| 1 | //===- TosaToArith.cpp - Lowering Tosa to Arith Dialect -------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // These rewriters lower from the Tosa to the Arith dialect. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Conversion/TosaToArith/TosaToArith.h" |
| 14 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 15 | #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
| 16 | #include "mlir/IR/PatternMatch.h" |
| 17 | #include "mlir/IR/TypeUtilities.h" |
| 18 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 19 | |
| 20 | using namespace mlir; |
| 21 | using namespace tosa; |
| 22 | |
| 23 | namespace { |
| 24 | |
| 25 | class ConstOpConverter : public OpRewritePattern<tosa::ConstOp> { |
| 26 | public: |
| 27 | using OpRewritePattern<tosa::ConstOp>::OpRewritePattern; |
| 28 | |
| 29 | LogicalResult matchAndRewrite(tosa::ConstOp op, |
| 30 | PatternRewriter &rewriter) const final { |
| 31 | rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, op.getValues()); |
| 32 | return success(); |
| 33 | } |
| 34 | }; |
| 35 | |
| 36 | Type matchContainerType(Type element, Type container) { |
| 37 | if (auto shapedTy = dyn_cast<ShapedType>(container)) |
| 38 | return shapedTy.clone(element); |
| 39 | |
| 40 | return element; |
| 41 | } |
| 42 | |
| 43 | TypedAttr getConstantAttr(Type type, int64_t value, PatternRewriter &rewriter) { |
| 44 | if (auto shapedTy = dyn_cast<ShapedType>(type)) { |
| 45 | Type eTy = shapedTy.getElementType(); |
| 46 | APInt valueInt(eTy.getIntOrFloatBitWidth(), value, /*isSigned=*/true); |
| 47 | return DenseIntElementsAttr::get(shapedTy, valueInt); |
| 48 | } |
| 49 | |
| 50 | return rewriter.getIntegerAttr(type, value); |
| 51 | } |
| 52 | |
| 53 | Value getConstantValue(Location loc, Type type, int64_t value, |
| 54 | PatternRewriter &rewriter) { |
| 55 | return rewriter.create<arith::ConstantOp>( |
| 56 | loc, getConstantAttr(type, value, rewriter)); |
| 57 | } |
| 58 | |
| 59 | // This converts the TOSA ApplyScale operator to a set of arithmetic ops, |
| 60 | // using 64-bit operations to perform the necessary multiply, bias, and shift. |
| 61 | class ApplyScaleGenericOpConverter |
| 62 | : public OpRewritePattern<tosa::ApplyScaleOp> { |
| 63 | public: |
| 64 | using OpRewritePattern<tosa::ApplyScaleOp>::OpRewritePattern; |
| 65 | |
| 66 | LogicalResult matchAndRewrite(tosa::ApplyScaleOp op, |
| 67 | PatternRewriter &rewriter) const final { |
| 68 | StringRef roundingMode = op.getRoundingMode(); |
| 69 | if (roundingMode != "DOUBLE_ROUND" && roundingMode != "SINGLE_ROUND" ) { |
| 70 | return failure(); |
| 71 | } |
| 72 | |
| 73 | Location loc = op.getLoc(); |
| 74 | Value value = op.getValue(); |
| 75 | Value multiplier32 = op.getMultiplier(); |
| 76 | |
| 77 | Type resultTy = op.getType(); |
| 78 | Type valueTy = value.getType(); |
| 79 | Type i32Ty = matchContainerType(rewriter.getI32Type(), resultTy); |
| 80 | Type i64Ty = matchContainerType(rewriter.getI64Type(), resultTy); |
| 81 | |
| 82 | Value zero = getConstantValue(loc, type: valueTy, value: 0, rewriter); |
| 83 | Value one64 = getConstantValue(loc, type: i64Ty, value: 1, rewriter); |
| 84 | Value thirtyOne32 = getConstantValue(loc, type: i32Ty, value: 31, rewriter); |
| 85 | |
| 86 | Value shift32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, op.getShift()); |
| 87 | |
| 88 | // Compute the multiplication in 64-bits then select the high / low parts. |
| 89 | Value value64 = value; |
| 90 | if (getElementTypeOrSelf(valueTy) != rewriter.getI64Type()) |
| 91 | value64 = rewriter.create<arith::ExtSIOp>(loc, i64Ty, value); |
| 92 | Value multiplier64 = |
| 93 | rewriter.create<arith::ExtSIOp>(loc, i64Ty, multiplier32); |
| 94 | Value multiply64 = |
| 95 | rewriter.create<arith::MulIOp>(loc, value64, multiplier64); |
| 96 | |
| 97 | // Apply normal rounding. |
| 98 | Value shift64 = rewriter.create<arith::ExtUIOp>(loc, i64Ty, shift32); |
