| 1 | //===- PDLToPDLInterp.cpp - Lower a PDL module to the interpreter ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Conversion/PDLToPDLInterp/PDLToPDLInterp.h" |
| 10 | |
| 11 | #include "PredicateTree.h" |
| 12 | #include "mlir/Dialect/PDL/IR/PDL.h" |
| 13 | #include "mlir/Dialect/PDL/IR/PDLTypes.h" |
| 14 | #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h" |
| 15 | #include "mlir/Pass/Pass.h" |
| 16 | #include "llvm/ADT/MapVector.h" |
| 17 | #include "llvm/ADT/ScopedHashTable.h" |
| 18 | #include "llvm/ADT/Sequence.h" |
| 19 | #include "llvm/ADT/SetVector.h" |
| 20 | #include "llvm/ADT/SmallVector.h" |
| 21 | #include "llvm/ADT/TypeSwitch.h" |
| 22 | |
| 23 | namespace mlir { |
| 24 | #define GEN_PASS_DEF_CONVERTPDLTOPDLINTERPPASS |
| 25 | #include "mlir/Conversion/Passes.h.inc" |
| 26 | } // namespace mlir |
| 27 | |
| 28 | using namespace mlir; |
| 29 | using namespace mlir::pdl_to_pdl_interp; |
| 30 | |
| 31 | //===----------------------------------------------------------------------===// |
| 32 | // PatternLowering |
| 33 | //===----------------------------------------------------------------------===// |
| 34 | |
| 35 | namespace { |
| 36 | /// This class generators operations within the PDL Interpreter dialect from a |
| 37 | /// given module containing PDL pattern operations. |
| 38 | struct PatternLowering { |
| 39 | public: |
| 40 | PatternLowering(pdl_interp::FuncOp matcherFunc, ModuleOp rewriterModule, |
| 41 | DenseMap<Operation *, PDLPatternConfigSet *> *configMap); |
| 42 | |
| 43 | /// Generate code for matching and rewriting based on the pattern operations |
| 44 | /// within the module. |
| 45 | void lower(ModuleOp module); |
| 46 | |
| 47 | private: |
| 48 | using ValueMap = llvm::ScopedHashTable<Position *, Value>; |
| 49 | using ValueMapScope = llvm::ScopedHashTableScope<Position *, Value>; |
| 50 | |
| 51 | /// Generate interpreter operations for the tree rooted at the given matcher |
| 52 | /// node, in the specified region. |
| 53 | Block *generateMatcher(MatcherNode &node, Region ®ion, |
| 54 | Block *block = nullptr); |
| 55 | |
| 56 | /// Get or create an access to the provided positional value in the current |
| 57 | /// block. This operation may mutate the provided block pointer if nested |
| 58 | /// regions (i.e., pdl_interp.iterate) are required. |
| 59 | Value getValueAt(Block *¤tBlock, Position *pos); |
| 60 | |
| 61 | /// Create the interpreter predicate operations. This operation may mutate the |
| 62 | /// provided current block pointer if nested regions (iterates) are required. |
| 63 | void generate(BoolNode *boolNode, Block *¤tBlock, Value val); |
| 64 | |
| 65 | /// Create the interpreter switch / predicate operations, with several case |
| 66 | /// destinations. This operation never mutates the provided current block |
| 67 | /// pointer, because the switch operation does not need Values beyond `val`. |
| 68 | void generate(SwitchNode *switchNode, Block *currentBlock, Value val); |
| 69 | |
| 70 | /// Create the interpreter operations to record a successful pattern match |
| 71 | /// using the contained root operation. This operation may mutate the current |
| 72 | /// block pointer if nested regions (i.e., pdl_interp.iterate) are required. |
| 73 | void generate(SuccessNode *successNode, Block *¤tBlock); |
| 74 | |
| 75 | /// Generate a rewriter function for the given pattern operation, and returns |
| 76 | /// a reference to that function. |
| 77 | SymbolRefAttr generateRewriter(pdl::PatternOp pattern, |
| 78 | SmallVectorImpl<Position *> &usedMatchValues); |
| 79 | |
| 80 | /// Generate the rewriter code for the given operation. |
| 81 | void generateRewriter(pdl::ApplyNativeRewriteOp rewriteOp, |
| 82 | DenseMap<Value, Value> &rewriteValues, |
| 83 | function_ref<Value(Value)> mapRewriteValue); |
| 84 | void generateRewriter(pdl::AttributeOp attrOp, |
| 85 | DenseMap<Value, Value> &rewriteValues, |
| 86 | function_ref<Value(Value)> mapRewriteValue); |
| 87 | void generateRewriter(pdl::EraseOp eraseOp, |
| 88 | DenseMap<Value, Value> &rewriteValues, |
| 89 | function_ref<Value(Value)> mapRewriteValue); |
| 90 | void generateRewriter(pdl::OperationOp operationOp, |
| 91 | DenseMap<Value, Value> &rewriteValues, |
| 92 | function_ref<Value(Value)> mapRewriteValue); |
| 93 | void generateRewriter(pdl::RangeOp rangeOp, |
| 94 | DenseMap<Value, Value> &rewriteValues, |
| 95 | function_ref<Value(Value)> mapRewriteValue); |
| 96 | void generateRewriter(pdl::ReplaceOp replaceOp, |
| 97 | DenseMap<Value, Value> &rewriteValues, |
| 98 | function_ref<Value(Value)> mapRewriteValue); |
| 99 | void generateRewriter(pdl::ResultOp resultOp, |
| 100 | DenseMap<Value, Value> &rewriteValues, |
| 101 | function_ref<Value(Value)> mapRewriteValue); |
| 102 | void generateRewriter(pdl::ResultsOp resultOp, |
| 103 | DenseMap<Value, Value> &rewriteValues, |
| 104 | function_ref<Value(Value)> mapRewriteValue); |
| 105 | void generateRewriter(pdl::TypeOp typeOp, |
| 106 | DenseMap<Value, Value> &rewriteValues, |
| 107 | function_ref<Value(Value)> mapRewriteValue); |
| 108 | void generateRewriter(pdl::TypesOp typeOp, |
| 109 | DenseMap<Value, Value> &rewriteValues, |
| 110 | function_ref<Value(Value)> mapRewriteValue); |
| 111 | |
| 112 | /// Generate the values used for resolving the result types of an operation |
| 113 | /// created within a dag rewriter region. If the result types of the operation |
| 114 | /// should be inferred, `hasInferredResultTypes` is set to true. |
| 115 | void generateOperationResultTypeRewriter( |
| 116 | pdl::OperationOp op, function_ref<Value(Value)> mapRewriteValue, |
| 117 | SmallVectorImpl<Value> &types, DenseMap<Value, Value> &rewriteValues, |
| 118 | bool &hasInferredResultTypes); |
| 119 | |
| 120 | /// A builder to use when generating interpreter operations. |
| 121 | OpBuilder builder; |
| 122 | |
| 123 | /// The matcher function used for all match related logic within PDL patterns. |
| 124 | pdl_interp::FuncOp matcherFunc; |
