1 | //===- RootOrdering.cpp - Optimal root ordering ---------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // An implementation of Edmonds' optimal branching algorithm. This is a |
10 | // directed analogue of the minimum spanning tree problem for a given root. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "RootOrdering.h" |
15 | |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/DenseSet.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include <queue> |
20 | #include <utility> |
21 | |
22 | using namespace mlir; |
23 | using namespace mlir::pdl_to_pdl_interp; |
24 | |
25 | /// Returns the cycle implied by the specified parent relation, starting at the |
26 | /// given node. |
27 | static SmallVector<Value> getCycle(const DenseMap<Value, Value> &parents, |
28 | Value rep) { |
29 | SmallVector<Value> cycle; |
30 | Value node = rep; |
31 | do { |
32 | cycle.push_back(Elt: node); |
33 | node = parents.lookup(Val: node); |
34 | assert(node && "got an empty value in the cycle" ); |
35 | } while (node != rep); |
36 | return cycle; |
37 | } |
38 | |
39 | /// Contracts the specified cycle in the given graph in-place. |
40 | /// The parentsCost map specifies, for each node in the cycle, the lowest cost |
41 | /// among the edges entering that node. Then, the nodes in the cycle C are |
42 | /// replaced with a single node v_C (the first node in the cycle). All edges |
43 | /// (u, v) entering the cycle, v \in C, are replaced with a single edge |
44 | /// (u, v_C) with an appropriately chosen cost, and the selected node v is |
45 | /// marked in the output map actualTarget[u]. All edges (u, v) leaving the |
46 | /// cycle, u \in C, are replaced with a single edge (v_C, v), and the selected |
47 | /// node u is marked in the ouptut map actualSource[v]. |
48 | static void contract(RootOrderingGraph &graph, ArrayRef<Value> cycle, |
49 | const DenseMap<Value, unsigned> &parentDepths, |
50 | DenseMap<Value, Value> &actualSource, |
51 | DenseMap<Value, Value> &actualTarget) { |
52 | Value rep = cycle.front(); |
53 | DenseSet<Value> cycleSet(cycle.begin(), cycle.end()); |
54 | |
55 | // Now, contract the cycle, marking the actual sources and targets. |
56 | DenseMap<Value, RootOrderingEntry> repEntries; |
57 | for (auto outer = graph.begin(), e = graph.end(); outer != e; ++outer) { |
58 | Value target = outer->first; |
59 | if (cycleSet.contains(V: target)) { |
60 | // Target in the cycle => edges incoming to the cycle or within the cycle. |
61 | unsigned parentDepth = parentDepths.lookup(Val: target); |
62 | for (const auto &inner : outer->second) { |
63 | Value source = inner.first; |
64 | // Ignore edges within the cycle. |
65 | if (cycleSet.contains(V: source)) |
66 | continue; |
67 | |
68 | // Edge incoming to the cycle. |
69 | std::pair<unsigned, unsigned> cost = inner.second.cost; |
70 | assert(parentDepth <= cost.first && "invalid parent depth" ); |
71 | |
72 | // Subtract the cost of the parent within the cycle from the cost of |
73 | // the edge incoming to the cycle. This update ensures that the cost |
74 | // of the minimum-weight spanning arborescence of the entire graph is |
75 | // the cost of arborescence for the contracted graph plus the cost of |
76 | // the cycle, no matter which edge in the cycle we choose to drop. |
77 | cost.first -= parentDepth; |
78 | auto it = repEntries.find(Val: source); |
79 | if (it == repEntries.end() || it->second.cost > cost) { |
80 | actualTarget[source] = target; |
81 | // Do not bother populating the connector (the connector is only |
82 | // relevant for the final traversal, not for the optimal branching). |
83 | repEntries[source].cost = cost; |
84 | } |
85 | } |
86 | // Erase the node in the cycle. |
87 | graph.erase(I: outer); |
88 | } else { |
89 | // Target not in cycle => edges going away from or unrelated to the cycle. |
90 | DenseMap<Value, RootOrderingEntry> &entries = outer->second; |
91 | Value bestSource; |
92 | std::pair<unsigned, unsigned> bestCost; |
93 | auto inner = entries.begin(), innerE = entries.end(); |
94 | while (inner != innerE) { |
95 | Value source = inner->first; |
96 | if (cycleSet.contains(V: source)) { |
97 | // Going-away edge => get its cost and erase it. |
98 | if (!bestSource || bestCost > inner->second.cost) { |
99 | bestSource = source; |
100 | bestCost = inner->second.cost; |
101 | } |
102 | entries.erase(I: inner++); |
103 | } else { |
104 | ++inner; |
105 | } |
106 | } |
107 | |
108 | // There were going-away edges, contract them. |
109 | if (bestSource) { |
110 | entries[rep].cost = bestCost; |
111 | actualSource[target] = bestSource; |
112 | } |
113 | } |
114 | } |
