
| 15 | #include "mlir/Conversion/LLVMCommon/VectorPattern.h" |
| 16 | #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| 17 | #include "mlir/Dialect/Math/IR/Math.h" |
| 18 | #include "mlir/IR/TypeUtilities.h" |
| 19 | #include "mlir/Pass/Pass.h" |
| 20 | |
| 21 | #include "llvm/ADT/FloatingPointMode.h" |
| 22 | |
| 23 | namespace mlir { |
| 24 | #define GEN_PASS_DEF_CONVERTMATHTOLLVMPASS |
| 25 | #include "mlir/Conversion/Passes.h.inc" |
| 26 | } // namespace mlir |
| 27 | |
| 28 | using namespace mlir; |
| 29 | |
| 30 | namespace { |
| 31 | |
| 32 | template <typename SourceOp, typename TargetOp> |
| 33 | using ConvertFastMath = arith::AttrConvertFastMathToLLVM<SourceOp, TargetOp>; |
| 34 | |
| 35 | template <typename SourceOp, typename TargetOp> |
| 36 | using ConvertFMFMathToLLVMPattern = |
| 37 | VectorConvertToLLVMPattern<SourceOp, TargetOp, ConvertFastMath>; |
| 38 | |
| 39 | using AbsFOpLowering = ConvertFMFMathToLLVMPattern<math::AbsFOp, LLVM::FAbsOp>; |
| 40 | using CeilOpLowering = ConvertFMFMathToLLVMPattern<math::CeilOp, LLVM::FCeilOp>; |
| 41 | using CopySignOpLowering = |
| 42 | ConvertFMFMathToLLVMPattern<math::CopySignOp, LLVM::CopySignOp>; |
| 43 | using CosOpLowering = ConvertFMFMathToLLVMPattern<math::CosOp, LLVM::CosOp>; |
| 44 | using CoshOpLowering = ConvertFMFMathToLLVMPattern<math::CoshOp, LLVM::CoshOp>; |
| 45 | using AcosOpLowering = ConvertFMFMathToLLVMPattern<math::AcosOp, LLVM::ACosOp>; |
| 46 | using CtPopFOpLowering = |
| 47 | VectorConvertToLLVMPattern<math::CtPopOp, LLVM::CtPopOp>; |
| 48 | using Exp2OpLowering = ConvertFMFMathToLLVMPattern<math::Exp2Op, LLVM::Exp2Op>; |
| 49 | using ExpOpLowering = ConvertFMFMathToLLVMPattern<math::ExpOp, LLVM::ExpOp>; |
| 50 | using FloorOpLowering = |
| 51 | ConvertFMFMathToLLVMPattern<math::FloorOp, LLVM::FFloorOp>; |
| 52 | using FmaOpLowering = ConvertFMFMathToLLVMPattern<math::FmaOp, LLVM::FMAOp>; |
| 53 | using Log10OpLowering = |
| 54 | ConvertFMFMathToLLVMPattern<math::Log10Op, LLVM::Log10Op>; |
| 55 | using Log2OpLowering = ConvertFMFMathToLLVMPattern<math::Log2Op, LLVM::Log2Op>; |
| 56 | using LogOpLowering = ConvertFMFMathToLLVMPattern<math::LogOp, LLVM::LogOp>; |
| 57 | using PowFOpLowering = ConvertFMFMathToLLVMPattern<math::PowFOp, LLVM::PowOp>; |
| 58 | using FPowIOpLowering = |
| 59 | ConvertFMFMathToLLVMPattern<math::FPowIOp, LLVM::PowIOp>; |
| 60 | using RoundEvenOpLowering = |
| 61 | ConvertFMFMathToLLVMPattern<math::RoundEvenOp, LLVM::RoundEvenOp>; |
| 62 | using RoundOpLowering = |
| 63 | ConvertFMFMathToLLVMPattern<math::RoundOp, LLVM::RoundOp>; |
| 64 | using SinOpLowering = ConvertFMFMathToLLVMPattern<math::SinOp, LLVM::SinOp>; |
| 65 | using SinhOpLowering = ConvertFMFMathToLLVMPattern<math::SinhOp, LLVM::SinhOp>; |
| 66 | using ASinOpLowering = ConvertFMFMathToLLVMPattern<math::AsinOp, LLVM::ASinOp>; |
| 67 | using SqrtOpLowering = ConvertFMFMathToLLVMPattern<math::SqrtOp, LLVM::SqrtOp>; |
| 68 | using FTruncOpLowering = |
| 69 | ConvertFMFMathToLLVMPattern<math::TruncOp, LLVM::FTruncOp>; |
| 70 | using TanOpLowering = ConvertFMFMathToLLVMPattern<math::TanOp, LLVM::TanOp>; |
| 71 | using TanhOpLowering = ConvertFMFMathToLLVMPattern<math::TanhOp, LLVM::TanhOp>; |
