| 1 | //===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements lowering of vector operations to GPU dialect ops. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Conversion/VectorToGPU/VectorToGPU.h" |
| 14 | |
| 15 | #include <type_traits> |
| 16 | |
| 17 | #include "mlir/Analysis/SliceAnalysis.h" |
| 18 | #include "mlir/Analysis/TopologicalSortUtils.h" |
| 19 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 20 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 21 | #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
| 22 | #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| 23 | #include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h" |
| 24 | #include "mlir/Dialect/NVGPU/Utils/MMAUtils.h" |
| 25 | #include "mlir/Dialect/SCF/IR/SCF.h" |
| 26 | #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| 27 | #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| 28 | #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" |
| 29 | #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| 30 | #include "mlir/IR/Builders.h" |
| 31 | #include "mlir/IR/BuiltinOps.h" |
| 32 | #include "mlir/IR/Region.h" |
| 33 | #include "mlir/Pass/Pass.h" |
| 34 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 35 | #include "mlir/Transforms/Passes.h" |
| 36 | #include "llvm/ADT/STLExtras.h" |
| 37 | #include "llvm/ADT/TypeSwitch.h" |
| 38 | |
| 39 | #define DEBUG_TYPE "vector-to-gpu" |
| 40 | #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ") |
| 41 | #define DBGSNL() (llvm::dbgs() << "\n") |
| 42 | |
| 43 | namespace mlir { |
| 44 | #define GEN_PASS_DEF_CONVERTVECTORTOGPU |
| 45 | #include "mlir/Conversion/Passes.h.inc" |
| 46 | } // namespace mlir |
| 47 | |
| 48 | using namespace mlir; |
| 49 | |
| 50 | /// For a vector TransferOpType `xferOp`, an empty `indices` vector, and an |
| 51 | /// AffineMap representing offsets to apply to indices, the function fills |
| 52 | /// `indices` with the original indices plus the offsets. The offsets are |
| 53 | /// applied by taking into account the permutation map of the transfer op. If |
| 54 | /// the `offsetMap` has dimension placeholders, those should be provided in |
| 55 | /// `dimValues`. |
| 56 | template <typename TransferOpType> |
| 57 | static void getXferIndices(RewriterBase &rewriter, TransferOpType xferOp, |
| 58 | AffineMap offsetMap, ArrayRef<Value> dimValues, |
| 59 | SmallVector<Value, 4> &indices) { |
| 60 | indices.append(xferOp.getIndices().begin(), xferOp.getIndices().end()); |
| 61 | Location loc = xferOp.getLoc(); |
| 62 | unsigned offsetsIdx = 0; |
| 63 | for (auto expr : xferOp.getPermutationMap().getResults()) { |
| 64 | if (auto dim = dyn_cast<AffineDimExpr>(expr)) { |
| 65 | Value prevIdx = indices[dim.getPosition()]; |
| 66 | SmallVector<OpFoldResult, 3> dims(dimValues); |
| 67 | dims.push_back(prevIdx); |
| 68 | AffineExpr d0 = rewriter.getAffineDimExpr(position: offsetMap.getNumDims()); |
| 69 | indices[dim.getPosition()] = affine::makeComposedAffineApply( |
| 70 | rewriter, loc, d0 + offsetMap.getResult(idx: offsetsIdx++), dims); |
| 71 | continue; |
| 72 | } |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | // Return true if the contract op can be convert to MMA matmul. |
| 77 | static bool contractSupportsMMAMatrixType(vector::ContractionOp contract, |
| 78 | bool useNvGpu) { |
| 79 | using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
| 80 | auto infer = [&](MapList m) { |
| 81 | return AffineMap::inferFromExprList(m, contract.getContext()); |
| 82 | }; |
| 83 | AffineExpr m, n, k; |
| 84 | bindDims(contract.getContext(), m, n, k); |
| 85 | auto iteratorTypes = contract.getIteratorTypes().getValue(); |
| 86 | if (!(vector::isParallelIterator(attr: iteratorTypes[0]) && |
| 87 | vector::isParallelIterator(attr: iteratorTypes[1]) && |
| 88 | vector::isReductionIterator(attr: iteratorTypes[2]))) |
| 89 | return false; |
| 90 | |
| 91 | // The contract needs to represent a matmul to be able to convert to |
| 92 | // MMAMatrix matmul. |
| 93 | if (!useNvGpu && |
| 94 | contract.getIndexingMapsArray() != infer({{m, k}, {k, n}, {m, n}})) |
| 95 | return false; |
| 96 | if (useNvGpu && |
| 97 | contract.getIndexingMapsArray() != infer({{m, k}, {n, k}, {m, n}})) |
| 98 | return false; |
| 99 | |
| 100 | return true; |
| 101 | } |
| 102 | |
| 103 | // Return true if the given map represents a transposed matrix load, |
| 104 | // i.e. (d0, d1, ...) -> (dn-1, dn-2). |
| 105 | static bool isTransposeMatrixLoadMap(AffineMap permutationMap) { |
| 106 | MLIRContext *ctx = permutationMap.getContext(); |
| 107 | // Local OpBuilder is fine here, we just build attributes. |
| 108 | OpBuilder b(ctx); |
| 109 | auto nDim = permutationMap.getNumDims(); |
| 110 | AffineExpr zero = b.getAffineConstantExpr(constant: 0); |
| 111 | if (nDim < 2) { |
| 112 | // Support transposed+broadcasted cases: affine_map<(d0) -> (d0, 0)>. |
| 113 | AffineExpr dim0 = b.getAffineDimExpr(position: 0); |
| 114 | return permutationMap == AffineMap::get(dimCount: 1, symbolCount: 0, results: {dim0, zero}, context: ctx); |
| 115 | } |
| 116 | |
| 117 | AffineExpr innerDim = b.getAffineDimExpr(position: nDim - 1); |
| 118 | AffineExpr outerDim = b.getAffineDimExpr(position: nDim - 2); |
| 119 | // Support both transposed and transposed+broadcasted cases. |
| 120 | return permutationMap == AffineMap::get(dimCount: nDim, symbolCount: 0, results: {innerDim, outerDim}, context: ctx) || |
| 121 | permutationMap == AffineMap::get(dimCount: nDim, symbolCount: 0, results: {innerDim, zero}, context: ctx); |
| 122 | } |
| 123 | |
| 124 | // Return the stide for the second-to-last dimension of |type| if it is a memref |
| 125 | // and has a constant stride. |
| 126 | static std::optional<int64_t> getStaticallyKnownRowStride(ShapedType type) { |
| 127 | auto memrefType = dyn_cast<MemRefType>(type); |
| 128 | if (!memrefType) |
| 129 | return false; |
| 130 | // If the memref is 0 or 1D the horizontal stride is 0. |
| 131 | if (memrefType.getRank() < 2) |
| 132 | return 0; |
| 133 | int64_t offset = 0; |
| 134 | SmallVector<int64_t, 2> strides; |
| 135 | if (failed(memrefType.getStridesAndOffset(strides, offset)) || |
| 136 | strides.back() != 1) |
| 137 | return std::nullopt; |
| 138 | int64_t stride = strides[strides.size() - 2]; |
| 139 | if (stride == ShapedType::kDynamic) |
| 140 | return std::nullopt; |
| 141 | return stride; |
| 142 | } |
| 143 | |
| 144 | // Return true if the transfer op can be converted to a MMA matrix load. |
| 145 | static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp) { |
| 146 | if (readOp.getMask() || readOp.hasOutOfBoundsDim() || |
| 147 | readOp.getVectorType().getRank() != 2) |
| 148 | return false; |
| 149 | if (!getStaticallyKnownRowStride(readOp.getShapedType())) |
| 150 | return false; |
| 151 | |
| 152 | // Only allow integer types if the signedness can be inferred. |
| 153 | if (readOp.getVectorType().getElementType().isInteger(8)) |
| 154 | if (!readOp->hasOneUse() || (!isa<arith::ExtSIOp>(*readOp->user_begin()) && |
| 155 | !isa<arith::ExtUIOp>(*readOp->user_begin()))) |
| 156 | return false; |
| 157 | |
| 158 | AffineMap map = readOp.getPermutationMap(); |
| 159 | MLIRContext *ctx = readOp.getContext(); |
| 160 | AffineExpr innerDim = getAffineDimExpr(position: map.getNumDims() - 1, context: ctx); |
| 161 | AffineExpr zero = getAffineConstantExpr(constant: 0, context: ctx); |
| 162 | auto broadcastInnerDim = |
| 163 | AffineMap::get(dimCount: map.getNumDims(), symbolCount: 0, results: {zero, innerDim}, context: ctx); |
| 164 | return map.isMinorIdentity() || map == broadcastInnerDim || |
| 165 | isTransposeMatrixLoadMap(permutationMap: map); |
| 166 | } |
| 167 | |
| 168 | // Return true if the transfer op can be converted to a MMA matrix store. |
| 169 | static bool |