| 99 | Value round = rewriter.create<arith::ShLIOp>(loc, one64, shift64); |
| 100 | round = rewriter.create<arith::ShRUIOp>(loc, round, one64); |
| 101 | multiply64 = rewriter.create<arith::AddIOp>(loc, multiply64, round); |
| 102 | |
| 103 | // Apply double rounding if necessary. |
| 104 | if (op.getRoundingMode() == "DOUBLE_ROUND" ) { |
| 105 | int64_t roundInt = 1 << 30; |
| 106 | Value roundUp = getConstantValue(loc, type: i64Ty, value: roundInt, rewriter); |
| 107 | Value roundDown = getConstantValue(loc, type: i64Ty, value: -roundInt, rewriter); |
| 108 | Value positive = rewriter.create<arith::CmpIOp>( |
| 109 | loc, arith::CmpIPredicate::sge, value, zero); |
| 110 | Value dir = |
| 111 | rewriter.create<arith::SelectOp>(loc, positive, roundUp, roundDown); |
| 112 | Value val = rewriter.create<arith::AddIOp>(loc, dir, multiply64); |
| 113 | Value valid = rewriter.create<arith::CmpIOp>( |
| 114 | loc, arith::CmpIPredicate::sgt, shift32, thirtyOne32); |
| 115 | multiply64 = |
| 116 | rewriter.create<arith::SelectOp>(loc, valid, val, multiply64); |
| 117 | } |
| 118 | |
| 119 | Value result64 = rewriter.create<arith::ShRSIOp>(loc, multiply64, shift64); |
| 120 | Value result32 = rewriter.create<arith::TruncIOp>(loc, i32Ty, result64); |
| 121 | |
| 122 | rewriter.replaceOp(op, result32); |
| 123 | return success(); |
| 124 | } |
| 125 | }; |
| 126 | |
| 127 | class ApplyScale32BitOpConverter : public OpRewritePattern<tosa::ApplyScaleOp> { |
| 128 | public: |
| 129 | using OpRewritePattern<tosa::ApplyScaleOp>::OpRewritePattern; |
| 130 | |
| 131 | LogicalResult matchAndRewrite(tosa::ApplyScaleOp op, |
| 132 | PatternRewriter &rewriter) const final { |
| 133 | StringRef roundingMode = op.getRoundingMode(); |
| 134 | if (roundingMode != "DOUBLE_ROUND" && roundingMode != "SINGLE_ROUND" ) { |
| 135 | return failure(); |
| 136 | } |
| 137 | |
| 138 | Location loc = op.getLoc(); |
| 139 | |
| 140 | Type resultTy = op.getType(); |
| 141 | Type i32Ty = matchContainerType(rewriter.getI32Type(), resultTy); |
| 142 | |
| 143 | Value value = op.getValue(); |
| 144 | if (getElementTypeOrSelf(type: value.getType()).getIntOrFloatBitWidth() > 32) { |
| 145 | return failure(); |
| 146 | } |
| 147 | |
| 148 | Value value32 = op.getValue(); |
| 149 | Value multiplier32 = op.getMultiplier(); |
| 150 | Value shift32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, op.getShift()); |
| 151 | |
| 152 | // Constants used during the scaling operation. |
| 153 | Value zero32 = getConstantValue(loc, type: i32Ty, value: 0, rewriter); |
| 154 | Value one32 = getConstantValue(loc, type: i32Ty, value: 1, rewriter); |
| 155 | Value two32 = getConstantValue(loc, type: i32Ty, value: 2, rewriter); |
| 156 | Value thirty32 = getConstantValue(loc, type: i32Ty, value: 30, rewriter); |
| 157 | Value thirtyTwo32 = getConstantValue(loc, type: i32Ty, value: 32, rewriter); |
| 158 | |
| 159 | // Compute the multiplication in 64-bits then select the high / low parts. |
| 160 | // Grab out the high/low of the computation |
| 161 | auto value64 = |
| 162 | rewriter.create<arith::MulSIExtendedOp>(loc, value32, multiplier32); |
| 163 | Value low32 = value64.getLow(); |
| 164 | Value high32 = value64.getHigh(); |
| 165 | |
| 166 | // Determine the direction and amount to shift the high bits. |
| 167 | Value shiftOver32 = rewriter.create<arith::CmpIOp>( |
| 168 | loc, arith::CmpIPredicate::sge, shift32, thirtyTwo32); |
| 169 | Value roundHighBits = rewriter.create<arith::CmpIOp>( |
| 170 | loc, arith::CmpIPredicate::sgt, shift32, thirtyTwo32); |
| 171 | |
| 172 | Value shiftHighL = |
| 173 | rewriter.create<arith::SubIOp>(loc, thirtyTwo32, shift32); |
| 174 | Value shiftHighR = |
| 175 | rewriter.create<arith::SubIOp>(loc, shift32, thirtyTwo32); |
| 176 | |
| 177 | shiftHighL = |
| 178 | rewriter.create<arith::SelectOp>(loc, shiftOver32, zero32, shiftHighL); |
