| 1 | //===- NestedMatcher.cpp - NestedMatcher Impl ----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include <utility> |
| 10 | |
| 11 | #include "mlir/Dialect/Affine/Analysis/NestedMatcher.h" |
| 12 | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| 13 | |
| 14 | #include "llvm/ADT/ArrayRef.h" |
| 15 | #include "llvm/ADT/STLExtras.h" |
| 16 | #include "llvm/Support/Allocator.h" |
| 17 | #include "llvm/Support/raw_ostream.h" |
| 18 | |
| 19 | using namespace mlir; |
| 20 | using namespace mlir::affine; |
| 21 | |
| 22 | llvm::BumpPtrAllocator *&NestedMatch::allocator() { |
| 23 | thread_local llvm::BumpPtrAllocator *allocator = nullptr; |
| 24 | return allocator; |
| 25 | } |
| 26 | |
| 27 | NestedMatch NestedMatch::build(Operation *operation, |
| 28 | ArrayRef<NestedMatch> nestedMatches) { |
| 29 | auto *result = allocator()->Allocate<NestedMatch>(); |
| 30 | auto *children = allocator()->Allocate<NestedMatch>(Num: nestedMatches.size()); |
| 31 | llvm::uninitialized_copy(Src&: nestedMatches, Dst: children); |
| 32 | new (result) NestedMatch(); |
| 33 | result->matchedOperation = operation; |
| 34 | result->matchedChildren = |
| 35 | ArrayRef<NestedMatch>(children, nestedMatches.size()); |
| 36 | return *result; |
| 37 | } |
| 38 | |
| 39 | llvm::BumpPtrAllocator *&NestedPattern::allocator() { |
| 40 | thread_local llvm::BumpPtrAllocator *allocator = nullptr; |
| 41 | return allocator; |
| 42 | } |
| 43 | |
| 44 | void NestedPattern::copyNestedToThis(ArrayRef<NestedPattern> nested) { |
| 45 | if (nested.empty()) |
| 46 | return; |
| 47 | |
| 48 | auto *newNested = allocator()->Allocate<NestedPattern>(Num: nested.size()); |
| 49 | llvm::uninitialized_copy(Src&: nested, Dst: newNested); |
| 50 | nestedPatterns = ArrayRef<NestedPattern>(newNested, nested.size()); |
| 51 | } |
| 52 | |
| 53 | void NestedPattern::freeNested() { |
| 54 | for (const auto &p : nestedPatterns) |
| 55 | p.~NestedPattern(); |
| 56 | } |
| 57 | |
| 58 | NestedPattern::NestedPattern(ArrayRef<NestedPattern> nested, |
| 59 | FilterFunctionType filter) |
| 60 | : filter(std::move(filter)), skip(nullptr) { |
| 61 | copyNestedToThis(nested); |
| 62 | } |
| 63 | |
| 64 | NestedPattern::NestedPattern(const NestedPattern &other) |
| 65 | : filter(other.filter), skip(other.skip) { |
| 66 | copyNestedToThis(nested: other.nestedPatterns); |
| 67 | } |
| 68 | |
| 69 | NestedPattern &NestedPattern::operator=(const NestedPattern &other) { |
| 70 | freeNested(); |
| 71 | filter = other.filter; |
| 72 | skip = other.skip; |
| 73 | copyNestedToThis(nested: other.nestedPatterns); |
| 74 | return *this; |
| 75 | } |
| 76 | |
| 77 | unsigned NestedPattern::getDepth() const { |
| 78 | if (nestedPatterns.empty()) { |
| 79 | return 1; |
| 80 | } |
| 81 | unsigned depth = 0; |
| 82 | for (auto &c : nestedPatterns) { |
| 83 | depth = std::max(a: depth, b: c.getDepth()); |
| 84 | } |
| 85 | return depth + 1; |
| 86 | } |
| 87 | |
| 88 | /// Matches a single operation in the following way: |
| 89 | /// 1. checks the kind of operation against the matcher, if different then |
| 90 | /// there is no match; |
| 91 | /// 2. calls the customizable filter function to refine the single operation |
| 92 | /// match with extra semantic constraints; |
| 93 | /// 3. if all is good, recursively matches the nested patterns; |
| 94 | /// 4. if all nested match then the single operation matches too and is |
| 95 | /// appended to the list of matches; |