| 170 | transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) { |
| 171 | // TODO: support 0-d corner case. |
| 172 | if (writeOp.getTransferRank() == 0) |
| 173 | return false; |
| 174 | |
| 175 | if (writeOp.getMask() || writeOp.hasOutOfBoundsDim() || |
| 176 | writeOp.getVectorType().getRank() != 2) |
| 177 | return false; |
| 178 | if (!getStaticallyKnownRowStride(writeOp.getShapedType())) |
| 179 | return false; |
| 180 | // TODO: Support transpose once it is added to GPU dialect ops. |
| 181 | if (!writeOp.getPermutationMap().isMinorIdentity()) |
| 182 | return false; |
| 183 | return true; |
| 184 | } |
| 185 | |
| 186 | /// Return true if the constant is a splat to a 2D vector so that it can be |
| 187 | /// converted to a MMA constant matrix op. |
| 188 | static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) { |
| 189 | auto vecType = dyn_cast<VectorType>(constantOp.getType()); |
| 190 | if (!vecType || vecType.getRank() != 2) |
| 191 | return false; |
| 192 | return isa<SplatElementsAttr>(constantOp.getValue()); |
| 193 | } |
| 194 | |
| 195 | /// Return true if this is a broadcast from scalar to a 2D vector. |
| 196 | static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) { |
| 197 | return broadcastOp.getResultVectorType().getRank() == 2; |
| 198 | } |
| 199 | |
| 200 | /// Return true if this integer extend op can be folded into a contract op. |
| 201 | template <typename ExtOpTy> |
| 202 | static bool integerExtendSupportsMMAMatrixType(ExtOpTy extOp) { |
| 203 | auto transferReadOp = |
| 204 | extOp.getOperand().template getDefiningOp<vector::TransferReadOp>(); |
| 205 | if (!transferReadOp) |
| 206 | return false; |
| 207 | return llvm::all_of(extOp->getUsers(), llvm::IsaPred<vector::ContractionOp>); |
| 208 | } |
| 209 | |
| 210 | static bool fpExtendSupportsMMAMatrixType(arith::ExtFOp extOp) { return true; } |
| 211 | |
| 212 | /// Return the MMA elementwise enum associated with `op` if it is supported. |
| 213 | /// Return `std::nullopt` otherwise. |
| 214 | static std::optional<gpu::MMAElementwiseOp> |
| 215 | convertElementwiseOpToMMA(Operation *op) { |
| 216 | if (isa<arith::AddFOp>(op)) |
| 217 | return gpu::MMAElementwiseOp::ADDF; |
| 218 | if (isa<arith::MulFOp>(op)) |
| 219 | return gpu::MMAElementwiseOp::MULF; |
| 220 | if (isa<arith::SubFOp>(op)) |
| 221 | return gpu::MMAElementwiseOp::SUBF; |
| 222 | if (isa<arith::MaximumFOp>(op)) |
| 223 | return gpu::MMAElementwiseOp::MAXF; |
| 224 | if (isa<arith::MinimumFOp>(op)) |
| 225 | return gpu::MMAElementwiseOp::MINF; |
| 226 | if (isa<arith::DivFOp>(op)) |
| 227 | return gpu::MMAElementwiseOp::DIVF; |
| 228 | if (isa<arith::AddIOp>(op)) |
| 229 | return gpu::MMAElementwiseOp::ADDI; |
| 230 | if (isa<arith::MulIOp>(op)) |
| 231 | return gpu::MMAElementwiseOp::MULI; |
| 232 | if (isa<arith::SubIOp>(op)) |
| 233 | return gpu::MMAElementwiseOp::SUBI; |
| 234 | if (isa<arith::DivSIOp>(op)) |
| 235 | return gpu::MMAElementwiseOp::DIVS; |
| 236 | if (isa<arith::DivUIOp>(op)) |
| 237 | return gpu::MMAElementwiseOp::DIVU; |
| 238 | if (isa<arith::NegFOp>(op)) |
| 239 | return gpu::MMAElementwiseOp::NEGATEF; |
| 240 | if (isa<arith::ExtFOp>(op)) |
| 241 | return gpu::MMAElementwiseOp::EXTF; |
| 242 | return std::nullopt; |
| 243 | } |
| 244 | |
| 245 | /// Return true if the op is supported as elementwise op on MMAMatrix type. |
| 246 | static bool elementwiseSupportsMMAMatrixType(Operation *op) { |
| 247 | return convertElementwiseOpToMMA(op).has_value(); |
| 248 | } |
| 249 | |
| 250 | /// Returns true if the extract strided slice op is supported with `mma.sync` |
| 251 | /// path. |
| 252 | static bool |
| 253 | (vector::ExtractStridedSliceOp op) { |
| 254 | |
| 255 | FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = |
| 256 | nvgpu::getWarpMatrixInfo(op); |
| 257 | if (failed(warpMatrixInfo)) |
| 258 | return false; |
| 259 | |
| 260 | FailureOr<vector::ContractionOp> contractOp = nvgpu::getUserContract(op); |
| 261 | if (failed(contractOp)) |
| 262 | return false; |
| 263 | |
| 264 | // Handle vector.extract_strided_slice on registers containing |
| 265 | // matrixB and matrixC operands. vector.extract_strided_slice op |
| 266 | // is not supported on registers containing matrixA operands. |
| 267 | if (warpMatrixInfo->operandRole == nvgpu::MatMulOperandRole::B) |
| 268 | return (cast<VectorType>(op->getResult(0).getType()) == |
| 269 | cast<VectorType>((*contractOp).getRhs().getType())); |
| 270 | if (warpMatrixInfo->operandRole == nvgpu::MatMulOperandRole::C) |
| 271 | return (cast<VectorType>(op->getResult(0).getType()) == |
| 272 | cast<VectorType>((*contractOp).getAcc().getType())); |
| 273 | |
| 274 | return false; |
| 275 | } |
| 276 | |
| 277 | static bool supportsMMaMatrixType(Operation *op, bool useNvGpu) { |
| 278 | if (isa<scf::ForOp, scf::YieldOp>(op)) |
| 279 | return true; |
| 280 | if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) |
| 281 | return useNvGpu ? nvgpu::canLowerToWarpMatrixOperation(transferRead) |
| 282 | : transferReadSupportsMMAMatrixType(transferRead); |
| 283 | if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) |
| 284 | return useNvGpu ? nvgpu::canLowerToWarpMatrixOperation(transferWrite) |
| 285 | : transferWriteSupportsMMAMatrixType(transferWrite); |
| 286 | if (auto extractStridedSlice = dyn_cast<vector::ExtractStridedSliceOp>(op)) |
| 287 | return useNvGpu && |
| 288 | extractStridedSliceSupportsMMAMatrixType(extractStridedSlice); |
| 289 | if (auto contract = dyn_cast<vector::ContractionOp>(op)) |
| 290 | return contractSupportsMMAMatrixType(contract, useNvGpu); |
| 291 | if (auto constant = dyn_cast<arith::ConstantOp>(op)) |
| 292 | return constantSupportsMMAMatrixType(constant); |
| 293 | if (auto broadcast = dyn_cast<vector::BroadcastOp>(op)) |
| 294 | return broadcastSupportsMMAMatrixType(broadcast); |
| 295 | if (auto signedExtend = dyn_cast<arith::ExtSIOp>(op)) |
| 296 | return integerExtendSupportsMMAMatrixType<arith::ExtSIOp>(signedExtend); |
| 297 | if (auto unsignedExtend = dyn_cast<arith::ExtUIOp>(op)) |
| 298 | return integerExtendSupportsMMAMatrixType<arith::ExtUIOp>(unsignedExtend); |
| 299 | if (auto fpExtend = dyn_cast<arith::ExtFOp>(op)) |
| 300 | return fpExtendSupportsMMAMatrixType(fpExtend); |
| 301 | return elementwiseSupportsMMAMatrixType(op); |
| 302 | } |
| 303 | |
| 304 | /// Return an unsorted slice handling scf.for region differently than |
| 305 | /// `getSlice`. In scf.for we only want to include as part of the slice elements |
| 306 | /// that are part of the use/def chain. |
| 307 | static SetVector<Operation *> |
| 308 | getSliceContract(Operation *op, |
| 309 | const BackwardSliceOptions &backwardSliceOptions, |
| 310 | const ForwardSliceOptions &forwardSliceOptions) { |
| 311 | SetVector<Operation *> slice; |
| 312 | slice.insert(X: op); |
| 313 | unsigned currentIndex = 0; |
| 314 | SetVector<Operation *> backwardSlice; |
| 315 | SetVector<Operation *> forwardSlice; |
| 316 | while (currentIndex != slice.size()) { |
| 317 | auto *currentOp = (slice)[currentIndex]; |
| 318 | // Compute and insert the backwardSlice starting from currentOp. |
| 319 | backwardSlice.clear(); |
| 320 | LogicalResult result = |
| 321 | getBackwardSlice(op: currentOp, backwardSlice: &backwardSlice, options: backwardSliceOptions); |
| 322 | assert(result.succeeded() && "expected a backward slice" ); |
| 323 | (void)result; |
| 324 | slice.insert_range(R&: backwardSlice); |
| 325 | |
| 326 | // Compute and insert the forwardSlice starting from currentOp. |
| 327 | forwardSlice.clear(); |
| 328 | // Special case for ForOp, we don't want to include the whole region but |
| 329 | // only the value using the region arguments. |
| 330 | // TODO: We should refine this to only care about the region arguments being |
| 331 | // converted to matrix type. |