| 125 | |
| 126 | /// The rewriter module containing the all rewrite related logic within PDL |
| 127 | /// patterns. |
| 128 | ModuleOp rewriterModule; |
| 129 | |
| 130 | /// The symbol table of the rewriter module used for insertion. |
| 131 | SymbolTable rewriterSymbolTable; |
| 132 | |
| 133 | /// A scoped map connecting a position with the corresponding interpreter |
| 134 | /// value. |
| 135 | ValueMap values; |
| 136 | |
| 137 | /// A stack of blocks used as the failure destination for matcher nodes that |
| 138 | /// don't have an explicit failure path. |
| 139 | SmallVector<Block *, 8> failureBlockStack; |
| 140 | |
| 141 | /// A mapping between values defined in a pattern match, and the corresponding |
| 142 | /// positional value. |
| 143 | DenseMap<Value, Position *> valueToPosition; |
| 144 | |
| 145 | /// The set of operation values whose location will be used for newly |
| 146 | /// generated operations. |
| 147 | SetVector<Value> locOps; |
| 148 | |
| 149 | /// A mapping between pattern operations and the corresponding configuration |
| 150 | /// set. |
| 151 | DenseMap<Operation *, PDLPatternConfigSet *> *configMap; |
| 152 | |
| 153 | /// A mapping from a constraint question to the ApplyConstraintOp |
| 154 | /// that implements it. |
| 155 | DenseMap<ConstraintQuestion *, pdl_interp::ApplyConstraintOp> constraintOpMap; |
| 156 | }; |
| 157 | } // namespace |
| 158 | |
| 159 | PatternLowering::PatternLowering( |
| 160 | pdl_interp::FuncOp matcherFunc, ModuleOp rewriterModule, |
| 161 | DenseMap<Operation *, PDLPatternConfigSet *> *configMap) |
| 162 | : builder(matcherFunc.getContext()), matcherFunc(matcherFunc), |
| 163 | rewriterModule(rewriterModule), rewriterSymbolTable(rewriterModule), |
| 164 | configMap(configMap) {} |
| 165 | |
| 166 | void PatternLowering::lower(ModuleOp module) { |
| 167 | PredicateUniquer predicateUniquer; |
| 168 | PredicateBuilder predicateBuilder(predicateUniquer, module.getContext()); |
| 169 | |
| 170 | // Define top-level scope for the arguments to the matcher function. |
| 171 | ValueMapScope topLevelValueScope(values); |
| 172 | |
| 173 | // Insert the root operation, i.e. argument to the matcher, at the root |
| 174 | // position. |
| 175 | Block *matcherEntryBlock = &matcherFunc.front(); |
| 176 | values.insert(predicateBuilder.getRoot(), matcherEntryBlock->getArgument(0)); |
| 177 | |
| 178 | // Generate a root matcher node from the provided PDL module. |
| 179 | std::unique_ptr<MatcherNode> root = MatcherNode::generateMatcherTree( |
| 180 | module, predicateBuilder, valueToPosition); |
| 181 | Block *firstMatcherBlock = generateMatcher(*root, matcherFunc.getBody()); |
| 182 | assert(failureBlockStack.empty() && "failed to empty the stack" ); |
| 183 | |
| 184 | // After generation, merged the first matched block into the entry. |
| 185 | matcherEntryBlock->getOperations().splice(where: matcherEntryBlock->end(), |
| 186 | L2&: firstMatcherBlock->getOperations()); |
| 187 | firstMatcherBlock->erase(); |
| 188 | } |
| 189 | |
| 190 | Block *PatternLowering::generateMatcher(MatcherNode &node, Region ®ion, |
| 191 | Block *block) { |
| 192 | // Push a new scope for the values used by this matcher. |
| 193 | if (!block) |
| 194 | block = ®ion.emplaceBlock(); |
| 195 | ValueMapScope scope(values); |
| 196 | |
| 197 | // If this is the return node, simply insert the corresponding interpreter |
| 198 | // finalize. |
| 199 | if (isa<ExitNode>(Val: node)) { |
| 200 | builder.setInsertionPointToEnd(block); |
| 201 | builder.create<pdl_interp::FinalizeOp>(matcherFunc.getLoc()); |
| 202 | return block; |
| 203 | } |
| 204 | |
| 205 | // Get the next block in the match sequence. |
| 206 | // This is intentionally executed first, before we get the value for the |
| 207 | // position associated with the node, so that we preserve an "there exist" |
| 208 | // semantics: if getting a value requires an upward traversal (going from a |
| 209 | // value to its consumers), we want to perform the check on all the consumers |
| 210 | // before we pass control to the failure node. |
| 211 | std::unique_ptr<MatcherNode> &failureNode = node.getFailureNode(); |
| 212 | Block *failureBlock; |
| 213 | if (failureNode) { |
| 214 | failureBlock = generateMatcher(node&: *failureNode, region); |
| 215 | failureBlockStack.push_back(failureBlock); |
| 216 | } else { |
| 217 | assert(!failureBlockStack.empty() && "expected valid failure block" ); |
| 218 | failureBlock = failureBlockStack.back(); |
| 219 | } |
| 220 | |
| 221 | // If this node contains a position, get the corresponding value for this |
| 222 | // block. |
| 223 | Block *currentBlock = block; |
| 224 | Position *position = node.getPosition(); |
| 225 | Value val = position ? getValueAt(currentBlock, pos: position) : Value(); |
| 226 | |
| 227 | // If this value corresponds to an operation, record that we are going to use |
| 228 | // its location as part of a fused location. |
| 229 | bool isOperationValue = val && isa<pdl::OperationType>(val.getType()); |
| 230 | if (isOperationValue) |
| 231 | locOps.insert(val); |
| 232 | |
| 233 | // Dispatch to the correct method based on derived node type. |
| 234 | TypeSwitch<MatcherNode *>(&node) |
| 235 | .Case<BoolNode, SwitchNode>(caseFn: [&](auto *derivedNode) { |
| 236 | this->generate(derivedNode, currentBlock, val); |
| 237 | }) |
| 238 | .Case(caseFn: [&](SuccessNode *successNode) { |
| 239 | generate(successNode, currentBlock); |
| 240 | }); |
| 241 | |
| 242 | // Pop all the failure blocks that were inserted due to nesting of |
| 243 | // pdl_interp.iterate. |
| 244 | while (failureBlockStack.back() != failureBlock) { |
| 245 | failureBlockStack.pop_back(); |
| 246 | assert(!failureBlockStack.empty() && "unable to locate failure block" ); |
| 247 | } |
| 248 | |
| 249 | // Pop the new failure block. |
| 250 | if (failureNode) |
| 251 | failureBlockStack.pop_back(); |
| 252 | |
| 253 | if (isOperationValue) |
| 254 | locOps.remove(val); |
| 255 | |