| 72 | using ATanOpLowering = ConvertFMFMathToLLVMPattern<math::AtanOp, LLVM::ATanOp>; |
| 73 | using ATan2OpLowering = |
| 74 | ConvertFMFMathToLLVMPattern<math::Atan2Op, LLVM::ATan2Op>; |
| 75 | // A `CtLz/CtTz/absi(a)` is converted into `CtLz/CtTz/absi(a, false)`. |
| 76 | // TODO: Result and operand types match for `absi` as opposed to `ct*z`, so it |
| 77 | // may be better to separate the patterns. |
| 78 | template <typename MathOp, typename LLVMOp> |
| 79 | struct IntOpWithFlagLowering : public ConvertOpToLLVMPattern<MathOp> { |
| 80 | using ConvertOpToLLVMPattern<MathOp>::ConvertOpToLLVMPattern; |
| 81 | using Super = IntOpWithFlagLowering<MathOp, LLVMOp>; |
| 82 | |
| 83 | LogicalResult |
| 84 | matchAndRewrite(MathOp op, typename MathOp::Adaptor adaptor, |
| 85 | ConversionPatternRewriter &rewriter) const override { |
| 86 | const auto &typeConverter = *this->getTypeConverter(); |
| 87 | auto operandType = adaptor.getOperand().getType(); |
| 88 | auto llvmOperandType = typeConverter.convertType(operandType); |
| 89 | if (!llvmOperandType) |
| 90 | return failure(); |
| 91 | |
| 92 | auto loc = op.getLoc(); |
| 93 | auto resultType = op.getResult().getType(); |
| 94 | auto llvmResultType = typeConverter.convertType(resultType); |
| 95 | if (!llvmResultType) |
| 96 | return failure(); |
| 97 | |
| 98 | if (!isa<LLVM::LLVMArrayType>(llvmOperandType)) { |
| 99 | rewriter.replaceOpWithNewOp<LLVMOp>(op, llvmResultType, |
| 100 | adaptor.getOperand(), false); |
| 101 | return success(); |
| 102 | } |
| 103 | |
| 104 | if (!isa<VectorType>(llvmResultType)) |
| 105 | return failure(); |
| 106 | |
| 107 | return LLVM::detail::handleMultidimensionalVectors( |
| 108 | op: op.getOperation(), operands: adaptor.getOperands(), typeConverter, |
| 109 | createOperand: [&](Type llvm1DVectorTy, ValueRange operands) { |
| 110 | return rewriter.create<LLVMOp>(loc, llvm1DVectorTy, operands[0], |
| 111 | false); |
| 112 | }, |
| 113 | rewriter); |
| 114 | } |
| 115 | }; |
| 116 | |
| 117 | using CountLeadingZerosOpLowering = |
| 118 | IntOpWithFlagLowering<math::CountLeadingZerosOp, LLVM::CountLeadingZerosOp>; |
| 119 | using CountTrailingZerosOpLowering = |
| 120 | IntOpWithFlagLowering<math::CountTrailingZerosOp, |
| 121 | LLVM::CountTrailingZerosOp>; |
| 122 | using AbsIOpLowering = IntOpWithFlagLowering<math::AbsIOp, LLVM::AbsOp>; |
| 123 | |
| 124 | // A `expm1` is converted into `exp - 1`. |
| 125 | struct ExpM1OpLowering : public ConvertOpToLLVMPattern<math::ExpM1Op> { |
| 126 | using ConvertOpToLLVMPattern<math::ExpM1Op>::ConvertOpToLLVMPattern; |
| 127 | |
| 128 | LogicalResult |
| 129 | matchAndRewrite(math::ExpM1Op op, OpAdaptor adaptor, |
| 130 | ConversionPatternRewriter &rewriter) const override { |
| 131 | const auto &typeConverter = *this->getTypeConverter(); |
| 132 | auto operandType = adaptor.getOperand().getType(); |
| 133 | auto llvmOperandType = typeConverter.convertType(operandType); |
| 134 | if (!llvmOperandType) |
| 135 | return failure(); |
| 136 | |
| 137 | auto loc = op.getLoc(); |
| 138 | auto resultType = op.getResult().getType(); |
| 139 | auto floatType = cast<FloatType>( |