| 332 | if (auto forOp = dyn_cast<scf::ForOp>(currentOp)) { |
| 333 | for (Value forOpResult : forOp.getResults()) |
| 334 | getForwardSlice(forOpResult, &forwardSlice, forwardSliceOptions); |
| 335 | for (BlockArgument &arg : forOp.getRegionIterArgs()) |
| 336 | getForwardSlice(arg, &forwardSlice, forwardSliceOptions); |
| 337 | } else { |
| 338 | getForwardSlice(op: currentOp, forwardSlice: &forwardSlice, options: forwardSliceOptions); |
| 339 | } |
| 340 | slice.insert_range(R&: forwardSlice); |
| 341 | ++currentIndex; |
| 342 | } |
| 343 | return slice; |
| 344 | } |
| 345 | |
| 346 | // Analyze slice of operations based on convert op to figure out if the whole |
| 347 | // slice can be converted to MMA operations. |
| 348 | static SetVector<Operation *> getOpToConvert(mlir::Operation *op, |
| 349 | bool useNvGpu) { |
| 350 | auto hasVectorDest = [](Operation *op) { |
| 351 | return llvm::any_of(Range: op->getResultTypes(), P: llvm::IsaPred<VectorType>); |
| 352 | }; |
| 353 | BackwardSliceOptions backwardSliceOptions; |
| 354 | backwardSliceOptions.filter = hasVectorDest; |
| 355 | |
| 356 | auto hasVectorSrc = [](Operation *op) { |
| 357 | return llvm::any_of(Range: op->getOperandTypes(), P: llvm::IsaPred<VectorType>); |
| 358 | }; |
| 359 | ForwardSliceOptions forwardSliceOptions; |
| 360 | forwardSliceOptions.filter = hasVectorSrc; |
| 361 | |
| 362 | SetVector<Operation *> opToConvert; |
| 363 | op->walk([&](vector::ContractionOp contract) { |
| 364 | if (opToConvert.contains(key: contract.getOperation())) |
| 365 | return; |
| 366 | SetVector<Operation *> dependentOps = |
| 367 | getSliceContract(contract, backwardSliceOptions, forwardSliceOptions); |
| 368 | // If any instruction cannot use MMA matrix type drop the whole |
| 369 | // chain. MMA matrix are stored in an opaque type so they cannot be used |
| 370 | // by all operations. |
| 371 | if (llvm::any_of(Range&: dependentOps, P: [useNvGpu](Operation *op) { |
| 372 | if (!supportsMMaMatrixType(op, useNvGpu)) { |
| 373 | LLVM_DEBUG(DBGS() << "cannot convert op: " << *op << "\n" ); |
| 374 | return true; |
| 375 | } |
| 376 | return false; |
| 377 | })) |
| 378 | return; |
| 379 | |
| 380 | opToConvert.insert_range(R&: dependentOps); |
| 381 | }); |
| 382 | // Sort the operations so that we can convert them in topological order. |
| 383 | return topologicalSort(toSort: opToConvert); |
| 384 | } |
| 385 | |
| 386 | namespace { |
| 387 | // Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted |
| 388 | // to MMA matmul. |
| 389 | struct PrepareContractToGPUMMA |
| 390 | : public OpRewritePattern<vector::ContractionOp> { |
| 391 | using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; |
| 392 | |
| 393 | LogicalResult matchAndRewrite(vector::ContractionOp op, |
| 394 | PatternRewriter &rewriter) const override { |
| 395 | Location loc = op.getLoc(); |
| 396 | Value lhs = op.getLhs(), rhs = op.getRhs(), res = op.getAcc(); |
| 397 | |
| 398 | // Set up the parallel/reduction structure in right form. |
| 399 | using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
| 400 | auto infer = [&](MapList m) { |
| 401 | return AffineMap::inferFromExprList(m, op.getContext()); |
| 402 | }; |
| 403 | AffineExpr m, n, k; |
| 404 | bindDims(ctx: rewriter.getContext(), exprs&: m, exprs&: n, exprs&: k); |
| 405 | static constexpr std::array<int64_t, 2> perm = {1, 0}; |
| 406 | auto iteratorTypes = op.getIteratorTypes().getValue(); |
| 407 | SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray(); |
| 408 | if (!(vector::isParallelIterator(attr: iteratorTypes[0]) && |
| 409 | vector::isParallelIterator(attr: iteratorTypes[1]) && |
| 410 | vector::isReductionIterator(attr: iteratorTypes[2]))) |
| 411 | return rewriter.notifyMatchFailure(op, "not a gemm contraction" ); |
| 412 | // |
| 413 | // Two outer parallel, one inner reduction (matmat flavor). |
| 414 | // |
| 415 | // This is the classical row-major matmul, nothing to do. |
| 416 | if (maps == infer({{m, k}, {k, n}, {m, n}})) |
| 417 | return rewriter.notifyMatchFailure(op, "contraction already prepared" ); |
| 418 | if (maps == infer({{m, k}, {n, k}, {m, n}})) { |
| 419 | rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| 420 | } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { |
| 421 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| 422 | } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { |
| 423 | rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| 424 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| 425 | } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { |
| 426 | std::swap(a&: rhs, b&: lhs); |
| 427 | rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| 428 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| 429 | } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { |
| 430 | std::swap(a&: rhs, b&: lhs); |
| 431 | rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); |
| 432 | } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { |
| 433 | std::swap(a&: lhs, b&: rhs); |
| 434 | lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); |
| 435 | } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { |
| 436 | std::swap(a&: lhs, b&: rhs); |
| 437 | } else { |
| 438 | // TODO: llvm_unreachable ? |
| 439 | return rewriter.notifyMatchFailure(op, "unexpected contraction case" ); |
| 440 | } |
| 441 | rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| 442 | op, lhs, rhs, res, |
| 443 | rewriter.getAffineMapArrayAttr(values: infer({{m, k}, {k, n}, {m, n}})), |
| 444 | op.getIteratorTypes()); |
| 445 | return success(); |
| 446 | } |
| 447 | }; |
| 448 | |
| 449 | // Fold transpose op into the transfer read op. NVGPU mma.sync op only supports |
| 450 | // row-, column-, and row-major layout for matrixA, matrixB, and matrixC, |
| 451 | // respectively. We can fold the transpose operation when loading the data from |
| 452 | // Shared Memory to registers. |
| 453 | struct CombineTransferReadOpTranspose final |
| 454 | : public OpRewritePattern<vector::TransposeOp> { |
| 455 | using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; |
| 456 | |
| 457 | LogicalResult matchAndRewrite(vector::TransposeOp op, |
| 458 | PatternRewriter &rewriter) const override { |
| 459 | // Look through integer extend ops. |
| 460 | Value source = op.getVector(); |
| 461 | Type resultType = op.getType(); |
| 462 | Operation *extOp; |
| 463 | if ((extOp = source.getDefiningOp<arith::ExtSIOp>()) || |
| 464 | (extOp = source.getDefiningOp<arith::ExtUIOp>()) || |
| 465 | (extOp = source.getDefiningOp<arith::ExtFOp>())) { |
| 466 | source = extOp->getOperand(idx: 0); |
| 467 | resultType = |
| 468 | VectorType::get(cast<VectorType>(resultType).getShape(), |
| 469 | cast<VectorType>(source.getType()).getElementType()); |
| 470 | } |
| 471 | |
| 472 | auto transferReadOp = source.getDefiningOp<vector::TransferReadOp>(); |
| 473 | if (!transferReadOp) |
| 474 | return rewriter.notifyMatchFailure(op, "no transfer read" ); |
| 475 | |
| 476 | // TODO: support 0-d corner case. |
| 477 | if (transferReadOp.getTransferRank() == 0) |
| 478 | return rewriter.notifyMatchFailure(op, "0-D transfer read" ); |
| 479 | |
| 480 | if (transferReadOp.getMask() || transferReadOp.hasOutOfBoundsDim()) |
| 481 | return rewriter.notifyMatchFailure(op, "not inbounds transfer read" ); |
| 482 | |
| 483 | AffineMap permutationMap = |
| 484 | AffineMap::getPermutationMap(op.getPermutation(), op.getContext()); |
| 485 | AffineMap newMap = |
| 486 | permutationMap.compose(transferReadOp.getPermutationMap()); |
| 487 | |
| 488 | auto loc = op.getLoc(); |
| 489 | Value result = |
| 490 | rewriter |
| 491 | .create<vector::TransferReadOp>( |
| 492 | loc, resultType, transferReadOp.getBase(), |
| 493 | transferReadOp.getIndices(), AffineMapAttr::get(newMap), |
| 494 | transferReadOp.getPadding(), transferReadOp.getMask(), |