| 256 | return block; |
| 257 | } |
| 258 | |
| 259 | Value PatternLowering::getValueAt(Block *¤tBlock, Position *pos) { |
| 260 | if (Value val = values.lookup(pos)) |
| 261 | return val; |
| 262 | |
| 263 | // Get the value for the parent position. |
| 264 | Value parentVal; |
| 265 | if (Position *parent = pos->getParent()) |
| 266 | parentVal = getValueAt(currentBlock, pos: parent); |
| 267 | |
| 268 | // TODO: Use a location from the position. |
| 269 | Location loc = parentVal ? parentVal.getLoc() : builder.getUnknownLoc(); |
| 270 | builder.setInsertionPointToEnd(currentBlock); |
| 271 | Value value; |
| 272 | switch (pos->getKind()) { |
| 273 | case Predicates::OperationPos: { |
| 274 | auto *operationPos = cast<OperationPosition>(Val: pos); |
| 275 | if (operationPos->isOperandDefiningOp()) |
| 276 | // Standard (downward) traversal which directly follows the defining op. |
| 277 | value = builder.create<pdl_interp::GetDefiningOpOp>( |
| 278 | loc, builder.getType<pdl::OperationType>(), parentVal); |
| 279 | else |
| 280 | // A passthrough operation position. |
| 281 | value = parentVal; |
| 282 | break; |
| 283 | } |
| 284 | case Predicates::UsersPos: { |
| 285 | auto *usersPos = cast<UsersPosition>(Val: pos); |
| 286 | |
| 287 | // The first operation retrieves the representative value of a range. |
| 288 | // This applies only when the parent is a range of values and we were |
| 289 | // requested to use a representative value (e.g., upward traversal). |
| 290 | if (isa<pdl::RangeType>(parentVal.getType()) && |
| 291 | usersPos->useRepresentative()) |
| 292 | value = builder.create<pdl_interp::ExtractOp>(loc, parentVal, 0); |
| 293 | else |
| 294 | value = parentVal; |
| 295 | |
| 296 | // The second operation retrieves the users. |
| 297 | value = builder.create<pdl_interp::GetUsersOp>(loc, value); |
| 298 | break; |
| 299 | } |
| 300 | case Predicates::ForEachPos: { |
| 301 | assert(!failureBlockStack.empty() && "expected valid failure block" ); |
| 302 | auto foreach = builder.create<pdl_interp::ForEachOp>( |
| 303 | loc, parentVal, failureBlockStack.back(), /*initLoop=*/true); |
| 304 | value = foreach.getLoopVariable(); |
| 305 | |
| 306 | // Create the continuation block. |
| 307 | Block *continueBlock = builder.createBlock(&foreach.getRegion()); |
| 308 | builder.create<pdl_interp::ContinueOp>(loc); |
| 309 | failureBlockStack.push_back(continueBlock); |
| 310 | |
| 311 | currentBlock = &foreach.getRegion().front(); |
| 312 | break; |
| 313 | } |
| 314 | case Predicates::OperandPos: { |
| 315 | auto *operandPos = cast<OperandPosition>(Val: pos); |
| 316 | value = builder.create<pdl_interp::GetOperandOp>( |
| 317 | loc, builder.getType<pdl::ValueType>(), parentVal, |
| 318 | operandPos->getOperandNumber()); |
| 319 | break; |
| 320 | } |
| 321 | case Predicates::OperandGroupPos: { |
| 322 | auto *operandPos = cast<OperandGroupPosition>(Val: pos); |
| 323 | Type valueTy = builder.getType<pdl::ValueType>(); |
| 324 | value = builder.create<pdl_interp::GetOperandsOp>( |
| 325 | loc, operandPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy, |
| 326 | parentVal, operandPos->getOperandGroupNumber()); |
| 327 | break; |
| 328 | } |
| 329 | case Predicates::AttributePos: { |
| 330 | auto *attrPos = cast<AttributePosition>(Val: pos); |
| 331 | value = builder.create<pdl_interp::GetAttributeOp>( |
| 332 | loc, builder.getType<pdl::AttributeType>(), parentVal, |
| 333 | attrPos->getName().strref()); |
| 334 | break; |
| 335 | } |
| 336 | case Predicates::TypePos: { |
| 337 | if (isa<pdl::AttributeType>(parentVal.getType())) |
| 338 | value = builder.create<pdl_interp::GetAttributeTypeOp>(loc, parentVal); |
| 339 | else |
| 340 | value = builder.create<pdl_interp::GetValueTypeOp>(loc, parentVal); |
| 341 | break; |
| 342 | } |
| 343 | case Predicates::ResultPos: { |
| 344 | auto *resPos = cast<ResultPosition>(Val: pos); |
| 345 | value = builder.create<pdl_interp::GetResultOp>( |
| 346 | loc, builder.getType<pdl::ValueType>(), parentVal, |
| 347 | resPos->getResultNumber()); |
| 348 | break; |
| 349 | } |
| 350 | case Predicates::ResultGroupPos: { |
| 351 | auto *resPos = cast<ResultGroupPosition>(Val: pos); |
| 352 | Type valueTy = builder.getType<pdl::ValueType>(); |
| 353 | value = builder.create<pdl_interp::GetResultsOp>( |
| 354 | loc, resPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy, |
| 355 | parentVal, resPos->getResultGroupNumber()); |
| 356 | break; |
| 357 | } |
| 358 | case Predicates::AttributeLiteralPos: { |
| 359 | auto *attrPos = cast<AttributeLiteralPosition>(Val: pos); |
| 360 | value = |
| 361 | builder.create<pdl_interp::CreateAttributeOp>(loc, attrPos->getValue()); |
| 362 | break; |
| 363 | } |
| 364 | case Predicates::TypeLiteralPos: { |
| 365 | auto *typePos = cast<TypeLiteralPosition>(Val: pos); |
| 366 | Attribute rawTypeAttr = typePos->getValue(); |
| 367 | if (TypeAttr typeAttr = dyn_cast<TypeAttr>(rawTypeAttr)) |
| 368 | value = builder.create<pdl_interp::CreateTypeOp>(loc, typeAttr); |
| 369 | else |
| 370 | value = builder.create<pdl_interp::CreateTypesOp>( |
| 371 | loc, cast<ArrayAttr>(rawTypeAttr)); |
| 372 | break; |
| 373 | } |
| 374 | case Predicates::ConstraintResultPos: { |
| 375 | // Due to the order of traversal, the ApplyConstraintOp has already been |
| 376 | // created and we can find it in constraintOpMap. |
| 377 | auto *constrResPos = cast<ConstraintPosition>(Val: pos); |
| 378 | auto i = constraintOpMap.find(constrResPos->getQuestion()); |
| 379 | assert(i != constraintOpMap.end()); |
| 380 | value = i->second->getResult(constrResPos->getIndex()); |
| 381 | break; |
| 382 | } |
| 383 | default: |
| 384 | llvm_unreachable("Generating unknown Position getter" ); |
| 385 | break; |
| 386 | } |
| 387 | |
| 388 | values.insert(pos, value); |
| 389 | return value; |
| 390 | } |
| 391 | |
| 392 | void PatternLowering::generate(BoolNode *boolNode, Block *¤tBlock, |
| 393 | Value val) { |
| 394 | Location loc = val.getLoc(); |