| 179 | shiftHighR = |
| 180 | rewriter.create<arith::SelectOp>(loc, shiftOver32, shiftHighR, zero32); |
| 181 | |
| 182 | // Conditionally perform our double round. |
| 183 | if (op.getRoundingMode() == "DOUBLE_ROUND" ) { |
| 184 | Value negOne32 = getConstantValue(loc, type: i32Ty, value: -1, rewriter); |
| 185 | Value valuePositive = rewriter.create<arith::CmpIOp>( |
| 186 | loc, arith::CmpIPredicate::sge, value32, zero32); |
| 187 | |
| 188 | Value roundDir = |
| 189 | rewriter.create<arith::SelectOp>(loc, valuePositive, one32, negOne32); |
| 190 | roundDir = |
| 191 | rewriter.create<arith::SelectOp>(loc, shiftOver32, roundDir, zero32); |
| 192 | |
| 193 | Value shiftLow = rewriter.create<arith::ShRUIOp>(loc, low32, thirty32); |
| 194 | Value rounded = rewriter.create<arith::AddIOp>(loc, shiftLow, roundDir); |
| 195 | Value carry = rewriter.create<arith::ShRSIOp>(loc, rounded, two32); |
| 196 | |
| 197 | Value shiftRound = |
| 198 | rewriter.create<arith::ShLIOp>(loc, roundDir, thirty32); |
| 199 | |
| 200 | low32 = rewriter.create<arith::AddIOp>(loc, low32, shiftRound); |
| 201 | high32 = rewriter.create<arith::AddIOp>(loc, high32, carry); |
| 202 | } |
| 203 | |
| 204 | // Conditionally apply rounding in the low bits. |
| 205 | { |
| 206 | Value shiftSubOne = rewriter.create<arith::SubIOp>(loc, shift32, one32); |
| 207 | Value roundBit = rewriter.create<arith::ShLIOp>(loc, one32, shiftSubOne); |
| 208 | roundBit = rewriter.create<arith::SelectOp>(loc, roundHighBits, zero32, |
| 209 | roundBit); |
| 210 | |
| 211 | Value newLow32 = rewriter.create<arith::AddIOp>(loc, low32, roundBit); |
| 212 | Value wasRounded = rewriter.create<arith::CmpIOp>( |
| 213 | loc, arith::CmpIPredicate::ugt, low32, newLow32); |
| 214 | low32 = newLow32; |
| 215 | |
| 216 | Value rounded32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, wasRounded); |
| 217 | high32 = rewriter.create<arith::AddIOp>(loc, high32, rounded32); |
| 218 | } |
| 219 | |
| 220 | // Conditionally apply rounding in the high bits. |
| 221 | { |
| 222 | Value shiftSubOne = |
| 223 | rewriter.create<arith::SubIOp>(loc, shiftHighR, one32); |
| 224 | Value roundBit = rewriter.create<arith::ShLIOp>(loc, one32, shiftSubOne); |
| 225 | roundBit = rewriter.create<arith::SelectOp>(loc, roundHighBits, roundBit, |
| 226 | zero32); |
| 227 | high32 = rewriter.create<arith::AddIOp>(loc, high32, roundBit); |
| 228 | } |
| 229 | |
| 230 | // Combine the correct high/low bits into the final rescale result. |
| 231 | high32 = rewriter.create<arith::ShLIOp>(loc, high32, shiftHighL); |
| 232 | high32 = rewriter.create<arith::ShRSIOp>(loc, high32, shiftHighR); |
| 233 | low32 = rewriter.create<arith::ShRUIOp>(loc, low32, shift32); |
| 234 | low32 = rewriter.create<arith::SelectOp>(loc, shiftOver32, zero32, low32); |
| 235 | |
| 236 | // Apply the rounding behavior and shift to the final alignment. |
| 237 | Value result = rewriter.create<arith::AddIOp>(loc, low32, high32); |
| 238 | |
| 239 | // Truncate if necessary. |
| 240 | if (!getElementTypeOrSelf(type: resultTy).isInteger(width: 32)) { |
| 241 | result = rewriter.create<arith::TruncIOp>(loc, resultTy, result); |
| 242 | } |
| 243 | |
| 244 | rewriter.replaceOp(op, result); |
| 245 | return success(); |
| 246 | } |
| 247 | }; |
| 248 | |
| 249 | } // namespace |
| 250 | |
| 251 | void mlir::tosa::populateTosaToArithConversionPatterns( |
| 252 | RewritePatternSet *patterns) { |
| 253 | patterns->add<ConstOpConverter>(arg: patterns->getContext()); |
| 254 | } |
| 255 | |
| 256 | void mlir::tosa::populateTosaRescaleToArithConversionPatterns( |
| 257 | RewritePatternSet *patterns, bool include32Bit) { |
| 258 | patterns->add<ApplyScaleGenericOpConverter>(arg: patterns->getContext(), args: 100); |
| 259 | if (include32Bit) { |
| 260 | patterns->add<ApplyScale32BitOpConverter>(arg: patterns->getContext(), args: 200); |
| 261 | } |
| 262 | } |
| 263 | |