| 495 | transferReadOp.getInBoundsAttr()) |
| 496 | .getResult(); |
| 497 | |
| 498 | // Fuse through the integer extend op. |
| 499 | if (extOp) { |
| 500 | if (isa<arith::ExtSIOp>(extOp)) |
| 501 | result = rewriter.create<arith::ExtSIOp>(loc, op.getType(), result) |
| 502 | .getResult(); |
| 503 | else if (isa<arith::ExtUIOp>(extOp)) |
| 504 | result = rewriter.create<arith::ExtUIOp>(loc, op.getType(), result) |
| 505 | .getResult(); |
| 506 | else |
| 507 | result = rewriter.create<arith::ExtFOp>(loc, op.getType(), result) |
| 508 | .getResult(); |
| 509 | } |
| 510 | |
| 511 | rewriter.replaceOp(op, result); |
| 512 | return success(); |
| 513 | } |
| 514 | }; |
| 515 | |
| 516 | } // namespace |
| 517 | |
| 518 | // MMA types have different layout based on how they are used in matmul ops. |
| 519 | // Figure the right layout to use by looking at op uses. |
| 520 | // TODO: Change the GPU dialect to abstract the layout at the this level and |
| 521 | // only care about it during lowering to NVVM. |
| 522 | static const char *inferFragType(Operation *op) { |
| 523 | // We can have arith.ext ops before reaching contract ops. See through them |
| 524 | // and other kinds of elementwise ops. |
| 525 | if (op->hasOneUse()) { |
| 526 | Operation *userOp = *op->user_begin(); |
| 527 | if (userOp->hasTrait<OpTrait::Elementwise>()) |
| 528 | return inferFragType(op: userOp); |
| 529 | } |
| 530 | |
| 531 | for (Operation *users : op->getUsers()) { |
| 532 | auto contract = dyn_cast<vector::ContractionOp>(users); |
| 533 | if (!contract) |
| 534 | continue; |
| 535 | assert(op->getNumResults() == 1); |
| 536 | if (contract.getLhs() == op->getResult(idx: 0)) |
| 537 | return "AOp" ; |
| 538 | if (contract.getRhs() == op->getResult(idx: 0)) |
| 539 | return "BOp" ; |
| 540 | } |
| 541 | return "COp" ; |
| 542 | } |
| 543 | |
| 544 | static LogicalResult |
| 545 | convertTransferReadOp(RewriterBase &rewriter, vector::TransferReadOp op, |
| 546 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 547 | OpBuilder::InsertionGuard g(rewriter); |
| 548 | rewriter.setInsertionPoint(op); |
| 549 | |
| 550 | assert(op.getTransferRank() > 0 && "unexpected 0-d transfer" ); |
| 551 | assert(transferReadSupportsMMAMatrixType(op) && |
| 552 | "expected convertible operation" ); |
| 553 | |
| 554 | std::optional<int64_t> stride = |
| 555 | getStaticallyKnownRowStride(op.getShapedType()); |
| 556 | if (!stride.has_value()) { |
| 557 | LLVM_DEBUG(DBGS() << "no stride\n" ); |
| 558 | return rewriter.notifyMatchFailure(op, "no stride" ); |
| 559 | } |
| 560 | |
| 561 | AffineMap map = op.getPermutationMap(); |
| 562 | bool isTranspose = isTransposeMatrixLoadMap(permutationMap: map); |
| 563 | |
| 564 | // Handle broadcast by setting the stride to 0. |
| 565 | if (auto cstExpr = dyn_cast<AffineConstantExpr>(map.getResult(isTranspose))) { |
| 566 | assert(cstExpr.getValue() == 0); |
| 567 | stride = 0; |
| 568 | } |
| 569 | |
| 570 | Value mappingResult = op.getResult(); |
| 571 | auto elType = op.getVectorType().getElementType(); |
| 572 | const char *fragType = inferFragType(op); |
| 573 | if (op->hasOneUse()) { |
| 574 | auto *user = *op->user_begin(); |
| 575 | // Infer the signedness of the mma type from the integer extend. |
| 576 | if (isa<arith::ExtSIOp, arith::ExtUIOp>(user)) { |
| 577 | elType = IntegerType::get( |
| 578 | op.getContext(), cast<IntegerType>(elType).getWidth(), |
| 579 | isa<arith::ExtSIOp>(user) ? IntegerType::Signed |
| 580 | : IntegerType::Unsigned); |
| 581 | mappingResult = user->getResult(0); |
| 582 | } |
| 583 | } |
| 584 | gpu::MMAMatrixType type = |
| 585 | gpu::MMAMatrixType::get(shape: op.getVectorType().getShape(), elementType: elType, operand: fragType); |
| 586 | Value load = rewriter.create<gpu::SubgroupMmaLoadMatrixOp>( |
| 587 | op.getLoc(), type, op.getBase(), op.getIndices(), |
| 588 | rewriter.getIndexAttr(*stride), |
| 589 | isTranspose ? rewriter.getUnitAttr() : UnitAttr()); |
| 590 | valueMapping[mappingResult] = load; |
| 591 | |
| 592 | LLVM_DEBUG(DBGS() << "transfer read to: " << load << "\n" ); |
| 593 | return success(); |
| 594 | } |
| 595 | |
| 596 | static LogicalResult |
| 597 | convertTransferWriteOp(RewriterBase &rewriter, vector::TransferWriteOp op, |
| 598 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 599 | OpBuilder::InsertionGuard g(rewriter); |
| 600 | rewriter.setInsertionPoint(op); |
| 601 | |
| 602 | assert(transferWriteSupportsMMAMatrixType(op)); |
| 603 | std::optional<int64_t> stride = |
| 604 | getStaticallyKnownRowStride(op.getShapedType()); |
| 605 | if (!stride.has_value()) { |
| 606 | LLVM_DEBUG(DBGS() << "no stride\n" ); |
| 607 | return rewriter.notifyMatchFailure(op, "no stride" ); |
| 608 | } |
| 609 | |
| 610 | auto it = valueMapping.find(op.getVector()); |
| 611 | if (it == valueMapping.end()) { |
| 612 | LLVM_DEBUG(DBGS() << "no mapping\n" ); |
| 613 | return rewriter.notifyMatchFailure(op, "no mapping" ); |
| 614 | } |
| 615 | |
| 616 | Value matrix = it->second; |
| 617 | auto store = rewriter.create<gpu::SubgroupMmaStoreMatrixOp>( |
| 618 | op.getLoc(), matrix, op.getBase(), op.getIndices(), |
| 619 | rewriter.getIndexAttr(*stride), /*transpose=*/UnitAttr()); |
| 620 | (void)store; |
| 621 | |
| 622 | LLVM_DEBUG(DBGS() << "transfer write to: " << store << "\n" ); |
| 623 | |
| 624 | LLVM_DEBUG(DBGS() << "erase: " << op << "\n" ); |
| 625 | rewriter.eraseOp(op: op); |
| 626 | return success(); |
| 627 | } |
| 628 | |
| 629 | /// Returns the vector type which represents a matrix fragment. |
| 630 | static VectorType |
| 631 | getMmaSyncVectorOperandType(const nvgpu::FragmentElementInfo ®Info) { |
| 632 | SmallVector<int64_t> shape{regInfo.numRegistersPerFragment, |
| 633 | regInfo.elementsPerRegister}; |
| 634 | Type elType = regInfo.registerLLVMType; |
| 635 | if (auto vecType = dyn_cast<VectorType>(elType)) |
| 636 | elType = vecType.getElementType(); |
| 637 | return VectorType::get(shape, elType); |
| 638 | } |
| 639 | |
| 640 | /// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op. |
| 641 | static LogicalResult |
| 642 | convertConstantOpMmaSync(RewriterBase &rewriter, arith::ConstantOp op, |
| 643 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 644 | OpBuilder::InsertionGuard g(rewriter); |
| 645 | rewriter.setInsertionPoint(op); |
| 646 | |
| 647 | FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = |
| 648 | nvgpu::getWarpMatrixInfo(op: op); |
| 649 | if (failed(Result: warpMatrixInfo)) { |
| 650 | LLVM_DEBUG(DBGS() << "no warpMatrixInfo\n" ); |
| 651 | return rewriter.notifyMatchFailure(op, "no warpMatrixInfo" ); |
| 652 | } |
| 653 | |
| 654 | FailureOr<nvgpu::FragmentElementInfo> regInfo = |
| 655 | nvgpu::getMmaSyncRegisterType(type: *warpMatrixInfo); |
| 656 | if (failed(Result: regInfo)) { |
| 657 | LLVM_DEBUG(DBGS() << "not mma sync reg info\n" ); |
| 658 | return rewriter.notifyMatchFailure(op, "not mma sync reg info" ); |
| 659 | } |
| 660 | |
| 661 | VectorType vectorType = getMmaSyncVectorOperandType(*regInfo); |
| 662 | auto dense = dyn_cast<SplatElementsAttr>(op.getValue()); |
| 663 | if (!dense) { |
| 664 | LLVM_DEBUG(DBGS() << "not a splat\n" ); |
| 665 | return rewriter.notifyMatchFailure(op, "not a splat" ); |
| 666 | } |
| 667 | |
| 668 | Value result = rewriter.create<arith::ConstantOp>( |
| 669 | op.getLoc(), vectorType, |
| 670 | DenseElementsAttr::get(vectorType, dense.getSplatValue<Attribute>())); |
| 671 | valueMapping[op.getResult()] = result; |
| 672 | return success(); |
| 673 | } |
| 674 | |
| 675 | /// Check if the loaded matrix operand requires transposed. |
| 676 | /// Transposed Map Example: |
| 677 | /// Example 1 : (..., d0, d1) -> (d1 * 1, d0 * 2) |
| 678 | /// Example 2 : (d0, d1, d2, d3) -> (d3, d2) |