| 140 | typeConverter.convertType(getElementTypeOrSelf(resultType))); |
| 141 | auto floatOne = rewriter.getFloatAttr(floatType, 1.0); |
| 142 | ConvertFastMath<math::ExpM1Op, LLVM::ExpOp> expAttrs(op); |
| 143 | ConvertFastMath<math::ExpM1Op, LLVM::FSubOp> subAttrs(op); |
| 144 | |
| 145 | if (!isa<LLVM::LLVMArrayType>(llvmOperandType)) { |
| 146 | LLVM::ConstantOp one; |
| 147 | if (LLVM::isCompatibleVectorType(type: llvmOperandType)) { |
| 148 | one = rewriter.create<LLVM::ConstantOp>( |
| 149 | loc, llvmOperandType, |
| 150 | SplatElementsAttr::get(cast<ShapedType>(llvmOperandType), |
| 151 | floatOne)); |
| 152 | } else { |
| 153 | one = rewriter.create<LLVM::ConstantOp>(loc, llvmOperandType, floatOne); |
| 154 | } |
| 155 | auto exp = rewriter.create<LLVM::ExpOp>(loc, adaptor.getOperand(), |
| 156 | expAttrs.getAttrs()); |
| 157 | rewriter.replaceOpWithNewOp<LLVM::FSubOp>( |
| 158 | op, llvmOperandType, ValueRange{exp, one}, subAttrs.getAttrs()); |
| 159 | return success(); |
| 160 | } |
| 161 | |
| 162 | if (!isa<VectorType>(resultType)) |
| 163 | return rewriter.notifyMatchFailure(op, "expected vector result type" ); |
| 164 | |
| 165 | return LLVM::detail::handleMultidimensionalVectors( |
| 166 | op: op.getOperation(), operands: adaptor.getOperands(), typeConverter: typeConverter, |
| 167 | createOperand: [&](Type llvm1DVectorTy, ValueRange operands) { |
| 168 | auto numElements = LLVM::getVectorNumElements(type: llvm1DVectorTy); |
| 169 | auto splatAttr = SplatElementsAttr::get( |
| 170 | mlir::VectorType::get({numElements.getKnownMinValue()}, floatType, |
| 171 | {numElements.isScalable()}), |
| 172 | floatOne); |
| 173 | auto one = |
| 174 | rewriter.create<LLVM::ConstantOp>(loc, llvm1DVectorTy, splatAttr); |
| 175 | auto exp = rewriter.create<LLVM::ExpOp>( |
| 176 | loc, llvm1DVectorTy, operands[0], expAttrs.getAttrs()); |
| 177 | return rewriter.create<LLVM::FSubOp>( |
| 178 | loc, llvm1DVectorTy, ValueRange{exp, one}, subAttrs.getAttrs()); |
| 179 | }, |
| 180 | rewriter); |
| 181 | } |
| 182 | }; |
| 183 | |
| 184 | // A `log1p` is converted into `log(1 + ...)`. |
| 185 | struct Log1pOpLowering : public ConvertOpToLLVMPattern<math::Log1pOp> { |
| 186 | using ConvertOpToLLVMPattern<math::Log1pOp>::ConvertOpToLLVMPattern; |
| 187 | |
| 188 | LogicalResult |
| 189 | matchAndRewrite(math::Log1pOp op, OpAdaptor adaptor, |
| 190 | ConversionPatternRewriter &rewriter) const override { |
| 191 | const auto &typeConverter = *this->getTypeConverter(); |
| 192 | auto operandType = adaptor.getOperand().getType(); |
| 193 | auto llvmOperandType = typeConverter.convertType(operandType); |
| 194 | if (!llvmOperandType) |
| 195 | return rewriter.notifyMatchFailure(op, "unsupported operand type" ); |
| 196 | |
| 197 | auto loc = op.getLoc(); |
| 198 | auto resultType = op.getResult().getType(); |
| 199 | auto floatType = cast<FloatType>( |
| 200 | typeConverter.convertType(getElementTypeOrSelf(resultType))); |
| 201 | auto floatOne = rewriter.getFloatAttr(floatType, 1.0); |
| 202 | ConvertFastMath<math::Log1pOp, LLVM::FAddOp> addAttrs(op); |
| 203 | ConvertFastMath<math::Log1pOp, LLVM::LogOp> logAttrs(op); |
| 204 | |
| 205 | if (!isa<LLVM::LLVMArrayType>(llvmOperandType)) { |