| 395 | Qualifier *question = boolNode->getQuestion(); |
| 396 | Qualifier *answer = boolNode->getAnswer(); |
| 397 | Region *region = currentBlock->getParent(); |
| 398 | |
| 399 | // Execute the getValue queries first, so that we create success |
| 400 | // matcher in the correct (possibly nested) region. |
| 401 | SmallVector<Value> args; |
| 402 | if (auto *equalToQuestion = dyn_cast<EqualToQuestion>(Val: question)) { |
| 403 | args = {getValueAt(currentBlock, pos: equalToQuestion->getValue())}; |
| 404 | } else if (auto *cstQuestion = dyn_cast<ConstraintQuestion>(Val: question)) { |
| 405 | for (Position *position : cstQuestion->getArgs()) |
| 406 | args.push_back(Elt: getValueAt(currentBlock, pos: position)); |
| 407 | } |
| 408 | |
| 409 | // Generate a new block as success successor and get the failure successor. |
| 410 | Block *success = ®ion->emplaceBlock(); |
| 411 | Block *failure = failureBlockStack.back(); |
| 412 | |
| 413 | // Create the predicate. |
| 414 | builder.setInsertionPointToEnd(currentBlock); |
| 415 | Predicates::Kind kind = question->getKind(); |
| 416 | switch (kind) { |
| 417 | case Predicates::IsNotNullQuestion: |
| 418 | builder.create<pdl_interp::IsNotNullOp>(loc, val, success, failure); |
| 419 | break; |
| 420 | case Predicates::OperationNameQuestion: { |
| 421 | auto *opNameAnswer = cast<OperationNameAnswer>(Val: answer); |
| 422 | builder.create<pdl_interp::CheckOperationNameOp>( |
| 423 | loc, val, opNameAnswer->getValue().getStringRef(), success, failure); |
| 424 | break; |
| 425 | } |
| 426 | case Predicates::TypeQuestion: { |
| 427 | auto *ans = cast<TypeAnswer>(Val: answer); |
| 428 | if (isa<pdl::RangeType>(val.getType())) |
| 429 | builder.create<pdl_interp::CheckTypesOp>( |
| 430 | loc, val, llvm::cast<ArrayAttr>(ans->getValue()), success, failure); |
| 431 | else |
| 432 | builder.create<pdl_interp::CheckTypeOp>( |
| 433 | loc, val, llvm::cast<TypeAttr>(ans->getValue()), success, failure); |
| 434 | break; |
| 435 | } |
| 436 | case Predicates::AttributeQuestion: { |
| 437 | auto *ans = cast<AttributeAnswer>(Val: answer); |
| 438 | builder.create<pdl_interp::CheckAttributeOp>(loc, val, ans->getValue(), |
| 439 | success, failure); |
| 440 | break; |
| 441 | } |
| 442 | case Predicates::OperandCountAtLeastQuestion: |
| 443 | case Predicates::OperandCountQuestion: |
| 444 | builder.create<pdl_interp::CheckOperandCountOp>( |
| 445 | loc, val, cast<UnsignedAnswer>(answer)->getValue(), |
| 446 | /*compareAtLeast=*/kind == Predicates::OperandCountAtLeastQuestion, |
| 447 | success, failure); |
| 448 | break; |
| 449 | case Predicates::ResultCountAtLeastQuestion: |
| 450 | case Predicates::ResultCountQuestion: |
| 451 | builder.create<pdl_interp::CheckResultCountOp>( |
| 452 | loc, val, cast<UnsignedAnswer>(answer)->getValue(), |
| 453 | /*compareAtLeast=*/kind == Predicates::ResultCountAtLeastQuestion, |
| 454 | success, failure); |
| 455 | break; |
| 456 | case Predicates::EqualToQuestion: { |
| 457 | bool trueAnswer = isa<TrueAnswer>(Val: answer); |
| 458 | builder.create<pdl_interp::AreEqualOp>(loc, val, args.front(), |
| 459 | trueAnswer ? success : failure, |
| 460 | trueAnswer ? failure : success); |
| 461 | break; |
| 462 | } |
| 463 | case Predicates::ConstraintQuestion: { |
| 464 | auto *cstQuestion = cast<ConstraintQuestion>(Val: question); |
| 465 | auto applyConstraintOp = builder.create<pdl_interp::ApplyConstraintOp>( |
| 466 | loc, cstQuestion->getResultTypes(), cstQuestion->getName(), args, |
| 467 | cstQuestion->getIsNegated(), success, failure); |
| 468 | |
| 469 | constraintOpMap.insert({cstQuestion, applyConstraintOp}); |
| 470 | break; |
| 471 | } |
| 472 | default: |
| 473 | llvm_unreachable("Generating unknown Predicate operation" ); |
| 474 | } |
| 475 | |
| 476 | // Generate the matcher in the current (potentially nested) region. |
| 477 | // This might use the results of the current predicate. |
| 478 | generateMatcher(node&: *boolNode->getSuccessNode(), region&: *region, block: success); |
| 479 | } |
| 480 | |
| 481 | template <typename OpT, typename PredT, typename ValT = typename PredT::KeyTy> |
| 482 | static void createSwitchOp(Value val, Block *defaultDest, OpBuilder &builder, |
| 483 | llvm::MapVector<Qualifier *, Block *> &dests) { |
| 484 | std::vector<ValT> values; |
| 485 | std::vector<Block *> blocks; |
| 486 | values.reserve(dests.size()); |
| 487 | blocks.reserve(n: dests.size()); |
| 488 | for (const auto &it : dests) { |
| 489 | blocks.push_back(x: it.second); |
| 490 | values.push_back(cast<PredT>(it.first)->getValue()); |
| 491 | } |
| 492 | builder.create<OpT>(val.getLoc(), val, values, defaultDest, blocks); |
| 493 | } |
| 494 | |
| 495 | void PatternLowering::generate(SwitchNode *switchNode, Block *currentBlock, |
| 496 | Value val) { |
| 497 | Qualifier *question = switchNode->getQuestion(); |
| 498 | Region *region = currentBlock->getParent(); |
| 499 | Block *defaultDest = failureBlockStack.back(); |
| 500 | |
| 501 | // If the switch question is not an exact answer, i.e. for the `at_least` |
| 502 | // cases, we generate a special block sequence. |
| 503 | Predicates::Kind kind = question->getKind(); |
| 504 | if (kind == Predicates::OperandCountAtLeastQuestion || |
| 505 | kind == Predicates::ResultCountAtLeastQuestion) { |
| 506 | // Order the children such that the cases are in reverse numerical order. |
| 507 | SmallVector<unsigned> sortedChildren = llvm::to_vector<16>( |
| 508 | Range: llvm::seq<unsigned>(Begin: 0, End: switchNode->getChildren().size())); |
| 509 | llvm::sort(C&: sortedChildren, Comp: [&](unsigned lhs, unsigned rhs) { |
| 510 | return cast<UnsignedAnswer>(Val: switchNode->getChild(i: lhs).first)->getValue() > |
| 511 | cast<UnsignedAnswer>(Val: switchNode->getChild(i: rhs).first)->getValue(); |
| 512 | }); |
| 513 | |
| 514 | // Build the destination for each child using the next highest child as a |
| 515 | // a failure destination. This essentially creates the following control |