| 96 | /// 5. TODO: Optionally applies actions (lambda), in which case we will want |
| 97 | /// to traverse in post-order DFS to avoid invalidating iterators. |
| 98 | void NestedPattern::matchOne(Operation *op, |
| 99 | SmallVectorImpl<NestedMatch> *matches) { |
| 100 | if (skip == op) { |
| 101 | return; |
| 102 | } |
| 103 | // Local custom filter function |
| 104 | if (!filter(*op)) { |
| 105 | return; |
| 106 | } |
| 107 | |
| 108 | if (nestedPatterns.empty()) { |
| 109 | SmallVector<NestedMatch, 8> nestedMatches; |
| 110 | matches->push_back(Elt: NestedMatch::build(operation: op, nestedMatches)); |
| 111 | return; |
| 112 | } |
| 113 | // Take a copy of each nested pattern so we can match it. |
| 114 | for (auto nestedPattern : nestedPatterns) { |
| 115 | SmallVector<NestedMatch, 8> nestedMatches; |
| 116 | // Skip elem in the walk immediately following. Without this we would |
| 117 | // essentially need to reimplement walk here. |
| 118 | nestedPattern.skip = op; |
| 119 | nestedPattern.match(op, matches: &nestedMatches); |
| 120 | // If we could not match even one of the specified nestedPattern, early exit |
| 121 | // as this whole branch is not a match. |
| 122 | if (nestedMatches.empty()) { |
| 123 | return; |
| 124 | } |
| 125 | matches->push_back(Elt: NestedMatch::build(operation: op, nestedMatches)); |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | static bool isAffineForOp(Operation &op) { return isa<AffineForOp>(op); } |
| 130 | |
| 131 | static bool isAffineIfOp(Operation &op) { return isa<AffineIfOp>(op); } |
| 132 | |
| 133 | namespace mlir { |
| 134 | namespace affine { |
| 135 | namespace matcher { |
| 136 | |
| 137 | NestedPattern Op(FilterFunctionType filter) { |
| 138 | return NestedPattern({}, std::move(filter)); |
| 139 | } |
| 140 | |
| 141 | NestedPattern If(const NestedPattern &child) { |
| 142 | return NestedPattern(child, isAffineIfOp); |
| 143 | } |
| 144 | NestedPattern If(const FilterFunctionType &filter, const NestedPattern &child) { |
| 145 | return NestedPattern(child, [filter](Operation &op) { |
| 146 | return isAffineIfOp(op) && filter(op); |
| 147 | }); |
| 148 | } |
| 149 | NestedPattern If(ArrayRef<NestedPattern> nested) { |
| 150 | return NestedPattern(nested, isAffineIfOp); |
| 151 | } |
| 152 | NestedPattern If(const FilterFunctionType &filter, |
| 153 | ArrayRef<NestedPattern> nested) { |
| 154 | return NestedPattern(nested, [filter](Operation &op) { |
| 155 | return isAffineIfOp(op) && filter(op); |
| 156 | }); |
| 157 | } |
| 158 | |
| 159 | NestedPattern For(const NestedPattern &child) { |
| 160 | return NestedPattern(child, isAffineForOp); |
| 161 | } |
| 162 | NestedPattern For(const FilterFunctionType &filter, |
| 163 | const NestedPattern &child) { |
| 164 | return NestedPattern( |
| 165 | child, [=](Operation &op) { return isAffineForOp(op) && filter(op); }); |
| 166 | } |
| 167 | NestedPattern For(ArrayRef<NestedPattern> nested) { |
| 168 | return NestedPattern(nested, isAffineForOp); |
| 169 | } |
| 170 | NestedPattern For(const FilterFunctionType &filter, |
| 171 | ArrayRef<NestedPattern> nested) { |
| 172 | return NestedPattern( |
| 173 | nested, [=](Operation &op) { return isAffineForOp(op) && filter(op); }); |
| 174 | } |
| 175 | |
| 176 | bool isLoadOrStore(Operation &op) { |
| 177 | return isa<AffineLoadOp, AffineStoreOp>(op); |
| 178 | } |
| 179 | |
| 180 | } // namespace matcher |
| 181 | } // namespace affine |
| 182 | } // namespace mlir |
| 183 | |