| 206 | LLVM::ConstantOp one = |
| 207 | isa<VectorType>(llvmOperandType) |
| 208 | ? rewriter.create<LLVM::ConstantOp>( |
| 209 | loc, llvmOperandType, |
| 210 | SplatElementsAttr::get(cast<ShapedType>(llvmOperandType), |
| 211 | floatOne)) |
| 212 | : rewriter.create<LLVM::ConstantOp>(loc, llvmOperandType, |
| 213 | floatOne); |
| 214 | |
| 215 | auto add = rewriter.create<LLVM::FAddOp>( |
| 216 | loc, llvmOperandType, ValueRange{one, adaptor.getOperand()}, |
| 217 | addAttrs.getAttrs()); |
| 218 | rewriter.replaceOpWithNewOp<LLVM::LogOp>( |
| 219 | op, llvmOperandType, ValueRange{add}, logAttrs.getAttrs()); |
| 220 | return success(); |
| 221 | } |
| 222 | |
| 223 | if (!isa<VectorType>(resultType)) |
| 224 | return rewriter.notifyMatchFailure(op, "expected vector result type" ); |
| 225 | |
| 226 | return LLVM::detail::handleMultidimensionalVectors( |
| 227 | op: op.getOperation(), operands: adaptor.getOperands(), typeConverter: typeConverter, |
| 228 | createOperand: [&](Type llvm1DVectorTy, ValueRange operands) { |
| 229 | auto numElements = LLVM::getVectorNumElements(type: llvm1DVectorTy); |
| 230 | auto splatAttr = SplatElementsAttr::get( |
| 231 | mlir::VectorType::get({numElements.getKnownMinValue()}, floatType, |
| 232 | {numElements.isScalable()}), |
| 233 | floatOne); |
| 234 | auto one = |
| 235 | rewriter.create<LLVM::ConstantOp>(loc, llvm1DVectorTy, splatAttr); |
| 236 | auto add = rewriter.create<LLVM::FAddOp>(loc, llvm1DVectorTy, |
| 237 | ValueRange{one, operands[0]}, |
| 238 | addAttrs.getAttrs()); |
| 239 | return rewriter.create<LLVM::LogOp>( |
| 240 | loc, llvm1DVectorTy, ValueRange{add}, logAttrs.getAttrs()); |
| 241 | }, |
| 242 | rewriter); |
| 243 | } |
| 244 | }; |
| 245 | |
| 246 | // A `rsqrt` is converted into `1 / sqrt`. |
| 247 | struct RsqrtOpLowering : public ConvertOpToLLVMPattern<math::RsqrtOp> { |
| 248 | using ConvertOpToLLVMPattern<math::RsqrtOp>::ConvertOpToLLVMPattern; |
| 249 | |
| 250 | LogicalResult |
| 251 | matchAndRewrite(math::RsqrtOp op, OpAdaptor adaptor, |
| 252 | ConversionPatternRewriter &rewriter) const override { |
| 253 | const auto &typeConverter = *this->getTypeConverter(); |
| 254 | auto operandType = adaptor.getOperand().getType(); |
| 255 | auto llvmOperandType = typeConverter.convertType(operandType); |
| 256 | if (!llvmOperandType) |
| 257 | return failure(); |
| 258 | |
| 259 | auto loc = op.getLoc(); |
| 260 | auto resultType = op.getResult().getType(); |
| 261 | auto floatType = cast<FloatType>( |
| 262 | typeConverter.convertType(getElementTypeOrSelf(resultType))); |
| 263 | auto floatOne = rewriter.getFloatAttr(floatType, 1.0); |
| 264 | ConvertFastMath<math::RsqrtOp, LLVM::SqrtOp> sqrtAttrs(op); |
| 265 | ConvertFastMath<math::RsqrtOp, LLVM::FDivOp> divAttrs(op); |
| 266 | |
| 267 | if (!isa<LLVM::LLVMArrayType>(llvmOperandType)) { |
| 268 | LLVM::ConstantOp one; |
| 269 | if (isa<VectorType>(llvmOperandType)) { |
| 270 | one = rewriter.create<LLVM::ConstantOp>( |
| 271 | loc, llvmOperandType, |
| 272 | SplatElementsAttr::get(cast<ShapedType>(llvmOperandType), |
| 273 | floatOne)); |
| 274 | } else { |
| 275 | one = rewriter.create<LLVM::ConstantOp>(loc, llvmOperandType, floatOne); |