115 | |
116 | // Store the edges to the representative. |
117 | graph[rep] = std::move(repEntries); |
118 | } |
119 | |
120 | OptimalBranching::OptimalBranching(RootOrderingGraph graph, Value root) |
121 | : graph(std::move(graph)), root(root) {} |
122 | |
123 | unsigned OptimalBranching::solve() { |
124 | // Initialize the parents and total cost. |
125 | parents.clear(); |
126 | parents[root] = Value(); |
127 | unsigned totalCost = 0; |
128 | |
129 | // A map that stores the cost of the optimal local choice for each node |
130 | // in a directed cycle. This map is cleared every time we seed the search. |
131 | DenseMap<Value, unsigned> parentDepths; |
132 | parentDepths.reserve(NumEntries: graph.size()); |
133 | |
134 | // Determine if the optimal local choice results in an acyclic graph. This is |
135 | // done by computing the optimal local choice and traversing up the computed |
136 | // parents. On success, `parents` will contain the parent of each node. |
137 | for (const auto &outer : graph) { |
138 | Value node = outer.first; |
139 | if (parents.count(Val: node)) // already visited |
140 | continue; |
141 | |
142 | // Follow the trail of best sources until we reach an already visited node. |
143 | // The code will assert if we cannot reach an already visited node, i.e., |
144 | // the graph is not strongly connected. |
145 | parentDepths.clear(); |
146 | do { |
147 | auto it = graph.find(Val: node); |
148 | assert(it != graph.end() && "the graph is not strongly connected" ); |
149 | |
150 | // Find the best local parent, taking into account both the depth and the |
151 | // tie breaking rules. |
152 | Value &bestSource = parents[node]; |
153 | std::pair<unsigned, unsigned> bestCost; |
154 | for (const auto &inner : it->second) { |
155 | const RootOrderingEntry &entry = inner.second; |
156 | if (!bestSource /* initial */ || bestCost > entry.cost) { |
157 | bestSource = inner.first; |
158 | bestCost = entry.cost; |
159 | } |
160 | } |
161 | assert(bestSource && "the graph is not strongly connected" ); |
162 | parentDepths[node] = bestCost.first; |
163 | node = bestSource; |
164 | totalCost += bestCost.first; |
165 | } while (!parents.count(Val: node)); |
166 | |
167 | // If we reached a non-root node, we have a cycle. |
168 | if (parentDepths.count(Val: node)) { |
169 | // Determine the cycle starting at the representative node. |
170 | SmallVector<Value> cycle = getCycle(parents, rep: node); |
171 | |
172 | // The following maps disambiguate the source / target of the edges |
173 | // going out of / into the cycle. |
174 | DenseMap<Value, Value> actualSource, actualTarget; |
175 | |
176 | // Contract the cycle and recurse. |
177 | contract(graph, cycle, parentDepths, actualSource, actualTarget); |
178 | totalCost = solve(); |
179 | |
180 | // Redirect the going-away edges. |
181 | for (auto &p : parents) |
182 | if (p.second == node) |
183 | // The parent is the node representating the cycle; replace it |
184 | // with the actual (best) source in the cycle. |
185 | p.second = actualSource.lookup(Val: p.first); |
186 | |
187 | // Redirect the unique incoming edge and copy the cycle. |
188 | Value parent = parents.lookup(Val: node); |
189 | Value entry = actualTarget.lookup(Val: parent); |
190 | cycle.push_back(Elt: node); // complete the cycle |
191 | for (size_t i = 0, e = cycle.size() - 1; i < e; ++i) { |
192 | totalCost += parentDepths.lookup(Val: cycle[i]); |
193 | if (cycle[i] == entry) |
194 | parents[cycle[i]] = parent; // break the cycle |
195 | else |
196 | parents[cycle[i]] = cycle[i + 1]; |
197 | } |
198 | |
199 | // `parents` has a complete solution. |
200 | break; |
201 | } |
202 | } |
203 | |
204 | return totalCost; |
205 | } |
206 | |
207 | OptimalBranching::EdgeList |
208 | OptimalBranching::preOrderTraversal(ArrayRef<Value> nodes) const { |
209 | // Invert the parent mapping. |
210 | DenseMap<Value, std::vector<Value>> children; |
211 | for (Value node : nodes) { |
212 | if (node != root) { |
213 | Value parent = parents.lookup(Val: node); |
214 | assert(parent && "invalid parent" ); |
215 | children[parent].push_back(x: node); |
216 | } |
217 | } |
218 | |
219 | // The result which simultaneously acts as a queue. |
220 | EdgeList result; |
221 | result.reserve(n: nodes.size()); |
222 | result.emplace_back(args: root, args: Value()); |
223 | |
224 | // Perform a BFS, pushing into the queue. |
225 | for (size_t i = 0; i < result.size(); ++i) { |
226 | Value node = result[i].first; |
227 | for (Value child : children[node]) |
228 | result.emplace_back(args&: child, args&: node); |
229 | } |
230 | |
231 | return result; |
232 | } |
233 | |