| 679 | /// The code below checks if the output 2D is transposed using a generalized |
| 680 | /// version : (d0, d1, dn, ..., dm, ...) -> (dm, dn) |
| 681 | /// Returns : true; if m > n, false o.w. |
| 682 | static FailureOr<bool> isTransposed(vector::TransferReadOp op) { |
| 683 | mlir::AffineMap map = op.getPermutationMap(); |
| 684 | |
| 685 | if (map.getNumResults() != 2) { |
| 686 | LLVM_DEBUG(DBGS() << "Failed because the result of `vector.transfer_read` " |
| 687 | "is not a 2d operand\n" ); |
| 688 | return failure(); |
| 689 | } |
| 690 | |
| 691 | // Output 2D matrix dimensions in the order of d0, d1. |
| 692 | mlir::AffineExpr dM = map.getResult(idx: 0); |
| 693 | mlir::AffineExpr dN = map.getResult(idx: 1); |
| 694 | |
| 695 | // Find the position of these expressions in the input. |
| 696 | auto exprM = dyn_cast<AffineDimExpr>(Val&: dM); |
| 697 | auto exprN = dyn_cast<AffineDimExpr>(Val&: dN); |
| 698 | |
| 699 | if (!exprM || !exprN) { |
| 700 | LLVM_DEBUG(DBGS() << "Failed because expressions are not affine dim " |
| 701 | "expressions, then transpose cannot be determined.\n" ); |
| 702 | return failure(); |
| 703 | } |
| 704 | |
| 705 | return exprM.getPosition() > exprN.getPosition(); |
| 706 | } |
| 707 | |
| 708 | static LogicalResult |
| 709 | creatLdMatrixCompatibleLoads(RewriterBase &rewriter, vector::TransferReadOp op, |
| 710 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 711 | OpBuilder::InsertionGuard g(rewriter); |
| 712 | rewriter.setInsertionPoint(op); |
| 713 | Location loc = op->getLoc(); |
| 714 | |
| 715 | FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = |
| 716 | nvgpu::getWarpMatrixInfo(op: op); |
| 717 | if (failed(Result: warpMatrixInfo)) { |
| 718 | LLVM_DEBUG(DBGS() << "no warpMatrixInfo\n" ); |
| 719 | return rewriter.notifyMatchFailure(op, "no warpMatrixInfo" ); |
| 720 | } |
| 721 | |
| 722 | FailureOr<nvgpu::FragmentElementInfo> regInfo = |
| 723 | nvgpu::getMmaSyncRegisterType(type: *warpMatrixInfo); |
| 724 | if (failed(Result: regInfo)) { |
| 725 | LLVM_DEBUG(DBGS() << "not mma sync reg info\n" ); |
| 726 | return rewriter.notifyMatchFailure(op, "not mma sync reg info" ); |
| 727 | } |
| 728 | |
| 729 | FailureOr<bool> transpose = isTransposed(op); |
| 730 | if (failed(Result: transpose)) { |
| 731 | LLVM_DEBUG(DBGS() << "failed to determine the transpose\n" ); |
| 732 | return rewriter.notifyMatchFailure( |
| 733 | op, "Op should likely not be converted to a nvgpu.ldmatrix call." ); |
| 734 | } |
| 735 | |
| 736 | FailureOr<nvgpu::LdMatrixParams> params = |
| 737 | nvgpu::getLdMatrixParams(*warpMatrixInfo, *transpose); |
| 738 | |
| 739 | if (failed(params)) { |
| 740 | LLVM_DEBUG( |
| 741 | DBGS() |
| 742 | << "failed to convert vector.transfer_read to ldmatrix. " |
| 743 | << "Op should likely not be converted to a nvgpu.ldmatrix call.\n" ); |
| 744 | return rewriter.notifyMatchFailure( |
| 745 | op, "failed to convert vector.transfer_read to ldmatrix; this op " |
| 746 | "likely should not be converted to a nvgpu.ldmatrix call." ); |
| 747 | } |
| 748 | |
| 749 | // Adjust the load offset. |
| 750 | auto laneId = rewriter.create<gpu::LaneIdOp>(loc, /*upperBound=*/nullptr); |
| 751 | FailureOr<AffineMap> offsets = |
| 752 | nvgpu::getLaneIdToLdMatrixMatrixCoord(builder&: rewriter, loc, params: *params); |
| 753 | if (failed(Result: offsets)) { |
| 754 | LLVM_DEBUG(DBGS() << "no offsets\n" ); |
| 755 | return rewriter.notifyMatchFailure(op, "no offsets" ); |
| 756 | } |
| 757 | |
| 758 | VectorType vectorType = getMmaSyncVectorOperandType(*regInfo); |
| 759 | |
| 760 | SmallVector<Value, 4> indices; |
| 761 | getXferIndices<vector::TransferReadOp>(rewriter, op, *offsets, {laneId}, |
| 762 | indices); |
| 763 | |
| 764 | nvgpu::LdMatrixOp newOp = rewriter.create<nvgpu::LdMatrixOp>( |
| 765 | loc, vectorType, op.getBase(), indices, *transpose, params->numTiles); |
| 766 | valueMapping[op] = newOp->getResult(0); |
| 767 | return success(); |
| 768 | } |
| 769 | |
| 770 | static LogicalResult |
| 771 | createNonLdMatrixLoads(RewriterBase &rewriter, vector::TransferReadOp op, |
| 772 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 773 | OpBuilder::InsertionGuard g(rewriter); |
| 774 | rewriter.setInsertionPoint(op); |
| 775 | |
| 776 | Location loc = op.getLoc(); |
| 777 | FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = |
| 778 | nvgpu::getWarpMatrixInfo(op: op); |
| 779 | if (failed(Result: warpMatrixInfo)) |
| 780 | return rewriter.notifyMatchFailure(op, "no warpMatrixInfo" ); |
| 781 | FailureOr<nvgpu::FragmentElementInfo> regInfo = |
| 782 | nvgpu::getMmaSyncRegisterType(type: *warpMatrixInfo); |
| 783 | if (failed(Result: regInfo)) { |
| 784 | return rewriter.notifyMatchFailure( |
| 785 | op, "Failed to deduce register fragment type during " |
| 786 | "conversion to distributed non-ldmatrix compatible load" ); |
| 787 | } |
| 788 | |
| 789 | Value laneId = rewriter.create<gpu::LaneIdOp>(loc, /*upperBound=*/nullptr); |
| 790 | |
| 791 | // This is the individual element type. |
| 792 | Type loadedElType = regInfo->registerLLVMType; |
| 793 | VectorType vectorType = getMmaSyncVectorOperandType(*regInfo); |
| 794 | |
| 795 | Value fill = rewriter.create<arith::ConstantOp>( |
| 796 | op.getLoc(), vectorType.getElementType(), |
| 797 | rewriter.getZeroAttr(vectorType.getElementType())); |
| 798 | Value result = |
| 799 | rewriter.create<vector::SplatOp>(op.getLoc(), fill, vectorType); |
| 800 | |
| 801 | bool isTransposeLoad = !op.getPermutationMap().isMinorIdentity(); |
| 802 | |
| 803 | // If we are not transposing, then we can use vectorized loads. Otherwise, we |
| 804 | // must load each element individually. |
| 805 | if (!isTransposeLoad) { |
| 806 | if (!isa<VectorType>(Val: loadedElType)) { |
| 807 | loadedElType = VectorType::get({1}, loadedElType); |
| 808 | } |
| 809 | |
| 810 | for (int i = 0; i < vectorType.getShape()[0]; i++) { |
| 811 | FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord( |
| 812 | builder&: rewriter, loc: op.getLoc(), fragmentType: *warpMatrixInfo); |
| 813 | if (failed(Result: coords)) |
| 814 | return rewriter.notifyMatchFailure(op, "no coords" ); |
| 815 | |
| 816 | Value logicalValueId = rewriter.create<arith::ConstantOp>( |
| 817 | loc, rewriter.getIndexType(), |
| 818 | rewriter.getIndexAttr(i * regInfo->elementsPerRegister)); |
| 819 | SmallVector<Value, 4> newIndices; |
| 820 | getXferIndices<vector::TransferReadOp>( |
| 821 | rewriter, op, *coords, {laneId, logicalValueId}, newIndices); |
| 822 | |
| 823 | Value el = rewriter.create<vector::LoadOp>(loc, loadedElType, |
| 824 | op.getBase(), newIndices); |
| 825 | result = rewriter.create<vector::InsertOp>(loc, el, result, i); |
| 826 | } |
| 827 | } else { |
| 828 | if (auto vecType = dyn_cast<VectorType>(loadedElType)) { |
| 829 | loadedElType = vecType.getElementType(); |
| 830 | } |
| 831 | for (int i = 0; i < vectorType.getShape()[0]; i++) { |
| 832 | for (unsigned innerIdx = 0; innerIdx < vectorType.getShape()[1]; |
| 833 | innerIdx++) { |
| 834 | |
| 835 | Value logicalValueId = rewriter.create<arith::ConstantOp>( |
| 836 | loc, rewriter.getIndexType(), |
| 837 | rewriter.getIndexAttr(i * regInfo->elementsPerRegister + innerIdx)); |
| 838 | FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord( |
| 839 | builder&: rewriter, loc: op.getLoc(), fragmentType: *warpMatrixInfo); |
| 840 | if (failed(Result: coords)) |
| 841 | return rewriter.notifyMatchFailure(op, "no coords" ); |
| 842 | |
| 843 | SmallVector<Value, 4> newIndices; |
| 844 | getXferIndices<vector::TransferReadOp>( |
| 845 | rewriter, op, *coords, {laneId, logicalValueId}, newIndices); |
| 846 | Value el = rewriter.create<memref::LoadOp>(op.getLoc(), loadedElType, |
| 847 | op.getBase(), newIndices); |
| 848 | result = rewriter.create<vector::InsertOp>( |
| 849 | op.getLoc(), el, result, ArrayRef<int64_t>{i, innerIdx}); |