| 276 | } |
| 277 | auto sqrt = rewriter.create<LLVM::SqrtOp>(loc, adaptor.getOperand(), |
| 278 | sqrtAttrs.getAttrs()); |
| 279 | rewriter.replaceOpWithNewOp<LLVM::FDivOp>( |
| 280 | op, llvmOperandType, ValueRange{one, sqrt}, divAttrs.getAttrs()); |
| 281 | return success(); |
| 282 | } |
| 283 | |
| 284 | if (!isa<VectorType>(resultType)) |
| 285 | return failure(); |
| 286 | |
| 287 | return LLVM::detail::handleMultidimensionalVectors( |
| 288 | op: op.getOperation(), operands: adaptor.getOperands(), typeConverter: typeConverter, |
| 289 | createOperand: [&](Type llvm1DVectorTy, ValueRange operands) { |
| 290 | auto numElements = LLVM::getVectorNumElements(type: llvm1DVectorTy); |
| 291 | auto splatAttr = SplatElementsAttr::get( |
| 292 | mlir::VectorType::get({numElements.getKnownMinValue()}, floatType, |
| 293 | {numElements.isScalable()}), |
| 294 | floatOne); |
| 295 | auto one = |
| 296 | rewriter.create<LLVM::ConstantOp>(loc, llvm1DVectorTy, splatAttr); |
| 297 | auto sqrt = rewriter.create<LLVM::SqrtOp>( |
| 298 | loc, llvm1DVectorTy, operands[0], sqrtAttrs.getAttrs()); |
| 299 | return rewriter.create<LLVM::FDivOp>( |
| 300 | loc, llvm1DVectorTy, ValueRange{one, sqrt}, divAttrs.getAttrs()); |
| 301 | }, |
| 302 | rewriter); |
| 303 | } |
| 304 | }; |
| 305 | |
| 306 | struct IsNaNOpLowering : public ConvertOpToLLVMPattern<math::IsNaNOp> { |
| 307 | using ConvertOpToLLVMPattern<math::IsNaNOp>::ConvertOpToLLVMPattern; |
| 308 | |
| 309 | LogicalResult |
| 310 | matchAndRewrite(math::IsNaNOp op, OpAdaptor adaptor, |
| 311 | ConversionPatternRewriter &rewriter) const override { |
| 312 | const auto &typeConverter = *this->getTypeConverter(); |
| 313 | auto operandType = |
| 314 | typeConverter.convertType(adaptor.getOperand().getType()); |
| 315 | auto resultType = typeConverter.convertType(op.getResult().getType()); |
| 316 | if (!operandType || !resultType) |
| 317 | return failure(); |
| 318 | |
| 319 | rewriter.replaceOpWithNewOp<LLVM::IsFPClass>( |
| 320 | op, resultType, adaptor.getOperand(), llvm::fcNan); |
| 321 | return success(); |
| 322 | } |
| 323 | }; |
| 324 | |
| 325 | struct IsFiniteOpLowering : public ConvertOpToLLVMPattern<math::IsFiniteOp> { |
| 326 | using ConvertOpToLLVMPattern<math::IsFiniteOp>::ConvertOpToLLVMPattern; |
| 327 | |
| 328 | LogicalResult |
| 329 | matchAndRewrite(math::IsFiniteOp op, OpAdaptor adaptor, |
| 330 | ConversionPatternRewriter &rewriter) const override { |
| 331 | const auto &typeConverter = *this->getTypeConverter(); |
| 332 | auto operandType = |
| 333 | typeConverter.convertType(adaptor.getOperand().getType()); |
| 334 | auto resultType = typeConverter.convertType(op.getResult().getType()); |
| 335 | if (!operandType || !resultType) |
| 336 | return failure(); |
| 337 | |
| 338 | rewriter.replaceOpWithNewOp<LLVM::IsFPClass>( |
| 339 | op, resultType, adaptor.getOperand(), llvm::fcFinite); |
| 340 | return success(); |
| 341 | } |
| 342 | }; |
| 343 | |
| 344 | struct ConvertMathToLLVMPass |
| 345 | : public impl::ConvertMathToLLVMPassBase<ConvertMathToLLVMPass> { |
| 346 | using Base::Base; |
| 347 | |
| 348 | void runOnOperation() override { |