| 516 | // flow: |
| 517 | // |
| 518 | // if (operand_count < 1) |
| 519 | // goto failure |
| 520 | // if (child1.match()) |
| 521 | // ... |
| 522 | // |
| 523 | // if (operand_count < 2) |
| 524 | // goto failure |
| 525 | // if (child2.match()) |
| 526 | // ... |
| 527 | // |
| 528 | // failure: |
| 529 | // ... |
| 530 | // |
| 531 | failureBlockStack.push_back(defaultDest); |
| 532 | Location loc = val.getLoc(); |
| 533 | for (unsigned idx : sortedChildren) { |
| 534 | auto &child = switchNode->getChild(i: idx); |
| 535 | Block *childBlock = generateMatcher(node&: *child.second, region&: *region); |
| 536 | Block *predicateBlock = builder.createBlock(insertBefore: childBlock); |
| 537 | builder.setInsertionPointToEnd(predicateBlock); |
| 538 | unsigned ans = cast<UnsignedAnswer>(Val: child.first)->getValue(); |
| 539 | switch (kind) { |
| 540 | case Predicates::OperandCountAtLeastQuestion: |
| 541 | builder.create<pdl_interp::CheckOperandCountOp>( |
| 542 | loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest); |
| 543 | break; |
| 544 | case Predicates::ResultCountAtLeastQuestion: |
| 545 | builder.create<pdl_interp::CheckResultCountOp>( |
| 546 | loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest); |
| 547 | break; |
| 548 | default: |
| 549 | llvm_unreachable("Generating invalid AtLeast operation" ); |
| 550 | } |
| 551 | failureBlockStack.back() = predicateBlock; |
| 552 | } |
| 553 | Block *firstPredicateBlock = failureBlockStack.pop_back_val(); |
| 554 | currentBlock->getOperations().splice(where: currentBlock->end(), |
| 555 | L2&: firstPredicateBlock->getOperations()); |
| 556 | firstPredicateBlock->erase(); |
| 557 | return; |
| 558 | } |
| 559 | |
| 560 | // Otherwise, generate each of the children and generate an interpreter |
| 561 | // switch. |
| 562 | llvm::MapVector<Qualifier *, Block *> children; |
| 563 | for (auto &it : switchNode->getChildren()) |
| 564 | children.insert(KV: {it.first, generateMatcher(node&: *it.second, region&: *region)}); |
| 565 | builder.setInsertionPointToEnd(currentBlock); |
| 566 | |
| 567 | switch (question->getKind()) { |
| 568 | case Predicates::OperandCountQuestion: |
| 569 | return createSwitchOp<pdl_interp::SwitchOperandCountOp, UnsignedAnswer, |
| 570 | int32_t>(val, defaultDest, builder, children); |
| 571 | case Predicates::ResultCountQuestion: |
| 572 | return createSwitchOp<pdl_interp::SwitchResultCountOp, UnsignedAnswer, |
| 573 | int32_t>(val, defaultDest, builder, children); |
| 574 | case Predicates::OperationNameQuestion: |
| 575 | return createSwitchOp<pdl_interp::SwitchOperationNameOp, |
| 576 | OperationNameAnswer>(val, defaultDest, builder, |
| 577 | children); |
| 578 | case Predicates::TypeQuestion: |
| 579 | if (isa<pdl::RangeType>(val.getType())) { |
| 580 | return createSwitchOp<pdl_interp::SwitchTypesOp, TypeAnswer>( |
| 581 | val, defaultDest, builder, children); |
| 582 | } |
| 583 | return createSwitchOp<pdl_interp::SwitchTypeOp, TypeAnswer>( |
| 584 | val, defaultDest, builder, children); |
| 585 | case Predicates::AttributeQuestion: |
| 586 | return createSwitchOp<pdl_interp::SwitchAttributeOp, AttributeAnswer>( |
| 587 | val, defaultDest, builder, children); |
| 588 | default: |
| 589 | llvm_unreachable("Generating unknown switch predicate." ); |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | void PatternLowering::generate(SuccessNode *successNode, Block *¤tBlock) { |
| 594 | pdl::PatternOp pattern = successNode->getPattern(); |
| 595 | Value root = successNode->getRoot(); |
| 596 | |
| 597 | // Generate a rewriter for the pattern this success node represents, and track |
| 598 | // any values used from the match region. |
| 599 | SmallVector<Position *, 8> usedMatchValues; |
| 600 | SymbolRefAttr rewriterFuncRef = generateRewriter(pattern, usedMatchValues); |
| 601 | |
| 602 | // Process any values used in the rewrite that are defined in the match. |
| 603 | std::vector<Value> mappedMatchValues; |
| 604 | mappedMatchValues.reserve(n: usedMatchValues.size()); |
| 605 | for (Position *position : usedMatchValues) |
| 606 | mappedMatchValues.push_back(x: getValueAt(currentBlock, pos: position)); |
| 607 | |
| 608 | // Collect the set of operations generated by the rewriter. |
| 609 | SmallVector<StringRef, 4> generatedOps; |
| 610 | for (auto op : |
| 611 | pattern.getRewriter().getBodyRegion().getOps<pdl::OperationOp>()) |
| 612 | generatedOps.push_back(*op.getOpName()); |
| 613 | ArrayAttr generatedOpsAttr; |
| 614 | if (!generatedOps.empty()) |
| 615 | generatedOpsAttr = builder.getStrArrayAttr(generatedOps); |
| 616 | |
| 617 | // Grab the root kind if present. |
| 618 | StringAttr rootKindAttr; |
| 619 | if (pdl::OperationOp rootOp = root.getDefiningOp<pdl::OperationOp>()) |
| 620 | if (std::optional<StringRef> rootKind = rootOp.getOpName()) |
| 621 | rootKindAttr = builder.getStringAttr(*rootKind); |
| 622 | |
| 623 | builder.setInsertionPointToEnd(currentBlock); |
| 624 | auto matchOp = builder.create<pdl_interp::RecordMatchOp>( |
| 625 | pattern.getLoc(), mappedMatchValues, locOps.getArrayRef(), |
| 626 | rewriterFuncRef, rootKindAttr, generatedOpsAttr, pattern.getBenefitAttr(), |
| 627 | failureBlockStack.back()); |
| 628 | |
| 629 | // Set the config of the lowered match to the parent pattern. |
| 630 | if (configMap) |
| 631 | configMap->try_emplace(matchOp, configMap->lookup(pattern)); |
| 632 | } |
| 633 | |
| 634 | SymbolRefAttr PatternLowering::generateRewriter( |
| 635 | pdl::PatternOp pattern, SmallVectorImpl<Position *> &usedMatchValues) { |
| 636 | builder.setInsertionPointToEnd(rewriterModule.getBody()); |
| 637 | auto rewriterFunc = builder.create<pdl_interp::FuncOp>( |
| 638 | pattern.getLoc(), "pdl_generated_rewriter" , |
| 639 | builder.getFunctionType(std::nullopt, std::nullopt)); |
| 640 | rewriterSymbolTable.insert(symbol: rewriterFunc); |
| 641 | |
| 642 | // Generate the rewriter function body. |
| 643 | builder.setInsertionPointToEnd(&rewriterFunc.front()); |