| 850 | } |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | valueMapping[op.getResult()] = result; |
| 855 | return success(); |
| 856 | } |
| 857 | |
| 858 | /// Return true if this is a shared memory memref type. |
| 859 | static bool isSharedMemory(MemRefType type) { |
| 860 | auto addressSpace = |
| 861 | dyn_cast_or_null<gpu::AddressSpaceAttr>(type.getMemorySpace()); |
| 862 | return addressSpace && |
| 863 | addressSpace.getValue() == gpu::GPUDialect::getWorkgroupAddressSpace(); |
| 864 | } |
| 865 | |
| 866 | /// Converts a `vector.transfer_read` operation directly to either a |
| 867 | /// `vector.load` or a `nvgpu.ldmatrix` operation. This function should only be |
| 868 | /// used when converting to `nvgpu.mma.sync` operations. |
| 869 | static LogicalResult |
| 870 | convertTransferReadToLoads(RewriterBase &rewriter, vector::TransferReadOp op, |
| 871 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 872 | OpBuilder::InsertionGuard g(rewriter); |
| 873 | rewriter.setInsertionPoint(op); |
| 874 | |
| 875 | FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = |
| 876 | nvgpu::getWarpMatrixInfo(op: op); |
| 877 | if (failed(Result: warpMatrixInfo)) |
| 878 | return rewriter.notifyMatchFailure(op, "no warpMatrixInfo" ); |
| 879 | |
| 880 | bool isLdMatrixCompatible = |
| 881 | isSharedMemory(cast<MemRefType>(op.getBase().getType())) && |
| 882 | nvgpu::inferTileWidthInBits(type: *warpMatrixInfo) == 128; |
| 883 | |
| 884 | VectorType vecTy = op.getVectorType(); |
| 885 | int64_t bitWidth = vecTy.getElementType().getIntOrFloatBitWidth(); |
| 886 | |
| 887 | // When we are transposing the B operand, ldmatrix will only work if we have |
| 888 | // at least 8 rows to read and the width to read for the transpose is 128 |
| 889 | // bits. |
| 890 | if (!op.getPermutationMap().isMinorIdentity() && |
| 891 | (bitWidth != 16 || vecTy.getDimSize(1) < 8 || |
| 892 | vecTy.getDimSize(0) * bitWidth < 128)) |
| 893 | isLdMatrixCompatible = false; |
| 894 | |
| 895 | if (!isLdMatrixCompatible) |
| 896 | return createNonLdMatrixLoads(rewriter, op, valueMapping); |
| 897 | |
| 898 | return creatLdMatrixCompatibleLoads(rewriter, op, valueMapping); |
| 899 | } |
| 900 | |
| 901 | static LogicalResult |
| 902 | convertTransferWriteToStores(RewriterBase &rewriter, vector::TransferWriteOp op, |
| 903 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 904 | OpBuilder::InsertionGuard g(rewriter); |
| 905 | rewriter.setInsertionPoint(op); |
| 906 | |
| 907 | Location loc = op->getLoc(); |
| 908 | auto it = valueMapping.find(op.getVector()); |
| 909 | if (it == valueMapping.end()) |
| 910 | return rewriter.notifyMatchFailure(op, "no mapping" ); |
| 911 | Value matrix = it->second; |
| 912 | |
| 913 | FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = |
| 914 | nvgpu::getWarpMatrixInfo(op: op); |
| 915 | if (failed(Result: warpMatrixInfo)) |
| 916 | return rewriter.notifyMatchFailure(op, "no warpMatrixInfo" ); |
| 917 | FailureOr<nvgpu::FragmentElementInfo> regInfo = |
| 918 | nvgpu::getMmaSyncRegisterType(type: *warpMatrixInfo); |
| 919 | if (failed(Result: regInfo)) |
| 920 | return rewriter.notifyMatchFailure(op, "not mma sync reg info" ); |
| 921 | |
| 922 | VectorType vectorType = getMmaSyncVectorOperandType(*regInfo); |
| 923 | Value laneId = rewriter.create<gpu::LaneIdOp>(loc, /*upperBound=*/nullptr); |
| 924 | |
| 925 | for (unsigned i = 0; i < vectorType.getShape()[0]; i++) { |
| 926 | Value logicalValueId = rewriter.create<arith::ConstantOp>( |
| 927 | loc, rewriter.getIndexType(), |
| 928 | rewriter.getIndexAttr(i * regInfo->elementsPerRegister)); |
| 929 | FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord( |
| 930 | builder&: rewriter, loc: op.getLoc(), fragmentType: *warpMatrixInfo); |
| 931 | if (failed(Result: coords)) |
| 932 | return rewriter.notifyMatchFailure(op, "no coords" ); |
| 933 | |
| 934 | Value el = |
| 935 | rewriter.create<vector::ExtractOp>(loc, matrix, ArrayRef<int64_t>{i}); |
| 936 | SmallVector<Value, 4> newIndices; |
| 937 | getXferIndices<vector::TransferWriteOp>( |
| 938 | rewriter, op, *coords, {laneId, logicalValueId}, newIndices); |
| 939 | rewriter.create<vector::StoreOp>(loc, el, op.getBase(), newIndices); |
| 940 | } |
| 941 | |
| 942 | LLVM_DEBUG(DBGS() << "erase: " << op << "\n" ); |
| 943 | rewriter.eraseOp(op: op); |
| 944 | return success(); |
| 945 | } |
| 946 | |
| 947 | static void populateFromInt64AttrArray(ArrayAttr arrayAttr, |
| 948 | SmallVectorImpl<int64_t> &results) { |
| 949 | for (auto attr : arrayAttr) |
| 950 | results.push_back(cast<IntegerAttr>(attr).getInt()); |
| 951 | } |
| 952 | |
| 953 | static LogicalResult |
| 954 | (RewriterBase &rewriter, |
| 955 | vector::ExtractStridedSliceOp op, |
| 956 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 957 | OpBuilder::InsertionGuard g(rewriter); |
| 958 | rewriter.setInsertionPoint(op); |
| 959 | |
| 960 | Location loc = op->getLoc(); |
| 961 | |
| 962 | FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = |
| 963 | nvgpu::getWarpMatrixInfo(op: op); |
| 964 | if (failed(Result: warpMatrixInfo)) |
| 965 | return rewriter.notifyMatchFailure(op, "no warpMatrixInfo" ); |
| 966 | |
| 967 | FailureOr<nvgpu::FragmentElementInfo> mmaSyncFragmentInfo = |
| 968 | nvgpu::getMmaSyncRegisterType(type: *warpMatrixInfo); |
| 969 | if (failed(Result: mmaSyncFragmentInfo)) |
| 970 | return rewriter.notifyMatchFailure(op, "no mmaSyncFragmentInfo" ); |
| 971 | |
| 972 | // Find the vector.transer_read whose result vector is being sliced. |
| 973 | auto transferReadOp = op.getVector().getDefiningOp<vector::TransferReadOp>(); |
| 974 | if (!transferReadOp) |
| 975 | return rewriter.notifyMatchFailure(op, "no transfer read" ); |
| 976 | |
| 977 | warpMatrixInfo = nvgpu::getWarpMatrixInfo(op: transferReadOp); |
| 978 | if (failed(Result: warpMatrixInfo)) |
| 979 | return rewriter.notifyMatchFailure(op, "no warpMatrixInfo" ); |
| 980 | |
| 981 | FailureOr<nvgpu::FragmentElementInfo> ldFragmentInfo = |
| 982 | nvgpu::getMmaSyncRegisterType(type: *warpMatrixInfo); |
| 983 | if (failed(Result: ldFragmentInfo)) |
| 984 | return rewriter.notifyMatchFailure(op, "no ldFragmentInfo" ); |
| 985 | |
| 986 | assert( |
| 987 | (mmaSyncFragmentInfo->elementsPerRegister == |
| 988 | ldFragmentInfo->elementsPerRegister) && |
| 989 | "Number of elements per register should be same for load and mma.sync" ); |
| 990 | |
| 991 | // Create vector.extract_strided_slice op for thread-owned fragments. |
| 992 | std::array<int64_t, 2> strides = {1, |
| 993 | 1}; // stride for extract slice is always 1. |
| 994 | std::array<int64_t, 2> sliceShape = { |
| 995 | mmaSyncFragmentInfo->numRegistersPerFragment, |
| 996 | mmaSyncFragmentInfo->elementsPerRegister}; |
| 997 | auto it = valueMapping.find(transferReadOp); |
| 998 | if (it == valueMapping.end()) |
| 999 | return rewriter.notifyMatchFailure(op, "no mapping" ); |
| 1000 | auto sourceVector = it->second; |
| 1001 | |
| 1002 | // offset and sizes at warp-level of onwership. |
| 1003 | SmallVector<int64_t> offsets; |
| 1004 | populateFromInt64AttrArray(op.getOffsets(), offsets); |
| 1005 | |
| 1006 | SmallVector<int64_t> sizes; |
| 1007 | populateFromInt64AttrArray(op.getSizes(), sizes); |
| 1008 | ArrayRef<int64_t> warpVectorShape = op.getSourceVectorType().getShape(); |
| 1009 | |
| 1010 | // Compute offset in vector registers. Note that the mma.sync vector registers |
| 1011 | // are shaped as numberOfFragments x numberOfRegistersPerfFragment. The vector |
| 1012 | // registers can only be sliced along numberOfFragments, i.e., sliceOffset[0]. |
| 1013 | std::array<int64_t, 2> sliceOffset = {0, 0}; |
| 1014 | |
| 1015 | if (offsets[0] && offsets[1]) |
| 1016 | return op->emitError() << "Slicing fragments in 2D is not supported. " ; |