| 349 | RewritePatternSet patterns(&getContext()); |
| 350 | LLVMTypeConverter converter(&getContext()); |
| 351 | populateMathToLLVMConversionPatterns(converter, patterns, approximateLog1p); |
| 352 | LLVMConversionTarget target(getContext()); |
| 353 | if (failed(applyPartialConversion(getOperation(), target, |
| 354 | std::move(patterns)))) |
| 355 | signalPassFailure(); |
| 356 | } |
| 357 | }; |
| 358 | } // namespace |
| 359 | |
| 360 | void mlir::populateMathToLLVMConversionPatterns( |
| 361 | const LLVMTypeConverter &converter, RewritePatternSet &patterns, |
| 362 | bool approximateLog1p, PatternBenefit benefit) { |
| 363 | if (approximateLog1p) |
| 364 | patterns.add<Log1pOpLowering>(arg: converter, args&: benefit); |
| 365 | // clang-format off |
| 366 | patterns.add< |
| 367 | IsNaNOpLowering, |
| 368 | IsFiniteOpLowering, |
| 369 | AbsFOpLowering, |
| 370 | AbsIOpLowering, |
| 371 | CeilOpLowering, |
| 372 | CopySignOpLowering, |
| 373 | CosOpLowering, |
| 374 | CoshOpLowering, |
| 375 | AcosOpLowering, |
| 376 | CountLeadingZerosOpLowering, |
| 377 | CountTrailingZerosOpLowering, |
| 378 | CtPopFOpLowering, |
| 379 | Exp2OpLowering, |
| 380 | ExpM1OpLowering, |
| 381 | ExpOpLowering, |
| 382 | FPowIOpLowering, |
| 383 | FloorOpLowering, |
| 384 | FmaOpLowering, |
| 385 | Log10OpLowering, |
| 386 | Log2OpLowering, |
| 387 | LogOpLowering, |
| 388 | PowFOpLowering, |
| 389 | RoundEvenOpLowering, |
| 390 | RoundOpLowering, |
| 391 | RsqrtOpLowering, |
| 392 | SinOpLowering, |
| 393 | SinhOpLowering, |
| 394 | ASinOpLowering, |
| 395 | SqrtOpLowering, |
| 396 | FTruncOpLowering, |
| 397 | TanOpLowering, |
| 398 | TanhOpLowering, |
| 399 | ATanOpLowering, |
| 400 | ATan2OpLowering |
| 401 | >(converter, benefit); |
| 402 | // clang-format on |
| 403 | } |
| 404 | |
| 405 | //===----------------------------------------------------------------------===// |
| 406 | // ConvertToLLVMPatternInterface implementation |
| 407 | //===----------------------------------------------------------------------===// |
| 408 | |
| 409 | namespace { |
| 410 | /// Implement the interface to convert Math to LLVM. |
| 411 | struct MathToLLVMDialectInterface : public ConvertToLLVMPatternInterface { |
| 412 | using ConvertToLLVMPatternInterface::ConvertToLLVMPatternInterface; |
| 413 | void loadDependentDialects(MLIRContext *context) const final { |
| 414 | context->loadDialect<LLVM::LLVMDialect>(); |
| 415 | } |
| 416 | |
| 417 | /// Hook for derived dialect interface to provide conversion patterns |
| 418 | /// and mark dialect legal for the conversion target. |
| 419 | void populateConvertToLLVMConversionPatterns( |
| 420 | ConversionTarget &target, LLVMTypeConverter &typeConverter, |
| 421 | RewritePatternSet &patterns) const final { |
| 422 | populateMathToLLVMConversionPatterns(converter: typeConverter, patterns); |
| 423 | } |
| 424 | }; |
| 425 | } // namespace |
| 426 | |
| 427 | void mlir::registerConvertMathToLLVMInterface(DialectRegistry ®istry) { |
| 428 | registry.addExtension(extensionFn: +[](MLIRContext *ctx, math::MathDialect *dialect) { |
| 429 | dialect->addInterfaces<MathToLLVMDialectInterface>(); |
| 430 | }); |
| 431 | } |
| 432 | |