| 644 | |
| 645 | // Map an input operand of the pattern to a generated interpreter value. |
| 646 | DenseMap<Value, Value> rewriteValues; |
| 647 | auto mapRewriteValue = [&](Value oldValue) { |
| 648 | Value &newValue = rewriteValues[oldValue]; |
| 649 | if (newValue) |
| 650 | return newValue; |
| 651 | |
| 652 | // Prefer materializing constants directly when possible. |
| 653 | Operation *oldOp = oldValue.getDefiningOp(); |
| 654 | if (pdl::AttributeOp attrOp = dyn_cast<pdl::AttributeOp>(oldOp)) { |
| 655 | if (Attribute value = attrOp.getValueAttr()) { |
| 656 | return newValue = builder.create<pdl_interp::CreateAttributeOp>( |
| 657 | attrOp.getLoc(), value); |
| 658 | } |
| 659 | } else if (pdl::TypeOp typeOp = dyn_cast<pdl::TypeOp>(oldOp)) { |
| 660 | if (TypeAttr type = typeOp.getConstantTypeAttr()) { |
| 661 | return newValue = builder.create<pdl_interp::CreateTypeOp>( |
| 662 | typeOp.getLoc(), type); |
| 663 | } |
| 664 | } else if (pdl::TypesOp typeOp = dyn_cast<pdl::TypesOp>(oldOp)) { |
| 665 | if (ArrayAttr type = typeOp.getConstantTypesAttr()) { |
| 666 | return newValue = builder.create<pdl_interp::CreateTypesOp>( |
| 667 | typeOp.getLoc(), typeOp.getType(), type); |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | // Otherwise, add this as an input to the rewriter. |
| 672 | Position *inputPos = valueToPosition.lookup(oldValue); |
| 673 | assert(inputPos && "expected value to be a pattern input" ); |
| 674 | usedMatchValues.push_back(Elt: inputPos); |
| 675 | return newValue = rewriterFunc.front().addArgument(oldValue.getType(), |
| 676 | oldValue.getLoc()); |
| 677 | }; |
| 678 | |
| 679 | // If this is a custom rewriter, simply dispatch to the registered rewrite |
| 680 | // method. |
| 681 | pdl::RewriteOp rewriter = pattern.getRewriter(); |
| 682 | if (StringAttr rewriteName = rewriter.getNameAttr()) { |
| 683 | SmallVector<Value> args; |
| 684 | if (rewriter.getRoot()) |
| 685 | args.push_back(Elt: mapRewriteValue(rewriter.getRoot())); |
| 686 | auto mappedArgs = |
| 687 | llvm::map_range(rewriter.getExternalArgs(), mapRewriteValue); |
| 688 | args.append(mappedArgs.begin(), mappedArgs.end()); |
| 689 | builder.create<pdl_interp::ApplyRewriteOp>( |
| 690 | rewriter.getLoc(), /*resultTypes=*/TypeRange(), rewriteName, args); |
| 691 | } else { |
| 692 | // Otherwise this is a dag rewriter defined using PDL operations. |
| 693 | for (Operation &rewriteOp : *rewriter.getBody()) { |
| 694 | llvm::TypeSwitch<Operation *>(&rewriteOp) |
| 695 | .Case<pdl::ApplyNativeRewriteOp, pdl::AttributeOp, pdl::EraseOp, |
| 696 | pdl::OperationOp, pdl::RangeOp, pdl::ReplaceOp, pdl::ResultOp, |
| 697 | pdl::ResultsOp, pdl::TypeOp, pdl::TypesOp>([&](auto op) { |
| 698 | this->generateRewriter(op, rewriteValues, mapRewriteValue); |
| 699 | }); |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | // Update the signature of the rewrite function. |
| 704 | rewriterFunc.setType(builder.getFunctionType( |
| 705 | inputs: llvm::to_vector<8>(rewriterFunc.front().getArgumentTypes()), |
| 706 | /*results=*/std::nullopt)); |
| 707 | |
| 708 | builder.create<pdl_interp::FinalizeOp>(rewriter.getLoc()); |
| 709 | return SymbolRefAttr::get( |
| 710 | builder.getContext(), |
| 711 | pdl_interp::PDLInterpDialect::getRewriterModuleName(), |
| 712 | SymbolRefAttr::get(rewriterFunc)); |
| 713 | } |
| 714 | |
| 715 | void PatternLowering::generateRewriter( |
| 716 | pdl::ApplyNativeRewriteOp rewriteOp, DenseMap<Value, Value> &rewriteValues, |
| 717 | function_ref<Value(Value)> mapRewriteValue) { |
| 718 | SmallVector<Value, 2> arguments; |
| 719 | for (Value argument : rewriteOp.getArgs()) |
| 720 | arguments.push_back(mapRewriteValue(argument)); |
| 721 | auto interpOp = builder.create<pdl_interp::ApplyRewriteOp>( |
| 722 | rewriteOp.getLoc(), rewriteOp.getResultTypes(), rewriteOp.getNameAttr(), |
| 723 | arguments); |
| 724 | for (auto it : llvm::zip(rewriteOp.getResults(), interpOp.getResults())) |
| 725 | rewriteValues[std::get<0>(it)] = std::get<1>(it); |
| 726 | } |
| 727 | |
| 728 | void PatternLowering::generateRewriter( |
| 729 | pdl::AttributeOp attrOp, DenseMap<Value, Value> &rewriteValues, |
| 730 | function_ref<Value(Value)> mapRewriteValue) { |
| 731 | Value newAttr = builder.create<pdl_interp::CreateAttributeOp>( |
| 732 | attrOp.getLoc(), attrOp.getValueAttr()); |
| 733 | rewriteValues[attrOp] = newAttr; |
| 734 | } |
| 735 | |
| 736 | void PatternLowering::generateRewriter( |
| 737 | pdl::EraseOp eraseOp, DenseMap<Value, Value> &rewriteValues, |
| 738 | function_ref<Value(Value)> mapRewriteValue) { |
| 739 | builder.create<pdl_interp::EraseOp>(eraseOp.getLoc(), |
| 740 | mapRewriteValue(eraseOp.getOpValue())); |
| 741 | } |
| 742 | |
| 743 | void PatternLowering::generateRewriter( |
| 744 | pdl::OperationOp operationOp, DenseMap<Value, Value> &rewriteValues, |
| 745 | function_ref<Value(Value)> mapRewriteValue) { |
| 746 | SmallVector<Value, 4> operands; |
| 747 | for (Value operand : operationOp.getOperandValues()) |
| 748 | operands.push_back(mapRewriteValue(operand)); |
| 749 | |
| 750 | SmallVector<Value, 4> attributes; |
| 751 | for (Value attr : operationOp.getAttributeValues()) |
| 752 | attributes.push_back(mapRewriteValue(attr)); |
| 753 | |
| 754 | bool hasInferredResultTypes = false; |
| 755 | SmallVector<Value, 2> types; |
| 756 | generateOperationResultTypeRewriter(operationOp, mapRewriteValue, types, |
| 757 | rewriteValues, hasInferredResultTypes); |
| 758 | |
| 759 | // Create the new operation. |
| 760 | Location loc = operationOp.getLoc(); |
| 761 | Value createdOp = builder.create<pdl_interp::CreateOperationOp>( |
| 762 | loc, *operationOp.getOpName(), types, hasInferredResultTypes, operands, |
| 763 | attributes, operationOp.getAttributeValueNames()); |
| 764 | rewriteValues[operationOp.getOp()] = createdOp; |
| 765 | |
| 766 | // Generate accesses for any results that have their types constrained. |
| 767 | // Handle the case where there is a single range representing all of the |