| 1017 | if (offsets[0]) |
| 1018 | sliceOffset[0] = (warpVectorShape[0] / offsets[0]); |
| 1019 | else if (offsets[1]) |
| 1020 | sliceOffset[0] = (warpVectorShape[1] / offsets[1]); |
| 1021 | |
| 1022 | Value newOp = rewriter.create<vector::ExtractStridedSliceOp>( |
| 1023 | loc, sourceVector, sliceOffset, sliceShape, strides); |
| 1024 | |
| 1025 | valueMapping[op] = newOp; |
| 1026 | return success(); |
| 1027 | } |
| 1028 | |
| 1029 | static LogicalResult |
| 1030 | convertContractOp(RewriterBase &rewriter, vector::ContractionOp op, |
| 1031 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 1032 | OpBuilder::InsertionGuard g(rewriter); |
| 1033 | rewriter.setInsertionPoint(op); |
| 1034 | |
| 1035 | auto itA = valueMapping.find(op.getLhs()); |
| 1036 | auto itB = valueMapping.find(op.getRhs()); |
| 1037 | auto itC = valueMapping.find(op.getAcc()); |
| 1038 | if (itA == valueMapping.end() || itB == valueMapping.end() || |
| 1039 | itC == valueMapping.end()) |
| 1040 | return rewriter.notifyMatchFailure(op, "no mapping" ); |
| 1041 | Value opA = itA->second, opB = itB->second, opC = itC->second; |
| 1042 | Value matmul = rewriter.create<gpu::SubgroupMmaComputeOp>( |
| 1043 | op.getLoc(), opC.getType(), opA, opB, opC, /*a_transpose=*/UnitAttr(), |
| 1044 | /*b_transpose=*/UnitAttr()); |
| 1045 | valueMapping[op.getResult()] = matmul; |
| 1046 | return success(); |
| 1047 | } |
| 1048 | |
| 1049 | static LogicalResult |
| 1050 | convertContractOpToMmaSync(RewriterBase &rewriter, vector::ContractionOp op, |
| 1051 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 1052 | OpBuilder::InsertionGuard g(rewriter); |
| 1053 | rewriter.setInsertionPoint(op); |
| 1054 | |
| 1055 | auto itA = valueMapping.find(op.getLhs()); |
| 1056 | auto itB = valueMapping.find(op.getRhs()); |
| 1057 | auto itC = valueMapping.find(op.getAcc()); |
| 1058 | if (itA == valueMapping.end() || itB == valueMapping.end() || |
| 1059 | itC == valueMapping.end()) |
| 1060 | return rewriter.notifyMatchFailure(op, "no mapping" ); |
| 1061 | Value opA = itA->second, opB = itB->second, opC = itC->second; |
| 1062 | int64_t m = cast<VectorType>(op.getLhs().getType()).getShape()[0]; |
| 1063 | int64_t n = cast<VectorType>(op.getRhs().getType()).getShape()[0]; |
| 1064 | int64_t k = cast<VectorType>(op.getLhs().getType()).getShape()[1]; |
| 1065 | Value matmul = rewriter.create<nvgpu::MmaSyncOp>( |
| 1066 | op.getLoc(), opA, opB, opC, rewriter.getI64ArrayAttr({m, n, k})); |
| 1067 | valueMapping[op.getResult()] = matmul; |
| 1068 | return success(); |
| 1069 | } |
| 1070 | |
| 1071 | /// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op. |
| 1072 | static LogicalResult |
| 1073 | convertConstantOp(RewriterBase &rewriter, arith::ConstantOp op, |
| 1074 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 1075 | OpBuilder::InsertionGuard g(rewriter); |
| 1076 | rewriter.setInsertionPoint(op); |
| 1077 | |
| 1078 | assert(constantSupportsMMAMatrixType(op)); |
| 1079 | |
| 1080 | auto splat = |
| 1081 | cast<SplatElementsAttr>(op.getValue()).getSplatValue<TypedAttr>(); |
| 1082 | auto scalarConstant = |
| 1083 | rewriter.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat); |
| 1084 | const char *fragType = inferFragType(op); |
| 1085 | auto vecType = cast<VectorType>(op.getType()); |
| 1086 | gpu::MMAMatrixType type = gpu::MMAMatrixType::get( |
| 1087 | shape: vecType.getShape(), elementType: vecType.getElementType(), operand: llvm::StringRef(fragType)); |
| 1088 | auto matrix = rewriter.create<gpu::SubgroupMmaConstantMatrixOp>( |
| 1089 | op.getLoc(), type, scalarConstant); |
| 1090 | valueMapping[op.getResult()] = matrix; |
| 1091 | return success(); |
| 1092 | } |
| 1093 | |
| 1094 | /// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op. |
| 1095 | static LogicalResult |
| 1096 | convertBroadcastOp(RewriterBase &rewriter, vector::BroadcastOp op, |
| 1097 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 1098 | OpBuilder::InsertionGuard g(rewriter); |
| 1099 | rewriter.setInsertionPoint(op); |
| 1100 | |
| 1101 | assert(broadcastSupportsMMAMatrixType(op)); |
| 1102 | |
| 1103 | const char *fragType = inferFragType(op); |
| 1104 | auto vecType = op.getResultVectorType(); |
| 1105 | gpu::MMAMatrixType type = gpu::MMAMatrixType::get( |
| 1106 | shape: vecType.getShape(), elementType: vecType.getElementType(), operand: llvm::StringRef(fragType)); |
| 1107 | auto matrix = rewriter.create<gpu::SubgroupMmaConstantMatrixOp>( |
| 1108 | op.getLoc(), type, op.getSource()); |
| 1109 | valueMapping[op.getResult()] = matrix; |
| 1110 | return success(); |
| 1111 | } |
| 1112 | |
| 1113 | // Replace ForOp with a new ForOp with extra operands. The YieldOp is not |
| 1114 | // updated and needs to be updated separately for the loop to be correct. |
| 1115 | static scf::ForOp replaceForOpWithNewSignature(RewriterBase &rewriter, |
| 1116 | scf::ForOp loop, |
| 1117 | ValueRange newInitArgs) { |
| 1118 | OpBuilder::InsertionGuard g(rewriter); |
| 1119 | rewriter.setInsertionPoint(loop); |
| 1120 | |
| 1121 | // Create a new loop before the existing one, with the extra operands. |
| 1122 | rewriter.setInsertionPoint(loop); |
| 1123 | auto operands = llvm::to_vector<4>(loop.getInitArgs()); |
| 1124 | llvm::append_range(operands, newInitArgs); |
| 1125 | scf::ForOp newLoop = rewriter.create<scf::ForOp>( |
| 1126 | loop.getLoc(), loop.getLowerBound(), loop.getUpperBound(), loop.getStep(), |
| 1127 | operands); |
| 1128 | rewriter.eraseBlock(block: newLoop.getBody()); |
| 1129 | |
| 1130 | newLoop.getRegion().getBlocks().splice( |
| 1131 | newLoop.getRegion().getBlocks().begin(), loop.getRegion().getBlocks()); |
| 1132 | for (Value operand : newInitArgs) |
| 1133 | newLoop.getBody()->addArgument(operand.getType(), operand.getLoc()); |
| 1134 | |
| 1135 | for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front( |
| 1136 | loop.getNumResults()))) |
| 1137 | rewriter.replaceAllUsesWith(std::get<0>(it), std::get<1>(it)); |
| 1138 | |
| 1139 | LLVM_DEBUG(DBGS() << "newLoop now: " << newLoop << "\n" ); |
| 1140 | LLVM_DEBUG(DBGS() << "stripped scf.for: " << loop << "\n" ); |
| 1141 | LLVM_DEBUG(DBGS() << "erase: " << loop); |
| 1142 | |
| 1143 | rewriter.eraseOp(op: loop); |
| 1144 | return newLoop; |
| 1145 | } |
| 1146 | |
| 1147 | static LogicalResult convertForOp(RewriterBase &rewriter, scf::ForOp op, |
| 1148 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 1149 | OpBuilder::InsertionGuard g(rewriter); |
| 1150 | rewriter.setInsertionPoint(op); |
| 1151 | |
| 1152 | SmallVector<Value> newOperands; |
| 1153 | SmallVector<std::pair<size_t, size_t>> argMapping; |
| 1154 | for (const auto &operand : llvm::enumerate(op.getInitArgs())) { |
| 1155 | auto it = valueMapping.find(operand.value()); |
| 1156 | if (it == valueMapping.end()) { |
| 1157 | LLVM_DEBUG(DBGS() << "no value mapping for: " << operand.value() << "\n" ); |
| 1158 | continue; |
| 1159 | } |
| 1160 | argMapping.push_back(std::make_pair( |
| 1161 | operand.index(), op.getInitArgs().size() + newOperands.size())); |
| 1162 | newOperands.push_back(it->second); |
| 1163 | } |
| 1164 | |
| 1165 | scf::ForOp newForOp = replaceForOpWithNewSignature(rewriter, op, newOperands); |
| 1166 | Block &loopBody = *newForOp.getBody(); |
| 1167 | for (auto mapping : argMapping) { |
| 1168 | valueMapping[newForOp.getResult(mapping.first)] = |
| 1169 | newForOp.getResult(mapping.second); |
| 1170 | valueMapping[loopBody.getArgument(i: mapping.first + |
| 1171 | newForOp.getNumInductionVars())] = |
| 1172 | loopBody.getArgument(i: mapping.second + newForOp.getNumInductionVars()); |
| 1173 | } |
| 1174 | |
| 1175 | LLVM_DEBUG(DBGS() << "scf.for to: " << newForOp << "\n" ); |
| 1176 | return success(); |
| 1177 | } |
| 1178 | |
| 1179 | static LogicalResult |