| 768 | // result types. |
| 769 | OperandRange resultTys = operationOp.getTypeValues(); |
| 770 | if (resultTys.size() == 1 && isa<pdl::RangeType>(resultTys[0].getType())) { |
| 771 | Value &type = rewriteValues[resultTys[0]]; |
| 772 | if (!type) { |
| 773 | auto results = builder.create<pdl_interp::GetResultsOp>(loc, createdOp); |
| 774 | type = builder.create<pdl_interp::GetValueTypeOp>(loc, results); |
| 775 | } |
| 776 | return; |
| 777 | } |
| 778 | |
| 779 | // Otherwise, populate the individual results. |
| 780 | bool seenVariableLength = false; |
| 781 | Type valueTy = builder.getType<pdl::ValueType>(); |
| 782 | Type valueRangeTy = pdl::RangeType::get(valueTy); |
| 783 | for (const auto &it : llvm::enumerate(resultTys)) { |
| 784 | Value &type = rewriteValues[it.value()]; |
| 785 | if (type) |
| 786 | continue; |
| 787 | bool isVariadic = isa<pdl::RangeType>(it.value().getType()); |
| 788 | seenVariableLength |= isVariadic; |
| 789 | |
| 790 | // After a variable length result has been seen, we need to use result |
| 791 | // groups because the exact index of the result is not statically known. |
| 792 | Value resultVal; |
| 793 | if (seenVariableLength) |
| 794 | resultVal = builder.create<pdl_interp::GetResultsOp>( |
| 795 | loc, isVariadic ? valueRangeTy : valueTy, createdOp, it.index()); |
| 796 | else |
| 797 | resultVal = builder.create<pdl_interp::GetResultOp>( |
| 798 | loc, valueTy, createdOp, it.index()); |
| 799 | type = builder.create<pdl_interp::GetValueTypeOp>(loc, resultVal); |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | void PatternLowering::generateRewriter( |
| 804 | pdl::RangeOp rangeOp, DenseMap<Value, Value> &rewriteValues, |
| 805 | function_ref<Value(Value)> mapRewriteValue) { |
| 806 | SmallVector<Value, 4> replOperands; |
| 807 | for (Value operand : rangeOp.getArguments()) |
| 808 | replOperands.push_back(mapRewriteValue(operand)); |
| 809 | rewriteValues[rangeOp] = builder.create<pdl_interp::CreateRangeOp>( |
| 810 | rangeOp.getLoc(), rangeOp.getType(), replOperands); |
| 811 | } |
| 812 | |
| 813 | void PatternLowering::generateRewriter( |
| 814 | pdl::ReplaceOp replaceOp, DenseMap<Value, Value> &rewriteValues, |
| 815 | function_ref<Value(Value)> mapRewriteValue) { |
| 816 | SmallVector<Value, 4> replOperands; |
| 817 | |
| 818 | // If the replacement was another operation, get its results. `pdl` allows |
| 819 | // for using an operation for simplicitly, but the interpreter isn't as |
| 820 | // user facing. |
| 821 | if (Value replOp = replaceOp.getReplOperation()) { |
| 822 | // Don't use replace if we know the replaced operation has no results. |
| 823 | auto opOp = replaceOp.getOpValue().getDefiningOp<pdl::OperationOp>(); |
| 824 | if (!opOp || !opOp.getTypeValues().empty()) { |
| 825 | replOperands.push_back(builder.create<pdl_interp::GetResultsOp>( |
| 826 | replOp.getLoc(), mapRewriteValue(replOp))); |
| 827 | } |
| 828 | } else { |
| 829 | for (Value operand : replaceOp.getReplValues()) |
| 830 | replOperands.push_back(mapRewriteValue(operand)); |
| 831 | } |
| 832 | |
| 833 | // If there are no replacement values, just create an erase instead. |
| 834 | if (replOperands.empty()) { |
| 835 | builder.create<pdl_interp::EraseOp>( |
| 836 | replaceOp.getLoc(), mapRewriteValue(replaceOp.getOpValue())); |
| 837 | return; |
| 838 | } |
| 839 | |
| 840 | builder.create<pdl_interp::ReplaceOp>(replaceOp.getLoc(), |
| 841 | mapRewriteValue(replaceOp.getOpValue()), |
| 842 | replOperands); |
| 843 | } |
| 844 | |
| 845 | void PatternLowering::generateRewriter( |
| 846 | pdl::ResultOp resultOp, DenseMap<Value, Value> &rewriteValues, |
| 847 | function_ref<Value(Value)> mapRewriteValue) { |
| 848 | rewriteValues[resultOp] = builder.create<pdl_interp::GetResultOp>( |
| 849 | resultOp.getLoc(), builder.getType<pdl::ValueType>(), |
| 850 | mapRewriteValue(resultOp.getParent()), resultOp.getIndex()); |
| 851 | } |
| 852 | |
| 853 | void PatternLowering::generateRewriter( |
| 854 | pdl::ResultsOp resultOp, DenseMap<Value, Value> &rewriteValues, |
| 855 | function_ref<Value(Value)> mapRewriteValue) { |
| 856 | rewriteValues[resultOp] = builder.create<pdl_interp::GetResultsOp>( |
| 857 | resultOp.getLoc(), resultOp.getType(), |
| 858 | mapRewriteValue(resultOp.getParent()), resultOp.getIndex()); |
| 859 | } |
| 860 | |
| 861 | void PatternLowering::generateRewriter( |
| 862 | pdl::TypeOp typeOp, DenseMap<Value, Value> &rewriteValues, |
| 863 | function_ref<Value(Value)> mapRewriteValue) { |
| 864 | // If the type isn't constant, the users (e.g. OperationOp) will resolve this |
| 865 | // type. |
| 866 | if (TypeAttr typeAttr = typeOp.getConstantTypeAttr()) { |
| 867 | rewriteValues[typeOp] = |
| 868 | builder.create<pdl_interp::CreateTypeOp>(typeOp.getLoc(), typeAttr); |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | void PatternLowering::generateRewriter( |
| 873 | pdl::TypesOp typeOp, DenseMap<Value, Value> &rewriteValues, |
| 874 | function_ref<Value(Value)> mapRewriteValue) { |
| 875 | // If the type isn't constant, the users (e.g. OperationOp) will resolve this |
| 876 | // type. |
| 877 | if (ArrayAttr typeAttr = typeOp.getConstantTypesAttr()) { |
| 878 | rewriteValues[typeOp] = builder.create<pdl_interp::CreateTypesOp>( |
| 879 | typeOp.getLoc(), typeOp.getType(), typeAttr); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | void PatternLowering::generateOperationResultTypeRewriter( |
| 884 | pdl::OperationOp op, function_ref<Value(Value)> mapRewriteValue, |
| 885 | SmallVectorImpl<Value> &types, DenseMap<Value, Value> &rewriteValues, |
| 886 | bool &hasInferredResultTypes) { |
| 887 | Block *rewriterBlock = op->getBlock(); |
| 888 | |
| 889 | // Try to handle resolution for each of the result types individually. This is |
| 890 | // preferred over type inferrence because it will allow for us to use existing |
| 891 | // types directly, as opposed to trying to rebuild the type list. |
| 892 | OperandRange resultTypeValues = op.getTypeValues(); |
| 893 | auto tryResolveResultTypes = [&] { |
| 894 | types.reserve(N: resultTypeValues.size()); |
| 895 | for (const auto &it : llvm::enumerate(resultTypeValues)) { |
| 896 | Value resultType = it.value(); |
| 897 | |
| 898 | // Check for an already translated value. |
| 899 | if (Value existingRewriteValue = rewriteValues.lookup(resultType)) { |
| 900 | types.push_back(existingRewriteValue); |
| 901 | continue; |
| 902 | } |
| 903 | |
| 904 | // Check for an input from the matcher. |
| 905 | if (resultType.getDefiningOp()->getBlock() != rewriterBlock) { |
| 906 | types.push_back(mapRewriteValue(resultType)); |
| 907 | continue; |
| 908 | } |
| 909 | |
| 910 | // Otherwise, we couldn't infer the result types. Bail out here to see if |
| 911 | // we can infer the types for this operation from another way. |
| 912 | types.clear(); |
| 913 | return failure(); |
| 914 | } |
| 915 | return success(); |
| 916 | }; |
| 917 | if (!resultTypeValues.empty() && succeeded(Result: tryResolveResultTypes())) |
| 918 | return; |
| 919 | |
| 920 | // Otherwise, check if the operation has type inference support itself. |
| 921 | if (op.hasTypeInference()) { |
| 922 | hasInferredResultTypes = true; |
| 923 | return; |
| 924 | } |
| 925 | |
| 926 | // Look for an operation that was replaced by `op`. The result types will be |
| 927 | // inferred from the results that were replaced. |
| 928 | for (OpOperand &use : op.getOp().getUses()) { |
| 929 | // Check that the use corresponds to a ReplaceOp and that it is the |
| 930 | // replacement value, not the operation being replaced. |
| 931 | pdl::ReplaceOp replOpUser = dyn_cast<pdl::ReplaceOp>(use.getOwner()); |
| 932 | if (!replOpUser || use.getOperandNumber() == 0) |
| 933 | continue; |
| 934 | // Make sure the replaced operation was defined before this one. PDL |
| 935 | // rewrites only have single block regions, so if the op isn't in the |
| 936 | // rewriter block (i.e. the current block of the operation) we already know |
| 937 | // it dominates (i.e. it's in the matcher). |
| 938 | Value replOpVal = replOpUser.getOpValue(); |
| 939 | Operation *replacedOp = replOpVal.getDefiningOp(); |
| 940 | if (replacedOp->getBlock() == rewriterBlock && |
| 941 | !replacedOp->isBeforeInBlock(op)) |
| 942 | continue; |
| 943 | |
| 944 | Value replacedOpResults = builder.create<pdl_interp::GetResultsOp>( |
| 945 | replacedOp->getLoc(), mapRewriteValue(replOpVal)); |
| 946 | types.push_back(builder.create<pdl_interp::GetValueTypeOp>( |
| 947 | replacedOp->getLoc(), replacedOpResults)); |
| 948 | return; |
| 949 | } |
| 950 | |
| 951 | // If the types could not be inferred from any context and there weren't any |
| 952 | // explicit result types, assume the user actually meant for the operation to |
| 953 | // have no results. |
| 954 | if (resultTypeValues.empty()) |
| 955 | return; |
| 956 | |
| 957 | // The verifier asserts that the result types of each pdl.getOperation can be |
| 958 | // inferred. If we reach here, there is a bug either in the logic above or |
| 959 | // in the verifier for pdl.getOperation. |
| 960 | op->emitOpError() << "unable to infer result type for operation" ; |
| 961 | llvm_unreachable("unable to infer result type for operation" ); |
| 962 | } |
| 963 | |
| 964 | //===----------------------------------------------------------------------===// |
| 965 | // Conversion Pass |
| 966 | //===----------------------------------------------------------------------===// |
| 967 | |
| 968 | namespace { |
| 969 | struct PDLToPDLInterpPass |
| 970 | : public impl::ConvertPDLToPDLInterpPassBase<PDLToPDLInterpPass> { |
| 971 | PDLToPDLInterpPass() = default; |
| 972 | PDLToPDLInterpPass(const PDLToPDLInterpPass &rhs) = default; |
| 973 | PDLToPDLInterpPass(DenseMap<Operation *, PDLPatternConfigSet *> &configMap) |
| 974 | : configMap(&configMap) {} |
| 975 | void runOnOperation() final; |
| 976 | |
| 977 | /// A map containing the configuration for each pattern. |
| 978 | DenseMap<Operation *, PDLPatternConfigSet *> *configMap = nullptr; |
| 979 | }; |
| 980 | } // namespace |
| 981 | |
| 982 | /// Convert the given module containing PDL pattern operations into a PDL |
| 983 | /// Interpreter operations. |
| 984 | void PDLToPDLInterpPass::runOnOperation() { |
| 985 | ModuleOp module = getOperation(); |
| 986 | |
| 987 | // Create the main matcher function This function contains all of the match |
| 988 | // related functionality from patterns in the module. |
| 989 | OpBuilder builder = OpBuilder::atBlockBegin(block: module.getBody()); |
| 990 | auto matcherFunc = builder.create<pdl_interp::FuncOp>( |
| 991 | module.getLoc(), pdl_interp::PDLInterpDialect::getMatcherFunctionName(), |
| 992 | builder.getFunctionType(builder.getType<pdl::OperationType>(), |
| 993 | /*results=*/std::nullopt), |
| 994 | /*attrs=*/std::nullopt); |
| 995 | |
| 996 | // Create a nested module to hold the functions invoked for rewriting the IR |
| 997 | // after a successful match. |
| 998 | ModuleOp rewriterModule = builder.create<ModuleOp>( |
| 999 | module.getLoc(), pdl_interp::PDLInterpDialect::getRewriterModuleName()); |
| 1000 | |
| 1001 | // Generate the code for the patterns within the module. |
| 1002 | PatternLowering generator(matcherFunc, rewriterModule, configMap); |
| 1003 | generator.lower(module: module); |
| 1004 | |
| 1005 | // After generation, delete all of the pattern operations. |
| 1006 | for (pdl::PatternOp pattern : |
| 1007 | llvm::make_early_inc_range(module.getOps<pdl::PatternOp>())) { |
| 1008 | // Drop the now dead config mappings. |
| 1009 | if (configMap) |
| 1010 | configMap->erase(pattern); |
| 1011 | |
| 1012 | pattern.erase(); |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | std::unique_ptr<OperationPass<ModuleOp>> mlir::createConvertPDLToPDLInterpPass( |
| 1017 | DenseMap<Operation *, PDLPatternConfigSet *> &configMap) { |
| 1018 | return std::make_unique<PDLToPDLInterpPass>(args&: configMap); |
| 1019 | } |
| 1020 | |