| 1180 | convertYieldOp(RewriterBase &rewriter, scf::YieldOp op, |
| 1181 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 1182 | OpBuilder::InsertionGuard g(rewriter); |
| 1183 | rewriter.setInsertionPoint(op); |
| 1184 | |
| 1185 | auto loop = cast<scf::ForOp>(op->getParentOp()); |
| 1186 | auto yieldOperands = llvm::to_vector<4>(op.getOperands()); |
| 1187 | for (const auto &operand : llvm::enumerate(op.getOperands())) { |
| 1188 | auto it = valueMapping.find(operand.value()); |
| 1189 | if (it == valueMapping.end()) |
| 1190 | continue; |
| 1191 | // Replace the yield of old value with the for op argument to make it easier |
| 1192 | // to remove the dead code. |
| 1193 | yieldOperands[operand.index()] = loop.getInitArgs()[operand.index()]; |
| 1194 | yieldOperands.push_back(it->second); |
| 1195 | } |
| 1196 | rewriter.create<scf::YieldOp>(op.getLoc(), yieldOperands); |
| 1197 | |
| 1198 | LLVM_DEBUG(DBGS() << "erase: " << op << "\n" ); |
| 1199 | rewriter.eraseOp(op: op); |
| 1200 | return success(); |
| 1201 | } |
| 1202 | |
| 1203 | /// Convert an elementwise op to the equivalent elementwise op on MMA matrix. |
| 1204 | static LogicalResult |
| 1205 | convertElementwiseOp(RewriterBase &rewriter, Operation *op, |
| 1206 | gpu::MMAElementwiseOp opType, |
| 1207 | llvm::DenseMap<Value, Value> &valueMapping) { |
| 1208 | OpBuilder::InsertionGuard g(rewriter); |
| 1209 | rewriter.setInsertionPoint(op); |
| 1210 | |
| 1211 | SmallVector<Value> matrixOperands; |
| 1212 | for (Value operand : op->getOperands()) { |
| 1213 | auto it = valueMapping.find(Val: operand); |
| 1214 | if (it == valueMapping.end()) |
| 1215 | return rewriter.notifyMatchFailure(arg&: op, msg: "no mapping" ); |
| 1216 | matrixOperands.push_back(Elt: it->second); |
| 1217 | } |
| 1218 | auto resultType = cast<gpu::MMAMatrixType>(Val: matrixOperands[0].getType()); |
| 1219 | if (opType == gpu::MMAElementwiseOp::EXTF) { |
| 1220 | // The floating point extension case has a different result type. |
| 1221 | auto vectorType = cast<VectorType>(op->getResultTypes()[0]); |
| 1222 | resultType = gpu::MMAMatrixType::get(shape: resultType.getShape(), |
| 1223 | elementType: vectorType.getElementType(), |
| 1224 | operand: resultType.getOperand()); |
| 1225 | } |
| 1226 | |
| 1227 | Value newOp = rewriter.create<gpu::SubgroupMmaElementwiseOp>( |
| 1228 | op->getLoc(), resultType, matrixOperands, opType); |
| 1229 | valueMapping[op->getResult(idx: 0)] = newOp; |
| 1230 | return success(); |
| 1231 | } |
| 1232 | |
| 1233 | void mlir::populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns, |
| 1234 | bool useNvGpu) { |
| 1235 | if (!useNvGpu) { |
| 1236 | patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>( |
| 1237 | arg: patterns.getContext()); |
| 1238 | return; |
| 1239 | } |
| 1240 | vector::populateVectorContractCanonicalizeMatmulToMMT(patterns); |
| 1241 | patterns.add<CombineTransferReadOpTranspose>(arg: patterns.getContext()); |
| 1242 | } |
| 1243 | |
| 1244 | LogicalResult mlir::convertVectorToMMAOps(RewriterBase &rewriter, |
| 1245 | Operation *rootOp) { |
| 1246 | SetVector<Operation *> ops = getOpToConvert(op: rootOp, /*useNvGpu=*/false); |
| 1247 | llvm::DenseMap<Value, Value> valueMapping; |
| 1248 | |
| 1249 | auto globalRes = LogicalResult::success(); |
| 1250 | for (Operation *op : ops) { |
| 1251 | LLVM_DEBUG(DBGS() << "Process op: " << *op << "\n" ); |
| 1252 | // Apparently callers do not want to early exit on failure here. |
| 1253 | auto res = LogicalResult::success(); |
| 1254 | if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) { |
| 1255 | res = convertTransferReadOp(rewriter, transferRead, valueMapping); |
| 1256 | } else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) { |
| 1257 | res = convertTransferWriteOp(rewriter, transferWrite, valueMapping); |
| 1258 | } else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) { |
| 1259 | res = convertContractOp(rewriter, contractOp, valueMapping); |
| 1260 | } else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) { |
| 1261 | res = convertConstantOp(rewriter, constantOp, valueMapping); |
| 1262 | } else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) { |
| 1263 | res = convertBroadcastOp(rewriter, broadcastOp, valueMapping); |
| 1264 | } else if (auto forOp = dyn_cast<scf::ForOp>(op)) { |
| 1265 | res = convertForOp(rewriter, forOp, valueMapping); |
| 1266 | } else if (auto yieldOp = dyn_cast<scf::YieldOp>(op)) { |
| 1267 | res = convertYieldOp(rewriter, yieldOp, valueMapping); |
| 1268 | } else if (auto elementwiseType = convertElementwiseOpToMMA(op)) { |
| 1269 | res = convertElementwiseOp(rewriter, op, *elementwiseType, valueMapping); |
| 1270 | } |
| 1271 | if (failed(Result: res)) |
| 1272 | globalRes = failure(); |
| 1273 | } |
| 1274 | return globalRes; |
| 1275 | } |
| 1276 | |
| 1277 | LogicalResult mlir::convertVectorToNVVMCompatibleMMASync(RewriterBase &rewriter, |
| 1278 | Operation *rootOp) { |
| 1279 | SetVector<Operation *> ops = getOpToConvert(op: rootOp, /*useNvGpu=*/true); |
| 1280 | llvm::DenseMap<Value, Value> valueMapping; |
| 1281 | for (Operation *op : ops) { |
| 1282 | if (llvm::TypeSwitch<Operation *, LogicalResult>(op) |
| 1283 | .Case(caseFn: [&](vector::TransferReadOp transferReadOp) { |
| 1284 | return convertTransferReadToLoads(rewriter, transferReadOp, |
| 1285 | valueMapping); |
| 1286 | }) |
| 1287 | .Case(caseFn: [&](vector::TransferWriteOp transferWriteOp) { |
| 1288 | return convertTransferWriteToStores(rewriter, transferWriteOp, |
| 1289 | valueMapping); |
| 1290 | }) |
| 1291 | .Case(caseFn: [&](vector::ExtractStridedSliceOp ) { |
| 1292 | return convertExtractStridedSlice(rewriter, extractStridedSliceOp, |
| 1293 | valueMapping); |
| 1294 | }) |
| 1295 | .Case(caseFn: [&](vector::ContractionOp contractionOp) { |
| 1296 | return convertContractOpToMmaSync(rewriter, contractionOp, |
| 1297 | valueMapping); |
| 1298 | }) |
| 1299 | .Case(caseFn: [&](scf::ForOp forOp) { |
| 1300 | return convertForOp(rewriter, forOp, valueMapping); |
| 1301 | }) |
| 1302 | .Case(caseFn: [&](scf::YieldOp yieldOp) { |
| 1303 | return convertYieldOp(rewriter, yieldOp, valueMapping); |
| 1304 | }) |
| 1305 | .Case(caseFn: [&](arith::ConstantOp constOp) { |
| 1306 | return convertConstantOpMmaSync(rewriter, constOp, valueMapping); |
| 1307 | }) |
| 1308 | .Default(defaultFn: [&](Operation *op) { |
| 1309 | return op->emitError() << "unhandled vector to mma type: " << *op; |
| 1310 | }) |
| 1311 | .failed()) { |
| 1312 | return op->emitOpError() |
| 1313 | << "failed to convert op during vector-to-nvgpu conversion" ; |
| 1314 | } |
| 1315 | } |
| 1316 | return success(); |
| 1317 | } |
| 1318 | |
| 1319 | namespace { |
| 1320 | |
| 1321 | struct ConvertVectorToGPUPass |
| 1322 | : public impl::ConvertVectorToGPUBase<ConvertVectorToGPUPass> { |
| 1323 | |
| 1324 | explicit ConvertVectorToGPUPass(bool useNvGpu_) { |
| 1325 | useNvGpu.setValue(useNvGpu_); |
| 1326 | } |
| 1327 | |
| 1328 | void runOnOperation() override { |
| 1329 | RewritePatternSet patterns(&getContext()); |
| 1330 | populatePrepareVectorToMMAPatterns(patterns, useNvGpu.getValue()); |
| 1331 | if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) |
| 1332 | return signalPassFailure(); |
| 1333 | |
| 1334 | IRRewriter rewriter(&getContext()); |
| 1335 | if (useNvGpu) { |
| 1336 | if (failed( |
| 1337 | convertVectorToNVVMCompatibleMMASync(rewriter, getOperation()))) |
| 1338 | return signalPassFailure(); |
| 1339 | return; |
| 1340 | } |
| 1341 | (void)convertVectorToMMAOps(rewriter, getOperation()); |
| 1342 | } |
| 1343 | }; |
| 1344 | |
| 1345 | } // namespace |
| 1346 | |
| 1347 | std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass(bool useNvGpu) { |
| 1348 | return std::make_unique<ConvertVectorToGPUPass>(args&: useNvGpu); |
| 1349 | } |
| 1350 | |